
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011 1569

Reliability-Driven Energy-Efficient Task Scheduling for
Multiprocessor

Real-Time Systems

Tongquan Wei, Xiaodao Chen, and Shiyan Hu

Abstract—This paper proposes a reliability-driven task scheduling
scheme for multiprocessor real-time embedded systems that optimizes
system energy consumption under stochastic fault occurrences. The task
scheduling problem is formulated as an integer linear program where a
novel fault adaptation variable is introduced to model the uncertainties
of fault occurrences. The proposed scheme, which considers both the
dynamic power and the leakage power, is able to handle the scheduling of
independent tasks and tasks with precedence constraints, and is capable
of scheduling tasks with varying deadlines. Experimental results have
demonstrated that the proposed reliability-driven parallel scheduling
scheme achieves energy savings of more than 15% when compared to
the approach of designing for the corner case of fault occurrences.

Index Terms—Energy efficient, multiprocessor system, real-time sys-
tems, reliability, task scheduling.

I. Introduction

The number of hardware transient faults has been rising
due to the increasing level of integration and reducing size of
transistor features in addition to harsh operating environments.
The probability of fault occurrences is even higher in a mul-
tiprocessor system as a result of large number of components
and increased design complexity. Since real-time applications
demand both temporal and logical correctness, it is desirable
that in the presence of faults real-time tasks finish execution
before their respective deadlines. Therefore, real-time embed-
ded systems are typically designed with enough margins to
tolerate the worst case expected number of faults by trading
off fault coverage and fault detection latency with system per-
formance. Fault tolerance in real-time multiprocessor systems
is typically achieved through primary-backup approach where
two copies of a task run on different processors [1], [2].

The need for energy-efficient design is increasing for
battery-powered real-time systems to reduce power density
and enhance the system operational lifetime. Dynamic voltage
scaling (DVS) is a popular system level power manage-
ment technique that exploits technological advances in power
supply circuits to reduce processor power consumption by
dynamically scaling down the processor speed. Numerous task
allocation and scheduling techniques based on DVS have been
proposed for energy minimization in multiprocessor systems
[3], [4], [5]. However, using DVS technique to reduce power
consumption has a negative effect on system reliability. It has
been shown that scaling down the processor speed increases

Manuscript received April 20, 2011; revised May 13, 2011; accepted May
29, 2011. Date of current version September 21, 2011. This work was
supported in part by the Fundamental Research Funds for the Central Uni-
versities of China, under the Grant 78220021. This paper was recommended
by Associate Editor Y. Xie.

T. Wei is with the Department of Computer Science, East China Normal
University, Shanghai 200062, China (e-mail: tqwei@cs.ecnu.edu.cn).

X. Chen and S. Hu are with the Department of Electrical and Computer
Engineering, Michigan Technological University, Houghton, MI 49931 USA
(e-mail: cxiaodao@mtu.edu; shiyan@mtu.edu).

Digital Object Identifier 10.1109/TCAD.2011.2160178

the transient faults rates, especially for those induced by
cosmic ray radiations, and thus degrades system reliability
[6]. Therefore, fault-tolerance and energy are two design
constraints that interplay and need to be jointly optimized.

The joint optimization of energy and fault-tolerance as two
important design constraints for safety-critical real-time sys-
tems has been extensively investigated in the recent past [7],
[8], [9]. Both energy savings and fault-tolerance are achieved
by utilizing the slack time in a task schedule. However, all
these researches focus on the joint optimization of the two
design constraints for uni-processor systems. Wei et al. [10]
proposed an energy-efficient task allocation and scheduling
schemes with deterministic fault-tolerance capabilities for
symmetric multiprocessor systems executing tasks with hard
real-time constraints. However, the presented scheme cannot
handle the scheduling of tasks with precedence constraints.
In [11], the authors described a flexible multiprocessor plat-
form using modest hardware support to enable an energy-
efficient fault-tolerance mechanism. Timeliness of the system
is not considered as a design constraint. In [12], the authors
addressed the scheduling and voltage scaling for hard real-
time applications that have been statically mapped on het-
erogeneous distributed embedded systems. Tasks in a given
task set are assumed to share a common deadline and the
effect of voltage scaling on system reliability is taken into
account. Similar to [12], Zhu et al. [13] also investigated the
reliability aware power management for real-time tasks sharing
a common deadline, but they assume the investigated multi-
processor system is homogenous and tasks to be scheduled are
independent.

This paper proposes a reliability-driven energy-efficient task
scheduling scheme for real-time homogeneous or heteroge-
neous multiprocessor embedded systems that optimizes system
energy consumption under stochastic fault occurrences. The
proposed multiprocessor task scheduling scheme is featured by
a novel fault adaptation variable β that models the uncertainties
in fault occurrences. The proposed scheme considers both
the dynamic power and the leakage power, is able to handle
the scheduling of both independent tasks and tasks with
precedence constraints, and is capable of scheduling tasks with
varying deadlines.

The rest of this paper is organized as follows. Section II
describes the system architecture and models. Section III for-
mulates the energy optimization problem as an integer linear
program (ILP). Section IV describes the proposed reliability-
driven scheduling scheme that generates energy optimum
task schedules. Section V presents the numerical results and
Section VI concludes this paper.

II. System Architecture and Models

The focus of this paper is on multiprocessor systems
where processing units are tightly coupled, inter-unit
communication is achieved via common shared memory,
and communication cost is assumed to be negligible. It is
assumed that the target multiprocessor system consists of N

DVS-equipped processing units and each processing element

0278-0070/$26.00 c© 2011 IEEE

1570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

supports L discrete frequency levels. As part of the future
work, this system model can be improved by incorporating
communication cost into task execution time. The problem
formulation will be slightly modified and the proposed
framework could be extended to handle that.

A. Application and Energy Model

Consider a real-time task set � consisting of M periodic
tasks with precedence constraints: {�|τ1, τ2, . . . , τM}. A task
is ready for execution only if the execution of its predecessor
is completed. Similarly, the successor of a task is ready for
execution only if the execution of the task is completed.
The timing characteristics of the task τm are defined to be
a tuple τm = {Tm, Dm, Cm}, where Tm is the period, Dm is the
deadline, and Cm is the task execution cycles. It is assumed
that the period of a task equals its deadline, i.e., Tm = Dm.

The power consumption of a CMOS device can be modeled
as the sum of dynamic power consumption and static power
consumption. The average dynamic power consumption pd can
be estimated by a strictly increasing and convex function, i.e.,
pd ∝ f 3 [14]. Let ps denote the static power consumption
of a device, Isubn denote the sub-threshold leakage current,
and Ij denote the reverse bias junction current, then the static
power consumption of the device is given by ps = VddIsubn +
|Vbs|Ij , where Vbs is the body bias voltage and Vdd is the
supply voltage [15].

The total energy (Etot) consumed by a multiprocessor sys-
tem during the execution of real-time tasks in a given task set
is hence estimated by

Etot =
M∑

m=1

Cm

fm

(pd + ps) (1)

where Cm

fm
denotes the execution time of task τm at the

frequency fm.

B. Recovery Model

Checkpointing technique is used in this paper to provide
fault-tolerance. It is assumed that checkpointing intervals for
a given task are equal. Let km be the worst case number
of fault occurrences during the execution of task τm at the
frequency level l, fm be the operating frequency of task τm

at the frequency level l, and Om be the optimal number of
checkpoints for task τm that minimizes the task response time
at the frequency level l, then Om is given by

Om =

⌈√
kmCm

csfm

− 1

⌉
or

⌊√
kmCm

csfm

− 1

⌋

where cs is the checkpointing overhead [8]. Assuming the
best case where no faults occur during the execution of task
τm, then CBm, which is defined to be the execution cycles
of task τm with only checkpointing overhead, is expressed
as CBm = Cm + Om × cs × fm. Assuming the worst case
where faults occur at the end of checkpointing saving, then
CWm, which is defined to be the execution cycles of task
τm including checkpointing overhead and the worst case error

recovery overhead, is given by

CWm = CBm +
kmCm

(Om + 1)
+ 2km × cs × fm.

In this equation, Cm

(Om+1) denotes the checkpoint interval
and kmCm

(Om+1) indicates the overhead to recover from km fault
occurrences. The term 2km × cs × fm gives the overheads of
km checkpoint savings and km system state retrievals [8].

CBm and CWm of task τm are constant for a fixed operating
frequency fm or frequency level l of task τm. However, the
current execution time Cm of task task τm is a random variable
due to the stochastic property of fault occurrences. Since it is
difficult to solve a mathematical program with uncertainty, the
energy optimization problem is transformed into a determin-
istic optimization problem without random variables. In this
paper, a variable β, referred to as fault adaptation variable,
is introduced to model the uncertainty in task execution time
due to fault occurrences. The current execution time of task
τm including fault recovery overhead can be expressed as a
function of CBm and CWm, that is

Cm = (1 − β) × CBm + β × CWm (2)

where 0 ≤ β ≤ 1. The execution time of task τm is CWm if
β = 1 and is CBm if β = 0.

Let λl denote the average fault arrival rate at the frequency
level l for 1 ≤ l ≤ L, where L is the number of processor
supported frequency levels. The λl at frequency fm can be
derived using the equation λl = γ × e−αfm , where γ and α are
constant parameters [6]. Since transient faults are typically
modeled using the Poisson distribution, the probability of km

fault occurrences during the execution of task τm at frequency
fm is hence given by

e
−λl

Cm
fm × (λl

Cm

fm
)km

km!
.

The reliability of a task is defined to be the probability
of completing the task successfully subject to faults [6]. As a
result, the reliability of task τm is the probability of completing
the task successfully subject up to km faults. The task level
reliability is maintained if all tasks in the task set finish the
execution successfully under their respective given reliability
target. Let RGm denote the reliability goal of task τm and Rm

denote the reliability of the task, the reliability of task τm is
maintained if the inequality

RGm ≤ Rm =
∑
km

e
−λl

Cm
fm × (λl

Cm

fm
)km

km!
(3)

holds for β = 1. Since λl, Cm, fm, and km all are functions
of the frequency level l of task τm, Rm is also a function of
the frequency level l of task τm. For a given frequency level
l (1 ≤ l ≤ L) and β = 1, λl, Cm, and fm are all known;
thus, the worst case number of fault occurrences km subject
to target reliability RGm can be iteratively derived using (3).

WEI et al.: RELIABILITY-DRIVEN ENERGY-EFFICIENT TASK SCHEDULING FOR MULTIPROCESSOR REAL-TIME SYSTEMS 1571

III. ILP Formulation

The reliability-driven energy-efficient task-to-processor as-
signment and scheduling is formulated as an integer linear pro-
gramming problem. The object function is the multiprocessor
energy consumption that considers both the dynamic power
and leakage power, as is given in (1). Energy optimization
is performed under constraints of the task execution time as a
function of the fault adaptation variable β for both independent
and dependent tasks with varying deadlines.

The variable Am,l,n is introduced to denote the scheduling
of task m at the frequency level l on processor n. Am,l,n is
equal to 1 if task τm is scheduled at the lth frequency level
on processor n, and is equal to 0 if τm is scheduled at any
other frequency levels or on any other processors. For the sake
of easy presentation, an ILP definition for single processor
task scheduling is given below to demonstrate the formulation.
Then the variable Am,l,n becomes Am,l,1. Let the variable Si

and Sj denote the start time of task τi and task τj , respectively,
and the variable Smin(i,j) denote the minimum of the Si and Sj .
Thus, the equation Smin(i,j) = min(Si, Sj) holds for any two
tasks in a given task set. The bi,j is a auxiliary binary decision
variable indicating the relationship of Smin(i,j), Si, and Sj . If
Si < Sj holds, i.e., Smin(i,j) = Si, then bi,j = 1, else bi,j = 0.
H is a large constant number and is set to 10 000 in the exper-
imental section. Similar to Smin(i,j), the variable Smax(i,j) is
introduced to indicate the maximum of the Si and Sj . That is,
Smax(i,j) = max(Si, Sj) holds for any two tasks in a given task
set. Two auxiliary variables hi,j and gi,j are also introduced
as pseudo-linear constraints to facilitate the formulation.

Given independent or dependent tasks τm with respective
deadlines of Dm for m = 1, 2, . . . , M, the number of processor
supported frequency levels L, and a value of β for 0 ≤ β ≤ 1,
the goal is to find Am,l,1 and Sm for m = 1, 2, . . . , M and
l = 1, 2, . . . , L that minimize the system energy consumption
under the given constraints. The formulation of the ILP
problem is thus given as follows:

minimize: Etot(Am,l,1; Sm)

subject to: Am,l = 0, 1 (4)
L∑
l=1

N∑
n=1

Am,l,1 = 1 (5)

Smin(i,j) ≤ Si (6)

Smin(i,j) ≤ Sj (7)

Smin(i,j) ≥ Si − H × (1 − bi,j) (8)

Smin(i,j) ≥ Sj − H × bi,j (9)

bi,j = 1, 0 (10)

Smax(i,j) = Si + Sj − Smin(i,j) (11)

hi,j = H × (Si − Smax(i,j)) + Sj (12)

Si − hi,j ≥
L∑
l=1

Aj,l,1

(
Cj

fj

)
(13)

gi,j = H × (Sj − Smax(i,j)) + Si (14)

Sj − gi,j ≥
L∑
l=1

Ai,l,1

(
Ci

fi

)
(15)

Si +
L∑
l=1

Ai,l,1

(
Ci

fi

)
≤ Di (16)

Sm1 < Sm2 (17)

(τm1 , τm2) ∈ �; 1 ≤ l ≤ L.

Equation (4) restates the definition of the variable Am,l,1,
i.e., Am,l,1 is either 0 or 1. Equation (5) indicates that each
task runs at one and only one processor frequency level.
Inequalities (6)–(10) ensure that Smin(i,j) = min(Si, Sj) holds.
Equation (11) identifies the maximum of Si and Sj . Equations
(12)–(15) ensure that the executions of task τi and τj on the
processor have no overlapping. Equation (16) indicates that
each task has to finish the execution before its deadline. Equa-
tion (17) enforces the precedence constraints assuming task
τm2 cannot start until the execution of task τm1 finishes. This
formulation can be easily extended to handle the scheduling
of tasks on multiple processors. Due to space limitation, it is
not presented in this paper.

IV. RDPS for Multiprocessor Systems

The reliability-driven energy-efficient task scheduling aims
to generate an energy optimum schedule and meet the target
task level reliability goal under the assumption of the Poisson
probability distribution of fault occurrences. A systematic
reliability-driven parallel task scheduling algorithm, motivated
from [18] and referred to as RDPS, is proposed in this
section to derive the desired fault adaptation variable β and
generate the energy optimum task schedule for a given task
set with fault-tolerance requirements. As described in Fig. 1,
for a given task set � and the target reliability RGm, a
value of the fault adaptation variable β is randomly picked,
and the associated fault recovery overhead is incorporated in
task execution time based on the selected β (step A). The
schedule of the task set is then generated by solving the
ILP definition (step B). Finally, the reliability Rm of each
task is derived using Monte Carlo simulation (step C). If the
reliability of a task does not satisfies the stop-condition of the
RDPS algorithm, the fault adaptation variable β is adjusted
and the above process is repeated. If the reliability of all
tasks satisfies the stop-condition of the RDPS algorithm, the
output task schedule is optimal in energy consumption and its
reliability meets the system reliability requirement. In other
words, the output task schedule is the desired task schedule if
(Rm − RGm) ≥ ε > 0 holds, where ε is an arbitrarily small
positive number. The following sections describe each step of
the RDPS algorithm in details.

A. β-Enabled Parallel Multiprocessor Task Scheduling

One of the key contributions of this paper is to introduce a
fault adaptation variable β that adapts task execution time in-
cluding fault recovery overhead to the Poisson probability dis-
tribution of fault occurrences. Unlike the traditional approach
of designing for corner cases, this novel technique enables
the designing of reliability-driven energy-efficient real-time
embedded systems based on status quo of fault occurrences.
Since 0 ≤ β ≤ 1, the execution time of task τm ranges from
CBm to CWm, as is shown in (2).

1572 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 10, OCTOBER 2011

Fig. 1. RDPS algorithm to iteratively derive the fault adaptation variable β

and generate the energy optimum task schedule.

Due to the statistical property of transient fault occurrences,
there exists no deterministic relationship between the fault
adaptation variable β and the reliability of a task. As a result,
the current reliability Rm of task τm, if does not meet the stop-
condition of the RDPS algorithm, cannot be used to direct the
selection of the value of β to be used in the next iteration of the
RDPS algorithm. A simple yet efficient binary search-based
approach is hence utilized to obtain the next values of β. More
specifically, given the initial range of β ∈ [0, 1], and the initial
value of β denoted by β0, the next values of β could be in the
range of both [0, β0] and [β0, 1]. If the current reliability Rm

of task τm does not reach the specified reliability goal of RGm,
the next candidates of β that will be used to generate the task
schedule are β1 = β0/2 and β2 = (β0+1)/2. Repeat this process
until the Rm is greater than yet close enough to the RGm.

B. Generate Task Schedules Using a LP Solver and Sequential
Rounding Technique

Due to the difficulties to solve ILP program efficiently, lin-
ear program (LP) with sequential rounding is utilized to com-
pute task schedules by relaxing the integer constraints of the
ILP. LP with sequential rounding is a well-known technique
and has been extensively investigated in the literature [16].

The integer constraint of the ILP definition that Am,l,n is
either 0 or 1 is relaxed and it becomes a real number such
that 0 ≤ Am,l,n ≤ 1. A commercial or open-source LP solver
is used to solve the energy optimization problem defined in
(1) under the relaxed constraint. The output of the LP solver,
Am,l,n ∈ R for m = 1, 2, . . . , M, l = 1, 2, . . . , L, and
n = 1, 2, . . . , N, indicates that each task can be assigned to
more than one processors, and the task assigned to a specific
processor can run at one or more frequency levels. This will
incur extra overhead owing to task migration among proces-
sors and task frequency switching on the same processor.
Sequential rounding technique is therefore utilized to assign
a task to one and only one processor and to set the operating
frequency of the task at one and only one frequency level.
More specifically, the variable Am,l,n is rounded to either 0 or
1 by comparing the Am,l,n with a predefined threshold value,
which can be adjusted based on time requirements to generate
the desired task schedule.

C. Derive Task Reliability Using the Monte Carlo Simulation
and Latin-Hypercube Sampling

The reliability of a task in a given task set is evaluated
under fault occurrences of Poisson probability distribution

using Monte Carlo simulation. Oftentimes, the reliability of
a task schedule is obtained in three major steps. In step
1, the reliability evaluation of the current task schedule is
started by generating the average fault arrival rate at various
frequency levels at which tasks in the given task set are
scheduled. In step 2, the number of fault occurrences during
the execution of each task is then generated based on the
probability distribution of the task, and the execution time
of the task is updated to include fault recovery overhead. In
step 3, the feasibility of the generated task schedule is verified.
Steps 2 and 3 constitute one sample of the Monte Carlo
simulation. Repeat steps 2 and 3 to take more than 10 000
Monte Carlo samples, and the reliability of the current task
schedule is derived as the ratio of the number of samples where
the schedule is feasible to the total number of Monte Carlo
samples. If the current reliability is greater than and yet close
enough to the target reliability, the resultant task schedule is
the desired schedule and the execution of the RDPS algorithm
exits. Otherwise, the RDPS algorithm jumps from step C to
step A and continues its execution, as is described in Fig. 1.

Although the Monte Carlo simulation described above
exhibits relative generality and insensitivity to the number
of stochastic fault occurrences, it is expensive for accurate
reliability estimation of a task schedule. Therefore, the Latin-
Hypercube sampling method is adopted in this paper to
improve the efficiency of reliability estimation for a task
schedule by sampling fault occurrences more systematically.
Two hundred samples of fault occurrences are taken in the
proposed scheme for reliability evaluation.

Of the three steps of the RDPS algorithm, steps A and C

take constant time. Hence, the computation overhead of the
proposed RDPS algorithm mainly depends on the overhead to
derive the task schedule using ILP solver in step B. In step B,
an interior point technique-based ILP solver is adopted. The
complexity of the interior point ILP solver is O(z3), where z is
the total number of variables in the ILP formulation [17] and
is given by m(5m + nl + 1). The overall computation overhead
of the RDPS algorithm is O(4mnlz3) for 16 samples of the β.
This computation overhead is acceptable for RDPS because it
is an offline algorithm.

V. Numerical Results

Extensive experiments were carried out over a simulated
multiprocessor system to validate the proposed schemes for
energy efficiency and running time. It is assumed that the
multiprocessor supports four discrete voltage levels, which are
0.5 V, 0.65 V, 0.8 V, and 1.0 V. The values of the dynamic
power and the leakage power of the processor, scaled to
70 nm technology based on the technology scaling trend, is
adopted from [15]. The proposed reliability-driven parallel
task scheduling algorithm RDPS was implemented in C++,
and the simulation was performed on a machine with Intel
Core 2 Quad 2.4 GHz processor and 8 GB memory. Task
execution times are in the range of 10–40 ms. Transient fault
occurrences are assumed to follow the Poisson probability
distribution, and the average fault arrival rate at the lowest
processor speed is assumed to be 4.

WEI et al.: RELIABILITY-DRIVEN ENERGY-EFFICIENT TASK SCHEDULING FOR MULTIPROCESSOR REAL-TIME SYSTEMS 1573

TABLE I

Average Energy Consumption (in mJ) of Task Sets with Varying Sizes and the Average CPU Time (in Seconds) of the Proposed

RDPS Algorithm (0 < β < 1) for Target Reliability of 0.99

1-Core 2-Cores 4-Cores
Task Set β = 0 0 < β < 1 (RDPS) β = 1 β = 0 0 < β < 1 (RDPS) β = 1 β = 0 0 < β < 1 (RDPS) β = 1
Size EB ER CPU4 EWR EW EB ER CPU4 EWR EW EB ER CPU4 EWR EW

10–40 158 187 29.1 19.1% 231 152 185 32.2 17.1% 223 165 192 87.1 21.6% 245
41–70 273 298 36.2 35.4% 461 268 292 49.3 37.9% 470 271 316 102.7 31.7% 463
71–100 521 590 45.7 20.1% 738 513 577 71.2 24.0% 759 542 595 172.3 20.9% 752

Three designing approaches, i.e., the best case, the worst
case, and the proposed stochastic RDPS approach, are com-
pared in energy savings and computational complexity under a
given task level target reliability. Let EB, EW , and ER denote
the energy consumption of a task set under the best case fault
occurrences (β = 0), the worst case fault occurrences (β = 1),
and the stochastic fault occurrences (0 < β < 1), respectively.
ER in fact indicates energy consumptions of the proposed
RDPS algorithm. Then let EWR = (EW−ER)

EW
× 100% denote

energy savings of the proposed RDPS scheme (0 < β < 1)
when compared to the approach of designing a system under
the worst case of fault occurrences (β = 1).

Table I shows the average energy consumption of task sets
with varying sizes for a common target reliability of 0.99.
Tasks in a task set are assigned to a 1-core, 2-core, and 4-
core system, respectively, for both β = 0 and β = 1. For
the proposed RDPS algorithm (0 < β < 1), tasks in a task
set are always assigned to all four cores of the Core 2 Quad
processor due to the scheduling parallelism property of the
scheme. The proposed parallel RDPS algorithm (0 < β < 1)
achieves energy savings of up to 37% when compared to the
approach of designing for the worst case faults (β = 1). For
instance, when tasks of a given task set the size of which
is 41–70 are assigned to a 2-core system, the RDPS scheme
(0 < β < 1) consumes 37.9% less energy when compared to
the designing approach for the worst case faults (β = 1).

The proposed RDPS algorithm can efficiently compute
the desired task schedule in parallel. The notation CPU4 is
introduced to denote the CPU time the RDPS algorithm takes
to compute the desired task schedule using all 4-cores of the
Core 2 Quad processor. Table I also gives the average CPU
time of the proposed RDPS algorithm (0 < β < 1) for a
common target reliability of 0.99. The CPU time of the RDPS
algorithm for task sets with 10–100 tasks is in the order of
seconds. For example, the average CPU time for the task set
with 41–70 tasks assigned to a 2-core system is 49.3 s.

VI. Conclusion

This paper proposed a novel RDPS scheme that is featured
by a fault adaptation variable β. The RDPS algorithm opti-
mizes system energy consumption under stochastic fault occur-
rences and accelerates the computing of the desired task sched-
ule by utilizing techniques such as the β-enabled schedul-
ing parallelism, sequential rounding, and Latin-Hypercube
sampling-based Monte Carlo simulation. Experimental results
have shown that the proposed parallel RDPS scheme achieved
energy savings of more than 15% when compared to the
approach of designing for the corner case of fault occurrences.

References

[1] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of a fault-tolerant
multiprocessor scheduling algorithm,” in Proc. 24th Int. Symp. Fault
Tolerant Comput., Jun. 1994, pp. 16–25.

[2] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance through schedul-
ing of aperiodic tasks in hard real-time multiprocessor systems,” IEEE
Trans. Parallel Distribut. Syst., vol. 8, no. 3, pp. 272–284, Mar. 1997.

[3] K. Gururaj and J. Cong, “Energy efficient multiprocessor task scheduling
under input-dependent variation,” in Proc. DATE, Apr. 2009, pp. 411–
416.

[4] C. Xian, Y. Lu, and Z. Li, “Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time,” in Proc.
DAC, Jun. 2007, pp. 664–669.

[5] G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada, “Practical energy-
aware scheduling for real-time multiprocessor systems,” in Proc. 15th
IEEE Int. Conf. Embedded Real-Time Comput. Syst. Applicat., Aug.
2009, pp. 383–392.

[6] D. Zhu, R. Melhem, and D. Mosse, “The effects of energy management
on reliability in real-time embedded systems,” in Proc. Int. Conf.
Comput.-Aided Des., 2004, pp. 35–40.

[7] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power
management and fault recovery in real-time systems,” IEEE Trans.
Comput., vol. 53, no. 2, pp. 217–231, Feb. 2004.

[8] Y. Zhang and K. Chakrabarty, “A unified approach for fault tolerance
and dynamic power management in fixed-priority real-time embed-
ded systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 25, no. 1, pp. 111–125, Jan. 2006.

[9] D. Zhu, H. Aydin, and J. Chen, “Optimistic reliability aware
energy management for real-time tasks with probabilistic execu-
tion times,” in Proc. Real-Time Syst. Symp., Nov.–Dec. 2008,
pp. 313–322.

[10] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority allocation
and scheduling for energy-efficient fault-tolerance in hard real-time
multiprocessor systems,” IEEE Trans. Parallel Distribut. Syst., vol. 19,
no. 11, pp. 1511–1526, Nov. 2008.

[11] M. Rashid, E. Tan, M. Huang, and D. Albonesi, “Power-efficient error
tolerance in chip multiprocessor systems,” IEEE Micro, vol. 25, no. 6,
pp. 60–70, Nov.–Dec. 2005.

[12] P. Pop, K. Poulsen, V. Izosimov, and P. Eles, “Scheduling and
voltage scaling for energy/reliability trade-offs in fault-tolerant
time-triggered embedded systems,” in Proc. 5th IEEE/ACM Int.
Conf. Hardware/Software Codes. Syst. Syn., Sep. 2007, pp. 233–
238.

[13] X. Qi, D. Zhu, and H. Aydin, “Global reliability-aware power
management for multiprocessor real-time systems,” in Proc. IEEE
Int. Conf. Embedded Real-Time Comput. Syst. Applicat., Aug. 2010,
pp. 183–192.

[14] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A
System Perspective. Reading, MA: Addison-Wesley, 1992.

[15] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage
scaling for real-time embedded systems,” in Proc. IEEE Des. Automat.
Conf., Jul. 2004, pp. 275–280.

[16] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw, and
V. Zolotov, “Discrete Vt assignment and gate sizing using a selfsnapping
continuous formulation,” in Proc. ACM/IEEE Int. Conf. Comput.-Aided
Des., Nov. 2005, pp. 705–712.

[17] L. Behjat and A. Chiang, “Fast integer linear programming based models
for VLSI global routing,” in Proc. IEEE Int. Symp. Circuits Syst., May
2005, pp. 6238–6243.

[18] C. Liao and S. Hu, “Multi-scale variation-aware techniques for high
performance digital microfluidic lab-on-a-chip component placement,”
IEEE Trans. Nanobiosci., vol. 10, no. 1, pp. 51–58, Mar. 2011.

