
August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Journal of Circuits, Systems, and Computers
c⃝ World Scientific Publishing Company

ADAPTIVE FAULT-TOLERANCE TASK SCHEDULING FOR

REAL-TIME ENERGY HARVESTING SYSTEMS ∗

LINJIE ZHU, TONGQUAN WEI†

Department of Computer Science and Technology, East China Normal University,
Shanghai 200241, China
†tqwei@cs.ecnu.edu.cn

XIAODAO CHEN, YONGHE GUO, SHIYAN HU

Department of Electrical and Computer Engineering, Michigan Technological University,
Houghton, MI 49931, USA

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Fault-tolerance and energy have become important design issues in multiprocessor

system-on-chips (SoCs) with the technology scaling and the proliferation of battery-
powered multiprocessor SoCs. This paper proposed an energy efficient fault tolerance
task allocation scheme for multiprocessor SoCs in real-time energy harvesting systems.
The proposed fault-tolerance scheme is based on the principle of the primiary/backup

task scheduling, and can tolerate at most one single transient fault. Extensive simulated
experiment shows that the proposed scheme can save up to 30% energy consumption
and reduce the miss ratio to about 8% in the presence of faults.

Keywords: Allocation and scheduling; energy harvesting; fault tolerance; multiprocessor

SoCs.

1. Introduction

The number of transient faults in hardware has been rising continuously due to

the increasing complexity of design and aggressive technology scaling. Meanwhile,

a growing number of complex safety critical applications operate under extreme

conditions; thus, demand ultra-reliability and high performance. As a result, fault-

tolerance has become an important design constraint for an embedded core based

multiprocessor system-on-a-chip (SoC).

Since multiprocessor systems are more amenable to fault-tolerance techniques

due to their inherent redundancy, several techniques have been developed with

varying levels of granularity: 1) Triple Modular Redundancy (TMR), 2) Primary

∗The preliminary version of this manuscript appeared in International Conference on Intelligent

Control and Information Processing, 2010.

1

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

2 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

Backup (PB), and 3) checkpointing scheme. Of these, the PB approach is adopted

in this paper to tolerate transient faults. In the PB approach, two copies of a task

are executed serially on two different processors and an acceptance test is performed

to check the result. The backup copy is executed only if the output of the primary

version fails the acceptance test.

Due to the fast-evolving application of real-time systems in battery-powered

portable devices, energy has emerged as an important design constraint. Recent

research on battery-powered embedded system design has focused on either reduc-

ing system energy consumption using dynamic power management technique or

increasing system energy storage by harvesting energy from ambient environment.

Dynamic power management has been an active area of research for decades

and several techniques, such as Dynamic Voltage Scaling (DVS), have been pro-

posed to reduce processor energy consumption. For system with multiple process-

ing elements, such as multiprocessor SoCs, the system energy consumption depends

significantly on the task-to-processor allocation strategies 1. Recently, energy har-

vesting technologies have been actively explored 2,3,4. This is due to the fact that

many real-time applications are being deployed in extreme environmental condition-

s where replacing batteries of devices in the field is not practical. Energy harvesting

is a process of deriving energy from external sources, such as ambient vibration,

heat, or light, and is particularly significant for autonomous low-power embedded

systems.

Energy efficient task allocation and scheduling for multiprocessor systems has

been extensively explored. Gururaj et al. 5 described a mathematical program-

ming formulation-based technique for scheduling tasks in DVS-capable multipro-

cessor systems. The proposed task scheduling scheme takes into account prece-

dence constraints and variation in task execution times to produce an energy ef-

ficient task schedule in polynomial time. An energy-aware scheduling scheme for

real-time multiprocessor systems with uncertain task execution time was proposed

in 6. The authors considered the probabilistic distribution in task execution time

and balanced the application workload among processors using the worst-fit de-

creasing bin-packing heuristic for energy savings. Watanabe et al. 7 presented a

pipelined task scheduling method for minimizing the energy consumption of Glob-

ally Asynchronous Locally Synchronous (GALS) multiprocessor SoCs under latency

and throughput constraints. In 8, an energy-aware scheduling scheme for periodic

real-time tasks in the DVS-capable multiprocessor systems was proposed by con-

sidering practical constraints such as discrete speed, idle power, and application-

specific power characteristics. However, all the above work focuses on reduction of

energy consumption of battery-powered devices assuming a constant energy budget

without considering fault-tolerance.

In this paper, an energy efficient fault-tolerance task-to-processor assignment

scheme for multiprocessor SoC energy harvesting systems is proposed by extending

the multiprocessor energy harvesting scheme presented in 9. The proposed offline

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 3

task allocation scheme greedily assigns real-time tasks to individual processing el-

ements to generate an energy efficient task schedule in the presence of transient

fault. It is assumed that fault tolerance is achieved by re-executing the faulty task

and at most one single transient fault can be tolerated in the entire system.

The rest of the paper is organized as follows. Section II introduces system archi-

tecture. Section III describes the proposed task allocation scheme for multiprocessor

SoCs in energy harvesting systems. Section IV presents the experimental results,

and Section V concludes the paper.

2. System Architecture

The target fault-tolerance energy harvesting system consists of multiple processing

elements on a single chip, energy source module, and energy storage module.

2.1. Energy Source and Storage

The system includes energy harvesting and storage modules. Let Ph(t) denote the

power generated by the energy source module at time instant t, and Eh(t1, t2)

denote the harvested energy during time interval [t1, t2], the harvested energy fed

into energy storage module can be calculated as

Eh(t1, t2) =

∫ t2

t1

Ph(t)dt.

It is assumed that the power output Ph(t) of the energy source module is a function

of time instant t. The power output can be predicted by tracing the energy source

profile 10. It is also assumed that the harvested energy is fed into energy storage

without wastage and the energy demand of the multiprocessor SoC only comes

from the energy storage. Let EC denote the energy storage capacity, Ec(t) denote

the stored energy at time instant t, and Ed(t1, t2) denote the processor energy

dissipation, then

0 ≤ Ec(t) ≤ EC ∀t

and

Ed(t1, t2) ≤ Ec(t1) + Eh(t1, t2) ∀t

hold. The later inequality indicates that a processing element has to stop the execu-

tion of a task when the available energy is not enough to finish the task execution.

The stored energy at a time instant is the current available energy minus the pro-

cessor energy dissipation, that is

Ec(t2) ≤ Ec(t1) + Eh(t1, t2)− Ed(t1, t2) ∀t1 < t2

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

4 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

2.2. Processor Model

Before the processor model is described, two terminologies, busy time and idle

time, are described. If a processing element executes tasks at a certain period

of time, the period of time is the busy time of the processing element. During

the period of time, the processing element is also called busy or being used. If a

processing element is idle or does not execute tasks in a certain period of time, the

period of time is called the idle time of the processing element.

It is assumed that there are R identical processing elements in a multiprocessor

SoC, which are denoted by P = {p1, p2,, pR}. A processing element is defined as

a quadruple p = (pid, f, v, btimelist), where pid identifies the processing element, f

is the fixed clock frequency, v is the supply voltage of the processing element, and

btimelist is the busy time chain of the processing element.

It is assumed that the energy consumption of the processor is dominated by

dynamic switching energy, which is given by 11

P (f) = Ceff × V 2
DD × f,

where Ceff is the effective capacitance, f is the operating frequency, and VDD is

the supply voltage. It is also assumed that each processing element supports only

one operating frequency and the processing element with smaller index has lower

operating frequency. Let fr denote the operating frequency of the rth processing

element for 1 ≤ r ≤ R, then fmin = f1 ≤ f2 ≤ ... ≤ fR = fmax holds. It is assumed

that processing elements of the SoC are tightly coupled and share L2 cache such

that the communication cost is small enough to be incorporated in task execution

time

2.3. Task Model

Real-time tasks with precedence constraints are considered in the proposed task

allocation scheme. For the sake of easy presentation, this paper only deals with

precedence constraints of tasks in the form of a chain. The proposed task allo-

cation scheme can be extended to handle tasks with various forms of precedence

constraints.

It is assumed that there are N task chains in a given task set, which is denoted

by Γ = {Γ1,Γ2, ...,ΓN}, and there are Mi periodic tasks in each chain, which is

denoted by Γi = {τ1, τ2, ..., τMi,≺}. In each task chain, a partial-order relation

≺, called a precedence relation, is utilized to specify the precedence constraints

among tasks. The notation τi ≺ τj ≺ τk, where i = j − 1 and k = j + 1, indicates

that τi is an immediate predecessor of task τj , which is in turn a predecessor of

task τk. On the contrary, τk is an immediate successor of task τj , which is in turn

a successor of task τi. In other words, task τj is ready for execution when task

τi is completed, and task τk is ready for execution when both task τi and task

τj are completed. The timing characteristics of the task in a chain are defined as

τm = (Tm, Dm, wcetm, pe, stm, ftm, pre, next), where Tm is the period, Dm is the

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 5

deadline, wcetm is the worst case execution cycles, and pe denotes the processing

elements on which the task is to be executed. The task is also characterized by the

start time stm, the expected finish time ftm, the immediate predecessor pre of the

task, and the immediate successor next of the task in the chain. It is assumed that

the period of a task equals its deadline and all tasks in a task set share a common

deadline, that is Tm = Dm = T = D. It is also assumed that each task is ready to

execute at the very beginning and can be assigned to one and only one processing

element. The execution of a task is assumed to be non-preemptive.

2.4. Fault Model

Although all digital systems are susceptible to single event upset (SEU)-induced

transient faults, the rate of transient fault arrival remains low in the foreseeable

future and fault-free condition continues to dominate 12,13,14. Based on this obser-

vation, the primary/backup technique that is best suited for low failure rate and

for applications of large laxity 15, is adopted as the fault-tolerance technique in

this paper. It is assumed that at most a singe fault is to be tolerated in the target

system. Since real-time tasks allocated to multiple processing elements share a com-

mon deadline and the system is designed to tolerate at most one fault, the budget

for only one backup copy is reserved on each processing element. The reserved slack

is equal to the execution time of the longest task on the processing element.

3. Energy Efficient Fault-Tolerance Task Allocation Algorithm

This section describes fault tolerant strategy firstly. Then it describes the proposed

task-to-processing element assignment scheme for multiprocessor SoCs in real-time

embedded energy harvesting systems. It is assumed that tasks have precedence

constraints and all tasks are ready at time instant 0. The input to the proposed

algorithm is a set of tasks sharing a common deadline D and the output of the

algorithm is an energy efficient fault-tolerance task schedule. The proposed scheme

can tolerate a single fault of any processor at any time.

3.1. Fault-Tolerance Strategy

The proposed fault-tolerance task allocation scheme reserves enough slack for fault

recovery and re-executes the faulty task when a single fault occurs. For a task set

Γ, the reserved slack cycle is the worst case execution cycle of the longest task in

the task set. In other words, the reserved slack for fault recovery is

wectmax =
M

max
i=1

wceti,

where M is the number of tasks in the task set. Since a fault could occur on any

processing element, this amount of slack is reserved on each processing element.

The slack reserved on a processing element also can be written as

wcetmax/fmin,

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

6 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

where wcetmax is the longest worst case execution cycle of tasks in the task set and

fmin is the lowest operating frequency of processing elements.

Assume that a fault occur during the execution of task i on processing element

m, and the system recover from the fault by re-executing the faulty task, then the

required slack is given by

wecti/fm.

As is discussed above, the reserved slack is given by

wcetmax/fmin.

Since wecti < wcetmax and fmin < fm, the reserved slack is long enough for task i

to recover from the fault.

3.2. Static Task-to-Processor Assignment Algorithm

In the proposed task allocation scheme, tasks in a given task set are assigned to

individual processing elements in a way that timing constraints and precedence

constraints of all tasks are satisfied, meanwhile, energy consumption of a task set

is greedily minimized.

It has been shown that, for a given task, the processing element operating at the

single frequency flow consumes less energy than the processing element operating

at the single frequency fhigh, where flow < fhigh
16. Therefore, a task schedule is

generated by assigning tasks in the given task set to the processing element with

lower operating frequency such that the energy consumption of the output task

schedule is greedily minimized. The proposed task allocation scheme selects a task

chain and assigns tasks in the task chain to processing elements such that the

precedence constraints of tasks in the task chain are preserved. Since precedence

graph of tasks is assumed to be independent chains, the precedence constraint of

a task can be satisfied by executing the task after the finish time of its immediate

predecessor and before the deadline. For a task without its immediate predecessor,

the task can start at time 0. For a task τm in a chain assigned to the processing

element PEr,

stm ≥ ftm−1, ftm ≤ D, 1 < m < M (1)

tm =
wcetm
fr

(2)

where tm is the worst case execution time of the task τm, fr is the fixed frequen-

cy of the processing element PEr and wcetm is the worst case execution cycles.

Combining the inequality (1) and equation (2) gives the below condition for task

τm to be feasibly scheduled on processing element PEr without compromising the

precedence constraint of the task. That is,

stm ≥ ftm−1, stm +
wcetm
fr

≤ D. (3)

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 7

Procedure(Task set Γ)

1. feasible = 1

2. for Γi, 1 ≤ i ≤ N do

3. for PEr, 1 ≤ r ≤ R do

4. for τm ∈ chain Γi do

5. for (j == r; j <= R; j ++) do

6. if inequality (3) holds then

7. update PEj , stm, ftm acc. to inequality(1)

8. end if

9. end for

10. if j == R+ 1 then

11. for τpre of task τm ∈ chain Γi do

12. update PE, stpre, ftpre acc. to inequality(1)

13. end for

14. end if

15. end for

16. end for

17. if n == R+ 1 then

18. feasible = 0; print ”unfeasible schedule”;

return feasible

19. end if

20. end for

21. return feasible

Fig. 1. Generate a static task schedule.

Since the operating frequency of each processing element is constant, the worst

execution time tm of task τm satisfies condition given as

wcetm
fmax

≤ tm ≤ wcetm
fmin

, (4)

where fmin/fmax is the speed of the processing element with lowest/highest oper-

ating frequency in the multiprocessor SoC system.

The resultant task schedule tries to assign task τm to processing element with

lower operating frequency at which the task satisfies inequality (3). If the task

can not be assigned to any processing element, the scheduler backtracks to the

immediate predecessor τm−1 of task τm and re-assign τm−1 to the processing element

with higher frequency. This strategy of task scheduling generate extra slack for task

τm. The scheduler then re-allocates task τm to the processing element with lowest

operating frequency. Repeat this process until τm is schedulable, or the head of the

chain is reached and the task is still unschedulable. If this scenario happens, the

schedule is deemed infeasible.

Figure 1 shows the algorithm that generates a static task schedule. In the algo-

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

8 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

rithm, a flag feasible is introduced to indicate the feasibility of a task allocation.

The feasible flag is initialized to 1 in line 1. N denotes the number of chains and

R denotes the number of PEs. If one task can not be feasibly allocated to any of R

processing elements, the tasks in the given task set can not be feasibly scheduled,

and the algorithm exits. This process continues until all tasks are feasibly assigned

to processing elements, or a task can not be feasibly scheduled on any processing

element, whichever comes first. If the inequality (3) holds in line 6, then the task

can be feasibly allocated in processing element r as its timing and precedence con-

straints are satisfied. The PEr, stm, ftm in inequality (1) are updated in turn, that

is

stm = max(ftm−1, PEr.btimelist)

ftm = stm +
wcetm
fr

(5)

insert(stm, ftm, PEr.btimelist).

When the algorithm updates stm in equation (5), if the processing element r

is busy at the instant ftm−1, the algorithm will search for an idle time interval of

processing element r after the instant ftm−1 and ensure that the time interval is

long enough for the task to complete in the worst case. Then the algorithm updates

ftm and inserts the calculated task execution time as a time interval into the busy

time chain of PEr.

If the inequality (3) in lines 5 to 9 does not hold, the algorithm tries to se-

lect the processing element with higher frequency. If the task is assigned to the

processing element with the highest frequency and it is still unschedulable, the

algorithm reschedules the chain to the processing element with higher frequency.

Before rescheduling, it is important that the algorithm should cancel the updates

to the predecessors of the task in line 10 to 14. For a predecessor τpre of the task

τm, the function

delete(stpre, ftpre, PE.btimelist)

is utilized to delete the busy time interval of the processing element. If the resultant

task schedule is still infeasible after rescheduling the chain to the PE with highest

frequency, the task set can not be feasibly scheduled. Conversely, if each task is

schedulable in the system, the schedule of the task set is feasible, and the energy

consumption of the schedule is greedily minimized.

Figure 2 gives an example of a static task schedule. The target multiprocessor

SoC has three processing elements, which are PE1, PE2, PE3, and the application

is divided into three task chains. The tasks in a chain are shown using the same

color and the precedence constraint is indicated by task index. In a task chain, the

task with smaller index is the predecessor of the task with larger index. tpr is the

reserved time for fault-tolerance.

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 9

Fig. 2. The example of a static task schedule

3.3. Task Migration Algorithm

It has been shown that executing a task as late as possible increases the chance of

the task to meet its deadline in energy harvesting systems 1. This section proposes

a Task Movement Algorithm (TMA) to balance system workload among multiple

processing elements and further minimizes energy consumption of the static task

schedule.

For presentation simplicity, the concept of energy profit is introduced. The ener-

gy profit of a task movement is defined to be the energy consumption of the task on

the processing element of the initial task schedule minus the energy consumption

of the task on the processing element to be moved to. As a result, for a system

with R processing elements, each task has R energy profits. To achieve an energy

efficient task schedule, tasks in the initial schedule are to be migrated among the

processing elements.

For a system withM real-time tasks and R processing elements, a single task has

R possible destination processing elements, which include the processing element

assigned in the initial schedule. So there are R×M task movement options in total.

A task movement vector (TMV) is proposed to describe a task movement option.

The ith(1 ≤ i ≤ R×M) task movement option is denoted by TMVi. TMVi is

defined as {tid, sttid, fttid, PEn1, PEn2, ep, flg}, where tid is the index of the task

τtid in the task movement option, sttid and fttid denote the start time and the

finish time of the task, the source and destination processing element are PEn1

and PEn2, ep is the energy profit of the task movement option and flg indicates

that if the task movement has happened. Let TMVi.tid indicates the index of the

task, and other members can be represented in the same way.

It is assumed that a task τtid in a chain Γi is to be migrated from the processing

element n1 to the processing element n2. If the inequality

sttid ≥ fttid−1 ≥ 0, sttid +
wcettid
PEn2.f

≤ sttid+1 ≤ D

1 ≤ tid ≤ M, 1 ≤ n2 ≤ R (6)

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

10 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

Procedure (Task initial schedule, PE)

1. for Γi, 1 ≤ i ≤ N do

2. for each task τm in chain Γi do

3. for PEr, 1 ≤ r ≤ R do

4. generate & initialize task movement vectors(TMV s)

5. end for

6. end for

7. end for

8. sort M ×R TMV s in the order of energy profit from high to low

9. change = 0

10. while true do

11. for i = 1 to M ×R do

12. if TMVi.f lg equals 1 then

13. {task TMVi.tid has been moved once}
14. end if

15. if inequality (7) holds then

16. update PEn1, PEn2, sttid, fttid
17. change = 1

18. end if

19. end for

20. if change equals 0 then

21. for Γi, 1 ≤ i ≤ N do

22. search(pre,Γi){search the first task that has not been moved from the

tail of the chain}
23. push2D(pre, PE, deadline){push the task towards the deadline}
24. change = 1

25. end for

26. end if

27. if change equals 0 then

28. break

29. end if

30. end while

31. return mid

Fig. 3. Task Movement Algorithm(TMA).

holds, task τtid can be moved to the processing element n2. The PE1 is

then updated using the function delete(sttid, fttid, PEn1.btimelist) to remove

the busy interval of task τtid and the PE2 is updated using the function

insert(sttid, fttid, PEn2.btimelist) to insert the busy interval of task τtid. sttid is

updated to the larger one of the fttid−1 and PEn2.btimelist. This is because the

processing element PEn2 may be busy at the instant fttid−1 and the algorithm

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 11

Fig. 4. The example of an optimized schedule

needs to search for the next idle interval after the instant fttid−1 for task τtid. fttid
is updated to sttid +

wcettid
fn2

.

Fig. 3 shows the Task Movement Algorithm (TMA). It takes the static initial

task schedule as input. Line 1 to 7 generate task movement vectors. For TMVi, the

members of tid, sttid, fttid are initialized by the initial schedule, energy profit ep is

calculated, and flg is initialized to 0, which means that the task movement option

does not happen. This algorithm sorts task movement vectors by the order of energy

profit from high to low in line 8. This arrangement of task movement vectors is to

ensure that the energy consumption of the resultant schedule is less than the initial

schedule. A flag change is introduced to indicate that if task movement happens

in the loop. In line 9, change is initialized to 0, which means that there is no task

movement in the loop. It is assumed that a single task can be moved only once. The

movement can happen among processing elements including the one in the initial

schedule. In line 11 to 19, if there is no task movement among processing elements,

that is, there is no energy profit, change is still 0. Conversely, change is set to 1.

In order to minimize energy consumption of task schedule, from line 20 to 26,

the algorithm searches a task from the tail of each chain until finding a task that has

not been moved and reschedules the task. This strategy can reserve some idle time

for some tasks by migrating among processing elements and therefore generates

energy profit. In addition, pushing tasks towards deadlines is in favor of harvesting

energy in the system. If one task on a processing element has been moved, change

is set to 1. Otherwise, change remains to be 0. If change is set to 1, at least one

task movement has been performed and the algorithm repeats from line 11 to line

26. If change is still 0, the while loop breaks and the algorithm exits. The output

of the algorithm is an energy efficient offline task schedule. Fig. 4 gives an example

of an optimized static task schedule using the schedule shown in Fig. 2 as input.

tpr in Fig. 4 indicates the reserved time for fault-tolerance.

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

12 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

3.4. Dynamic Adaptation of the Offline Task Schedule to Energy

Availability

The available energy of a energy harvesting system fluctuates with time and is

limited by the energy storage capacity. When the offline task schedule is generated,

energy limitation is not taken into consideration. If the available energy of the

system is not enough for a task to finish in the runtime, the processing element

has to stop the execution of the task. As a result, this task and the successors of

the tasks will surpass the deadline and the offline task schedule fails. Therefore,

the offline task schedule needs to be tailored in the runtime based on the energy

information of the energy harvesting system.

The proposed scheme improves the percentage of schedulable tasks in the energy

harvesting systems. To achieve this, the offline schedule is generated to minimize the

energy consumption of the offline task schedule. In fact, when the available energy

in the system varies, minimizing the energy consumption of the offline schedule

increases the chances to complete the execution of real-time tasks on time in the

runtime. In addition, when the current available energy Ec(t) is small, pushing

tasks towards the deadline avoids spending scarce energy early.

In the runtime, only few tasks execute up to their worst case execution time. This

characteristic of real-time tasks helps maintain the feasibility of task schedules. The

variation of task execution time reduces the energy consumed by real-time tasks,

which in turn saves the scarce energy resource.

Assume that the task τm is assigned to the processing element PEn. Let slkm
denote the accumulated slack time before executing task τm. The task τm has

enough energy to finish its execution if the inequality

Ec(stm − slkm) + Eh(stm − slkm, ftm) ≥ Ed(stm, ftm) (7)

holds, where Ec(stm − slkm) is the energy available at the time instant stm −
slkm, Eh(stm − slkm, ftm) is the energy harvested during the period from instant

stm − slkm to ftm, and Ed(stm, ftm) is the energy demand of executing task τm.

If inequality (7) does not hold, task τm is abandoned. This saves significant energy

for remaining tasks to execute successfully. Note that a task is not rescheduled to

execute early even if its processing element is idle before its start time. This policy

enables the algorithm avoid spending energy on the task too early when system

available energy storage is small.

When no faults occur in the system, the execution of real-time tasks follows the

static schedule and adapts to energy availability in the runtime. If a task incurs a

fault, the task is to be re-executed on the processing elements where it is assigned,

and all successors of the task are to be delayed by tpr on their respective processing

elements, where tpr is the slack reserved for fault recovery. This approach to fault

recovery does not lead to violation of the offline task schedule. In other words,

the precedence and timing constraints of real-time tasks remain unchanged in the

process of fault recovery.

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 13

Table 1. Compare the initial schedule with the optimized schedule in energy efficiency.

of tasks in a set deadline(ms) energy savings
10 − 19 56 10.67%
20 − 29 88 18.98%
30 − 39 134 26.32%
40 − 49 170 29.81%
50 − 59 203 28.47%

4. Experimental Results

Extensive simulation experiments were performed to validate the proposed task al-

location scheme for energy efficiency, fault-tolerance, and deadline miss ratio. The

proposed task allocation algorithm was implemented in C, and tested on Thinkpad

machine with core duo processor of 2.66 GHz and DDR memory of 4 GB. The pro-

posed scheme was compared with the scheme to randomly assign tasks to processing

element in energy consumption and deadline miss ration.

Simulations were carried out over 1000 task sets of varing sizes to account for

stochastic anomalies. The number of tasks in a task set ranges from 10 to 60 and

the tasks were generated by assuming a common deadline. The number of chains in

a task set ranges from 3 to 5. Task execution cycles were generated such that each

task chain can be scheduled in the processing element with the highest frequency.

Precedence constraint is applied to randomly selected tasks in a task set such that

the task set consists of several independent task chains.

Solar energy was selected as the energy source in the simulation experiments.

The power Ph(t) of the solar source is given by 17

Ph(t) = |F ·N(t)cos(
t

70π
)cos(

t

120π
)|, (8)

where F is a constant scaling unit, and N(t) is a random variable that is normally

distributed with mean 0 and variance 1.

Table 1 compares the randomly generated initial task schedule with the opti-

mized task schedule generated using the proposed scheme. It can be derived from

Table 1 that the optimized task schedule generated by the proposed allocation

scheme achieves energy savings of up to 30% when compared to the randomly gen-

erated task schedule. This is because the proposed task allocation scheme greedily

assigns tasks to processing elements with lower operating frequency, which effec-

tively reduces system energy consumption.

Table 2 compares the initial task schedule with the optimized task schedule

generated using the proposed allocation scheme in task deadline miss ratio and

energy efficiency. It is assumed that each task set contains different number of

independent task chains. Table 2 shows that the proposed task allocation scheme

achieves deadline miss ratio of as low as 8% and energy savings of up to 40%.

It can be derived from the table that when the number of chains in a task set

increases, the deadline miss ration decreases and the energy savings increases. This

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

14 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

Table 2. Compare the initial schedule with the optimized schedule in deadline miss ratio and
energy efficiency.

of chains in a set deadline miss ratio energy savings
3 18% 22.29%
4 16% 20.16%
5 8% 39.56%

100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

deadline(ms)

sc
he

du
le

 m
is

s
ra

tio

3 chains with fault−tolerance
3 chains without fault−tolerance
4 chains with fault−tolerance
4 chains without fault−tolerance
5 chains with fault−tolerance
5 chains without fault−tolerance

Fig. 5. Compare deadline miss ratio with fault-tolerance consideration

is because the proposed task allocation algorithm takes advantage of parallelism of

multiprocessors, and are suitable for task set with multiple chains.

Figure 5 compares deadline miss ratio of real-time task sets with fault-tolerance

considered. Three task sets are considered, each of which contains 3, 4, and 5 tasks,

respectively. It can be derived from the figure that when the number of chains in

a task set increases, the deadline miss ration decreases in the presence of faults.

It also can be seen from the figure that when the deadlines lengthen, the deadline

miss ratio decreases. This observation remains the same for the scenario in the

presence and in the absence of fault occurrences. Overall, it can be concluded that

the deadline miss ratio can be reduced by executing tasks in parallel or extending

the deadlines of real-time tasks, if allowed.

5. Conclusion

In this paper, an energy efficient fault-tolerance task allocation scheme for multi-

processor SoCs is proposed for real-time embedded energy harvesting systems. The

proposed task allocation scheme achieves fault-tolerance by reserving enough slack

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

Adaptive Fault-Tolerance Task Scheduling for Real-Time Energy Harvesting Systems 15

on each processing elements and re-executing the faulty task when the fault oc-

curs. Extensive simulation experiments show that the proposed scheme can obtain

energy savings of up to 30% and reduce task deadline miss ratio to about 8%.

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Cen-

tral Universities of China under the grant No. 78220021.

References

1. T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority allocation and scheduling
for energy-efficient fault-tolerance in hard real-time multiprocessor systems,” IEEE
Transactions on Parallel and Distributed Systems, 2008.

2. S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power sources for
wireless sensor networks,” Proceedings of Wireless Sensor Networks, pp. 1–17, 2004.

3. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design consid-
erations for solar energy harvesting wireless embedded systems,” International Sym-
posium on Information Processing in Sensor Networks, pp. 457– 462, 2005.

4. X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered sensor net-
works,” International Symposium on Information Processing in Sensor Networks, pp.
463– 468, 2005.

5. K. Gururaj and J. Cong, “Energy efficient multiprocessor task scheduling under input-
dependent variation,” Proceedings of the DATE, 2009.

6. C. Xian, Y. Lu, and Z. Li, “Energy-aware scheduling for real-time multiprocessor
systems with uncertain task execution time,” Proceedings of the DAC, 2007.

7. R. Watanabe, M. Kondo, M. Imai, H. Nakamura, and T. Nanya, “Task scheduling
under performance constraints for reducing the energy consumption of the GALS
multi-processor soc,” Proceedings of the DATE, 2007.

8. G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada, “Practical energy-aware
scheduling for real-time multiprocessor systems,” 15th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, 2009.

9. T.Wei, Y. Guo, X. Chen, and S.Hu, “Adaptive task allocation for multiprocessor
socs in real-time energy harvesting systems,” International Symposium on Quality
Electronic Design, 2010.

10. A. Kansal, J. Hsu, S. Zahedi, and M. Srivastava, “Power management in energy
harvesting sensor networks,” ACM Transactions on Embedded Computing Systems
(in revision).

11. S. Kang and Y.Leblebici, CMOS Digital Integrated Circuits Analysis and Design.
McGraw-Hill, 2002.

12. R. Reed, J. Kinnison, J. Pickel, S. Buchner, P. Marshall, S. Kniffin, and K. LaBel,
“Single-event effects ground testing and on-orbit rate prediction methods: the past,
present, and future,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 622–
634, 2006.

13. C. Weulersse, G. Hubert, G. Forget, N. Buard, T. Carriere, P. Heins, J. Palau,
F. Saigne, and R. Gaillard, “Dasie analytical version: A predictive tool for neutrons,
protons and heavy ions induced SEU cross section,” IEEE Transactions on Nuclear
Science, vol. 53, no. 4, pp. 1876–1882, 2006.

14. T. Langley, R. Koga, and T. Morris, “Single-event effects test results of
512MB SDRAMs,” IEEE Radiation Effects Data Workshop, pp. 98–101, Jul. 2003.

August 14, 2011 22:52 WSPC/INSTRUCTION FILE ws-jcsc

16 L. Zhu, T. Wei, X. Chen, Y. Guo, and S. Hu

15. D. Mosse, R. Melhem, and S. Ghosh, “Analysis of a fault-tolerant multiprocessor
scheduling algorithm,” The 24th International Symposium on Fault Tolerant Com-
puting, 1994.

16. T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable
voltage processors,” Proceedings of the ISLPED, 1998.

17. C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling for energy harvesting
sensor nodes,” Working Conference on Distributed and Parallel Embedded Systems,
2006.

