
Adaptive Task Allocation for Multiprocessor SoCs

Tongquan Wei
CS Department

East China Normal University
Shanghai, China 200241

tqwei@cs.ecnu.edu.cn

Yonghe Guo
ECE Department

Michigan Tech University
Houghton, MI 49931

yongheg@mtu.edu

Xiaodao Chen
ECE Department

Michigan Tech University
Houghton, MI 49931
cxiaodao@mtu.edu

Shiyan Hu
ECE Department

Michigan Tech University
Houghton, MI 49931

shiyan@mtu.edu

Abstract—This paper proposes an adaptive energy efficient
task allocation scheme for a multiprocessor system-on-a-chip
(SoC) in real-time energy harvesting systems. The proposed
scheme generates an energy efficient offline task schedule for
a multiprocessor SoC energy harvesting system by balancing
application workload among multiple processing elements and
pushing real-time application towards their deadlines. The offline
task schedule is dynamically extended to adapt to the energy
availability in the runtime to improve the probability of a task
to be feasibly scheduled. Simulation experiments show that the
proposed scheme achieves energy savings of up to 24%, and
reduces task deadline miss ratio of up to 10%.

Index Terms—Allocation and scheduling, energy harvesting,
multiprocessor SoC, processing element (PE), real-time embed-
ded systems, task movement vector (TMV).

I. INTRODUCTION

Increasing number of embedded systems are being deployed
in various applications with real-time constraints. Many of
these applications, such as satellite-based parallel signal pro-
cessing, parallel computing in sensor networks and automated
target recognition (ATR), are rich in thread-level parallelism
(TLP). Advances in semiconductor technology have led to
the proliferation of an embedded core based system-on-a-
chip (SoC), which typically have more than one process-
ing elements. TLP-rich applications are well suited to high-
performance SoCs where multiple threads can be executed
simultaneously on different processing elements to provide
high computing throughput.

Due to the fast-evolving application of real-time systems
in battery-powered portable devices, energy has emerged as
an important design constraint. Recent research on battery-
powered embedded system design has focused on either
reducing system energy consumption using dynamic power
management technique or increasing system energy storage
by harvesting energy from ambient environment.

Dynamic power management has been an active area of
research for decades and several techniques, such as Dynamic
Voltage Scaling (DVS) [1]–[3], have been proposed to re-
duce processor energy consumption [4]–[6]. For system with
multiple processing elements, such as multiprocessor SoCs,
the system energy consumption depends significantly on the
task-to-processor allocation strategies [7]. Recently, energy
harvesting technologies have been actively explored [8]–[10].
This is due to the fact that many real-time applications are

being deployed in extreme environmental conditions where
replacing batteries of devices in the field is not practical.
Energy harvesting is a process of deriving energy from external
sources, such as ambient vibration, heat, or light, and is
particularly significant for autonomous low-power embedded
systems.

Several research work has been conducted in the area of
low-energy design for real-time energy harvesting systems. In
[11], an offline task scheduling algorithm was proposed for
a frame-based real-time system with minimum and maximum
energy constraints. Tasks are assumed to be independent and
task preemption overhead is neglected. Rusu et al. [12] de-
scribed an energy-aware scheduling scheme for multi-version
tasks in rechargeable real-time systems. Tasks with worst case
execution times are statically scheduled under the timing and
energy constraints. In the runtime, extra energy due to varia-
tion in task execution time is redistributed among remaining
tasks. A lazy scheduling algorithm was proposed in [13] that
executes real-time tasks as late as possible at full processor
speed. The algorithm was further improved in [14], [15] to
utilize task slack time for energy savings. All the above work
focuses on task scheduling on a single processor in a real-time
energy harvesting system.

Energy efficient task allocation and scheduling for multi-
processor systems has been extensively explored. Gururaj et
al. [16] described a mathematical programming formulation-
based technique for scheduling tasks in DVS-capable mul-
tiprocessor systems. The proposed task scheduling scheme
takes into account precedence constraints and variation in task
execution times to produce an energy efficient task schedule
in polynomial time. An energy-aware scheduling scheme for
real-time multiprocessor systems with uncertain task execu-
tion time was proposed in [17]. The authors considered the
probabilistic distribution in task execution time and balanced
the application workload among processors using the worst-fit
decreasing bin-packing heuristic for energy savings. Watanabe
et al. [18] presented a pipelined task scheduling method for
minimizing the energy consumption of Globally Asynchronous
Locally Synchronous (GALS) multiprocessor SoCs under la-
tency and throughput constraints. In [19], an energy-aware
scheduling scheme for periodic real-time tasks in the DVS-
capable multiprocessor systems was proposed by considering
practical constraints such as discrete speed, idle power, and

in Real-Time Energy Harvesting Systems

978-1-4244-6455-5/10/$26.00 ©2010 IEEE 538 11th Int'l Symposium on Quality Electronic Design

application-specific power characteristics. However, all the
above work focuses on reduction of energy consumption of
battery-powered devices assuming a constant energy budget.

In this paper, an energy efficient task-to-processor assign-
ment scheme for multiprocessor SoC energy harvesting sys-
tems is proposed. The proposed offline task allocation scheme
greedily assigns real-time tasks to individual processing el-
ements to generate an initial energy efficient task schedule.
The energy consumption of tasks in the initial task schedule
is further reduced by balancing application workload among
processing elements and pushing tasks towards their deadlines
while still preserving task timing constraint and task prece-
dence constraint. Finally, the offline task schedule is adapted
to the energy availability in the runtime, and task slack time
due to variations in task execution times is utilized for energy
saving and energy harvesting. To the best of the authors’
knowledge, this is the first work on energy-efficient task
allocation for multiprocessor SoC energy harvesting systems.

The rest of the paper is organized as follows. Section II
introduces the system architecture, application model, and
assumptions. Section III describes the proposed adaptive task
allocation scheme for multiprocessor SoCs in energy harvest-
ing systems. Section IV presents the experimental results, and
Section V concludes the paper.

II. SYSTEM ARCHITECTURE AND APPLICATIONS

Focus of the study is a real-time embedded energy harvest-
ing system comprising three major modules: energy source
module, energy storage module, and the multiprocessor SoC
module. The energy source module harvests energy from one
or more ambient energy sources and converts energy into
electrical energy. Energy storage module stores the energy
generated by the energy source module and powers the multi-
processor SoC. The multiprocessor SoC draws energy from
energy storage when it executes real-time tasks and stops
functioning if the energy storage is empty.

A. Energy Source and Storage
Let Ph(t) denote the power generated by the energy source

module at time instant t, and Eh(t1, t2) denote the harvested
energy during time interval [t1, t2], the harvested energy fed
into energy storage module can be calculated as

Eh(t1, t2) =
Z t2

t1

Ph(t) dt.

It is assumed that the power output Ph(t) of the energy
source module is a function of time t. The power output can
be predicted by tracing the energy source profile [20]. It is also
assumed that the harvested energy is fed into energy storage
without wastage and the energy demand of the multiprocessor
SoC only comes from the energy storage. Let EC denote
the energy storage capacity, Ec(t) denote the stored energy
at time instant t, and Ed(t1, t2) denote the processor energy
dissipation, then

0 ≤ Ec(t) ≤ EC ∀t
and

Ed(t1, t2) ≤ Ec(t1, t2) + Eh(t1, t2) ∀t

hold. The later inequality indicates that a processing element
has to stop the execution of a task when the available energy is
not enough to finish the task execution. The stored energy at a
time instant is the current available energy minus the processor
energy dissipation, that is,

Ec(t2) ≤ Ec(t1) + Eh(t1, t2)− Ed(t1, t2) ∀t1 < t2.

B. Multiprocessor SoC and Real-Time Tasks
The real-time embedded energy harvesting system consid-

ered in this study contains a multiprocessor system-on-a-chip
(SoC). It is assumed that processing elements of the SoC are
tightly coupled such that the communication cost is small
enough to be incorporated in task execution time. It is also
assumed that the multiprocessor SoC has N processing ele-
ments and each processing element supports a fixed operating
frequency. The operating frequency of processing element n is
denoted by fn, where 1 ≤ n ≤ N . The processing element of
smaller index is assumed to have lower operating frequency,
that is, fmin = f1 < f2 < · · · < fN = fmax holds.

Consider a real-time task set Γ consisting of M peri-
odic tasks with precedence constraints: {Γ|τ1, τ2, · · · , τM}.
A partial-order relation <, called a precedence relation, is
utilized to specify the precedence constraints among tasks.
The notation τi < τj < τk indicates that task τi is an im-
mediate predecessor of task τj , which is in turn an immediate
predecessor of task τk. In other words, task τj is ready for
execution when task τi is completed, and task τk is ready for
execution when both task τi and task τj are completed.

For the sake of easy presentation, it is assumed that the
precedence graph of each task is a chain. However, the
proposed scheme can deal with tasks whose precedence graphs
are tress and forests. It is assumed that the task of smaller
index is the predecessor of the task of larger index, that is,
τi < τj holds for i < j.

The timing characteristics of the task τm for 1 ≤ m ≤ M
are defined as a tuple τm = {Tm, Dm, wcetm}, where Tm is
the period, Dm is the deadline, and wcetm is the worst case
execution time in cycles. It is assumed that the period of a task
equals its deadline and all tasks in a task set share a common
deadline, that is, Tm = Dm = T = D. Each task is assumed
to be ready at the very beginning and can be assigned to one
and only one processing element. Task τm for 1 ≤ m ≤ M is
also characterized by the start time stm and finish time ftm.

III. ENERGY EFFICIENT TASK ALLOCATION ALGORITHM

This section describes the proposed adaptive task-to-
processing element assignment scheme for multiprocessor
SoCs in real-time embedded energy harvesting systems. The
proposed task allocation scheme statically assigns tasks in
a given task set to processing elements to minimize energy
consumption of the tasks, and adapts the static task schedule
to the runtime behavior of tasks and energy availability. This
algorithm aims at statically minimizing energy consumption
of tasks in a given task set and then dynamically improving
the percentage of feasible tasks by utilizing accumulated
slack time in the runtime. Section III-A describes the offline
task allocation scheme and section III-B presents the runtime
adaptation of the offline task schedule.

A. Generate an Energy Efficient Offline Task Allocation

Tasks in a given task set are first assigned to individual
processing elements in a way that timing constraints and
precedence constraints of all tasks are satisfied, and task
energy consumption is greedily minimized. The produced task
schedule is called an initial schedule. The energy consumption
of tasks in the initial schedule is further reduced by moving
tasks to specific processing elements without compromising
the schedule feasibility and violating task precedence con-
straint. The output of the algorithm at this step is an energy
efficient offline task schedule.

Generate an initial task schedule: It has been shown that,
for a given task, the processing element operating at the single
frequency flow consumes less energy than the processing
element operating at the single frequency fhigh if the timing
constraint of the task is satisfied, where flow < fhigh [3].
Therefore, the initial task schedule is generated by assigning
tasks in the given task set to the processing element with lower
operating frequency such that the energy consumption of the
output task schedule is greedily minimized.

Since precedence graph of a task is assumed to be a chain,
the precedence constraint of the task can be satisfied by
executing the task after its earliest start time and before its
latest finish time. The earliest start time of a task is defined
to be its earliest start time on the processing element with the
lowest operating frequency, while the latest finish time of a
task is defined to be its latest finish time on the processing
element with the highest operating frequency. For task τm, its
earliest start time is

estm =
wcetpm

fmin
, (1)

and its latest finish time is

lftm = D − wcetsm

fmax
, (2)

where wcetpm denotes the sum of the worst case execution
time of all predecessors of task τm, and wcetsm denotes the
sum of the worst case execution time of all successors of task
τm. fmin/fmax is the speed of the precessing element with
lowest/highest operating frequency in the multiprocessor SoC
system. Therefore, the precedence constraint of task τm is met
if

estm ≤ stm, ftm ≤ lftm 1 ≤ m ≤ M (3)

holds. For a task without a predecessor, its earliest start time is
0, while for a task without a successor, its latest finish time is
its deadline D. Similarly, for an independent task, its earliest
start time is 0 and its latest finish time is its deadline D.

Whether a task can be feasibly scheduled on a processing
element of a multiprocessor SoC energy harvesting system
depends significantly on the finish time of the last task on
the processing element. Let idltn denote the time instant on
processing element n and call it the idle instant. Task τm can
be feasibly scheduled on processing element n if

max(idltn, estm) +
wcetm

fn
≤ D

Require: Task set Γ
1. for τm, 1 ≤ m ≤ M do
2. derive estm and lftm using equation (1) and (2)
3. stm = estm and ftm = lftm
4. end for
5. for n = 1 to N do
6. idltn = 0
7. end for
8. feasible = 0
9. for τm, 1 ≤ m ≤ M do

10. for PEn, 1 ≤ n ≤ N do
11. if inequality (5) holds then
12. update stm, idltn and ftm acc. to equation (6)

{assign task τm to PEn}
13. feasible = 1; break
14. else
15. feasible = 0
16. end if
17. end for
18. if feasible == 0 then
19. print "Infeasible Schedule"
20. exit(1) {Exit when infeasible}
21. end if
22. end for

Fig. 1: Generate an initial task schedule.

1 ≤ n ≤ N, 1 ≤ m ≤ M (4)

holds.
Combining inequality (3) and inequality (4) gives the below

condition for task τm to be feasibly scheduled on processing
element n without compromising the precedence constraint of
the task.

max(idltn, estm) +
wcetm

fn
≤ lftm ≤ D

1 ≤ n ≤ N, 1 ≤ m ≤ M (5)

Fig. 1 shows the algorithm to generate an initial task
schedule. Lines 1 to 4 derive the earliest start time and latest
finish time of tasks in the given task set using equation (1) and
(2), and initialize the start time and finish time of each task to
its earliest start time and latest finish time, respectively. Lines
5 to 7 reset the idle instant idltn (1 ≤ n ≤ N) of all processing
elements to 0. A flag feasible is introduced to indicate the
feasibility of a task allocation. The feasible flag is initialized
to 0 in line 8. For task τm and processing element n, if the
inequality (5) holds, then the task can be feasibly allocated
to processing element n and its timing constraint is satisfied.
The stm, idltn, and ftm are updated in turn, that is,

stm = max(idltn, estm)

idltn = stm +
wcetm

fn

ftm = idltn. (6)

The flag feasible is set to 1 and the algorithm proceeds

to allocate the next task. Otherwise, the task can not be
feasibly allocated to the processing element n. The feasible
is reset to 0, and the algorithm examines the next processing
element for feasibly allocating the task. If the task can not be
feasibly allocated to any of the N processing elements, the
tasks in the given task set can not be feasibly scheduled, and
the algorithm exits. This process continues until all tasks are
feasibly assigned to processing elements, or a task can not
be feasibly scheduled on any processing element, whichever
comes first. This process is demonstrated from lines 9 to 22 in
Fig. 1. The output of the algorithm is an initial task schedule
of tasks in a given task set. The energy consumption of the
initial task schedule is greedily minimized.

Migrate tasks to further reduce energy consumption:
It has been shown that balancing system workload among
multiple processing elements minimizes system energy con-
sumption [7], and executing a task as late as possible increases
the chance of the task to meet its deadline in energy har-
vesting systems [13]. The proposed task movement algorithm
(TMA) further minimizes energy consumption of the initial
task schedule and improves the percentage of schedulable
tasks in the runtime when available energy Ec(t) is small by
balancing workload among processing elements and pushing
tasks towards their deadlines.

For the sake of easy presentation, the concept of energy
profit is introduced. The energy profit of a task movement
is defined to be the energy consumption of the task on the
processing element of the initial task schedule minus the
energy consumption of the task on the processing element
to be moved to. As a result, for a system with N processing
elements, there will be N energy profits for a single task. To
achieve an energy efficient task schedule, tasks in the initial
task schedule are to be migrated among processing elements
such that the energy profit of the resultant task schedule is
maximized.

For the investigated system with M real-time tasks and N
processing elements, a single task has N possible destination
processing elements including the current processing element
where the task is allocated, and there are M ×N task move-
ment options in total. A task movement vector (TMV) is then
introduced to describe a task movement option. The ith (1 ≤
i ≤ M×N) task movement option is denoted by TMVi and is
defined as TMVi = {tid, sttid, fttid, PEn1, PEn2, ep, flg},
where tid is the index of the involved task, τtid. The start time
and finish time of the task are sttid and fttid, respectively, and
the source processing element and the destination processing
element of the movement is denoted by PEn1 and PEn2,
respectively. The ep is the energy profit of the task movement,
and flg is the flag to indicate if the movement has been taken.
Let TMVi·tid indicate the member of the index tid. Other
members of TMVi can be represented in the same way.

Assume task τtid is to be moved from processing element
n1 to n2. If the inequality

max(idltn2, esttid) +
wcettid

fn2
≤ lfttid ≤ D

1 ≤ n ≤ N, 1 ≤ tid ≤ M (7)

Require: initial task schedule
1. for τm, 1 ≤ m ≤ M do
2. for PEn, 1 ≤ n ≤ N do
3. generate & initialize task movement vectors (TMVs)
4. end for
5. end for
6. sort M×N TMVs in the order of energy profit from high

to low
7. for i = 1 to M ×N do
8. feasible = 1
9. if TMVi·flgi == 1{task TMVi·tid has been moved}

then
10. feasible = 0
11. end if
12. if inequality (7) holds then
13. feasible = 1 {task TMVi·tid can be moved}
14. else
15. feasible = 0 {task TMVi·tid can not be moved}
16. end if
17. if feasible == 1 then
18. move task TMVi·tid from TMVi·n1to TMVi·n2

19. update sttid, idltn2, and fttid using equation (8)
20. update idltn1 using equation (9)
21. TMVi·flgi = 1
22. end if
23. end for

Fig. 2: Task movement algorithm (TMA).

holds, then task τtid can be feasibly moved to processing
element n2. The sttid, idltn2, fttid are updated to

sttid = max(idltn2, esttid)

idltn2 = sttid +
wcettid

fn2

fttid = idltn2, (8)

and the idle instant of processing element n1 is updated to

idltn1 = idltn1 − wcettid
fn1

. (9)

As is shown in Fig. 2, the task movement algorithm (TMA)
takes as input the initial task schedule. Similar to the algorithm
in Fig.1, a flag feasible is introduced to indicate the feasibility
of a task schedule. Lines 1 to 5 generate M×N task movement
vectors. For TMVi, the members of tid, sttid, and fttid are
initialized by the initial task schedule, the energy profit ep is
calculated, and the flg is reset to 0, indicating that all tasks
have not been moved. Line 6 of the TMA algorithm sorts all
task movement vectors in the order of energy profit from high
to low. This arrangement of task movement vectors ensures
that energy consumption of the resultant task schedule is less
than that of the initial task schedule.

In line 8, the feasible flag is set to 1, indicating that the
current task schedule is feasible. Each task can only be moved
at most once, as is shown from lines 9 to 11. If the current
task TMVi·tid satisfies the inequality 7, then it can be moved

and feasible flag is set to 1 (lines 12-13). Otherwise, the task
can not be moved and the feasible flag is set to 0 (lines 14-
15). For the current task that can be moved, line 18 moves the
task from PEn1 to PEn2, line 19 updates the sttid, idltn2,
and fttid according to equation (8), line 20 update idltn1

using equation (9), and line 21 set the flag TMVi·flgi to 1,
indicating that the task has been moved. The process shown
from lines 7 to 23 repeats until all task movement vectors have
been examined, or the energy profit of a task movement vector
is less than or equal to 0, whichever comes first. The output
of the algorithm is an energy efficient offline task schedule.

B. Dynamic Adaptation of the Offline Task schedule to Energy
Availability

The available energy of a energy harvesting system fluctu-
ates with time and is limited by the energy storage capacity.
When the offline task schedule is generated, the energy con-
straint is not considered. While in the runtime, if the available
energy is not enough for a task to finish the execution, the
processing element of the task has to stop the task execution
before the task is completed. As a result, the task and its suc-
cessors may miss their deadlines and violate their precedence
constraints, and the offline task schedule is invalidated. Hence,
the offline task schedule needs to be tailored in the runtime
based on the energy information of the energy harvesting
system.

The proposed scheme aims to improve the percentage of
tasks that can be feasibly scheduled in an energy harvesting
system. To achieve this, the offline task schedule is generated
so that the total energy consumption of the offline task
schedule is minimized, which in fact increases the chance of
a task to finish execution when available energy varies. In
addition, when the offline task schedule is generated, tasks in
the given task set are pushed towards their deadlines, which
avoids spending scarce energy on tasks too early when the
available energy Ec(t) is small.

In the runtime, few tasks executes up to their worst case
execution time. This feature of task execution time is utilized
to maintain the feasibility of runtime task schedule in two
aspects. On one hand, the variation in task execution time
reduces the energy consumption of a task, and hence conserve
the scarce resource of energy. On the other hand, energy from
ambient environment is harvested during the slack due to the
variation in task execution time, which further improve the
availability of energy.

Assume task τm−1 and task τm are assigned on processing
element n, and the execution of task τm−1 is finished at
ftm−1−slkm−1, where slkm−1 is the accumulated slack time
of preceding tasks due to variation in execution times. Task
τm starts execution at stm if enough energy is available to
finish the execution, that is, the inequality

Ec(ftm−1 − slkm−1) + Eh(ftm−1 − slkm−1, ftm)
≥ Ed(stm, ftm) (10)

holds. In inequality (10), Ec(ftm−1 − slkm−1) is the avail-
able energy at time instant ftm−1 − slkm−1, Eh(ftm−1 −
slkm−1, ftm) is the energy harvested during the period from

the actual finish time of task τm−1 to the nominal finish time
of task τm, and Ed(stm, ftm) is the energy demand of the
task. Task τm is discarded if inequality (10) does not hold.
Hence, energy is conserved for the execution of remaining
tasks. Note that a task is not rescheduled to execute early
even if its processing element is idle before its start time. This
policy enables the algorithm avoid spending energy on the task
too early when system available energy storage is small.

IV. EXPERIMENTAL RESULTS

Extensive simulation experiments were performed to vali-
date the proposed task allocation scheme for energy efficiency
and feasibility performance. The proposed task allocation al-
gorithm was implemented in C, and tested on an Asus machine
with Core Duo processor of 1.66 GHz and DDR memory
of 2.5 GB. Since, to the best of the authors’ knowledge,
this is the first work on energy efficient task allocation for
multiprocessor SoC energy harvesting system, the proposed
scheme was validated by comparing the initial task schedule
and the optimized task schedule in energy consumption and
task deadline miss ratio when available energy is small.
Alg:initial schedule

Simulations were carried out over 1000 task sets of varying
sizes to account for stochastic anomalies. The number of tasks
in a task set ranges from 10 to 60 and the tasks were generated
by assuming a common deadline. Task execution times in
cycles were generated such that all tasks in a task set can be
feasibly scheduled at a certain processor speed. Precedence
constraint is applied to randomly selected tasks in a task set
such that the precedence of a single task is a chain.

Solar energy was selected as the energy source in the
simulation experiments. The power Ph(t) of the solar source
[21] is given by

Ph(t) = |F ·N(t) cos(
t

70π
) cos(

t

120π
)|,

where F is a constant scaling unit, and N(t) is a random
variable that is normally distributed with mean 0 and variance
1.

Table I compares the initial task schedule with the task
schedule that is optimized using the proposed task movement
algorithm (TMA). In the table, the E1 denote the average
energy consumption of the optimized task schedule, E2 denote
the average energy consumption of the initial task schedule,
and CPU denotes the average runtime of the TMA algorithm.
The common deadline of tasks is denoted by Deadline,
and the average schedule length is denoted by SchdLength.
(E2 −E1)/E2 is utilized to denote the energy savings of the
optimized task schedule when compared to the initial task
schedule.

It can be derived from Table I that the task schedule opti-
mized using the proposed task movement algorithm achieves
energy savings of up to 24% when compared to the energy
consumption of the initial task schedule. This is because the
task movement algorithm greedily balances application work-
load among processing elements, which effectively reduces
system energy consumption [7]. Due to the load balancing
property of the TMA algorithm, the schedule length of the

TABLE I: Compare initial task schedule and optimized task schedule. CPU refers to the algorithm runtime in seconds

of tasks Optimized task schedule Initial task schedule
in a task set E1 CPU (Sec) SchdLength Deadline E2 CPU (Sec) SchdLength Deadline (E2 − E1)/E2

10-19 138.86 0.96 26.14 56.00 183.41 0.98 55.04 56.00 24.29%
20-29 211.37 1.03 36.24 88.00 279.45 0.98 87.11 88.00 24.35%
30-39 350.77 1.01 60.26 134.00 434.94 1.04 133.91 134.00 19.25%
40-49 416.68 0.94 65.25 170.00 532.16 0.97 169.87 170.00 21.70%
50-59 510.61 0.98 56.16 203.00 632.33 1.00 202.28 203.00 19.35%

optimized task schedule is shorter as compared to that of the
initial task schedule. For example, for task sets that have 10-
19 tasks, the schedule length of the optimized task schedule is
26.14 while the schedule length of the initial task schedule is
55.04. The runtime overhead of the task movement algorithm
is around 1 Second, and could be negligible when compared
to task execution times.

TABLE II: Comparison of task deadline miss ratio

of tasks Initial task schedule Optimized task schedule
in a task set miss ratio miss ratio

10 20% 10%
20 15% 10%
30 20% 10%
40 20% 10%
50 10% 8%

Table II compares the task deadline miss ratio of the
initial task schedule with that of the optimized task schedule.
Experimental results for five test cases are presented. It is
shown in the table that the task deadline miss ratio of the
optimized task schedule is up to 10% lower when compared
to that of the initial task schedule. This is because the task
movement algorithm pushes tasks towards their deadlines and
schedules tasks to execute as late as possible. This policy
enables the optimized task schedule avoid spending scarce
energy on tasks too early when system available energy is
small.

V. CONCLUSIONS

In this paper, an energy efficient task allocation scheme
for multiprocessor SoCs is proposed for real-time embedded
energy harvesting systems. The proposed scheme first gener-
ates an energy efficient initial task schedule. The energy con-
sumption of the task schedule is further reduced by balancing
application workload among processing elements of a multi-
processor SoC and pushing tasks in a given task set towards
their deadlines without compromising schedule feasibility and
violating task precedence constraints. The offline task schedule
is then extended in the runtime to adapt to the variation
in task execution time for further energy savings. Extensive
simulation experiments show that the proposed energy efficient
task allocation scheme achieves energy savings of up to 24%,
and reduces task deadline miss ratio of up to 10%.

REFERENCES

[1] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling for real-
time systems on variable voltage processors,” Proceedings of the DAC,
2001.

[2] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real time
embedded systems on variable speed processors,” Proceedings of the
ICCAD, 2000.

[3] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” Proceedings of the ISLPED, 1998.

[4] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power cmos digital
design,” IEEE Journal of Solid-State Circuits, 1992.

[5] J. Lorch and A. J. Smith, “Software strategies for portable computer
energy management,” IEEE Personal Communication Magazine, vol. 5,
no. 3, pp. 60–73, 1998.

[6] L. Benini, A. Bogliolo, and G. Micheli, “A survey of design techniques
for system-level dynamic power management,” IEEE Transactions on
VLSI Systems, 2000.

[7] T. Wei, P. Mishra, K. Wu, and H. Liang, “Fixed-priority allocation
and scheduling for energy-efficient fault-tolerance in hard real-time
multiprocessor systems,” IEEE Transactions on Parallel and Distributed
Systems, 2008.

[8] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power
sources for wireless sensor networks,” Proceedings of Wireless Sensor
Networks, pp. 1–17, 2004.

[9] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava,
“Design considerations for solar energy harvesting wireless embedded
systems,” International Symposium on Information Processing in Sensor
Networks, pp. 457– 462, 2005.

[10] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered
sensor networks,” International Symposium on Information Processing
in Sensor Networks, pp. 463– 468, 2005.

[11] A. Allavena and D. Mosse, “Scheduling of frame-based embedded
systems with rechargeable batteries,” Workshop on Power Management
for Real-Time and Embedded Systems, 2001.

[12] C. Rusu, R. Melhem, and D. Mosse, “Multi-version scheduling in
rechargeable energy-aware real-time systems,” Journal of Embedded
Computing, 2005.

[13] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling for
energy harvesting sensor nodes,” Working Conference on Distributed
and Parallel Embedded Systems, 2006.

[14] S. Liu, Q. Qiu, and Q. Wu, “Energy aware dynamic voltage and
frequency selection for real-time systems with energy harvesting,”
Proceedings of the DATE, 2008.

[15] S. Liu, Q. Wu, and Q. Qiu, “An adaptive scheduling and voltage/freqency
selection algorithm for real-time energy harvesting systems,” Proceed-
ings of the DAC, 2009.

[16] K. Gururaj and J. Cong, “Energy efficient multiprocessor task scheduling
under input-dependent variation,” Proceedings of the DATE, 2009.

[17] C. Xian, Y. Lu, and Z. Li, “Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time,” Proceedings
of the DAC, 2007.

[18] R. Watanabe, M. Kondo, M. Imai, H. Nakamura, and T. Nanya,
“Task scheduling under performance constraints for reducing the energy
consumption of the gals multi-processor soc,” Proceedings of the DATE,
2007.

[19] G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada, “Practical
energy-aware scheduling for real-time multiprocessor systems,” 15th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2009.

[20] A. Kansal, J. Hsu, S. Zahedi, and M. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems (in revision).

[21] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
for energy harvesting sensor nodes,” MICS Scientific Conference and
SNF panel Review, 2006.

