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Integration of safety-critical tasks with di®erent certi¯cation requirements onto a common

hardware platform has become a growing tendency in the design of real-time and embedded
systems. In the past decade, great e®orts have been made to develop techniques for handling

uncertainties in task worst-case execution time, quality-of-service, and schedulability of mixed-

criticality systems. However, few works take fault-tolerance as a design requirement. In this

paper, we address the scheduling of fault-tolerant mixed-criticality systems to ensure the safety
of tasks at di®erent levels of criticalities in the presence of transient faults. We adopt task re-

execution as the fault-tolerant technique. Extensive simulations were performed to validate the

e®ectiveness of our algorithm. Simulation results show that our algorithm results in up to 15:8%

and 94:4% improvement in system reliability and schedule feasibility as compared to existing
techniques, which contributes to a more safe system.

Keywords: Fault-tolerant; mixed criticality; real-time systems; task scheduling.

1. Introduction

Unlike traditional embedded systems that almost have only one criticality level,

many complex embedded systems nowadays are mixed-critical, where functionalities

(or called tasks) of di®erent importance co-exist and are provided with varying
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degrees of assurance. The safety-critical systems having two or more distinct criti-

cality levels are named as mixed-criticality systems and the example of such systems

can be found in avionics and automotive industries.1–3 For example, the criticalities

of drive control and music playing in a smart car system are obviously unequal, thus

the two functionalities need to be provided with di®erent degrees of assurance.

Moreover, in such mixed-criticality systems, functionalities of higher importance

should be assigned a higher criticality so that safety requirements for these func-

tionalities could be ensured.

Considerable research e®orts have been devoted to the design of mixed-criticality

systems in the past decade. Vestal4 initiated and formalized the mixed-criticality

scheduling problem and proposed a preemptive ¯xed-priority algorithm for schedul-

ing such systems, which was proved to be optimal in the scope of preemptive ¯xed-

priority algorithms.5 Baruah et al.6 investigated the ¯xed-priority scheduling upon

preemptive uniprocessors of mixed-criticality systems, presented a novel priority as-

signment scheme, and provided a su±cient response time analysis. Unlike Refs. 4–6,

non-¯xed-priority algorithms are also explored in Refs. 7 and 8 to schedule mixed-

criticality systems in a certi¯ably correct manner. To solve the service abrupt problem

for low-criticality (LO) tasks in conventional mixed-criticality scheduling algorithms,

Su and Zhu9 studied an elastic mixed-criticality task model that speci¯cally allows

low-criticality tasks to have variable periods. In addition, they also proposed an early-

release earliest deadline ¯rst (EDF) scheduling algorithm for low-criticality tasks to

improve their execution frequencies without violating timeliness of high-criticality

(HI) tasks. However, all the above works did not take into account fault-tolerance.

For safety-critical embedded systems, the functionalities of these systems must be

ensured under various stresses such as hardware/software (HW/SW) errors and

power shortages.10 In particular, fault-tolerance is imperative in the design of such

systems to ¯ght against potential failures for achieving high safety and reliability.

There are many fault-tolerant techniques such as dual/triple modular redundan-

cy,11,12 re-execution,13,14 and checkpointing with rollback15,16 widely used in han-

dling the occurrence of faults. Dual/triple modular redundancy is usually considered

to achieve reliability against transient faults in multicore platforms, where multiple

processing units execute identical copies for each task and their results are voted

on to produce a single output. Re-execution is a technique that exploits the slack

time on the processor to have recovery tasks, which are used to enhance the reli-

ability of original tasks. Checkpointing with rollback-recovery is a popular fault-

tolerant technique deployed in real-time embedded systems to maintain the system

reliability. In checkpointing, the state of the system is saved on a stable storage at

each checkpoint. When a transient fault occurs, the system rolls back to the most

recent checkpoint and resumes the execution.

A few recent papers have focused on addressing the fault-tolerant task mapping

and scheduling for mixed-criticality systems in the presence of transient faults.10,17–19

In addition to explicitly modeling the safety requirements at di®erent criticality

J. Zhou et al.

1750016-2



levels according to safety standards, Huang et al.10 proposed a scheduling algorithm

that jointly handles the safety and schedulability requirements for mixed-criticality

systems. Kang et al.17 presented a static optimal mapping with worst-case guaran-

tees for mixed-critical applications running on fault-tolerant MPSoCs. A mixed-

criticality scheduling with task dropping is also designed to ensure timeliness and

worst-case response time of high-criticality applications. Pathan18 modeled mixed-

criticality systems from the perspective of fault-tolerance and proposed an approach

to address temporal dependencies among real-time, fault-tolerance, and mixed-crit-

icality constraints. Through the extension of classical HW/SW co-design paradigm,

the application of fault-detection/tolerance techniques, and the exploitation of ar-

chitecture features, a reliability-driven methodology is developed in Ref. 19, which

can realize embedded systems with mixed-critical fault-management requirements.

However, all the above works do not utilize idle time in a task schedule to improve

the reliability and feasibility of the mixed-criticality system. Meanwhile, no mech-

anism was developed to enhance and ensure the priority of high-criticality tasks.

In this paper, we study the scheduling of mixed-criticality tasks executing on a

uniprocessor platform in the presence of transient faults. The proposed fault-tolerant

scheduling algorithm is developed based on earliest deadline ¯rst with virtual

deadlines (EDF-VD).20 Several techniques such as period transformation (PT),

utilization of idle time (UIT), and re-execution are adopted in our algorithm to

achieve a safe system ensuring high reliability and schedulability.

The remainder of the paper is organized as follows. Section 2 introduces the

system models and problem de¯nition. Section 3 shows the overall framework. Sec-

tion 4 presents the proposed Slice-EDF-VD algorithm. Section 5 veri¯es the e®ec-

tiveness of the proposed approach. The concluding remarks and discussion of future

work are given in Sec. 6.

2. System Models and Problem De¯nition

We consider a task set � running on a uniprocessor system, where the processor is

equipped with a ¯xed frequency. The processor can operate at two states, one is busy

state and the other is idle state. If the processor executes tasks in a certain period of

time, the processor is in the busy state and the period is called the busy time.

Otherwise, the processor is in the idle state and the period when no tasks execute is

called the idle time. For the sake of brevity, we focus on the mixed-criticality system

with two di®erent criticality levels in this work, which has a low criticality and a high

criticality, and is referred to as dual-criticality system.9,10,18,20,22 We leave the study

of the mixed-criticality system with more criticality levels to our future work.

2.1. Task model

Consider a task set � that consists of n independent periodic real-time tasks

f�1; �2; . . . ; � i; . . . ; �ng. The characteristics of every task � i (1 � i � n) is described
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by a quintuple fTi;Di;Ni;Li;Cig, where Ti is the period, Di is the relative deadline,

Ni is the maximum number of transient faults that can be tolerated during the task

execution, Li 2 fLO;HIg is the task criticality level, and Ci is the task worst-case

execution time (WCET). In particular, CiðLOÞ and CiðHIÞ denote the WCETs of

task � i in low- and high-criticality modes, respectively. The real-time constraint and

the relations between low-criticality and high-criticality WCETs for every task can

be formulated as

8� i 2 � : CiðLOÞ � CiðHIÞ � Di � Ti : ð1Þ

The hyper-period of set �, denoted by H, is the least common multiple of periods

fT1;T2; . . . ;Tng. Every task � i could release a sequence (possibly in¯nite) of jobs (i.e.,

task instances � 1
i ; �

2
i ; �

3
i ; . . .) due to the property of periodicity. Let rki denote the

release time of the kth job, and it satis¯es

8� i 2 � : rkþ1
i � rki þ Ti : ð2Þ

According to the criticality level of tasks, the set � can be partitioned into

two subsets. Let LOð�Þ ¼ f� i 2 �jLi ¼ LOg represent the subset of low-criticality

tasks in set �, and HIð�Þ ¼ f� i 2 �jLi ¼ HIg represent the subset of high-criti-

cality tasks in set �. Then the processor utilization of executing task set � can be

calculated as

U ¼
X

� i2LOð�Þ

CiðLOÞ
Ti

þ
X

� i2HIð�Þ

CiðHIÞ
Ti

: ð3Þ

As reported in Ref. 22, tasks with di®erent criticality levels are associated with

di®erent reliability requirements. That is, the reliability of high-criticality tasks is

in general required to be above a threshold for safety guarantee and also higher

than that of low-criticality tasks. To this end, we assume the system utilizes fault-

tolerant technique to achieve a high reliability for high-criticality tasks � i 2 HIð�Þ,
whereas executes low-criticality tasks � i 2 LOð�Þ in a best-e®ort manner.

2.2. Fault model

Transient fault is a type of failure that appears for a short time and then disappears

without damage to the device, and is caused by electromagnetic interference or

cosmic radiation. It is indispensable for many safety-related embedded systems

to have the capacity of providing a reliable execution in the presence of transient

faults. Transient faults are in general modeled using an exponential distribution with

an average arrival rate �, which represents the expected number of failures occurring

per second.23 The reliability of a task is de¯ned as the probability of its successful

execution with no occurrence of transient faults, and can be determined by using the

exponential failure law. Speci¯cally, given the fault arrival rate �, the reliability Ri of

J. Zhou et al.

1750016-4



task � i is expressed as23

Ri ¼ e��Ci ; ð4Þ

where Ci is the worst-case execution time of the task.

Re-execution has been widely used in improving system reliability due to tran-

sient faults.17 It assumes that the fault is locally detected at the end of task execution

and it re-executes the task when a fault is detected. It utilizes a vote device to

compare the execution results and selects the correct one as the output. We adopt re-

execution in this paper to enhance the system reliability. Let �i denote the number

of times that task � i executes (including re-execution) to tolerate Ni faults, and it is

given by

�i ¼ 2Ni þ 1 : ð5Þ

We consider systems that use re-execution to tolerate up to one transient fault since

single-fault-tolerance is a common assumption.24 We then have �i ¼ 1 ðNi ¼ 0Þ if

� i 2 LOð�Þ and �i ¼ 3 ðNi ¼ 1Þ if � i 2 HIð�Þ since high-criticality tasks are required

to deliver a high reliability while low-criticality tasks are not. Therefore, based on

(4), the reliability of task � i with re-execution technique is

Rð� iÞ ¼
e��CiðLOÞ if � i 2 LOð�Þ ;
1� ð1� e��CiðHIÞÞ3 if � i 2 HIð�Þ :

(
ð6Þ

2.3. Problem de¯nition

Fault-tolerant mixed-criticality scheduling problem: Given a periodic real-time

task set � running on a dual-criticality system, the fault pro¯le Ni for all tasks in

set �, and an average error rate �, ¯nd a fault-tolerant scheduling algorithm, which

can enhance reliability and schedulability/feasibility for ensuring system safety.

3. Framework

In this section, we ¯rst propose a metric to quantify the safety of the concerned dual-

criticality system and show the necessity of task dropping to improve the schedul-

ability. We then introduce a scheduling algorithm and two techniques that are

adopted in our scheme to help achieve a safe system.

3.1. Safety metric

For a safe dual-criticality system, the reliability of high-criticality tasks should be

maintained at a high level and both of low-criticality and high-criticality tasks

should complete their execution before their deadlines. Taking this into account, we
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¯rst propose a metric to quantify the system safety during a hyper-periodH, which is

the product of the probability that high-criticality tasks execute successfully in the

absence of transient faults and the ratio of the number (M) of task instances that

¯nish their execution in time to the total number (
P

� i2�
H
Ti
) of task instances. It is

formulated as

Sð�;HÞ ¼
Y

� i2HIð�Þ
ðRð� iÞÞ

H
Ti

2
4

3
5 � MP

� i2�
H

Ti

: ð7Þ

Obviously, the system safety given in (7) can be improved by increasing the reli-

ability of high-criticality tasks and the real-time feasibility of task set. However,

using re-execution to improve task reliability would lead to a higher processor uti-

lization, which may result in an increased number of tasks missing their deadlines.

Thus, in order to achieve a high system safety, the trade-o® between reliability and

real-time feasibility needs to be balanced.

3.2. Need for task dropping

According to (3) and (5), the utilization U of executing the task set � with re-

execution can be written as

U ¼
X

� i2LOð�Þ

CiðLOÞ�i

Ti

þ
X

� i2HIð�Þ

CiðHIÞ�i

Ti

¼
X

� i2LOð�Þ

CiðLOÞð2Ni þ 1Þ
Ti

þ
X

� i2HIð�Þ

CiðHIÞð2Ni þ 1Þ
Ti

: ð8Þ

The utilization U needs to satisfy the constraint

U � 1 ; ð9Þ
if the task set � is schedulable on the processor.

However, with the increasing time overhead caused by re-execution, the task set

may become unschedulable. Table 1 gives an example that task set � consisting of

two low-criticality tasks and one high-criticality task cannot be scheduled by any

algorithms since U ¼ 1:28 > 1. In order to guarantee the schedulability of task set,

the utilization should be below the upper bound, as shown in (9). Two approaches

are commonly used to improve the schedulability of task set by reducing the utili-

zation. One approach is to choose a higher frequency to execute tasks. However, this

approach is not suitable for our model that assumes the processor frequency is ¯xed,

and also more energy would be consumed when executing tasks at a higher fre-

quency. Dropping less critical tasks is the other useful approach to reduce the uti-

lization and hence improve the schedulability of task set. As demonstrated in

Table 2, the utilization U is lowered to 0:95 and the set � becomes schedulable after

dropping a low-criticality task �1.

J. Zhou et al.

1750016-6



The aforementioned example shown in Tables 1 and 2 motivates the need for

dropping less critical tasks from the schedulability point of view. Therefore, the

approach of task dropping is adopted in this paper to guarantee the utilization

constraint given in (9).

3.3. Application of EDF-VD

As indicated in (7), the safety of a dual-criticality system depends on the reliability of

high-criticality tasks and the real-time feasibility of the whole task set. In addition,

some high-criticality tasks may miss their deadlines due to re-execution, which could

result in a decreased real-time feasibility and hence lower the system safety.

Therefore, to achieve a safe mixed-criticality system, high-criticality tasks should be

given a higher priority to execute, no matter whether the system is viewed from the

standpoint of reliability or real-time feasibility. As far as we know, the scheduling

algorithm EDF-VD presented in Ref. 20 is an e®ective method that can ensure a

higher priority for a task with higher criticality, and can also achieve a better

schedulability as compared to traditional scheduling algorithm (e.g., EDF21). Thus,

we adopt this method in our task scheduling scheme. The EDF-VD operates as

follows. It ¯rst presents a concept of virtual deadline and calculates the virtual

deadlines for all tasks. It then utilizes these virtual deadlines to determine task

scheduling priority according to the EDF policy. We brie°y summarize the calcu-

lation of virtual deadline below, and suggest the readers to refer to Ref. 20 for further

details.

The virtual deadline of job � k
i is represented by VDk

i and formulated as

VDk
i ¼ rki þDi ��i ; ð10Þ

where rki is the release time, Di is the relative deadline, and �i is the time o®set

between real deadline and virtual deadline. Assuming two jobs � k
i and � k

j are released

Table 1. U ¼ 2
6 þ 2

10 þ 3� 3
12 ¼ 1:28 > 1. The task

set � ¼ f�1; �2; �3g cannot be scheduled.

� i Ci Ti Di Li Ni �i

�1 2 6 6 LO 0 1

�2 2 10 10 LO 0 1

�3 3 12 12 HI 1 3

Table 2. U ¼ 2
10 þ 3� 3

12 ¼ 0:95 < 1. The task

set � ¼ f�2; �3g can be scheduled.

� i Ci Ti Di Li Ni �i

�2 2 10 10 LO 0 1

�3 3 12 12 HI 1 3

Fault-Tolerant Task Scheduling for Mixed-Criticality Real-Time Systems
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at the same time (i.e., rki ¼ rkj ) and have the same relative deadline (i.e., Di ¼ Dj),

then the two jobs should satisfy the relation

Li � Lj ) �i � �j ) VDk
i � VDk

j ; ð11Þ
which indicates the task with lower criticality has a larger virtual deadline. Then,

according to the principle of earliest virtual deadline ¯rst, tasks with higher criti-

cality would be assigned a higher priority to execute.

To be speci¯c, in the concerned dual-criticality system, the time o®set �i of a

high-criticality task is set to Ci while the�i of a low-criticality task is set to 0, that is,

VDk
i ¼

rki þDi � Ci if Li ¼ HI ;

rki þDi if Li ¼ LO :

(
ð12Þ

In this way, high-criticality tasks can always have a higher priority than low-criti-

cality tasks. Furthermore, when a high-criticality task � i 2 HIð�Þ misses its virtual

deadline, all the low-criticality tasks in LOð�Þ would be dropped to generate extra

available time for re-executing task � i and the next high-criticality tasks violating

the virtual deadline constraint.

3.4. Two techniques to re¯ne the scheduling feasibility

As introduced above, the EDF-VD can elevate the priority of high-criticality tasks to

generate a feasible fault-tolerant mixed-criticality task schedule. In addition, two

techniques can be used to re¯ne the scheduling of fault-tolerant mixed-criticality

tasks, as described below.

Period transformation: PT is an applicable technique that has been widely used in

the scheduling of mixed-criticality tasks, and it can improve the multi-criticality

schedulability by ensuring tasks with higher criticalities have higher scheduling

priorities.25 PT splits a task � i with period Ti, relative deadline Di, and WCET Ci

into Xi parts, such that the task then has smaller period Ti

Xi
, relative deadline Di

Xi
, and

WCET Ci

Xi
. For example, a task � i with parameters Ti ¼ Di ¼ 10;Ci ¼ 4 becomes the

task with parameters Ti ¼ Di ¼ 5;Ci ¼ 2 through one operation of PT. Clearly, the

relative deadline (and hence the virtual deadline) is decreased during the operation of

PT. If all the high-criticality tasks are transformed using PT, their transformed

deadlines are shorter than those of low-criticality tasks. Then, all the high-criticality

tasks will have higher priorities as compared to low-criticality tasks according to the

principle of EDF. However, extra overheads from the increased number of context

switches are inevitable by introducing PT.

Utilization of idle time: Note that the processor usually has some idle time, which

is dispersedly located between the task release time and start time of task execution,

or between the end time of task execution and task deadline. As aforementioned,

J. Zhou et al.
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high-criticality tasks demand more execution time since they use re-execution to

enhance the system reliability. Thus, these idle times can be assigned to high-criti-

cality tasks for satisfying their requirements. However, such time slots are typically

quite small so that they are di±cult to be directly utilized for executing high-criti-

cality tasks.

Problem conversion: Based on the above analysis, if we apply PT and UIT in the

scheme EDF-VD, both the reliability and schedulability of task set � could be im-

proved. In addition, the limitations of the two techniques need to be overcome when

we adopt them in EDF-VD. Thus, the key of our problem de¯ned in Sec. 2.3 becomes

. How to apply PT to preprocess the task set � to ensure the priority of high-

criticality tasks without incurring large context switch overhead?

. How to make UIT feasible and apply it for executing high-criticality tasks?

4. The Proposed Slice-EDF-VD Algorithm

To solve the above two issues, we propose an approach called Slice-EDF-VD that

is developed based on the EDF-VD algorithm and integrates itself with PT and UIT.

4.1. Preprocess the task set

The objective of our fault-tolerant mixed-criticality task scheduling is to tolerate Ni

transient faults for every high-criticality task � i in subset HIð�Þ. When we use re-

execution to enhance the reliability of high-criticality tasks (e.g., � i) in the presence

of transient faults, the task execution time becomes �i times of it. Notice that all the

re-executions of a high-criticality task are independent and exactly the same as the

original task, which motivates us to treat the task and its redundancies as �i

identically independent and isolated task instances (or called task slices). This can be

achieved by using a modi¯ed-PT that does not split the code and hence would not

increase the complexity of system design due to homogeny of the task and its re-

dundancies.

The modi¯ed-PT operates as follows. It converts the high-criticality task

with its redundancies into multiple task instances (slices) with updated execution

times and virtual deadlines. Speci¯cally, the high-criticality task � i with its redun-

dancies is transformed into �i new tasks � i;1; � i;2; . . . ; � i;�i
, where every new task � i;j

(1 � j � �i) has the execution time of Ci and the virtual deadline of riþ
maxf0; Di

�i
� j� Cig. For instance, consider a set � comprised of a low-criticality

task �1 (D1 ¼ T1 ¼ 4;L1 ¼ LO;C1ðLOÞ ¼ Ci ¼ 2) and a high-criticality task �2
(D2 ¼ T2 ¼ 15;L2 ¼ HI;C2ðHIÞ ¼ 3Ci ¼ 6). Using the modi¯ed-PT method, the

task set can be transformed into a set comprised of four tasks �1;1; �2;1; �2;2 and �2;3,

which is listed in Table 3. As shown in the table, through the transformation of high-

criticality task �2, the new generated tasks �2;1; �2;2 and �2;3 are shorter than the

Fault-Tolerant Task Scheduling for Mixed-Criticality Real-Time Systems
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original task �2 such that the dispersed small idle time slots can be adequately

utilized.

4.2. Task scheduling algorithm

We now present our proposed fault-tolerant task scheduling algorithm. The input to

our algorithm is a dual-criticality task set � ¼ f�1; �2; . . . ; �ng running on a uni-

processor system. The algorithm works as follows. It ¯rst makes a preprocess to the

high-criticality tasks in the task set � using the modi¯ed-PT technique (line 1), as

described in Sec. 4.1. The resultant task set is comprised of
Pn

i¼1 �i tasks and can be

represented by

� 0 ¼ f�1;1; �1;2; . . . ; �1;�1
; . . . ; �n;1; �n;2; . . . ; �n;�n

g :
It then initializes the ready queueQready to null (line 2). As introduced in Sec. 2.1, the

system will release its job � k
i;j every Ti time units for each task � i;j in the set � 0. In

other words, new jobs would keep rolling in when the system is turned on. Therefore,

an always-true loop (lines 3–21) is adopted in the algorithm to handle this case. In

each round of iteration, the algorithm pushes all the released jobs into the queue

Qready, then dequeues the ready jobs for execution from Qready according to the policy

of EDF-VD if the processor is idle and Qready is not empty (lines 4–6).

For high-criticality tasks, the algorithm utilizes a hash-based mechanism ¯nger-

printing26 to detect transient faults, which is timely and bandwidth-e±cient, and has

an arbitrary good fault-detection coverage. Fault detection using ¯ngerprinting

operates as follows.27 Given the input in the form of a program (algorithm) and some

data, the ¯ngerprint is determined by the instruction and data sequence imposed by

the program. The generated ¯ngerprint will always be the same as long as program

and data are the same; otherwise, there must be some faults. This motivates us to

detect whether a fault has happened or not by comparing the ¯ngerprints of high-

criticality tasks (lines 7–16). Thus, the algorithm memorizes the ¯ngerprints of high-

criticality tasks during the task execution. It employs a voting device to compare the

¯ngerprints of � k
i;1; �

k
i;2; . . . ; �

k
i;�i�1 for high-criticality task instance � k

i . If their ¯n-

gerprints are the same which indicates task executions are correct, the °ag variable

Table 3. The transformed set of four tasks �1;1; �2;1; �2;2 and

�2;3. (Note that �1;1 is the same task as �1 since modi¯ed-PT is

only applied to high-criticality task.)

� i CiðLOÞ or CiðHIÞ Ti Di VDi Li �i

�1;1 2 4 4 4 LO 1

�2;1 2 15 15 3 HI 3

�2;2 2 15 15 8 HI 3

�2;3 2 15 15 13 HI 3
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Result ki of �
k
i is set to Correct. Accordingly, � k

i;�i
is dropped from Qready since there is

no need of re-execution. Otherwise, tasks with low criticality are dropped for en-

suring the re-execution of high-criticality tasks. Without the fault-tolerance re-

quirement of low-criticality tasks, ¯ngerprinting is not applied to low-criticality tasks

(lines 17–19). The pseudo-code of the proposed algorithm, named Slice-EDF-VD, is

described in Algorithm 1.

5. Evaluation

According to the safety metric that is de¯ned in (7) which shows that the safety of a

dual-criticality system depends on the system reliability and real-time feasibility, we

¯rst carry out two sets of simulation experiments to validate the proposed scheduling

algorithm Slice-EDF-VD with respect to the two aspects, respectively. The proposed

algorithm Slice-EDF-VD is compared with the benchmarking algorithms EDF21 and

EDF-VD20 in the simulation. The two benchmarking algorithms adopted in the

comparison are described as follows. EDF is a scheduling algorithm that prioritizes

Algorithm 1. Pseudo-code of Slice-EDF-VD
Input: A dual-criticality task set Γ = {τ1, τ2, . . . , τn}
1: Γ ← preprocess Γ using the modified-PT;
2: Qready ← φ;
3: while True do
4: push the released jobs τk

i,j from Γ into Qready;
5: if State = idle and Qready = φ then
6: dequeue the ready job τk

i,j from Qready according to the EDF-VD;
7: if Li = HI then
8: for j = 1 to Υi − 1 do
9: execute τk

i,j and memorize fingerprint;
10: end for
11: Resultk

i ← vote τk
i,1, τ

k
i,2, . . . , τ

k
i,Υi−1;

12: if Resultk
i = Correct then

13: drop τk
i,Υi

from Qready; {no error, thus no re-execution}
14: else
15: drop all low-criticality tasks from Qready and execute τk

i,Υi
;

{re-execution when error exists}
16: end if
17: else
18: execute τk

i,j ;
19: end if
20: end if
21: end while
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active tasks according to their deadlines, that is, the earlier the deadline, the higher

the priority.21 EDF-VD is extended from EDF and designed for the scheduling of

mixed-criticality task systems.20 With the application of virtual deadline, it can

ensure a higher priority for a task with higher criticality and also achieve a better

schedulability as compared to traditional scheduling algorithms. After the two sets of

simulation experiments, we further investigate the CPU time overhead and scal-

ability of the proposed algorithm Slice-EDF-VD.

All the algorithms were implemented in Python 2.7.8 and simulations were per-

formed on a machine with Intel Quad-Core 2.1GHz processor and 6GB memory.

Task sets used in the simulation are constructed by a random mixed-criticality task

generation algorithm presented in Ref. 28, which determines the number of tasks in a

set, the criticality levels, release times, WCET, periods, and deadlines of tasks. The

average fault arrival rate � is set to be 1� 10�5. In our simulations, the value of �i

for a low-criticality task � i 2 LOð�Þ is set to 1, and the value of �i for a high-

criticality task � i 2 HIð�Þ can be set to 3 and 5. In other words, Ni ¼ 1 and Ni ¼ 2

are utilized for fault-tolerance in the evaluation. Ni ¼ 1 has been widely utilized in

the previous works since single-fault-tolerance is a common assumption.24 This is

because that a large Ni could lead to a high task execution time and system utili-

zation, which may violate the constraints of system utilization and task deadline.

However, in order to do more investigations of our method and the benchmarking

methods, and simultaneously have a relatively high system schedulability, we utilize

Ni ¼ 1 and Ni ¼ 2 in the evaluation.

Figure 1 shows the variations of reliability of the three algorithms EDF,21 EDF-

VD,20 and Slice-EDF-VD under varying processor utilizations. It has been demon-

strated in the ¯gure that our Slice-EDF-VD algorithm has a higher reliability as

compared to benchmarking algorithms EDF21 and EDF-VD.20 More speci¯cally, in

the case of �i ¼ 3 for high-criticality tasks, the reliability achieved by Slice-EDF-VD

is 7:8% and 4:6% higher than those of EDF21 and EDF-VD20 on average, respec-

tively. In the case of�i ¼ 5 for high-criticality tasks, the reliability achieved by Slice-

EDF-VD is 8:0% and 2:99% higher than those of EDF21 and EDF-VD20 on average,

respectively. For the two cases, the reliability improvements achieved by Slice-EDF-

VD over EDF21 and EDF-VD20 can be up to 15:6% and 15:8%, respectively.

As shown in the ¯gure, the reliabilities of the three algorithms in the case of �i ¼ 5

are higher than those in the case of �i ¼ 3, which is due to the increasing

re-executions.

Figure 2 presents the real-time feasibility those of the three algorithms EDF,21

EDF-VD,20 and Slice-EDF-VD under varying processor utilizations. As can be seen

from the ¯gure, our Slice-EDF-VD algorithm has a higher feasibility as compared to

benchmarking algorithms EDF21 and EDF-VD.20 To be speci¯c, in the case of�i ¼ 3

for high-criticality tasks, the feasibility achieved by Slice-EDF-VD is 41:7% and

24:2% higher than those of EDF21 and EDF-VD20 on average, respectively. In the

case of �i ¼ 5 for high-criticality tasks, the feasibility achieved by Slice-EDF-VD is
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57:7% and 43:2% higher than those of EDF21 and EDF-VD20 on average, respec-

tively. For the two cases, the feasibility improvements achieved by Slice-EDF-VD

over EDF21 and EDF-VD20 can be up to 94:4% and 88:9%, respectively. It also has

been demonstrated in the ¯gure that the feasibilities of the three algorithms in the

case of �i ¼ 5 are lower than those in the case of �i ¼ 3, which is due to the heavier

workload caused by the increasing re-executions.

To have an overall evaluation of our algorithm, we compare the CPU times

consumed by the three algorithms EDF,21 EDF-VD,20 and our proposed Slice-EDF-

VD when executing task sets with varying sizes. Ten sets comprised of 20, 40, 60, 80,

100, 120, 140, 160, 180, and 200 tasks are utilized in the evaluation. The results given

in Fig. 3 show that Slice-EDF-VD consumes a longer CPU time as compared to

EDF21 and EDF-VD20 due to the adoption of ¯ngerprinting. For example, in the case

(a) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 3 if � i 2 HIð�Þ. (b) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 5 if � i 2 HIð�Þ.

Fig. 1. The variations of reliability of the three algorithms EDF,21 EDF-VD,20 and Slice-EDF-VD under

varying processor utilizations.

(a) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 3 if � i 2 HIð�Þ. (b) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 5 if � i 2 HIð�Þ.

Fig. 2. The real-time feasibility variations of the three algorithms EDF,21 EDF-VD,20 and Slice-EDF-VD

under varying processor utilizations.
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of �i ¼ 3 for high-criticality tasks, the CPU times consumed by EDF,21 EDF-VD,20

and Slice-EDF-VD are 0:5106, 0:6588, and 1:6647 s, respectively. In the case of �i ¼
5 for high-criticality tasks, the CPU times consumed by EDF,21 EDF-VD,20 and

Slice-EDF-VD are 0:6374, 0:8031, and 2:0619 s, respectively. As demonstrated in the

results, the CPU time overhead of Slice-EDF-VD is higher than those of EDF21 and

EDF-VD,20 but it is still acceptable due to its little magnitude.

Furthermore, in order to investigate the scalability of our algorithm in terms of

increasing the number of task executions, we compare the reliability and real-time

feasibility achieved by Slice-EDF-VD with those of EDF21 and EDF-VD20 when

executing task sets with varying sizes. The sizes of ten task sets take the values of 20,

40, 60, 80, 100, 120, 140, 160, 180, and 200, respectively. The results given in Fig. 4

clearly show that the proposed Slice-EDF-VD outperforms EDF21 and EDF-VD20

(a) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 3 if � i 2 HIð�Þ. (b) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 5 if � i 2 HIð�Þ.

Fig. 3. The CPU times consumed by the three algorithms EDF,21 EDF-VD,20 and Slice-EDF-VD when
executing task sets with varying sizes.

(a) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 3 if � i 2 HIð�Þ. (b) �i ¼ 1 if � i 2 LOð�Þ and �i ¼ 5 if � i 2 HIð�Þ.

Fig. 4. The reliabilities and real-time feasibilities of the three algorithms EDF,21 EDF-VD,20 and Slice-

EDF-VD when executing task sets with varying sizes.
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with respect to reliability and real-time feasibility, regardless of the size of task set. In

addition, this conclusion can be drawn in the case of both�i ¼ 3 and�i ¼ 5 for high-

criticality tasks, as illustrated in Fig. 4.

6. Conclusion and Future Work

In this paper, we propose a fault-tolerant algorithm for scheduling the dual-criticality

tasks on a uniprocessor platform in the presence of transient faults. Our proposed

Slice-EDF-VD algorithm adopts re-execution to improve the reliability and utilizes

PT and UIT to enhance schedule feasibility. Through the e®orts made in the two

aspects, the safety of the system can be upgraded. Accordingly, we have conducted

two sets of simulation experiments to validate our algorithm Slice-EDF-VD. The

algorithm was shown to improve the reliability by up to 15:8% and the feasibility by

up to 94:4% as compared to benchmarking algorithms. In the future, we plan on

extending our work to consider multicore platforms and to consider tasks with more

criticality levels.
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