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This  paper  investigates  fault  tolerance  and  dynamic  voltage  scaling  (DVS)  in  hard  real-time  systems.  The
authors present  quasi-static  task  scheduling  algorithms  that  consist  of  offline  components  and  online
components.  The  offline  components  are  designed  the  way  they  enable  the  online  components  to achieve
energy  savings  by  using  the  dynamic  slack  due  to variations  in  task  execution  times  and  uncertainties  in
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fault  occurrences.  The  proposed  schemes  utilize  a fault  model  that  considers  the  effects  of  voltage  scaling
on  transient  fault  rate.  Simulation  results  based  on  real-life  task  sets  and  processor  data  sheets  show  that
the proposed  scheduling  schemes  achieve  energy  savings  of up  to  50%  over  the  state-of-art  low-energy
offline  scheduling  techniques  and  incur  negligible  runtime  overheads.  A  hard real-time  real-life  test  bed
has been  developed  allowing  the  validation  of  the  proposed  algorithms.
ard real-time embedded systems

. Introduction

The number of faults in hardware, particularly the transient
aults, has been rising continuously due to the increasing complex-
ty of design, aggressive technology scaling, and extreme operating
onditions. For example, the increasing integration level of transis-
ors, reducing feature sizes, and lowering voltage levels are making
he integrated circuits highly susceptible to radiation-induced bit-
ips. In addition, high-energy particles, such as neutrons from
osmic radiation, are able to introduce transient faults in electronic
ystems (Normand, 1996). On the other hand, a growing num-
er of complex safety critical applications operate under extreme
onditions and demand ultra-reliability and high performance. For
xample, hard real-time systems deployed in navigation, process
ontrol, and system surveillance require the high fault tolerance
ithout sacrificing the feasibility of task sets. The need for reli-

bility is rising even in non-critical applications which are prone
o operate in harsher environments but have lower expectancy of
ailures. Common examples include outdoor sensor networks and
assive communication infrastructure deployed in fields which
uffer frequent physical abuse and are often exposed to strong
adiation.

� The preliminary version of this manuscript appeared in ICCAD, 2006.
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E-mail address: tqwei@cs.ecnu.edu.cn (T. Wei).
1 Member, IEEE.
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Numerous fault-tolerance techniques have been proposed for
real-time systems (Shin and Lee, 1984; Shin et al., 1987; Kwak et al.,
2001; Axer et al., 2011; Huang et al., 2011). One of the typically
used fault-tolerance techniques is online concurrent fault detection
followed by a hardware-based checkpointing and rollback recov-
ery mechanism. It allows processors to rollback to the previously
known valid states to resume normal executions by exploiting the
slack time available in task schedules. Traditionally, fault tolerance
techniques aim to maximize the fault coverage and minimize the
fault detection latency and associated redundancy costs (Pradhan,
1986). The costs are usually measured in terms of hardware, time,
or information overhead and are of great significance in real-time
embedded systems due to their severe resource constraints.

Owing to the fast-evolving application of real-time systems in
battery-powered portable devices, energy has emerged as another
important design constraint. Dynamic power management is an
active area of research and several techniques have been proposed
to minimize energy consumption at the system level (Benini et al.,
2000). The energy efficiency is achieved by dynamically reconfig-
uring active system components and selectively turning off system
components when they are idle. Dynamic voltage scaling (DVS)
is a widely used system level power management technique that
exploits technological advances in power supply circuits to reduce
the energy consumption. It reduces the processor power consump-

tion by dynamically scaling down the processor supply voltage at
the cost of the increased execution times.

Fault tolerance and energy have been jointly investigated in
the literature. On one hand, with the continuous shrinking of the

dx.doi.org/10.1016/j.jss.2012.01.020
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:tqwei@cs.ecnu.edu.cn
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eature size and reducing of voltage margins, it is expected that
ll digital computing systems will be remarkably vulnerable to
ransient faults (Ernst et al., 2004). Fault-tolerance in real-time
ystems is typically achieved by using some forms of redun-
ancy. This redundancy causes extra power dissipations and hence
ecessitates energy efficient schemes for batter-powered real-time
ystems to reduce heat dissipation and extend operational lifetime.
n the other hand, energy management through dynamic voltage

caling has adverse effects on system reliability. Scaling down the
upply voltage results in an increase in the rate of transient faults
Zhu et al., 2004). Consequently, both fault-tolerance and energy
fficiency have been the primary design goals for real-time systems,
ntegrated in the design process at all levels for joint optimization

ith the system feasibility.
In the recent past, considerable attention has been paid to

xploit the DVS technique to achieve energy savings in the pres-
nce of transient faults and a number of excellent energy-efficient
ault-tolerance schemes have been designed for real-time embed-
ed systems (Zhu et al., 2004; Zhang et al., 2003; Melhem et al.,
004; Wei  et al., 2006; Zhang and Chakrabarty, 2006; Zhao et al.,
009, 2011; Iqbal et al., 2011). In this paper a systematic approach

s proposed to derive energy-efficient fault-tolerant task schedules
or hard real-time embedded systems by utilizing both the static
nd dynamic slack in the task schedules. Based on the observation
hat the probability of the single event upset (SEU)-induced faults
emains low in the foreseeable future and fault-free condition will
ontinue to dominate (Reed et al., 2006; Weulersse et al., 2006;
angley et al., 2003), one fundamental innovation has been intro-
uced in the proposed energy-efficient fault-tolerance schemes.
hat is, unlike the traditional approach that focuses on designing
ffline energy-efficient fault-tolerance algorithms, the proposed
cheme aims to achieve further round of energy savings by design-
ng efficient offline algorithms that enable the adaptation of the
ffline schedules to the runtime behavior of fault occurrences.

.1. Related work

Extensive research has been performed to investigate the energy
fficiency of real-time systems from both offline and online per-
pective (Shin and Choi, 1999; Gruian, 2001; Pillai and Shin, 2001;
aewong and Rajkumar, 2003; Krishna and Lee, 2003; Mochocki
t al., 2007; Huang et al., 2009, 2011; Perathoner et al., 2010).
he power efficient version of fixed-priority preemptive schedul-
ng such as rate monotonic scheduling was explored by Shin and
hoi (1999).  Power reduction is achieved by exploiting the slack
ime both inherent in system schedule and due to runtime vari-
tions in task execution time. Similarly, Gruian (2001) presented

 scheduling policy for hard real-time tasks with fixed priorities
ssigned in a rate monotonic manner. The offline scheduling uses
xact timing analysis to derive multiple voltage scaling factors for
ach task based on stochastic characteristics of task execution time.
he online scheduling policy distributes available slack time on pri-
rity basis. Based on the voltage scaling algorithms proposed in
illai and Shin (2001),  four voltage scaling algorithms including
ys-Clock, PM-Clock, and DPM-Clock were proposed in Saewong
nd Rajkumar (2003) for different hardware which may  have high
r low voltage scaling overhead and different taskset characteris-
ics. Of these algorithms, Sys-Clock assigns a single frequency to all
asks in a task set, PM-Clock assign multiple frequencies to tasks in a
ask set, and DPM-Clock dynamically adapts offline task schedule to
untime behaviors of task execution times. Krishna and Lee (2003)
escribed a two phase heuristic for independent and periodic tasks.

he heuristic has an offline component computing a voltage sched-
le based on worst case execution time, and an online component
tilizing slack time due to variations in task execution time for
urther round of energy savings. In Mochocki et al. (2007), both
 Software 85 (2012) 1386– 1399 1387

offline and online scheduling schemes were proposed to handle the
transition time and energy overhead of DVS processors. The offline
scheme generates task schedule during design time based on a prior
known task execution time while the online scheme effectively
accommodates runtime variations of task execution time to achieve
energy savings. Online algorithms were presented in Huang et al.
(2009, 2011) to effectively reduce system energy consumption to
handle event streams with hard real-time guarantees. The schedul-
ing scheme adaptively controls the power mode of the processor
to postpone the processing of arrival events as late as possible.
Although energy efficiency in real-time systems were explored
from both offline and online aspects in the above literature, fault
tolerance which is an another important design constraints were
not considered.

Fault-tolerance is another important design constraint in energy
efficient real-time systems. Joint optimization of energy and
fault-tolerance in real-time embedded systems has attracted con-
siderable attention in the past decade (Zhang et al., 2003; Melhem
et al., 2004; Zhang and Chakrabarty, 2006; Zhao et al., 2009, 2011;
Iqbal et al., 2011; Wei  et al., 2011). Melhem et al. (2004) proposed
DVS techniques to exploit slacks in a task schedule to reduce energy
consumption while tolerating faults during task execution. A task in
the task schedule is assumed to be susceptible to at most one fault
occurrence and the processor can scale its frequency in a continu-
ous range. In Zhang et al. (2003) and Zhang and Chakrabarty (2006)
a fixed priority offline scheduling scheme was proposed based
on the rate monotonic scheduling to tolerate faults in hard real-
time systems. Practical design issues such as checkpointing cost
and voltage switching overhead are considered. Fault-tolerance
scheduling techniques were developed in Zhao et al. (2009, 2011)
to minimize the system-level energy consumption while still pre-
serving the systems original reliability. Fault tolerance is achieved
by reserving shared recovery blocks that can be used by any task at
the runtime. In Iqbal et al. (2011),  the authors presented a soft error
aware energy efficient scheduling technique for soft real-time sys-
tems with stochastic task execution times. The task execution time
estimation is modeled as a joint state-space model, the solution of
which is found by an online Monte Carlo sampling based recursive
technique.

An offline reliability-aware power management scheme is pre-
sented in Zhu et al. (2008) for real-time tasks with probabilistic
execution times. The scheme puts aside just enough slack to guar-
antee the required reliability while leaving more slack for energy
management to achieve better energy savings. In Pop et al. (2007),
the authors addressed the scheduling and voltage scaling for hard
real-time applications that have been statically mapped on het-
erogeneous distributed embedded systems. Tasks in a given task
set are assumed to share a common deadline and the effect of
voltage scaling on system reliability is taken into account. Shafik
et al. (2010) examined the impact of application task mapping on
the reliability of MPSoC. The number of transient faults is min-
imized without compromising the timeliness of the system. All
these energy-aware fault-tolerance schemes, however, statically
derive offline task schedules to guarantee hard timing constraints,
hence are conservative and cannot utilize the dynamic slack due to
variations in task execution times and uncertainties in fault occur-
rences for further energy savings.

Zhang and Chakrabarty (2003) developed an online schedul-
ing algorithm that combines checkpointing with DVS to tolerate
faults in real-time uni-processor systems with periodic tasks. How-
ever, this scheme cannot handle hard real-time task scheduling.
In Izosimov et al. (2008),  the authors present an approach to the

synthesis of fault-tolerant schedules for embedded applications
with soft and hard real-time constraints. A set of task schedules
is synthesized offline and, at run time, the scheduler selects the
right schedule based on the fault occurrence and the actual task
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xecution times such that hard timing constraints are guaranteed
nd the overall processor utilization is maximized. However, the
resented approach does not take energy into account.

In this paper efficient scheduling schemes are proposed to com-
ine offline feasibility analysis and online voltage scaling for hard
eal-time systems based on the exact timing analysis of the rate
onotonic algorithm (RMA). Two offline scheduling algorithms

hat enable the dynamic adaptation are proposed. One is the appli-
ation level voltage scaling (A-DVS) algorithm where all the tasks
un at the same processor speed. The other one is the task level
oltage scaling (T-DVS) algorithm where the tasks run at their indi-
idual speeds. Instead of iteratively deriving the response time of
ach task for feasibility analysis, the exact timing analysis approach
Lehoczky et al., 1989) is used in the proposed algorithms for fea-
ibility analysis. This strategy strikingly simplifies the adaptation
f the proposed offline A-DVS and T-DVS algorithms to the run-
ime behavior of fault occurrences. The adaptation of the offline
ask schedules to the runtime behavior of fault occurrences is
mplemented by (1) pre-computing and saving in a lookup table
he maximum slack requirements for the processor to dynami-
ally slow down, (2) retrieving and comparing the stored slack
ime requirements with the generated cumulative slack in the run-
ime, and (3) dynamically scaling down processor speed when the
enerated slack time is equal to or greater than the stored slack
equirements. Xtrem (Contreras et al., 2004), a SimpleScalar-based
ntel XScale processor simulator, was used to evaluate the runtime
verhead of the proposed scheduling schemes in addition to exten-
ive simulation experiments. A hard real-time test bed has been
esigned and the proposed algorithms were also verified on the
est bed.

.2. Contributions and outline

The main contributions of this paper are summarized as follows:

Quasi-static task scheduling algorithms consisting of offline
components and online components are proposed. The offline
components are designed the way they enables the online
components to save energy in the runtime using slack due to
uncertainties in fault occurrences.
The proposed schemes are based on a fault model that considers
the effect of DVS on transient fault rate. The worst case num-
ber of fault occurrences in a task at a certain voltage level is
derived according to the given task level reliability goal. This
strategy facilitates the design of systems with various reliability
requirements.
In addition to being verified under simulation environments, the
proposed schemes also are implemented and validated on a real-
life hard real-time test bed.

The rest of the paper is organized as follows. Section 2 introduces
he system models. Section 3 describes the feasibility analysis for
CRMA-based fault-tolerance task scheduling, and proposes two
ffline task scheduling algorithms with different DVS granularity.
ection 4 adapts the offline task schedules to the runtime behav-
or of task execution and fault occurrences. Section 5 presents the
xperimental results to demonstrate energy savings and runtime
verhead. Section 6 describes the implementation of a hard real-
ime test bed for energy measurement and Section 7 concludes the
aper.
. System architecture and models

The focus of the study is a fixed-priority hard real-time
mbedded system comprising a DVS-capable uni-processor and
d Software 85 (2012) 1386– 1399

a power-aware memory. It is assumed that the scheduler of the
system is preemptive, such that, if required, the scheduler may sus-
pend the current task and switch the system context to a new task
according to its scheduling scheme.

2.1. Architecture and application model

Consider a task set � consisting of n independent periodic tasks
{�1, �2, . . .,  �n }. The timing characteristics of the task �i are defined
as a tuple �i = {Ti, Di, Ci}, where Ti is the period, Di is the deadline,
and Ci is the worst case execution cycles. The hyper-period of the
task set, denoted by T, is the lowest common multiple of all task
periods {T1, T2, . . .,  Tn}.

It is assumed that tasks are arranged in the decreasing order of
priorities according to the fixed priority rate monotonic algorithm
(RMA) (Liu and Layland, 1973), that is, T1 < T2 < , . . .,  < Tn is such that
the period of task �i is smaller than the period of task �j for i < j. The
processor is assumed to support L discrete frequency or voltage
levels. Frequency levels and voltage levels are used interchangeably
throughout this paper. Let fi denote the operating frequency of task
�i, where i(1 < i < n) is the index of the task in the task set � . The
operating frequency fi of task �i can be expressed as a function of the
processor voltage level l at which the task is running, that is, fi = f(l).
Tasks in a given task set is assumed to be scheduled using RMA  and
the resulting schedule is feasible under fault-free conditions at a
certain voltage level.

2.2. Fault and recovery model

It is assumed that a watchdog processor is used for timing
checking. Faults are assumed to be detected using low-latency
fault detection techniques such as the simultaneous multithreading
scheme (Reinhardt and Mukherjee, 2000) such that the fault detec-
tion overhead is small enough to be accounted for in task execution
time. Upon detecting faults, system is assumed to recover via back-
ward recovery mechanism, where a set of checkpoints are inserted
into a computing system for fault-tolerance. At each checkpoint,
valid system states are copied and stored for error recovery. If one or
more faults are detected during computation, the application rolls
back to the immediate previous checkpoint, retrieves the stored
system states, and resumes computation from the checkpoint.

The reliability of a task is defined to be the probability of com-
pleting the task successfully subject to faults (Zhu et al., 2004).
Although reliability targets are typically given system-wide, it is
a common practice to derive the per-task values (unit require-
ments) from system-wide values (system requirements). Assuming
all tasks in a given task set share a common given reliability goal,
then the task level reliability is maintained if all tasks in the task
set finish their execution successfully under the given reliabil-
ity target. Let Ri denote the reliability of task �i. Ri is derived as
follows.

Let ki denote the exact number of fault occurrences in task �i,
fi denote the operating frequency of task �i at the voltage level l
(1 ≤ l ≤ L), and Oil denote the optimal number of checkpoints for
task �i at the voltage level l that minimizes the worst case response
time of the task. Assuming checkpointing intervals are equal, the
Oil is then given by

Oil =
⌈√

kiCi − 1

⌉
or

⌊√
kiCi − 1

⌋
,

csfi csfi

where Ci is the execution cycles of task �i and cs is the checkpoint-
ing overhead (Zhang and Chakrabarty, 2006). cs is assumed to be
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onstant. For the sake of easy presentation, Oil is simply denoted
y

il =
∥∥∥∥∥
√

kiCi

csfi
− 1

∥∥∥∥∥ . (1)

et OEi be the overall execution time of an instance of task �i. Con-
idering the checkpointing overhead and fault recovery overhead,
he OEi is derived as (Zhang and Chakrabarty, 2006)

Ei = Ci

fi
+ Oil × cs + kiCi

fi(Oil + 1)
+  2kics. (2)

Transient fault occurrences are typically modeled using the
oisson distribution. Let �l be the average fault arrival rate at
he frequency level l. The �l can be derived using the equation
l = � × e−˛fi , where � and  ̨ are constant parameters and fi is the
perating frequency of the task �i (Zhu et al., 2004). The probability
f ki fault occurrences during the execution of task �i at frequency

i is thus given by

e−�l×OEi × (�l × OEi)
ki

ki!
,

nd the reliability Ri of task �i is hence written as

i =
∑

ki

e−�l×OEi × (�l × OEi)
ki

ki!
.  (3)

his definition of reliability considers the fault occurrences dur-
ng the whole interval of OEi. In other words, the fault occurrences
uring the recovery of a task from faults is taken into account.

Let Rg denote the task level reliability goal, then the reliability
f task �i is maintained if the inequality

g ≤ Ri (4)

olds. Since �l, OEi, and ki all are functions of the voltage level l of
ask �i, Ri is also a function of the voltage level l of task �i. For a given
oltage level l (1 ≤ l ≤ L), �l and OEi are known; thus, the worst case
umber of fault occurrences ki at the voltage level l subject to target
eliability Rg can be iteratively derived using the inequality (4).

.3. Energy model

The power consumption of a CMOS device can be modeled as
he sum of dynamic power consumption and static power con-
umption. The average dynamic power consumption is a function
f the supply voltage and the operating frequency. Let pd, Vdd,
nd f be the average dynamic power consumption, supply volt-
ge, and operating frequency, respectively, then pd ∝ Vdd

2f holds
Weste and Eshraghian, 1992). Assuming processors use voltage
caling technique to scale frequency, the operating frequency is
hen approximately linear with the supply voltage (Weste and
shraghian, 1992). As a result, the average dynamic power con-
umption can be estimated by a strictly increasing and convex
unction of the operating frequency, that is, pd ∝ f3.

As technology advances towards deep sub-micro devices, the
tatic power consumption due to leakage current and other current
rawn continuously from the power supply has been increasing
ramatically. It has been shown that the major contributors of the
tatic power consumption are the subthreshold leakage current and
he reverse bias junction current (Martin et al., 2002). Let ps denote
he static power consumption of a device, Isubn denote the sub-
hreshold leakage current, and Ij denote the reverse bias junction

urrent, then the static power consumption of the device is given
y ps = VddIsubn + |Vbs|Ij, where Vbs is the body bias voltage, and Vdd

s the supply voltage (Jejurikar et al., 2004). For a certain genera-
ion of technology, the sub-threshold leakage current Isubn is the
 Software 85 (2012) 1386– 1399 1389

function of the supply voltage Vdd, and the Vbs and Ij are technology
constants.

The total energy (Etot) consumed by real-time tasks in a given
task set is hence estimated by

Etot =
n∑

i=1

OEi × T

Ti
× (pd + ps), (5)

where OEi is the overall execution time of task �i, as is given in
Eq. (2),  and T/Ti is the number of instances of the task �i in the
hyper-period T.

3. Offline scheduling algorithms for fault-tolerant hard
real-time systems

The rate monotonic algorithm (RMA), proposed by Liu and
Layland (1973), is an optimal fixed priority algorithm that sched-
ules periodic tasks by assigning higher priorities to tasks with
shorter periods. The classical analysis of RMA  yields a conservative
bound on the processor utilization below which a system is guar-
anteed to meet all task deadlines. Lehoczky et al. (1989) showed
that this conservative utilization bound of RMA can be relaxed
based on the exact characterization of RMA  (ECRMA) to derive both
the necessary and sufficient conditions for the feasibility analy-
sis of a schedule. This section first provides an overview of the
ECRMA-based feasibility analysis of fault-tolerant task schedules,
then presents the two proposed offline task scheduling algorithms
of different granularity.

3.1. ECRMA-based feasibility analysis of fault-tolerant task
schedules

The worst case behavior of RMA  occurs when all tasks in a
task set are instantiated simultaneously and are ready for execu-
tion immediately after initiation. This time instant is called critical
instant. It has been shown that a schedule of independent periodic
tasks is feasible if the first instance of each task is schedulable when
it is instantiated at a critical instant. Lehoczky et al. (1989) showed
that periodic tasks in a task set are schedulable for all task phasing
if and only if at any time instance before the deadline of a task, the
total demand for processor time by the task is equal to or less than
the current available processor time. Specifically, let

Wi(t) =
i∑

j=1

OEj

⌈
t

Tj

⌉

denote the total demand of task �i for processor time over [0, t],
assuming 0 is the critical instant. The necessary and sufficient con-
dition for the periodic task �i to be schedulable is given by

min
t

(
Wi(t)

t

)
≤ 1, 0 < t < Ti,

and the entire task set is schedulable iff

max
i

(
min

t

(
Wi(t)

t

))
≤ 1, 0 < t < Ti, 1 ≤ i ≤ n. (6)

Further, it was shown that the schedulability test of each task
needs to be performed only at a finite number of time instances
called scheduling points. This is because the normalized demand of
task �i on a processor, given by Wi(t)/t, is strictly decreasing except
at those scheduling points. The set of scheduling points of task �i,

Si, is defined as multiples of Tg for Tg ≤ Ti, that is,

Si =
{

h × Tg |g = 1, 2, . . . , i; h = 1, 2, . . . ,

⌊
Ti

Tg

⌋}
.
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Fig. 1. Application level voltage scaling algorithm (A-DVS).

Substitute the Si and the Wi(t) into Eq. (6),  the necessary and suf-
cient condition for real-time tasks in a given task set to be feasible
ecomes

ax
i

⎛
⎝min

t

i∑
j=1

OEj
�t/Tj�

t

⎞
⎠ ≤ 1, t ∈ Si, 1 ≤ i ≤ n. (7)

The proposed task scheduling techniques exploit the exact char-
cterization of RMA  to efficiently verify the feasibility of an offline
chedule in the presence of faults and to dynamically adapt DVS
olicies to uncertainties of fault occurrences. As is shown in Eq.
7), the task execution time with fault recovery overhead, which is
enoted by OEj, is utilized in the feasibility analysis of the offline
chedule. As a result, the generated feasible task schedules will be
easible when faults occur.

The proposed task scheduling techniques offer three advantages
ver the previous techniques: (1) higher tolerance to fault recovery
verhead due to the relaxed constraints of the exact characteriza-
ion of RMA, (2) low-cost ECRMA-based offline feasibility analysis
chemes, and (3) efficient extension to the runtime reevaluation of
VS policies due to the relatively lower complexity of the offline

easibility analysis. In this paper, the scheduling point-based exact
haracterization of RMA  provides a systematic approach to improve
he feasibility of a schedule while tolerating faults for enhanced
eliability and scaling voltage for energy efficiency. Two  offline
lgorithms are proposed to integrate fault-tolerance and DVS pol-
cy evaluation by systematically searching for the energy-efficient
ault-tolerant schedule for a given set of tasks, which are described
n the next sections.

.2. Application level voltage scaling (A-DVS)

The application level voltage scaling (A-DVS) is designed for the
cenario where all tasks in a given task set run at the same processor

peed. The A-DVS is suitable for systems in which frequent voltage
nd frequency scaling is inefficient. Fig. 1 shows A-DVS algorithm to
erive energy efficient voltage setting subject to fault and feasibility
onstraints. Inputs to the algorithm are the task set � , the lowest
oltage level (low) and highest voltage level (high) supported by the
d Software 85 (2012) 1386– 1399

processor, the maximum number of faults each task should tolerate
(ki), and checkpoint overhead (cs). Voltage levels low and high are
initially set to 1 and L, respectively.

A-DVS starts by computing the set of scheduling points Si of task
�i, and then iteratively performs feasibility analysis using ECRMA to
select the proper DVS strategy while tolerating ki faults in each task
instance. S denotes the array of Si for 1 ≤ i ≤ n. Lines 2 to 4 iteratively
compute scheduling points of n tasks with the time complexity of
O(n2R), where n is the number of tasks in the task set and R is the
ratio of the largest period to the smallest period. Lines 5–15 itera-
tively search the energy efficient voltage level in the range from low
to high based on the binary search algorithm. For a given voltage
level mid = (low + high)/2, the feasibility checking subroutine FCA is
called to test the feasibility of a schedule at the voltage level. If
the schedule is found feasible, high is updated to (mid  − 1) in line
8, else low is updated to (mid + 1) in line 13. This process contin-
ues until a feasible schedule is found for all tasks or the highest
voltage level L is reached without satisfying Eq. (7),  in which case
the task set is deemed infeasible (lines 10 and 11). Line 16 returns
the energy efficient voltage level of the feasible schedule. The time
complexity of deriving S, the set of scheduling points of all tasks
in the task set, is O(n2R), and the time complexity of the binary
search algorithm is O(log 2L) (Cormen et al., 2001). The overall time
complexity of A-DVS algorithm depends on the complexity of FCA
algorithm.

Note that the binary search based A-DVS algorithm is valid
only if the energy consumption is monotonic with respect to
frequency/voltage changes. When the processor static power con-
sumption as well as context switching overhead is considered, the
monotonicity does not hold. In this case, there exists a critical pro-
cessor speed below which scaling down the processor speed will
instead increase the energy consumption (Jejurikar et al., 2004). In
other words, executing a task below the critical speed consumes
more time and energy. Hence, in the binary search based A-DVS
algorithm, the minimum voltage level low is initialized to the level
corresponding to the processor critical speed.

Fig. 2 describes the feasibility checking algorithm FCA. It takes
as inputs the task set (� ), the array of Si (S), the maximum number
of faults each task should tolerate (ki), checkpoint overhead (cs),
and the current voltage level (l).

The FCA algorithm uses a flag Schedulable which is reset to 0
whenever a task is found un-schedulable at the current common
voltage level, and a buffer Demand which holds the total demand
for processor time at scheduling points at the current voltage level.
The algorithm operates in two  phases. Phase 1, consisting of lines
3–6, derives the optimum number of checkpoints at the current
voltage level and compute the worst case execution time OEi of
the current task �i. Phase 2, consisting of lines 7–18, verifies the
schedulability of the current task using Eq. (7).  It computes the
total time demand of task �i at each scheduling point, check the
schedulability of the task, and set the Schedulable flag accordingly.
If task �i is found schedulable, the algorithm proceeds to the next
task; else it returns 0 to A-DVS routine.

The time complexity of phase 1 and phase 2 of FCA algorithm
is O(n2) and O(n2R), respectively, and the overall time complex-
ity of FCA algorithm is O(n2R). Considering the time complexity
of binary search algorithm, the overall time complexity of A-DVS
algorithm is O(n2R log 2L) and the average time complexity per
task is O(nR log 2L). When compared to the application level tech-
nique proposed in Zhang and Chakrabarty (2006),  which has the
time complexity of O(n2RL), A-DVS incurs an order of magnitude
lower cost. The relative lower-complexity of the A-DVS algorithm
enables the adaptation of the offline task schedules to the runtime
time behavior of task execution time and fault occurrences for fur-

ther energy savings. The dynamic extension of A-DVS algorithm is
explored in Section 4.1.
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Fig. 2. Feasibility checking algorithm (FCA).

.3. Task level voltage scaling (T-DVS)

The task level voltage scaling (T-DVS) offers higher energy
avings and improves fault-tolerance at the cost of increased
omplexity. T-DVS algorithm shown in Fig. 3 is similar to the
-DVS except whenever a task, for example task �i, is found un-
chedulable. In this case, the T-DVS repeatedly selects one task from
mong the tasks of equal and higher priorities and scales the voltage
evel of the task up by one level until task �i becomes schedulable.
f the highest voltage level for all tasks of equal and higher prior-
ties is reached and task �i is still un-schedulable, the task set is
eemed to be infeasible. The task selected for voltage scaling satis-
es two requirements: (1) its voltage level is lower than the highest
rocessor supported voltage level and (2) the subsequent increase

n energy consumption due to scaling up the voltage level of the
elected task is minimal among all candidate tasks.

Inputs to T-DVS are a task set � which is assumed to be feasible
t a certain voltage level, the maximum number of faults each task
nstance should tolerate (ki), and checkpointing overhead (cs). The
arameters used to track the state of a schedule include fi and Leveli
hich denote the operating frequency and voltage level of task �i,

espectively, and min which denotes the index of the task selected
or voltage scaling. For the sake of easy presentation, f and Level
re used to denote the arrays of operating frequencies and voltage
evels of tasks in the task set, respectively. It is assumed that the
perating frequency fi of task �i is a function of the voltage level
eveli, that is, fi = f(Leveli).

Lines 2–4 initialize the operating frequency fi and voltage level

eveli of task �i to f(1) and 1, respectively. Lines 5–7 iteratively
ompute the scheduling points of n tasks in the task set. The time
omplexity of the computation is in order of O(n2R), where R is the
atio of the largest period to the smallest period of tasks in the task
Fig. 3. Task level voltage scaling algorithm (T-DVS).

set. Rest of the algorithm operates in 2 phases, which are iterated
for each task in the task set. Phase 1, consisting of lines 9 and 10,
derives the optimum number of checkpoints of task �i at the current
voltage level and compute the worst case overall execution time
OEi for task �i. The array of the worst case overall execution time of
tasks in a task set is denoted by OE.  Unlike A-DVS, phase 1 of T-DVS
takes constant time. Phase 2, consisting of lines 11–28, verifies the
schedulability of task �i using Eq. (7) and performs voltage scaling
at task level. Line 11 calls the schedulability checking subroutine
(SCA) to verify the schedulability of task �i at the operating fre-
quency of fi. If task �i is found schedulable, the algorithm proceeds
to the next task (line 13), else a task is selected for voltage scaling
(lines 15–27). In line 16 the MINIMUM algorithm (Cormen et al.,
2001) is called and the index min of the task selected for voltage
scaling is returned. Task �min is the task that results in the minimal
energy increase among all candidate tasks for voltage scaling.

If the voltage level Levelmin is found lower than L, then the oper-
ating frequency fmin of task �min is raised by one level in lines 18
and 19, the optimal number of checkpointing Omin,l and the overall

execution time OEmin of task �min are updated respectively in lines
20 and 21, and the schedulability of task �min is reevaluated based
on the updated total time demand in line 22. Else if the voltage
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Fig. 4. Schedulability checking algorithm (SCA).

evel Levelmin is found equal to the highest voltage level L, task �i is
n-schedulable. This process continues until a feasible schedule is
ound for the task set or the highest voltage level is reached with-
ut satisfying Eq. (7),  in which case the schedule of the task set is
eemed infeasible.

The MINIMUM algorithm, shown in line 16 of Fig. 3, takes as
nputs the array of voltage levels (Level), the array of overall execu-
ion time of tasks in the task set (OE), and index of the task whose
chedulability needs to be tested (i). The algorithm is implemented
y deriving the energy increase of each task due to voltage scal-

ng and returning the index of the task that incurs the minimum
nergy increase. Index of any candidate task is returned if all tasks
ith equal or higher priorities reach the highest processor voltage

evel.
The schedulability checking algorithm (SCA) is described in

ig. 4. Inputs to SCA are the array of Si (S), the array of the over-
ll execution time of tasks in the task set (OE), and the index of the
ask whose schedulability needs to be tested (i). Line 1 initializes
he flags Schedulable and Demand to 0. For each scheduling point of
ask �i, lines 3–6 compute the total time demand of task �i. Lines
–12 check the schedulability of the task and set the Schedulable
ag accordingly. The time complexity of SCA algorithm is O(nR).

Unlike the task level feasibility analysis algorithm of Zhang and
hakrabarty (2006),  T-DVS does not need to exhaustively explore
ll Ln possible combinations of tasks and voltage levels. The first
easible schedule generated by the algorithm is the desired task
chedule and taken as the output. The time complexity of T-DVS
lgorithm is dominated by the complexity of feasibility analysis and
oltage scaling. The feasibility analysis and voltage scaling involves
L × (nR + n) iterations for each task; thus, the time complexity of
-DVS per task is O(n2RL),  which is one order of magnitude lower
han that of previous techniques (Zhang and Chakrabarty, 2006).
he online reevaluation of T-DVS algorithm is much simpler and
akes constant time. The operation of the reevaluation is detailed
n Section 4.2.

. Online reevaluation of DVS policies

Offline scheduling assumes that all tasks exhibit the worst case
xecution time and all faults occur during the checkpointing. How-
ver, the runtime behavior of task execution and fault occurrences

an vary significantly and the average case characteristics are con-
iderably better than the worst case characteristics. Hence, the
nline reevaluation of DVS policies that adapts the offline sched-
les to the runtime characteristics of task execution and fault
d Software 85 (2012) 1386– 1399

occurrences can save significant energy. The proposed offline algo-
rithms, A-DVS and T-DVS, provide efficient mechanisms to exploit
the slack generated in the runtime to slow down the processor to
save energy. Note that A-DVS and T-DVS feasibility analysis guar-
antees that offline schedules meet all timing constraints. Therefore,
dynamic DVS policies proposed in this section only need to ensure
that the feasibility of the modified task schedules is preserved in
the runtime.

4.1. Reevaluation of DVS policies at application level

For a given task set, the output of the A-DVS algorithm described
in Section 3.2 is a voltage level l below which the input task set
becomes infeasible. This implies that one or more tasks in the task
set fail to satisfy Eq. (7) at the voltage level (l − 1). In the runtime, not
all tasks execute up to their worst case execution times and not all
faults occur during task executions. Hence, the slack generated in
the runtime could be used to dynamically scale down the processor
speed to save energy. It is assumed that tasks ready for execution
are put into a ready queue. The online DVS policy manager runs a
test to determine whether the cumulative slack is sufficient to slow
down the processor for all the unexecuted lower priority tasks in
the ready queue. The test compares the amount of time needed for
all the unexecuted lower priority tasks in the ready queue to be
feasible at (l − 1) or a lower voltage level with the available slack,
as is discussed below.

Let slk denote the accumulated slack time and slki denote the
slack time from task �i. The accumulated slack slk can be expressed
as the sum of the slack from individual tasks. For instance, the
accumulated slack can be written as

slk =
n∑

i=1

slki

for 1 ≤ i ≤ n. The slack from individual tasks is updated regularly at
several time instants. The slack slki from the task �i is initialized to
0 and updated at the end of the execution of the task to incorporate
the generated slack. It is reset to 0 at the deadline of the task, indi-
cating that the slack from the task is expired when a new instance
of the task is released. When the accumulated slack is consumed by
lower priority tasks, the slack from the task of the highest priority is
consumed first. For example, if the priority of task �1 is higher than
that of task �2 and the available accumulated slack is composed of
slk1 and slk2, the slk2 is not consumed until the slk1 is used up when
the accumulated slack is utilized to slow down the processor.

Define the execution time overflow as the additional time
required by a task to be feasibly scheduled by each scheduling point
at a certain voltage level. Let ovflil denote the execution time over-
flow of task �i at the voltage level l. The ovflil is set to 0 if task �i
is schedulable at the voltage level l, else it is computed as the dif-
ference between the worst case response time Ril of task �i at the
voltage level l and the deadline Di of task �i, as is given below:

ovflil =
{

Ril − Di Ril ≥ Di

0 Ril < Di
(8)

Consider an offline application level task schedule with the volt-
age level of l and assume in the runtime the execution of task �i−1

is finished. The voltage level of the processor can be feasibly scaled
down to (l − 1) if the accumulated slack time slk is greater than the
sum of the execution time overflows of all the remaining unex-
ecuted lower priority tasks in the ready queue. In other words,
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The dynamic reevaluation of DVS strategies at the task level
is similar to the reevaluation of DVS policies at the application
level. During the offline scheduling, the T-DVS algorithm given

Table 1
Runtime DVS reevaluation at application level.

Tasks Voltage level

1 2 3
Fig. 5. Dynamic application level voltage scaling algorithm (D-ADVS).

he processor can be scaled down to the voltage level (l − 1) if the
nequality

lk =
i−1∑
p=1

slkp ≥
n∑

p=i

ovflp,(l−1) (9)

olds, assuming the tasks �p for i ≤ p ≤ n are in the ready queue.
As is shown in Eq. (8),  the straightforward approach to compute

vflil requires iteratively estimating the response times Ril of task
i, hence it is highly computation intensive. An alternate simple yet
fficient approach is proposed as follows. For the task �i, ovflil is the
inimum of the differences between t2 and t1, where t2 is the total

emand for processor time by the task at the voltage level l and t1
s the scheduling points of the task. As a result, the execution time
verflow ovflil of task �i (1 ≤ i ≤ n) at the voltage level l (1 ≤ l ≤ L) is
iven by

vflil = max(min
t1

(t2 − t1), 0) t1 ∈ Si, (10)

here t2 is given by

2 =
i∑

p=1

OEp ×
⌈

siq

Tp

⌉
,

i is the set of scheduling points for task �i, and siq is the qth schedul-
ng point in Si. OEp is given in Eq. (2),  and is re-written as

Ep = Cp

fp
+ Opl × cs + kiCp

fp(Opl + 1)
+  2kics.

Since both t1 and t2 are computed during the offline feasibility
nalysis of the A-DVS algorithm, the execution time overflow given
n Eq. (10) can be pre-computed during the offline feasibility analy-
is and stored in system memory to form a lookup table. The lookup
able is implemented in software program as an array or associative
rray. The table can be pre-calculated and stored in static program
torage or can be calculated as part of a program’s initialization
hase. In the runtime, the scheduler searches the lookup table at
he end of each task execution to calculate the sum of the execu-
ion time overflows of all the remaining unexecuted lower priority
asks, compares the derived execution time overflows with the
ccumulated slack time, and determines if the processor can be
easibly scaled down according to Eq. (9).  This strategy of dynamic
cheduling significantly reduces the runtime computation over-
ead without compromising the feasibility performance of the task
chedule.

As is shown in Eq. (10), the proposed scheme computes the exe-
ution time overflow based on the minimum of differences between
2 and t1, hence it provides a better opportunity to scale the proces-

or frequency. Fig. 5 demonstrates the algorithms for the runtime
eevaluation of DVS policies at the application level. Reevaluation
f DVS polices is performed whenever a task instance finishes its
xecution. This strategy avoids incurring during the task execution
Fig. 6. Runtime execution time overflow retrieval algorithm.

any extra overhead that may  cause the task to miss its deadline.
Meanwhile, it ensures that the current accumulated slack time is
checked sufficiently frequently such that the supply voltage can
be scaled down opportunely to achieve energy savings if the accu-
mulated slack time is large enough. The dynamic application level
voltage scaling algorithm, D-ADVS, is shown in Fig. 5, where i is the
index of the task �i to be executed, l is the voltage level of task �i,
and ovflsum is the sum of the overflows of unexecuted lower prior-
ity tasks in the ready queue. Line 1 updates the slk and initializes
ovflsum to 0. In line 2, subroutine Overflow is called to calculate
the sum of the overflows of unexecuted lower priority tasks in the
ready queue. Lines 3 to 6 iteratively scale down the processor volt-
age level if the accumulated slack time is large enough. Line 4 scales
down the voltage level and operating frequency for all the remain-
ing tasks by one level. Line 5 updates the slk by reducing ovflsum and
line 6 updates the ovflsum by calling subroutine Overflow to explore
the possibilities of further scaling down the processor voltage level.
The Overflow subroutine is described in Fig. 6, where the notations
i, l, and ovflsum have the same definition as in the D-ADVS algorithm.
The algorithm retrieves overflows of tasks �j (i ≤ j ≤ n) at the voltage
level (l − 1) from the lookup table stored in system memory in line
3, and calculates the sum of the overflows in line 4. Line 6 returns
the ovflsum. The overall time complexity of the D-ADVS algorithm
is O(nL).

The example shown in Table 1 demonstrates the application
level runtime DVS reevaluation before a certain scheduling point.
Consider a task set of four periodic tasks running on a processor
which supports 3 voltage levels, as shown in Table 1. Execution
time overflows for each task at the voltage level 3 are 0, denoting a
feasible schedule at the voltage level 3. At the voltage level 2, task
�1 and �2 are schedulable while task �3 and �4 are not schedula-
ble since ovfl12 = ovfl22 = 0 but ovfl32 = 1 and ovfl42 = 2. Therefore, the
processor runs at the voltage level 3 to maintain the feasibility of
the schedule. However, if the slack slk2 generated in the runtime
satisfies slk2 ≥ (ovfl32 + ovfl42) = 3, the processor can be scaled down
to level 2 without violating the feasibility of the schedule. The same
procedure can be utilized iteratively at successive voltage levels and
for successive slacks produced in the system.

4.2. Reevaluation of DVS policies at task level
�1 ovfl11 = 0 ovfl12 = 0 ovfl13 = 0
�2 ovfl21 = 3 ovfl22 = 0 ovfl23 = 0
�3 ovfl31 = 4 ovfl32 = 1 ovfl33 = 0
�4 ovfl41 = 5 ovfl42 = 2 ovfl43 = 0
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Table 2
Processor frequencies, supply voltages and power (in Transmeta Corporation; Intel
Corporation).

Processors Characteristics

Frequency (MHz) Supply voltage (V) Power (mW)

Intel XScale PXA260 200 1.0 178
300 1.1 283
400 1.3 411

Transmeta Crusoe 300 1.2 1300
400 1.225 1900
533  1.35 3000
Fig. 7. Dynamic task level voltage scaling algorithm (D-TDVS).

n Section 3.3 statically derives the optimum combination of fre-
uency allocations for all the tasks and stores the information, such
s the pre-computed execution time overflows and overall execu-
ion times of tasks, in a lookup table for dynamic adaptation. In the
untime, the frequency of each task is scaled individually without
ffecting the operating frequency of other tasks.

Fig. 7 shows the dynamic reevaluation of T-DVS scheduling,
eferred as to D-TDVS. Assume task �i−1 finishes its execution and
ask �i is scheduled to execute at the voltage level l. The scheduler
hecks if the accumulated slack time slk from tasks �j (1 ≤ j ≤ i − 1)
s large enough to scale down the frequency fi of task �i by one or

ore levels. This can be verified by comparing the execution time
verflow of task �i at lower voltage levels with the current avail-
ble slack slk.  If the available slack slk is greater than the execution
ime overflow of task �i at the voltage level (l − 1), the processor
oltage is scaled down by one level and the current available slack
s updated, else the slack continues to accumulate for tasks with
ower priorities until it is updated when task �i is finished.

The runtime reevaluation of task level scheduling can be even
impler. That is, after task �i−1 finishes its execution at the operat-
ng frequency fi−1 and the current slack time slk is ready, the new
andidate operating frequency f ′

i
of task �i is derived as

′
i = fi × OEi

slk + OEi
,

here OEi is the overall execution time of task �i at the frequency
i. Comparing f ′

i
with the lower frequencies supported by the pro-

essor determines whether or not the operating frequency fi of task
i can be feasibly scaled down. This scheme takes constant time. It
equires n × (L − 1) extra memory space to store the overall execu-
ion time of each task for the adaptation of the offline task schedule
o the runtime behavior of tasks and fault characteristics.

. Simulation results and overhead analysis

The proposed scheduling schemes consist of offline components
A-DVS and T-DVS) and online components (D-ADVS and D-TDVS).
nergy efficiency and fault tolerance capabilities of the proposed
chemes were validated using extensive simulation experiments.
he scheduling overhead of the online components of the proposed
chemes was also evaluated using Xtrem (Contreras et al., 2004), a
impleScalar-based Intel XScale processor simulator.

Real-life task set benchmarks from Kim et al. (1996) and Locke
t al. (1991) were used to compare the performance and energy
haracteristics of the proposed schemes with those of the schedul-
ng schemes presented in Zhang and Chakrabarty (2006).  Similar
o the approach in Zhang and Chakrabarty (2006),  the worst case
umber of fault occurrences in a task instance is assumed to be a

xed number k, which is essentially the number of fault occurrences
f the longest task at the lowest frequency level. This strategy
f selecting k ensures a fair comparison between the proposed
chemes and the benchmarking schemes in Zhang and Chakrabarty
600 1.5 4200
667 1.6 5300

(2006).  Since the proposed schemes utilize the slack due to uncer-
tainties in fault occurrences for energy savings, whether or not
using a fixed number of fault occurrences does not affect the
effectiveness of the proposed schemes. Two DVS-capable proces-
sors, Transmeta Crusoe supporting 5 voltage and frequency levels
(Transmeta Corporation) and Intel XScale PXA260 supporting 3
voltage and frequency levels (Intel Corporation), were used for esti-
mating the energy consumption. The discrete frequencies, supply
voltages, and TDP power of the two processors are listed in Table 2.

5.1. Energy characteristics

Two  real-life task sets, Inertial Navigation System (INS) (Locke
et al., 1991) and Computer Numerical Control (CNC) (Kim et al.,
1996), were utilized to benchmark the energy consumption of the
proposed scheduling algorithms. The characteristics of the bench-
marking task sets are shown in Table 3, where the worst case
execution time of a task is assumed to correspond to the maximum
processor speed. It is assumed that both checkpointing and data
retrieval take 0.4 ms,  and the energy overhead of both checkpoint-
ing and data retrieval is 160 �J. It is also assumed that online energy
savings are achieved by only using the slack due to variations in
fault occurrences.

The online and offline components are integral parts of the
proposed application and task level scheduling schemes. Energy
savings are achieved by primarily using online components that are
enabled by the offline components. Energy values are obtained by
multiplying processor power consumption and task execution time
and considering checkpointing overhead and DVS transition over-
head. Simulation results are reported for both application and task
level techniques and compared with the JFTC, JFTA and JFTT tech-
niques presented in Zhang and Chakrabarty (2006).  JFTC, JFTA and
JFTT refer to offline constant frequency, application level voltage
scaling, and task level voltage scaling schemes, respectively.

The online component is essentially a greedy heuristic since
it scales down the processor speed to save energy once the
available slack time is large enough. An exhaustive search based
online scheme is then developed to investigate the optimal-
ity of the proposed scheme. In the exhaustive search based
online scheme, all possible adaptations of offline task sched-
ules due to the slack generated in the runtime are produced
and the energy consumption of each adapted task schedule is
computed. The adapted task schedule with the minimum energy
consumption is deemed to be optimal. The optimal adapted task
schedule, referred to as Optimal, is compared with the proposed
scheme in energy consumption. In the presented results, E13
denotes the percentage of (E1− E3)/E1 × 100 %, E23 denotes the

percentage of (E2− E3)/E2 × 100 %, E43 denotes the percentage of
(E4− E3)/E4 × 100 %, and NF denotes an infeasible schedule.

Table 4 shows that the proposed application level scheduling
scheme saves 22–52% energy over JFTC and 22–50% energy over
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Table 3
INS and CNC real-life task sets.

Task index Period (�s) Deadline (�s) WCET (�s)

INS CNC INS CNC INS CNC

1 2500 2400 2500 2400 1180 35
2  40,000 2400 40,000 2400 4280 40
3  625,000 4800 625,000 4800 10,280 80
4 1,000,000 4800 1,000,000 4800 20,280 720
5 1,000,000 2400 1,000,000 2400 100,280 165
6  1,250,000 2400 1,250,000 2400 25,000 165
7  9600 4000 570
8  7800 4000 570

Table 4
Energy consumption of application level voltage scaling on Transmeta Crusoe processor.

Task set k JFTC (Zhang and
Chakrabarty, 2006) E1 (mJ)

JFTA (Zhang and
Chakrabarty, 2006) E2 (mJ)

Proposed E3 (mJ) Optimal E4 (mJ) E13 (%) E23 (%) E43 (%)

CNC 1 18.1 14.6 10.1 9.47 44.2 30.8 −6.21
2  24.3 21.2 12.9 12.51 46.9 39.2 −2.97
3 29.8 26.6 15.1 14.21 49.3 43.2 −5.89
4  34.9 33.6 16.7 15.90 52.1 50.3 −4.85
5 NF  NF 18.6 16.99 – – −8.65

INS  1 6050.7 5467.2 3986.0 3986.0 34.1 27.1 0.00%
2  6735.1 6735.1 3986.0 3986.0 22.1 22.1 0.00
3  7300.2 7300.2 5617.5 5617.5 23.1 23.1 0.00
4 NF NF  5935.8 5919.8 – – −0.27

Table 5
Energy consumption of task level voltage scaling on Transmeta Crusoe processor.

Task set k JFTC (Zhang and
Chakrabarty, 2006) E1 (mJ)

JFTT (Zhang and
Chakrabarty, 2006) E2 (mJ)

Proposed E3 (mJ) E13 (%) E23 (%)

CNC 1 18.1 14.9 10.0 44.8 32.9
2  24.3 21.1 12.9 46.9 38.9
3  29.8 26.7 13.4 55.0 49.8
4 34.9 34.1  14.5 58.5 57.5
5  NF NF 13.1 – –

INS  1 6050.7 5457.6 4087.9 32.4 25.1
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2 6735.1  6222.1 

3  7300.2 7284.1 

4  NF NF 

FTA on Crusoe processors. Table 4 also shows that the discrepancy
n energy consumption of the proposed application level schedul-
ng scheme and the exhaustive search based optimal scheme is up
o 8% for CNC task set. The discrepancy is relatively small for INS
ask set. This is because execution times of tasks in INS task set are
elatively long and much more slack is needed to scale down the
rocessor speed. Due to space limitation, the results on the com-

arison of the proposed scheme and the exhaustive search based
ptimal method is reported only for INS task set on Transmeta
rusoe processor.

able 6
nergy consumption of application level voltage scaling on Intel XScale processor.

Task set k JFTC (Zhang and
Chakrabarty, 2006) E1 (mJ)

JFTA (Zhang a
Chakrabarty, 

CNC 1 7.6 8.2 

2  12.8 13.8 

3  17.6 18.8 

4  22.2 22.2 

5 NF NF

INS  1 1326.2 1326.2 

2 1853.6  1853.6 

3  2298.2 2298.2 

4 NF  NF 
5070.4 24.7 18.5
5637.4 22.8 22.6
5961.6 – –

Table 5 shows that the proposed task level scheduling scheme
saves 22–58% energy over JFTC and 18–57% energy over JFTT on
Crusoe processors. Similarly, the energy savings of the proposed
application and task level schemes over the benchmarking schemes
on XScale processors are shown in Tables 6 and 7. It can be drawn
that the proposed scheduling schemes achieve significant energy
savings when compared to the benchmarking scheduling schemes.

This is primarily due to the runtime slack from uncertainties of fault
occurrences. It also can be drawn (e.g. for k = 5 for CNC and k = 4
for INS) that the proposed techniques have higher fault tolerance

nd
2006) E2 (mJ)

Proposed E3 (mJ) E13 (%) E23 (%)

3.6 52.6 56.1
7.1 44.5 48.6
9.0 48.9 52.1

10.5 52.7 52.7
12.9  – –

923.8 30.3 30.3
1248.4 32.6 32.6
1510.6 34.3 34.3
1758.8 – –



1396 T. Wei  et al. / The Journal of Systems and Software 85 (2012) 1386– 1399

Table 7
Energy consumption of task level voltage scaling on Intel XScale processor.

Task set k JFTC (Zhang and
Chakrabarty, 2006) E1(mJ)

JFTT (Zhang and
Chakrabarty, 2006) E2 (mJ)

Proposed E3 (mJ) E13 (%) E23(%)

CNC 1 7.6 9.1 3.6 52.6 60.4
2 12.8 14.5 7.5 41.4 48.3
3  17.6 18.5 9.5 46.0 48.6
4  22.2 22.5 11.0 50.5 51.1
5  NF NF 10.8 – –

INS 1 1326.2 1327.5 932.5 30.3 30.4
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3 2298.2 2299.0 

4  NF NF 

apabilities due to relaxed utilization constraints of the proposed
CRMA-based scheduling approach.

.2. Runtime overhead analysis

The proposed quasi-static scheduling scheme comprises two
omponents. One is the offline scheduling component and the other
s the runtime counterpart of the offline component. Since it is the
verhead of the runtime component that has adverse impact on
ystem timeliness, the complexity of the runtime component of
he quasi-static scheme is evaluated in this section using Xtrem
Contreras et al., 2004), a high level functional power simulator
ailored for Intel Xscale Technology-based systems.

Xtrem is a powerful infrastructure capable of providing power
nd cycle level estimation for C-based applications targeted to Intel
scale core. It is based on the widely used SimpleScalar-Arm archi-

ecture simulator and is used for verifying the time complexity
f the proposed schemes and estimating the runtime impact of
ynamic DVS policies on the schedule feasibility. Due to space limi-
ation, only the overhead of the application level scheduling scheme
s analyzed in this section.

The proposed dynamic D-ADVS scheme reduces runtime over-
ead by utilizing the pre-computed execution time overflow that

s stored in system memory. The D-ADVS proceeds in three steps:
1) adding up the overflows of unexecuted tasks, (2) comparing the
urrent available slack time with the sum of the overflows to make

 decision on voltage scaling, and (3) updating the accumulated
lack time. The D-ADVS is called whenever a task instance finishes
ts execution, which ensures that the feasibility of the offline sched-
le is maintained and the runtime generated slack time is utilized
pportunely for energy savings. The D-ADVS scheme involves three
rimitive operations: addition, multiplication and division. Each
peration takes 7 cycles on Xtrem. The experiment results show
hat the overall overhead of the proposed D-ADVS is 821 cycles to
xecute the first instances of all tasks in the CNC task set. Since the
-ADVS is called at the end of the execution of each task instance
nd repeats its three steps over each unexecuted task in the task
et, it incurs the worst case overhead at its first call. Similarly, the
-ADVS incurs the best case overhead at its last call. It is shown in

he experiment results that the average cycles for the worst case
verhead is 190 and the average cycles for the best case overhead
s 81, which translates to 0.48 �s and 0.20 �s, respectively, at the
perating frequency of 400 MHz. This time overhead is negligible
hen compared to the execution times of tasks in the CNC task set.

. Implementation of scheduling algorithms on a real-life
est bed
This section presents the implementation and validation of
he proposed energy-efficient task scheduling schemes for hard
eal-time embedded systems. A real-life test bed has been devel-
ped to accurately benchmark the energy savings of the proposed
1292.6 30.3 30.4
1496.5 34.9 34.9
1726.5 – –

scheduling schemes. The test bed comprises a dual-core Intel T2500
processor with dynamic voltage scaling capability and runs the
Linux Fedora 8 based hard real-time scheduling. A detailed descrip-
tion of the implementation was  presented in Wei  et al. (2011).

6.1. Implementation process and energy measurement method

The implementation of an energy-efficient task scheduling
algorithm requires that the hardware and software platform on
which the algorithm is to be implemented supports hard real-
time scheduling, fixed priority and preemptive scheduling, and
dynamic voltage scaling. A mini-ITX Express motherboard from
Radisys Corporation (2002) was  selected as the hardware plat-
form due to its support of DVS and ease with energy measurement.
The embedded motherboard mainly comprises an Intel Core Duo
T2500 processor and 512M DDR2 memory module. T2500 is a DVS-
capable processor with 2MB  L2 cache. The Linux Fedora 8 operating
system, one of the most widely used operating systems, was  cho-
sen as the software platform for the implementation. It supports
two  fixed priority and preemptive real-time scheduling policies:
First-In-First-Out (FIFO) and Round-Robin (RR). The FIFO policy
was  selected as the basis for implementing RMA-based schedul-
ing schemes. The rate monotonic scheduling scheme is utilized to
assigned priorities to tasks with different periods while FIFO is used
to break ties when tasks have the same priorities. The Linux FIFO
policy provides a simple yet efficient approach to implementing
fixed-priority preemptive scheduling algorithms.

The implementation of the RMA-based task scheduling algo-
rithms consists of two major steps: task generation and task
scheduling. In the first step, Dhrystone-based independent and
periodic tasks were generated and task characteristics were
derived. In the second step, the generated tasks were sched-
uled using scheduling algorithms such as the JFTA (Zhang and
Chakrabarty, 2006) and the proposed A-DVS.

Dhrystone, a synthetic computing benchmark program devel-
oped to be representative of system programming (Weicker, 1984),
was  selected and modified to generate independent and periodic
tasks. Dhrystone was  written in C language code, has small size, and
is portable to a large number of platforms and processor architec-
tures. These characteristics make Dhrystone a popular benchmark
in embedded applications due to its small memory requirements.
The output of Dhrystone benchmark program is the number of iter-
ations of the Dhrystone main code in unit time, which is derived by
dividing a predefined number of iterations of the Dhrystone main
code by the corresponding execution time. Tasks with different exe-
cution times are generated by varying the number of iterations of
the Dhrystone main code. Ten tasks the execution times of which

range from 1 ms  to 1000 ms  were generated using the Dhrystone
benchmark program. Task utilizations were generated based on the
Beta distribution of probability and were limited to being less than
ln 2, the asymptotic bound of RMA  (Wei  et al., 2008). Task periods
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Table 8
Energy consumptions of CPU and system board under JFTA and the proposed quasi-static application level scheduling scheme.

Mini-ITX motherboard k JFTA (Zhang and Chakrabarty, 2006) EJ (J) Proposed EA (J) EAJ (J)

Core 0 312.1 312.1 0
1 396.7 318.5 19.7
2 408.4 318.5 22.0
3  418.1 325.6 22.1
4 436.2 330.7 24.2
5  NF 341.2 –

System board 0 489.12 489.12 0
1 488.56 490.46 −0.38
2 488.72 490.82 −0.45
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4  491.6 

5  NF 

ere hence derived as the ratio of the task execution times to the
ask utilizations.

Since the ATX 4-pin connector on the motherboard exclusively
rovides 12 V voltage to the voltage regulator module (VRM) of CPU
nd the ATX 20-pin connector on the motherboard provides 12 V,

 V, and 3.3 V voltages to components on system board, the energy
onsumption of CPU and system board can be approximated by the
nergy delivered from ATX power supply connectors. This delivered
nergy can be derived by multiplying the currents flowing through
TX connectors by the voltages at the ATX connectors. Considering

he fact that a VRM can achieve energy efficiency of up to 95% and
ifficulties to directly measure energy consumption of an onboard
evice, this strategy for energy estimation can be used to sketch
nergy consumption of CPU and system board. More specifically,
easurement of energy consumption is accomplished by using a
AQ system and Tektronix A622 AC/DC current probe. The DAQ sys-

em is comprised of an NI PCI-6040E DAQ, NI BNC-2110 connector
lock, and a host computer with LabView, as is shown in Fig. 8.

.2. Numerical results

The offline scheduling algorithms presented in Zhang and
hakrabarty (2006) and the proposed quasi-static scheduling
chemes were implemented on the test bed. Due to space limi-
ation, only the results for the JFTA (Zhang and Chakrabarty, 2006)
nd the proposed application level scheduling scheme (the A-DVS
ombined with its dynamic counterpart D-ADVS) were reported.
ne core of the Core Duo processor Intel T2500 was disabled in

he implementation. 10 generated Dhrystone-based tasks were
cheduled to execute on the test bed using the JFTA and the
roposed application level scheme, respectively. Table 8 shows
he energy consumptions of the core and system board, respec-
ively. EJA = (EJ− EA)/EJ × 100 % denotes the energy savings of the
roposed scheme when compared to the benchmarking scheme

FTA, where EJ and EA represent energy consumptions of the task

et under JFTA and the proposed application level scheme, respec-
ively. NF denotes that the tasks in the task set cannot be feasibly
cheduled.

Fig. 8. DAQ system and current probes for energy measurement.
491.4 −0.46
490.4 0.25
491.0 –

The energy consumption of the proposed quasi-static applica-
tion scheme is verified and compared with that of the JFTA. Table 8
shows that as compared to the proposed scheme, the JFTA con-
sumes the same core energy in the absence of fault occurrences
and consumes about 20% more core energy in the presence of fault
occurrences. This is because JFTA is an offline scheduling algorithm
that considers the worst case fault occurrences to maintain the
schedule feasibility. On the contrary, the proposed scheme is a
quasi-static scheduling scheme the offline components of which
enables the online components to save energy by utilizing uncer-
tainties in fault occurrences.

The energy consumptions of the system board excluding the
processor are close for the two scheduling algorithms under dif-
ferent fault arrival rates. For example, the difference between the
JFTA and the proposed scheme in energy consumption of the sys-
tem board is less than 0.5% with the number of fault occurrences
ranging from 0 to 5, as is shown in Table 8. Furthermore, the energy
consumption of the system board when it is idle is 479.8 J, which
is about 10 J less as compared to the energy consumption of the
system board under the load of the Dhrystone-based task set.

There are three possible reasons for the relative stableness in
the energy consumption of the system board. First, the Dhrystone
is a CPU-intensive benchmark program and it does not intensively
exercise the system board, especially the memory module, to store
and load data. Second, the JFTA and the proposed scheduling algo-
rithms are also CPU-intensive and their impact on the system board
energy consumption is small. Finally, the total size of the instruc-
tions of the schedulers and the Dhrystone-based tasks in the form
of an executable file is about 20 k. This file could be readily fit in
the 2MB  L2 cache of the Intel T2500 processor, which reduces the
memory access overheads.

7. Conclusion

This paper presents efficient quasi-static scheduling schemes
that combine the offline feasibility analysis of RMA  schedules and
the online voltage scaling for hard real-time systems. The proposed
schemes captures the effects of voltage scaling on system reliabil-
ity, and achieve energy savings by utilizing both the static slack
in offline task schedules and dynamic slack due to variations in
task execution time and uncertainties of fault occurrences. The
extension of the offline algorithms is enabled by pre-computing
and saving in a lookup table the maximum slack requirements
for the processor to slow down in the runtime. The stored slack
time requirements are retrieved and compared at runtime with
the accumulated slack. The online voltage scaling is performed

whenever the generated slack time is equal to or greater than
the stored slack requirements. Simulation results based on two
real-life test sets and processor data sheets show that the pro-
posed techniques achieve energy savings of up to 50% over the
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roposed algorithms were also verified on the test bed.

cknowledgments

This work was supported in part by the Fundamental Research
unds for the Central Universities of China under the Grant No.
8220021.

eferences

xer, P., Sebastian, M.,  Ernst, R., 2011. Reliability analysis for mpsocs with
mixed-critical, hard real-time constraints. In: The International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 149–158.

enini, L., Bogliolo, A., Micheli, G., 2000. A survey of design techniques for system-
level dynamic power management. IEEE Transactions on VLSI Systems 8 (3),
299–316.

ontreras, G., Martonosi, M.,  Peng, J., Ju, R., Lueh, G., Xtrem, 2004. A power simulator
for  the intel xscale core. In: ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems.

ormen, T., Leiserson, C., Rivest, R., Stein, C., 2001. Introduction to Algorithm. The
MIT  Press.

rnst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Razor, K.F., 2004.
Circuit-level correction of timing errors for low-power operation. IEEE Micro 24
(6),  10–20.

ruian, F., 2001. Hard real-time scheduling for low-energy using stochastic data and
dvs  processors. In: Proceedings of the International Symposium on Low Power
Electronics and Design, pp. 46–51.

uang, K., Santinelli, L., Chen, J., Thiele, L., Buttazzo, G., 2009. Adaptive dynamic
power management for hard real-time systems. In: Proceedings of the IEEE Real-
Time Systems Symposium.

uang, J., Blech, J., Raabe, A., 2011. Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems. In: The International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp.
247–256.

uang, K., Santinelli, L., Chen, J., Thiele, L., Buttazzo, G., 2011. Applying real-time
interface and calculus for dynamic power management in hard real-time sys-
tems. Real-Time Systems Journal 47 (2), 163–193.

ntel Corporation.  Intel PXA26x processor family electrical, mechanical, and
thermal specification datasheet. Available from: http://developer.intel.com.

qbal, N., Siddique, M.,  Henkel, J., 2011. Seal: Soft error aware low power scheduling
by monte carlo state space under the influence of stochastic spatial and temporal
dependencies. In: Proceedings of the ICCAD, pp. 134–139.

zosimov, V., Pop, P., Eles, P., Peng, Z., 2008. Scheduling of fault-tolerant embedded
systems with soft and hard timing constraints. In: Proceedings of the DATE.

ejurikar, R., Pereira, C., Gupta, R., 2004. Leakage aware dynamic voltage scaling for
real-time embedded systems. In: Proceedings of the DAC, pp. 275–280.

im, N., Ryu, M.,  Hong, S., Saksena, M.,  Choi, C., Shin, H., 1996. Visual assessment of
a  real-time system design: a case study on a CNC controller. In: Proceedings of
the RTSS.

rishna, C., Lee, Y., 2003. Voltage-clock-scaling adaptive scheduling techniques for
low power in hard real-time systems. IEEE Transactions on Computers 52 (12),
1586–1593.

wak, S., Choi, B., Kim, B., 2001. An optimal checkpointing strategy for real-time
control systems under transient faults. IEEE Transactions on Reliability 50 (3),
293–301.

angley, T., Koga, R., Morris, T., 2003. Single-event effects test results of 512mb
sdrams. IEEE Radiation Effects Data Workshop July, 98–101.

ehoczky, J., Sha, L., Ding, Y., 1989. The rate monotonic scheduling algorithm: exact
characterization and average case behavior. In: IEEE Real-Time Systems Sympo-
sium.

iu, C., Layland, J., 1973. Scheduling algorithms for multiprogramming in a hard real
time environment. Journal of the ACM 20 (1), 46–61.

ocke, D., Vogel, D., Mesler, T., 1991. Building a predictable avionics platform in ada:
a  case study. In: The Proceedings of Real-Time Systems Symposium.

artin, S., Flautner, K., Mudge, T., Blaauw, D., 2002. Combined dynamic voltage scal-
ing and adaptive body biasing for lower power microprocessors under dynamic
workloads. In: Proceedings of the ICCAD.

elhem, R., Mosse, D., Elnozahy, E., 2004. The interplay of power management and
fault recovery in real-time systems. IEEE Transactions on Computers 53 (2),
217–231.

ochocki, B., Hu, X., Quan, G., 2007. Transition-overhead-aware voltage scheduling
for  fixed-priority real-time systems. ACM Transactions on Design Automation

of  Electronic Systems 12 (2).

ormand, E., 1996. Single event upset at ground level. IEEE Transactions on Nuclear
Science 43 (6), 2742–2750.

erathoner, S., Chen, J., Lampka, K., Stoimenov, N., Thiele, L., 2010. Combining opti-
mistic and pessimistic dvs scheduling: an adaptive scheme and analysis. In:
d Software 85 (2012) 1386– 1399

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.
131–138.

Pillai, P., Shin, K., 2001. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In: Proceedings of the ACM Symposium on Operating
Systems Principle.

Pop, P., Poulsen, K., Izosimov, V., Eles, P., 2007. Scheduling and voltage scal-
ing  for energy/reliability trade-offs in fault-tolerant time-triggered embedded
systems. In: Proceedings of the 5th IEEE/ACM International Conference on Hard-
ware/Software Codesign and System Synthesis.

Pradhan, D., 1986. Fault Tolerance Computing: Theory and Techniques. Prentice Hall.
Radisys Corporation, 2002. Endura TP945GM motherboard. Available from:

http://www.radisys.com.
Reed, R., Kinnison, J., Pickel, J., Buchner, S., Marshall, P., Kniffin, S., LaBel, K., 2006.

Single-event effects ground testing and on-orbit rate prediction methods: the
past, present, and future. IEEE Transactions on Nuclear Science 50 (3), 622–634.

Reinhardt, S., Mukherjee, S., 2000. Transient fault detection via simultaneous mul-
tithreading. In: ACM SIGARCH Computer Architecture News.

Saewong, S., Rajkumar, R., 2003. Practical voltage-scaling for fixed-priority rt-
systems. In: Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium.

Shafik, R., Al-Hashimi, B., Chakrabarty, K., 2010. Soft error-aware design optimiza-
tion of low power and time-constrained embedded systems. In: The Proceedings
of  the DATE.

Shin, Y., Choi, K., 1999. Power conscious fixed priority scheduling for hard real-time
systems. In: Proceedings of the DAC.

Shin, K., Lee, Y., 1984. Error detection process-model, design and its impact on
computer performance. IEEE Transactions on Computers C-33 (6), 529–540.

Shin, K., Lin, T., Lee, Y., 1987. Optimal checkpointing of real-time tasks. IEEE Trans-
actions on Computers C-36 (11), 1328–1341.

Transmeta Corporation.  Transmeta longrun power management -
dynamic power management for crusoe processors. Available from:
http://www.transmeta.com.

Wei, T., Mishra, P., Wu,  K., Liang, H., 2006. Online task-scheduling for fault-tolerant
low-energy real-time systems. In: Proceedings of the International Conference
on  Computer-Aided Design (ICCAD).

Wei, T., Mishra, P., Wu,  K., Liang, H., 2008. Fixed-priority allocation and scheduling
for energy-efficient fault-tolerance in hard real-time multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems 19 (11), 1511–1526.

Wei, T., Chen, X., Mishra, P., 2011. Design of a hard real-time multi-core
testbed for energy measurement. Microelectronics Journal of Elsevier 42 (10),
1176–1185.

Wei, T., Chen, X., Hu, S., 2011. Reliability-driven energy-efficient task scheduling for
multiprocessor real-time systems. IEEE Transactions on Computer-Aided Design
of  Integrated Circuits and Systems 30 (10), 1569–1573.

Weicker, R., 1984. Dhrystone: a synthetic systems programming benchmark. Com-
munications of the ACM 27 (10), 1013–1030.

Weste, N., Eshraghian, K., 1992. Principles of CMOS VLSI Design: A System Perspec-
tive. Addison-Wesley Publishing Company.

Weulersse, C., Hubert, G., Forget, G., Buard, N., Carriere, T., Heins, P., Palau, J., Saigne,
F., Gaillard, R., 2006. Dasie analytical version: a predictive tool for neutrons,
protons and heavy ions induced seu cross section. IEEE Transactions on Nuclear
Science 53 (4), 1876–1882.

Zhang, Y., Chakrabarty, K., 2003. Energy-aware adaptive checkpointing in embedded
real-time systems. In: Proceedings of the DATE.

Zhang, Y., Chakrabarty, K., 2006. A unified approach for fault tolerance and dynamic
power management in fixed-priority real-time embedded systems. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 25 (1),
111–125.

Zhang, Y., Chakrabarty, K., Swaminathan, V., 2003. Energy-aware fault tolerance in
fixed-priority real-time embedded systems. In: Proceedings of the ICCAD.

Zhao, B., Aydin, H., Zhu, D., 2009. Enhanced reliability-aware power manage-
ment through shared recovery technique. In: Proceedings of the ICCAD,
pp.  63–70.

Zhao, B., Aydin, H., Zhu, D., 2011. Generalized reliability-oriented energy manage-
ment for real-time embedded applications. In: Proceedings of the DAC, pp.
381–386.

Zhu, D., Melhem, R., Mosse, D., 2004. The effects of energy management on reliability
in  real-time embedded systems. In: Proceedings of the International Conference
on  Computer-Aided Design.

Zhu, D., Aydin, H., Chen, J., 2008. Optimistic reliability aware energy management
for real-time tasks with probabilistic execution times. In: Proceedings of the
Real-Time Systems Symposium.

Tongquan Wei  received the B.E. degree in Electronics
Engineering from Dalian University of Technology, China,
the  M.S. degree in Computer Engineering from Univer-
sity  of Missouri-Rolla (Now Missouri University of Science
and Technology), and the Ph.D. degree in Electrical Engi-
neering from Michigan Technological University. He is
versity, Shanghai, China. His research focuses on power
and fault tolerance management in real-time embedded
systems. He is a member of the IEEE.

http://developer.intel.com
http://www.radisys.com
http://www.transmeta.com


ms and

P
e
m

f
P

neering from Jiangxi University of Agriculture, China. He
is  now working towards his M.S. degree in the area of
energy efficient fault tolerance real-time systems in Com-
puter Science and Technology Department at East China
Normal University.
T. Wei  et al. / The Journal of Syste

Dr. Piyush Mishra is a Lead Engineer in the Supervi-
sory Controls and System Integration lab at GE Global
Research, Niskayuna NY. He has published more than 18
research papers in refereed journals and conference pro-
ceedings. He serves as Vice-Chair on ACM SIGDA Technical
Committee on FPGA and Reconfigurable Computing and
as a reviewer for a number of prestigious publications.
His research interests include digital hardware design,
real-time simulation/emulation, reconfigurable comput-
ing, cyber-security, and energy-efficient designs.
Dr. Mishra joined the GEGR after working at the Electri-
cal and Electronics Engineering department at Michigan
Technological University where she served as Assistant

rofessor from 2004–2008. During his tenure there, he led research groups on
nergy-efficient reliability schemes, served on thesis committee of 4 Ph.D. and 7
aster students and taught graduate and undergraduate courses.

Dr. Mishra received a bachelor’s degree in electrical and electronics engineering
rom Birla Institute of Technology in India and Ph.D. in electrical engineering from
olytechnic Institute of NYU in Brooklyn, NY.

Kaijie Wu received the B.E. degree from Xidian Uni-
versity, Xi’an, China, in 1996, the M.S. degree from the
University of Science and Technology of China, Hefei,
China, in 1999, and the Ph.D. degree in electrical engi-
neering from Polytechnic University (Now Polytechnic
Institute of New York University), Brooklyn, New York,
in 2004. He is currently an assistant professor in the
Department of Electrical and Computer Engineering, Uni-

versity of Illinois at Chicago. His research interests include
computer-aided design (CAD) of radiation-hardened VLSI
System, countermeasures for side-channel cryptanalysis
for  crypto devices, and robust and fault-tolerant real-time
systems. He is the recipient of the 2004 EDAA Outstanding
 Software 85 (2012) 1386– 1399 1399

Dissertation Award for “new directions in circuit and system test.” He  is a member
of  the IEEE.

Junlong Zhou received the B.E. degree in Software Engi-


	Quasi-static fault-tolerant scheduling schemes for energy-efficient hard real-time systems
	1 Introduction
	1.1 Related work
	1.2 Contributions and outline

	2 System architecture and models
	2.1 Architecture and application model
	2.2 Fault and recovery model
	2.3 Energy model

	3 Offline scheduling algorithms for fault-tolerant hard real-time systems
	3.1 ECRMA-based feasibility analysis of fault-tolerant task schedules
	3.2 Application level voltage scaling (A-DVS)
	3.3 Task level voltage scaling (T-DVS)

	4 Online reevaluation of DVS policies
	4.1 Reevaluation of DVS policies at application level
	4.2 Reevaluation of DVS policies at task level

	5 Simulation results and overhead analysis
	5.1 Energy characteristics
	5.2 Runtime overhead analysis

	6 Implementation of scheduling algorithms on a real-life test bed
	6.1 Implementation process and energy measurement method
	6.2 Numerical results

	7 Conclusion
	Acknowledgments
	References


