
0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Thermal-Aware Task Scheduling for Energy Minimization in
Heterogeneous Real-Time MPSoC Systems

Junlong Zhou, Tongquan Wei, Mingsong Chen, Jianming Yan, X. Sharon Hu, and Yue Ma

Abstract—With the continuous scaling of CMOS devices, the
increase in power density and system integration level have not
only resulted in huge energy consumption but also led to elevated
chip temperature. Thus, energy efficient task scheduling with
thermal consideration has become a pressing research issue in
computing systems, especially for real-time embedded systems
with limited cooling techniques. In this paper, we design a two-
stage energy-efficient temperature-aware task scheduling scheme
for heterogeneous real-time multiprocessor system-on-chip (MP-
SoC) systems. In the first stage, we analyze the energy optimality
of assigning real-time tasks to multiple processors of a MPSoC
system, and design a task assignment heuristic that minimizes
the system dynamic energy consumption under the constraint of
task deadlines. In the second stage, the optimality of minimizing
the peak temperature of a processor is investigated, and a slack
distribution heuristic is proposed to improve the temperature
profile of each processor under the thermal constraint, thus the
temperature-dependent system leakage energy consumption is
reduced. Through the extensive efforts made in two stages, the
system overall energy consumption is minimized. Experimental
results have demonstrated the effectiveness of our scheme.

Index Terms—Energy-Efficient, Thermal-Aware, Task Alloca-
tion and Scheduling, Real-Time MPSoC Systems.

I. INTRODUCTION

THE advance of technology scaling enables the integration
of multiple processing elements, memory hierarchies,

and dedicated hardware and I/O components on a single
silicon die to form a MPSoC system. A MPSoC system is
naturally heterogeneous in the sense that its processing ele-
ments such as customized hardware modules, programmable
microprocessors, and embedded FPGAs have distinctive func-
tionalities and demonstrate varying computing capability [1].
Due to their powerful parallel processing capability, higher
computing density and lower clock frequencies, MPSoCs have
replaced uniprocessors to become the main design paradigms
for current and future embedded microprocessors in various
application domains [2]. The distinct features of different
types of processors of a MPSoC system can be exploited to
meet the stringent design requirements of emerging real-time
applications. In this paper, we focus on task scheduling issues
for heterogeneous real-time MPSoC systems.

The conventional research on MPSoC systems concentrates
on trading off the performance with resource requirements.
Recently, increasing system integration level and decreasing

J. Zhou, T. Wei, and J. Yan are with the Shanghai Key Laboratory of
Multidimensional Information Processing, and the Department of Computer
Science and Technology, East China Normal University, Shanghai 200241,
China. T. Wei is the Corresponding author. (email: tqwei@cs.ecnu.edu.cn.)

M. Chen is with the Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai 200241, China.

X. S. Hu and Y. Ma are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

feature sizes of VLSI circuits have led to a striking rise in
power density [3], which not only results in huge energy con-
sumption but also leads to elevated chip temperatures. Increase
in energy consumption causes serious technical, economic,
and ecological problems, such that energy management has
become a critical issue in computing systems, especially for
battery-powered systems that operate in harsh environments
[4]–[6]. High chip temperature has adverse impact on system
reliability, performance, and cost. A system will fall into the
predicament of functional incorrectness, low reliability and
even permanent damage if operating temperature exceeds a
certain threshold [7]. Industrial studies have shown that a
difference in operating temperature (10-15◦C) can make a 2×
difference in device lifespan [8]. Thus, energy and thermal
management has become a significant and pressing research
issue in computing systems.

Considerable research efforts have been devoted to the
investigation of task allocation for energy minimization in
heterogeneous MPSoC systems. The heterogeneities of MP-
SoC systems are manifested by the varying core types, dif-
ferent operating frequencies and power consumptions, and
distinctive state switching overheads of processors. In [9],
the authors addressed the problem of allocating real-time
tasks onto heterogeneous cores for energy minimization un-
der timing constraints. The presented allocation heuristics
are designed as approximations to a target load distribution
derived analytically. Awan et al. [10] explored the energy
efficient task mapping on heterogeneous multi-core platform
to reduce overall energy consumption of a real-time system.
The developed heuristic first assigns tasks to processors to
minimize the system active energy consumption. It then trades
off higher active energy consumption for increased ability to
use more efficient sleep states to reduce the system static
power consumption. In [11], the authors designed a hybrid
task mapping algorithm for heterogeneous MPSoCs to im-
prove system efficiency. The hybrid method aims to maximize
the throughput via static task mappings under a predefined
energy budget, and further improve the performance of the
mappings and reduce the energy consumption by considering
the dynamic behavior of applications at runtime. All the above
works attempt to fully exploit the energy saving potentials
of heterogeneous processors. However, the effectiveness of
utilizing the heterogeneities of a MPSoC system to reduce
the chip temperature is not investigated.

Considering the temperature design constraint, Yu et al.
[12] leveraged the task-level adaptability and designed a
thermal-aware frequency scaling-based scheduling algorithm
for maximizing the execution quality-of-service of applications
on heterogeneous MPSoC platforms. The presented method

Copyright c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

converts the temperature threshold into timing constraints, then
optimizes the total workload cycle over all processors by judi-
cious frequency selection. Wang et al. [13] studied the problem
of reducing the peak temperature of real-time applications in
MPSoC systems by utilizing system heterogeneities caused by
manufacturing variations. Although it is effective to reduce the
peak temperature by exploiting the heterogeneities of MPSoC
systems, the energy design constraint is not discussed in these
works. In addition, the heterogeneities of real-time tasks are
not utilized to enhance system temperature and energy profiles.

Real-time tasks are deemed to be heterogenous when they
consume different power at the same operating frequency
and temperature on the same processor [14]. In [15], the
heterogeneities of both system architecture and real-time tasks
are used to minimize the energy consumption. A relaxation-
based algorithm for three types of heterogeneous platforms
are designed to achieve the task partition that is closest
to the optimal solution of the relaxed problems. However,
temperature is not considered as a design constraint. Saha et
al. [16] developed a genetic algorithm-based task allocation
that minimizes the energy consumption under the constraints
of temperature limit and task deadlines. Although both energy
and temperature are taken into account for optimization, the
heterogeneity of real-time tasks is not considered.

In this paper, we present a static two-stage energy-efficient
temperature-aware task allocation and scheduling scheme for
heterogeneous real-time MPSoC systems under the constraints
of task deadlines and temperature limit. The first stage of
the proposed approach aims to minimize the system dynamic
energy consumption by assigning the subset having a larger
power dissipation factor to the processor having a smaller
power dissipation factor. The second stage of the proposed
approach aims to minimize the system leakage energy con-
sumption by reducing the peak temperature of processors
through slack distribution. In the two stages, feasibility anal-
ysis techniques are also designed to ensure that the target
system meets its timing and thermal constraints. The major
contributions of this paper are summarized as follows.

• We analyze the energy optimality of assigning tasks
to multiple processors of a MPSoC system. Based on
this analysis, we design a task assignment heuristic that
minimizes the system dynamic energy consumption.

• We prove that the peak temperature of tasks in the thermal
steady state is minimal if tasks on the same processor
assume a uniform steady state temperature. Using a
slack distribution policy that is developed based on this
observation, the temperature profiles of processors are
improved, and the temperature-dependent system leakage
energy consumption is hence reduced.

• We exploit the heterogeneities of both system architecture
and real-time tasks to reduce the system energy consump-
tion. We also utilize feasibility analysis techniques to
ensure real-time and temperature constraints are satisfied.

The rest of the paper is organized as follows. Section II in-
troduces the system architecture and models, Section III shows
the overview of energy minimization. Section IV presents the
proposed task assignment strategy for minimizing the system

dynamic energy consumption and Section V describes the
proposed slack distribution policy that reduces the temperature
for minimizing the system leakage energy consumption. The
effectiveness of the proposed approach is verified in Section VI
and concluding remarks are given in Section VII.

II. SYSTEM ARCHITECTURE AND MODELS

Consider a MPSoC system P consisting of M processors
{P1,P2, · · · ,Pk, · · · ,PM}, where every processor Pk (1 ≤
k ≤ M) operates at a given supply voltage and processing
speed pair (vk, sk). Dynamic voltage scaling (DVS) is not
considered in this paper since it would add another dimension
for optimization [10]. In addition, the benefit of using DVS to
reduce temperature is partially offset by the adverse impact of
DVS on system performance.

A. Task Model

We consider real-time periodic tasks to be executed on
the concerned MPSoC platform. Tasks are assumed to be
heterogeneous in the sense that different tasks exhibit different
power consumptions on the same processor, even executing at
the same operating speed and temperature. This is due to the
fact that power consumptions of tasks strongly rely on circuit
activities and usage patterns of different functional units [14].
Thus, the activity factor of a task, denoted by µ (ranging in
(0,1]), is introduced to capture how intensively functional units
are being utilized by the task [17].

The timing characteristics of a periodic real-time task is in
general described by three parameters, that is, the deadline,
the period, and the worst-case execution time in cycles. A
real-time task must guarantee response within a specified time
constraint, which is referred to as the deadline. In a periodic
real-time system, each task requires repeated execution, and
the time duration between the time point of one task ready to
be executed and that of the next is referred to as the period.
Associating each real-time task with a worst-case execution
time and a period is widely accepted in the real-time system
community and is commonly adopted in the literature.

Assuming that a set Γ contains N real-time periodic tasks,
denoted by Γ = {τ1, τ2, · · · , τi, · · · , τN}, and considering the
task activity factor, the characteristics of τi (1 ≤ i ≤ N) is
described by a quadruplet τi : {Di, pi, ci, µi}, where Di is the
deadline, pi is the period, ci is the worst-case execution time
in cycles, and µi is the task activity factor. The hyper-period of
set Γ, denoted by H , is the least common multiple of periods
{p1, p2, · · · , pN}. Let ET (i, k) be the execution time of task
τi on processor Pk at supply voltage/speed (vk, sk), that is,

ET (i, k) =
ci
sk
. (1)

B. Power Model

The power consumption P of a CMOS device can be
modeled as the sum of dynamic power consumption Pdyn and
leakage (or static) power consumption Pleak, that is,

P = ~ ·Pdyn + Pleak. (2)

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Here ~ is employed to represent system states and indicate
whether the system is currently consuming dynamic power.
Specifically, ~ = 1 when the processor is in the active state
and ~ = 0 when the processor is in the idle state.

Dynamic power consumption mainly results from charging
and discharging of gates in the circuits. It is independent of
the temperature, and can be formulated as a function of supply
voltage Vdd and operating frequency f [18], that is,

Pdyn = CeffV 2
ddf, (3)

where Ceff is the effective capacitance. Since s ∝ f , where
s is the processor speed, the power consumption of task τi on
processor Pk at the supply voltage/speed (vk, sk) is

Pdyn(i, k) = Ceffk µiv
2
ksk, (4)

where µi is the activity factor of task τi.
Leakage power consumption mainly results from the leak-

age current and is expressed as

Pleak = Ngate ·Vdd · Ileak, (5)

where Ngate is the number of gates, Vdd is the supply voltage,
and Ileak is the leakage current. Ileak can be captured by a
nonlinear exponential equation [19] as

Ileak = Is(AT 2e(ϑ1Vdd+ϑ2)/T + Be(ϑ3Vdd+ϑ4)), (6)

where Is is the leakage current at a certain reference tem-
perature and supply voltage, T is the operating temperature,
and A, B, ϑ1, ϑ2, ϑ3, and ϑ4 are empirically determined,
technology-dependent constants. (6) clearly demonstrates the
complex relationship between the leakage power and tem-
perature. However, the high-order and nonlinear terms make
(6) prohibitive to perform real-time feasibility analysis. As
reported in [20], the leakage current changes super linearly
with the temperature and using linear approximation to model
the leakage-temperature dependence can significantly simplify
the leakage model while maintaining an acceptable accuracy.
Therefore, as in [21], we model the leakage power of processor
Pk at the supply voltage/speed (vk, sk) as

Pleak(k) = (αk + βkT) · vk, (7)

where αk and βk are constants depending on processor Pk.

C. Thermal Model

In an MPSoC system, each processor is assumed to be a
discrete thermal element, and there is a set of heat sinks on
top of the processors. These heat sinks are only used for heat
dissipation and generate no power. An example layout of four
processors with two heat sinks is given in Fig. 1. Heat transfer
among the processors and heat sinks is a complicated dynamic
process depending on the physical system. This dynamic heat
transfer process can be closely approximated by Fourier’s Law
[16], [22]–[24], where the thermal coefficients can be obtained
by using the RC models [16], [20]–[25].

Let Gk,m represent the thermal conductance between pro-
cessor Pk and Pm in set P and Gk,m = Gm,k holds for
any 1 ≤ k 6= m ≤ M . If there is no heat transfer between
processor Pk and Pm, then Gk,m = 0. Gk,k = 0 holds for

��Sink 1 ��Sink 2

��
Processor 1

��
Processor 2

��
Processor 3

��
Processor 4

Fig. 1. An example layout of four processors with two heat sinks [22].

any processor in processor set P , and the thermal capacitance
of processor Pk is Ck. Let Θ = {Θ1,Θ2, · · · ,Θh, · · · ,ΘH}
denote the set of H heat sinks on top of the processors. The
vertical thermal conductance between processor Pk and heat
sink Θh is Gk,h, which depends on the interface material and
the thickness. If there is no heat dissipation from processor
Pk to heat sink Θh, then Gk,h = 0. The lateral thermal
conductance between heat sink Θh and Θ` in set Θ is Gh,`
and Gh,` = G`,h holds for any 1 ≤ h 6= ` ≤ H. The thermal
conductance of a heat sink that dissipates heat to the ambient
is Gamb. The thermal capacitance of sink Θh in set Θ is Ch.

Let Tk(t) and Th(t) be the temperature of processor Pk and
heat sink Θh at time instance t, respectively. Let Tamb and
Pk(t) be the ambient temperature of the chip and the power
consumption of processor Pk at time instance t, respectively.
Then according to Fourier’s Law, the heat transfer process can
be described as below [16], [22], [23],

Ck
dTk(t)

dt
=Pk(t)−

∑
Θh∈Θ

Gk,h(Tk(t)− Th(t))

−
∑
Pm∈P

Gk,m(Tk(t)− Tm(t)), (8)

Ch
dTh(t)

dt
=−Gamb(Th(t)− Tamb)

−
∑
Pk∈P

Gk,h(Tk(t)− Th(t))

−
∑

Θ`∈Θ

Gh,`(Th(t)− T`(t)), (9)

where dTk(t)
dt and dTh(t)

dt are derivatives of the temperature of
processor Pk and heat sink Θh, respectively. As shown in [16],
[22], [23], all these thermal parameters can be derived using
the RC thermal model for a given platform.

III. OVERVIEW OF ENERGY MINIMIZATION

The focus of this work is to minimize the energy con-
sumption of the concerned MPSoC system in a schedule
duration under the constraints of real-time task deadlines and
temperature limit. In this section, we first show the preliminary
for estimating leakage energy consumption, then present the
calculation of system overall energy consumption and define
the energy minimization problem. Finally, we present the
framework of our solution to solve the problem.

A. Preliminary for Leakage Energy Estimation
As the focus of this work is to minimize the overall energy

consumption of the concerned MPSoC system, developing a

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

t

t

T (°C)

T (°C)

Fig. 2. An example of temperature curve with small variation in each interval.

method that can rapidly and accurately estimate the system
energy consumption is of the top priority. However, this is
challenging since derivation of leakage energy consumption
is difficult. As introduced in Section II-B, leakage power
varies with temperature and temperature is changing with time.
Here the temperature refers to the operating temperature of
processors since heat sinks generate no power. Either using
(8) to compute the temperature at every time instance is
computationally expensive or using thermal modeling tool
(e.g., Hotspot [26]) to obtain the temperature profiles is time
consuming. Some early works such as [27]–[30] either simply
assume leakage power as a constant or totally ignore it since
leakage energy consumption used to be a small part of overall
energy consumption. However, with the continuous scaling of
integrated circuits, the proportion of leakage in overall power
dissipation is ever-increasing such that these simplistic energy
models can lead to large estimation errors.

Therefore, to take into account both the accuracy and
computational cost of leakage energy estimation, we adopt
a compromised method that divides a schedule duration into
multiple small intervals with equal length. During every in-
terval, the operating temperature is assumed to be constant
such that the leakage power consumed in the interval can
be readily derived. Specifically, let [0, SD] be the schedule
duration and L be the length of every interval. Then the
schedule duration [0, SD] can be discretized into R intervals
[0, L], [L, 2L], · · · , [(r− 1)L, rL], · · · , [(R− 1)L,RL], where
1 ≤ r ≤ R and R = SD

L . Let TConstk,r denote the constant
operating temperature of processor Pk during the interval
[(r − 1)L, rL], then based on (7) and our assumption, the
leakage power of processor Pk during [(r − 1)L, rL] is

Pleak(k, r) = (αk + βkT
Const
k,r) · vk. (10)

This method is similar to that in [14] and is motivated by
an observation illustrated in Fig. 2, that is, the temperature
variation is small during each interval. Obviously, as long as
the length of such interval is sufficiently small, the accuracy
of this method can be very high.

When we assume the operating temperature during an in-
terval is constant, one immediate question is what temperature
should be selected for the leakage energy calculation. Since
leakage is becoming the dominant source of power dissipation
as the semiconductor technology advances towards the deep
sub-micron era, we select the peak temperature occurring in
the interval as the operating temperature. Now we only need
to focus on how to obtain the peak temperature of a single
interval. We take the first interval [0, L] as an example. The

!
!
!

!!!!!!!!!

!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!

!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!

!!!!!!!!!

!!!!!!!!!

!!!!"!!!!!!!!!!!!!!"!!

!!!!!!!!!!!!!!!!!!!!!!!

!!!slack (idle time)!

0 L

t

Fig. 3. An example of execution sub-intervals.

execution of tasks on a processor during the interval [0, L]
can be depicted using a sequence of execution sub-intervals,
where the start time and end time of the qth sub-interval is
denoted by [stq, edq]. Fig. 3 shows an example of execution
sub-intervals, where three tasks are arranged to execute on a
processor and eleven execution sub-intervals are produced.

It has been shown in [31] that the peak temperature can be
reached at the start/end times of execution sub-intervals since
the temperature during each sub-interval is monotonically
increasing or decreasing. Thus, the peak temperature of tasks
on processor Pk in the interval [0, L] can be given as

T peakk,1 = max{Tk(t)|t = st1, ed1, st2, ed2, · · · , L},

where st1 = 0. Since the start time of a sub-interval is the
end time of its previous sub-interval, that is, stq = edq−1, the
peak temperature in the interval [0, L] is updated to

T peakk,1 = max{T (t)|t = st1, st2, · · · , L}. (11)

Applying this method to the following intervals, the peak
temperature of R intervals are derived, and the operating
temperature of these intervals are hence obtained using that
TConstk,r = T peakk,r for 1 ≤ r ≤ R. Then the calculation of
leakage power is updated to

Pleak(k, r) = (αk + βkT
peak
k,r) · vk. (12)

Using (12), we can compute the leakage energy consumption.

B. Calculation of System Overall Energy Consumption

The N real-time tasks in set Γ are assigned to M processors
in set P . In other words, a given task set Γ is partitioned into
M subsets {Γ1,Γ2, · · · ,Γk, · · · ,ΓM}, where Γk is the subset
of tasks assigned to processor Pk. The leakage power is always
consumed to maintain basic circuits and can be only eliminated
by turning off the system, and the dynamic power is only
consumed when executing tasks. Let EtotSD represent the total
energy consumption of M processors in a schedule duration
SD, then based on (1), (4), and (12), it can be computed as

EtotSD =
M∑
k=1

∑
τi∈Γk

Ceffk µiv
2
ksk ·

ci
sk
· SD
pi

+
M∑
k=1

(αkvkSD

+ βkvkL
R∑
r=1

T peakk,r) =
M∑
k=1

(Ceffk v2
k

∑
τi∈Γk

µici
pi

)SD

+
M∑
k=1

(αkvkSD + βkvkL
R∑
r=1

T peakk,r), (13)

where the first term is the dynamic energy consumption and
the second term is the static energy consumption.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

The expression
∑M
k=1(Ceffk v2

k

∑
τi∈Γk

µici
pi

) in the first
term of (13) is essentially the overall dynamic power
consumption. Clearly, the dynamic energy consumption
is minimal if the overall dynamic power consumption∑M
k=1(Ceffk v2

k

∑
τi∈Γk

µici
pi

), denoted by fmetric, is mini-
mized. The fmetric is in fact an energy metric to estimate
the dynamic energy consumption of the MPSoC system. It
can be formulated into the product of vectors, that is,

fmetric(AM , BM) = AM ×BM

= A1b1 +A2b2 + · · ·+AMbM , (14)

where AM = [A1, A2, · · · , Ak, · · · , AM] and BM =
[b1, b2, · · · , bk, · · · , bM]T . AM captures processor dependent
parameters, where Ak = Ceffk v2

k is referred to as the power
dissipation factor of processor Pk. BM captures task related
parameters, where bk =

∑
τi∈Γk

δi =
∑
τi∈Γk

µici
pi

is referred
to as the power dissipation factor of subset Γk, and δi is the
power dissipation factor of task τi. AM is determined since
Ceffk and vk are known for a given MPSoC system, while
BM is not determined and depends on task assignment. For a
given set Γ of N real-time tasks, the sum of power dissipation
factors of all tasks, denoted by Y (Γ), can be calculated as

Y (Γ) =
N∑
i=1

δi =
M∑
k=1

∑
τi∈Γk

µici
pi

=
M∑
k=1

bk = Y0. (15)

Y (Γ) is constant for a given set Γ and is denoted by Y0.
The expression

∑M
k=1(αkvkSD + βkvkL

∑R
r=1 T

peak
k,r) in

the second term of (13) is essentially the overall leakage
energy consumption in the duration SD. In this expression,
αk, βk, vk are constants for a given processor Pk, and SD,L
are parameters decided by the scheduler. Thus, the leakage
energy consumption only depends on T peakk,r , which is the peak
temperature of processor Pk during [(r−1)L, rL]. Obviously,
the overall leakage energy consumption is minimal if the peak
temperature of processors in every interval are minimized.

C. Energy Minimization Problem

As analyzed above, it is clear that the system dynamic
energy consumption depends on the task assignment, and
the system leakage energy consumption depends on the peak
temperature of intervals. Thus, both energy-efficient task as-
signment and temperature-aware task scheduling are helpful
to minimize the system overall energy consumption. In this
paper, we propose a task assignment and scheduling scheme to
address the problem of minimizing the system overall energy
consumption under the real-time and thermal constraints.

Real-time constraint: In a real-time system, each task
should be finished before its deadline. Suppose that the exe-
cution of real-time tasks in the system is preemptable, and the
task with a smaller period has a higher priority. Let RT (i, k)
denote the worst case response time of task τi at the supply
voltage/speed (vk, sk), then it can be formulated as

RT (i, k) = ET (i, k) +
∑

τj∈Γk,pj<pi

⌈RT (i, k)

pj

⌉
× ET (j, k),

(16)

where ET (i, k) and ET (j, k) are the execution time of task τi
and τj , respectively. They both can be obtained using (1). τj
has a higher priority than τi for j < i, and

⌈RT (i,k)
pj

⌉
indicates

the number of instances of τj during time interval RT (i, k).
Thermal constraint: The temperature of the chip should

be below a temperature limit (threshold) Tmax to avoid
temperature-induced failures. The value of Tmax is in general
specified based on system design requirements. Let Tpeak
denote the peak temperature at any position on the chip during
the schedule duration SD, that is,

Tpeak = max{T (t)|∀t ∈ [0, SD]}. (17)

Here T (t) can be the temperature of processors and heat sinks
at time instance t. The system is deemed to be in a safe mode
when the Tpeak is below the threshold temperature Tmax.

Problem definition: Considering the above design con-
straints, task allocation and scheduling problem of concerned
MPSoC systems is defined as the following: Given a set Γ of
N periodic real-time tasks and a set P of M heterogeneous
processors, derive a task allocation and scheduling scheme
to minimize the system overall energy consumption in a
schedule duration SD while satisfying the timing and thermal
constraints. In other words, the problem can be formulated as

Minimize: EtotSD

Subject to: RT (i, k) ≤ Di

Tpeak ≤ Tmax.

D. Framework of Our Two-Stage Solution
We propose a static two-stage task allocation and scheduling

scheme to solve the above problem. As shown in Fig. 4, the
proposed scheme is implemented in two stages. In the first
stage, for a given task set Γ, the proposed scheme partitions
tasks into M subsets and assigns them to corresponding
processors, in order to minimize the system dynamic energy
consumption (characterized by fmetric). In the second stage,
for the subset assigned to each processor, the proposed scheme
distributes available slack on the processor to local tasks for
reducing the peak temperature T peakk,r of every interval, in
order to minimize the system leakage energy consumption.
Through the efforts made in two stages, the system overall
energy consumption is minimized.

Feasibility analysis techniques are introduced in two stages
to ensure timing and thermal constraints are met. Specifically,
a real-time feasibility analysis technique is adopted in task
allocation to check if the task deadlines are satisfied. A temper-
ature feasibility analysis technique is used in task scheduling
to verify the thermal constraint in the schedule duration. If
the peak temperature limit is violated, the tasks that violates
the thermal constraint are moved to task set for re-allocation.
The proposed task assignment strategy and slack distribution
policy are detailed in Section IV and V, respectively.

IV. OUR TASK ASSIGNMENT STRATEGY

This section analyzes the dynamic energy optimality of
assigning tasks to multiple processors, presents a proposition
on optimum task assignment, and develops a task-to-processor
assignment heuristic based on the proposition.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

Stage 1 Stage 2Γ

Γ1
Γ2

ΓM

waiting queue

. . .

𝜏 𝜏 𝜏 …

tasks slack processor

𝜏 𝜏 𝜏 …

𝜏 𝜏 𝜏 …

tasks violating the thermal constraint
. . .

. . .

𝒫1
𝒫2

𝒫𝑀

. . .

𝜏 𝜏 𝜏 …

. . .

𝒫𝑘
Γ𝑘

𝜏 𝜏 𝜏

Objective: minimize ℧𝑚𝑒𝑡𝑟𝑖𝑐 Objective: minimize 𝑇𝑘,𝑟𝑝𝑒𝑎𝑘
Constraint: Real-time constraint Constraint: 𝑇𝑝𝑒𝑎𝑘 ≤ 𝑇𝑚𝑎𝑥 in 𝑆𝐷
Solution: task-to-processor assignment Solution: slack distribution

Stage 1 Stage 2

Fig. 4. The framework of the proposed two-stage solution.

A. Analysis of the Optimality of Task-to-Processor Assignment

The system dynamic energy consumption is in fact es-
timated by the dynamic energy metric fmetric(AM , BM),
which can be minimized by optimally assigning N real-
time tasks to M processors. Since the vector AM =
[A1, A2, · · · , AM] is constant and independent of task-to-
processor partition strategies, the dynamic energy metric
fmetric(AM , BM) is determined by the vector BM =
[b1, b2, · · · , bM]T , which varies with different task-to-
processor partition strategies. Specifically, a given set Γ
of N real-time tasks can be partitioned into M subsets
{Γ1,Γ2, · · · ,ΓM}, where Γk (1 ≤ k ≤ M) indicates the
subset of tasks assigned to processor Pk. It is clear that there
are MN instances of partitioning. In other words, assigning
tasks to processors is essentially a combinatorial optimization
problem. The target of combinatorial optimization problem is
to find the optimum solution from all feasible solutions. Let
Υ = {γ1, γ2, · · · , γn} be a solution space and f(γi) be the
value of the objective function corresponding to the solution
γi, then the combinatorial optimization problem involves find-
ing the optimum solution γ∗ such that f(γ∗) = min f(γi)
holds for ∀γi ∈ Υ. Since the combinatorial optimization
problem is known to be NP-hard [32], the concerned task
assignment problem is also NP-hard, which motivates the
proposed sub-optimal task-to-processor assignment heuristic.

For a given MPSoC system, the dynamic power dissipation
of processor set P is characterized by a vector AM =
[A1, A2, · · · , AM]. For the sake of easy presentation, it is
assumed that A1 ≤ A2 ≤ · · · ≤ AM holds. Similarly,
the optimum power dissipation of subsets assigned to indi-
vidual processors can be characterized by a vector BM =
[B1, B2, · · · , BM]T , indicating that the optimum task assign-
ment solution can minimize the objective fmetric(AM , BM).
The sum of power dissipation factors of all assigned tasks is
Y0 = B1 + B2 + · · · + BM , as shown in (15). This optimal
task assignment solution minimizes the dynamic energy metric
fmetric(AM , BM) by correlating the task assignment with
processor power dissipation factors, as described below.

Proposition 1: If dynamic energy metric fmetric(AM , BM)
is minimized when AM = [A1, A2, · · · , AM] (A1 ≤ A2 ≤
· · · ≤ AM), BM = [B1, B2, · · · , BM]T , and B1 +B2 + · · ·+
BM = Y0, then the inequality B1 ≥ B2 ≥ · · · ≥ BM holds.

Proof: The proposition states that for an optimum task
assignment solution, the processor with smaller power dissi-
pation factor ends up with the subset of its assigned tasks
having a larger power dissipation factor. As given in the
proposition, the dynamic energy metric fmetric(AM , BM) is
minimized when AM = [A1, A2, · · · , Ai, · · · , Aj , · · · , AM]
(A1 ≤ A2 ≤ · · · ≤ Ai ≤ · · · ≤ Aj ≤ · · · ≤ AM),
BM = [B1, B2, · · · , Bi, · · · , Bj · · · , BM]T , and B1 + B2 +
· · · + Bi + · · · + Bj + · · · + BM = Y0, then the inequality
B1 ≥ B2 ≥ · · · ≥ Bi ≥ · · · ≥ Bj ≥ · · · ≥ BM holds.

Let fmetric(AM , BM)′ be the dynamic energy metric
where the position of exactly two elements in BM is
exchanged. Assume that the position of Bi and Bj (i < j)
is exchanged for fmetric(AM , BM)′, then BM becomes
[B1, B2, · · · , Bi−1, Bj , Bi+1, · · · , Bj−1, Bi, Bj+1, · · · , BM]T

in this case. According to the definition of dynamic energy
metric in (14), fmetric(AM , BM) = A1B1 + A2B2 + · · · +
AiBi+ · · ·+AjBj+ · · ·+AMBM and fmetric(AM , BM)′ =
A1B1+A2B2+· · ·+AiBj+· · ·+AjBi+· · ·+AMBM . Since
fmetric(AM , BM) is the optimum, fmetric(AM , BM)′ −
fmetric(AM , BM) = (Ai − Aj)(Bj − Bi) ≥ 0. It is known
that Ai ≤ Aj for i < j, then Bi ≥ Bj for i < j is derived.

Given the optimum task assignment solution BM =
[B1, B2, · · · , BM]T that minimizes the dynamic energy met-
ric fmetric(AM , BM), any feasible solution in the solution
space can be obtained by exchanging elements in BM =
[B1, B2, · · · , BM]T multiple times. In each iteration of the
exchange, it can be deduced that Bi ≥ Bj holds for i < j. In
other words, the dynamic energy metric fmetric(AM , BM) is
minimized when the processor with smaller power dissipation
factor ends up with the subset of its assigned tasks having a
larger power dissipation factor. The proposition is proved. �

B. Task-to-Processor Assignment Heuristic

As described in Section IV-A, assigning tasks to individual
processors is an NP-hard problem, which necessitates a task
assignment scheme that observes the proposition presented
in Section IV-A. Specifically, tasks in the subset with the
maximum power dissipation factor is assigned to the processor
with the minimum power dissipation factor, and tasks in
the subset with the next maximum power dissipation factor
is assigned to the processor with the next minimum power
dissipation factor. This process repeats until all subsets of tasks
are assigned to individual processors. Once a task-to-processor
assignment is generated, the slack available on individual
processors is distributed among local tasks. The details of the
task assignment heuristic are given in Algorithm 1.

Algorithm 1 essentially partitions the tasks in the given set Γ
into subsets, then assigns subsets of selected tasks to individual
processors in set P . The algorithm aims at minimizing the sys-
tem dynamic energy consumption under the timing constraint.
It is motivated by the proposition presented in Section IV-A,
that is, assigning the subset having a larger power dissipation
factor to the processor having a smaller power dissipation
factor can minimize the system dynamic energy consumption.
Since the M processors in set P are sorted in the non-
decreasing order of processor power dissipation factors, the

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

Algorithm 1: Energy-efficient task-to-processor assign-
ment under the real-time constraint

Input: task set Γ, processor set P , ambient temperature Tamb,
and temperature limit Tmax

1 initialization: {Γ1,Γ2, · · · ,ΓM} ← {∅,∅, · · · ,∅},
Tinit ← Tamb, and k ← 1;

2 while Γ 6= ∅ and k ≤M do
3 calculate task power dissipation factor δi of every task τi

in Γ according to δi = µici
pi

;
4 sort τi ∈ Γ in the non-increasing order of δi;
5 create a temporary subset Γtem;
6 for i = 1 to sizeof (Γ) do /* use First-Fit to

group tasks into subsets */
7 Γtem = Γk + τi;
8 if (RTFA(Γtem, k) == true) then
9 Γk = Γk + τi;

10 Γ = Γ− τi;

11 assign the slack to tasks in subset Γk and check the
thermal constraint using Algorithm 2;

12 k ← k + 1;

13 if Γ 6= ∅ and k > M then
14 exit(1); /* the tasks in set Γ cannot be

feasibly scheduled under the timing and
thermal constraints */

15 else if Γ = ∅ and k < M then
16 power off the vacant processors in P to save energy;

17 return the target schedule {Γ1,Γ2, · · · ,ΓM};
Procedure RTFA(Γtem, k)

18 flag = true;
19 for i = 1 to sizeof(Γtem) do
20 calculate the worst case response time RT (i, k) using (16);
21 if RT (i, k) > Di then
22 flag = false;
23 break;

24 return flag;

focus of the algorithm becomes to derive a task-to-processor
assignment that partitions tasks into M subsets, arranged in
the non-increasing order of subset power dissipation factors,
then assigns them to corresponding processors. This can be
achieved by assigning tasks with larger task power dissipation
factors to processors with smaller processor power dissipation
factors. In addition, task deadlines are examined to meet the
real-time constraint for each task assignment.

The pseudo code of our task assignment heuristic is given in
Algorithm 1. Inputs to the algorithm are task set Γ, processor
set P , ambient temperature Tamb, and temperature limit Tmax.
Line 1 of the algorithm initializes subsets {Γ1,Γ2, · · · ,ΓM}
to {∅,∅, · · · ,∅}, chip initial temperature Tinit to ambient
temperature Tamb, and index k to 1. Lines 2-12 iteratively
implement the process of task assignment and scheduling if
the task set Γ is not empty and not all processors in P have
been considered. In each round of iteration, the tasks in subset
Γk assigned to processor Pk are determined in lines 3-10.
More specifically, lines 3-4 calculate the task power dissipation
factor δi of every task τi in set Γ and sort the tasks in the
decreasing order of δi. Line 5 creates a temporary subset
Γtem. Lines 6-10 iteratively assign tasks in set Γ to processor
Pk and construct subset Γk of tasks in a first-fit manner

according to the schedulability requirement. The task with
larger task power dissipation factor has higher priority when
assigned to the processor. The temporary subset Γtem is used
to facilitate the timing feasibility analysis of assigning task τi
to processor Pk (line 7). If the assignment can satisfy the real-
time constraint, the task is assigned to the processor, and both
subset Γk and set Γ are updated (lines 8-10). The procedure
then moves to the next iteration and considers the allocation
of the next task in set Γ. Otherwise, the task is not assigned
and the procedure directly moves to the next iteration. The
slack available on processor Pk is assigned to tasks in subset
Γk under the thermal constraint using Algorithm 2 (line 11).
The process continues until a feasible schedule is generated
for the system. If there is no feasible schedule for the system
under the constraints, the algorithm exits (lines 13-14). When
the task assignment is finished, if the system still has some
vacant processors, these vacant processors are powered off for
energy savings (lines 15-16). The target schedule is returned
in line 17. Real-time feasibility analysis (RTFA) is called in
line 8 to check if the timing design constraint is satisfied. If
the response time RT (i, k) of task τi exceeds the deadline Di,
τi cannot be feasibly assigned to processor Pk (lines 21-23).

V. OUR SLACK DISTRIBUTION POLICY

Real-time tasks in a given set Γ are assigned to individual
processors using Algorithm 1 for reducing the dynamic energy
consumption. Real-time feasibility analysis is conducted for
the task assignment. Slack is the time when the processor
is in the idle state, which is due to that tasks may not
always take the worst-case execution time to finish and can
complete earlier before the deadline. Using slack distribution
can reduce processor peak temperature without increasing
system dynamic or leakage energy consumption since slack
distribution is in fact a rearrangement of the available slack
time on the processor rather than introducing additional slacks.
On the contrary, the temperature-dependent leakage energy
consumption can be reduced due to the improved temperature
profiles achieved by slack distribution. In this section, we focus
on the design of temperature-aware slack distribution policy
for minimizing the system leakage energy consumption. Ther-
mal feasibility analysis is conducted for the slack distribution.

A. Slack Assignment to Reduce Peak Temperature

From the thermal model introduced in Section II-C and the
leakage energy calculation analysis given in Section III-A, it
is advantageous to do slack distribution under thermal steady
state. This is because even if we discretize the schedule
duration SD into a large number of small intervals, transient
thermal analysis may still be too costly [23]. It has been
shown in [23] that steady state thermal analysis can rapidly
and accurately predict the temperature when task execution
times are long compared to the thermal time constant of
the processors; otherwise, it may lead to overestimated peak
temperature when task execution times are short relative to the
processor thermal time constants. Under the thermal steady
state, we prove that the temperature profiles can be improved
if all tasks on the processor assume a uniform steady state

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

temperature. We then discuss the policy for slack distribution
which can effectively reduce the processor peak temperature.

Proposition 2: Under the thermal steady state, the peak
temperature of tasks on a processor is minimal if all tasks
assume a uniform steady state temperature.

Proof: Suppose that Tstd(i, k) is the steady state tempera-
ture of task τi on processor Pk, which is formulated as [31]

Tstd(i, k) = Pstd(i, k)×Rk + Tamb, (18)

where Pstd(i, k) is the power consumption in the steady state
and can be treated as a constant since temperature becomes
steady. Rk is the thermal resistance of Pk and Tamb is the
ambient temperature. Both of them are known. Thus, for
the subset Γk, we can conclude that

∑z
i=1 Tstd(i, k) is a

constant, where z = sizeof(Γk). In the thermal steady state,
the peak temperature of tasks are no more than their steady
state temperature [23] so that the peak temperature of tasks on
processor Pk is max {Tstd(1, k), Tstd(2, k), · · · , Tstd(z, k)}.
Since

∑z
i=1 Tstd(i, k) is a constant, it is easy to see

that max {Tstd(1, k), Tstd(2, k), · · · , Tstd(z, k)} is minimal
iff Tstd(1, k) = Tstd(2, k) = · · · = Tstd(z, k) holds. The
proposition is proved. �

The discussion above states that the peak temperature of
a processor in the steady state is minimal if all tasks on
the processor assume a uniform steady state temperature,
which motivates the proposed slack assignment heuristic that
balances steady state temperatures of tasks on the processor
through slack distribution. With the improved temperature pro-
files, the temperature-dependent leakage energy consumption
of the system is then reduced, as analyzed in Section III-B.

Let sl∗i be the optimal slack allocated to task τi on processor
Pk for temperature balance, then the average steady power
consumption P̄std(i, k) of task τi during its execution time
and slack time is given by

P̄std(i, k) =
P stdleak(k)× (cisk + sl∗i) + Pdyn(i, k)× ci

sk
ci
sk

+ sl∗i
,

where P stdleak(k) is the leakage power in steady state, Pdyn(i, k)
is the dynamic power, and ci

sk
is the task execution time.

Let Tstd,k be the uniform steady state temperature of tasks
on processor Pk, i.e., Tstd(i, k) = Tstd,k holds for ∀τi ∈ Γk.
Given the steady state temperature and power consumption of
task τi, the optimal slack assigned to the task can be derived
by substituting Tstd(i, k) = Tstd,k and Pstd(i, k) = P̄std(i, k)
into (18), and is written as

sl∗i =
Pdyn(i, k)×Rk × ci

(Tstd,k − Tamb − P stdleak(k)×Rk)× sk
− ci
sk
. (19)

In (19), P stdleak(k) is dependent upon Tstd,k, and other terms
are constants either dependent upon the processor or the task,
which indicates that sl∗i is determined by Tstd,k. Thus, the
key of solving (19) is to derive the uniform steady state
temperature of tasks on processor Pk.

It has been shown in [16], [22], [23] that the uniform steady
state temperature of tasks on the processor is derived when
the processor reaches the steady state condition (dTk(t)

dt = 0).
Hence we can obtain the uniform steady state temperature

Tstd,k of each processor Pk by substituting the condition
dTk(t)

dt = 0 into (8), which are given below [16], [22], [23].
Ω1,1 · · · Ω1,M

Ω2,1 · · · Ω2,M

...
...

...
ΩM,1 · · · ΩM,M

Tstd,1

Tstd,2
...

Tstd,M

 = −

Ψ1

Ψ2

...
ΨM

 .
(20)

For any 1 ≤ k 6= m ≤ M , Ωk,k = βkvk −
∑H
h=1Gk,h −∑M

m=1Gk,m, Ωk,m = Gk,m, and Ψk = αkvk + Ceffk v2
ksk.

The optimal slack sl∗i given in (19) is derived under the
assumption that all the slack available on processor Pk is
assigned to tasks in subset Γk. Note that the slack assigned to a
task is used to cool down the processor. Similar to the scenario
that assigning slack to a task to slow down the processor
increases the response time of successive tasks, assigning slack
to a task to cool down the processor will lead to an increase in
the response time of successive tasks. Therefore, there exists
a slack bound for a task beyond which the task will miss
its deadline. Let sli,max be the maximum amount of slack
that can be assigned to task τi without violating the timing
constraint, then the slack actually assigned to task τi is given
as sli = min{sl∗i , sli,max}. The next subsection describes the
slack assignment heuristic in details.

B. Temperature-ware Slack Assignment Heuristic

Based on the proposed slack distribution policy, the slack
assignment heuristic is developed to reduce the peak temper-
ature of processors. The details of the heuristic are given in
Algorithm 2. The algorithm iteratively assigns slack to tasks in
subset Γk, and moves the tasks that violate thermal constraint
to set Γ for re-allocation. It takes as input subset Γk that is
generated by Algorithm 1, and an arbitrarily small positive
number ε. In each round of iteration, the optimal slack sl∗i of
task τi used for temperature minimization is first calculated
using (19) (line 2). Then the maximum slack sli,max that could
be assigned to τi is derived using procedure SLAK(Γk, τi, ε)
(line 3). The slack sli = min{sl∗i , sli,max} is assigned to τi,
and the task execution time is hence updated (line 4). This
process repeats until all tasks in Γk are examined. After the
slack assignment is finished, a temperature feasibility analysis
(TFA) procedure is used to evaluate the thermal feasibility of
the resultant task schedule, and those tasks that violate the
thermal constraint are sent back to set Γ and considered to be
allocated to the next processors as well as unassigned tasks.

Procedure SLAK derives the maximal slack for a task in a
binary search-based manner. Inputs to the procedure are task
τi, subset Γk, and the arbitrarily small positive number ε. A
search space [sll, slh] is defined and initialized to [0, Di −
RT (i, k)], where sll and slh are the lower and upper bound of
the space, and Di and RT (i, k) are the deadline and response
time of τi, respectively (line 7). The search length, denoted by
ρ, is set to slh−sll (line 8). Lines 9-16 describe the searching
process. In each round of iteration, a dummy task τtem is
created and initialized to τi, the median sltem of search space
is calculated and taken as the slack assigned to the dummy task

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

τtem, and a dummy subset Γtem is created and set to Γk +
τtem. Procedure RTFA presented in Algorithm 1 is called to
check if timing constraint of tasks in Γtem is met. The search
space [sll, slh] and length ρ are updated in each iteration, and
the process stops when ρ is less than yet close enough to ε.
The lower bound sll of the search space is returned as the
maximum slack that could be assigned to task τi (line 17).

The chip temperature should be below a temperature limit,
as described in (17) to avoid the temperature-induced failures.
To check if the thermal constraint is satisfied, we need to know
the temperature of processors and heat sinks. As discussed
in Section V-A, transient thermal analysis is prohibitive due
to its extremely expensive computation cost, and steady state
thermal analysis is less costly but may result in overestimated
peak temperature. Fortunately, it is safe to use steady state
thermal analysis to check the thermal constraint since if the
overestimated peak temperature is below the temperature limit,
the actual peak temperature must be as well. Thus, obtaining
the steady state temperature of processors and heat sinks
becomes the focus. At the end of Section V-A, we show the
derivation of processor steady state temperatures, as in (20).
Similarly, we can obtain the steady state temperature T ′std,h of
each heat sink Θh by substituting the steady state condition
(dTh(t)

dt = 0) into (9), which are given below [16], [22], [23].
Ω′1,1 · · · Ω′1,H
Ω′2,1 · · · Ω′2,H

...
...

...
Ω′H,1 · · · Ω′H,H

T ′std,1
T ′std,2

...
T ′std,H

 = −

Ψ′1

Ψ′2
...

Ψ′H

 . (21)

For any 1 ≤ h 6= ` ≤ H, Ω′h,h = −Gamb −
∑M
k=1Gk,h −∑H

`=1Gh,`, Ω′h,` = Gh,`, and Ψ′h = GambTamb. Based on the
steady state thermal analysis, we can utilize the steady state
temperature to verify the thermal feasibility of the resultant
task schedule, as given in Procedure TFA (lines 18-23).

VI. EVALUATION

Extensive simulation experiments have been conducted to
validate the proposed scheme. The proposed scheme is com-
pared with two benchmarking algorithms Rate Monotonic First
Fit (RMFF), Rate Monotonic Best Fit (RMBF) [33], and a
state-of-the-art approach Hybrid Worst-fit Genetic Algorithm
(HWGA) [16]. Benchmarking algorithms RMFF and RMBF
[33] are taken as baseline schemes to exhibit the energy
efficiency of the proposed algorithms. The two algorithms
assign priority to tasks based on task periods. A task with
shorter period has higher priority than a task with longer
period. RMFF is a partition algorithm that assigns the task with
the highest priority to the first processor that can accommodate
the task, while RMBF is a partition heuristic that assigns the
task with the highest priority to the processor with smallest
unused capacity among those processors on which it fits [33].
HWGA integrates a worst-fit based partition heuristic with the
genetic algorithm to generate a task allocation that reduces the
energy consumption while satisfying all system constraints
[16]. The worst-fit based partition scheme assigns the task
with the highest priority to the processor with maximum

Algorithm 2: Temperature-aware slack assignment for
subset Γk under the thermal constraint

Input: subset Γk, an arbitrarily small positive number ε
1 for i = 1 to sizeof(Γk) do
2 calculate the optimal slack sl∗i of task τi using (19);
3 derive the maximum slack sli,max for task τi using

SLAK(Γk, τi, ε);
4 allocate slack sli = min{sl∗i , sli,max} to τi and update

execution time ET (i, k) = ET (i, k) + sli;
5 if (TFA(Γk) == false) then
6 move the tasks in Γk that violate the thermal constraint to

Γ for re-allocation using Algorithm 1;

Procedure SLAK(Γk, τi, ε) /* SLAK is a binary
search-based method */

7 [sll, slh] = [0, Di −RT (i, k)];
8 ρ = slh − sll;
9 while (ε < ρ) do

10 sltem = (sll + slh)/2;
11 τtem = τi + sltem, Γtem = Γk + τtem;
12 if (RTFA(Γtem, k) == true) then
13 [sll, slh] = [sltem, slh];
14 else
15 [sll, slh] = [sll, sltem];

16 ρ = slh − sll;
17 return sll;

Procedure TFA(Γk)
18 calculate the steady state temperature Tstd,k of Pk using (20);
19 calculate the steady state temperature T ′std,h of Θh using (21);
20 if Tstd,k ≤ Tmax and T ′std,h ≤ Tmax then
21 return true;
22 else
23 return false;

remaining capacity. For the sake of fair comparison, the same
simulation settings are adopted for the proposed method and
benchmarking algorithms RMFF, RMBF, and HWGA.

TABLE I
PROCESSOR PARAMETERS AND CONSTANTS [21].

v (V) s (GHz) α β Ceff

0.85 0.8010 7.3249 0.1666 13.0
0.90 0.8291 8.6126 0.1754 12.0
0.95 0.8553 10.238 0.1846 14.0
1.00 0.8797 12.315 0.1942 15.0
1.05 0.9027 14.998 0.2043 17.0
1.10 1.0000 18.497 0.2149 16.0

A. Experimental Settings

We perform our experimental simulations based on a 2× 3
MPSoC system (M = 6). Our processor model is built on
65nm technology [19], [21]. The supply voltage v, processing
speed s, and constants α, β, Ceff of six processors are
listed in TABLE I. Four real-life benchmarks (task sets) from
the Embedded System Synthesis Benchmark Suite [34] are
utilized to validate the proposed scheme. The benchmarks
are automotive-industrial, consumer-networking, telecom, and
mpeg, which consist of 16, 20, 17, 15 tasks, respectively. As
its name indicates, each benchmark represents an application.
The periods of tasks in applications are assumed to equal

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

their deadlines. The task activity factors µ are uniformly
distributed in the interval [0.4, 1], which demonstrates the
heterogeneous nature of tasks [17]. We use HotSpot [26] to
obtain the RC thermal model for the above platform. The
floorplan and HotSpot parameters are given as follows. The
number of processors is 6, the area per processor is 4mm2, the
die thickness is 0.15mm, the heat spreader side is 20mm, and
the heat sink side is 30mm. The average of thermal resistance
and capacitance of processors are selected as 0.8K/W and
340J/K, respectively. The ambient temperature is set to 45◦C.
Simulation experiments have been carried out under varying
thermal constraints (Tmax = 60◦C, 65◦C, 70◦C, and 75◦C)
to verify the effectiveness of the proposed algorithms.

B. Simulation Results

1) Evaluation of the Accuracy and Efficiency of the Pro-
posed Energy Estimation Method: We evaluate the accuracy
and efficiency of the proposed energy estimation method,
which is given in (13). Specifically, we test the performance
of the proposed energy estimation method when the processor
runs at different supply voltages and in schedule durations
with varying lengths. The proposed energy estimation method
is compared with the baseline approach presented in [14] from
the aspects of energy consumption and computation cost. The
baseline approach splits a schedule duration into a series of
small intervals and assumes the temperature (and hence the
leakage power) in every interval is close to a constant. To
achieve an accurate energy estimation, we let the length of
every interval be small, that is, 0.01s.

TABLE II
ACCURACY AND EFFICIENCY EVALUATION OF THE PROPOSED ENERGY

ESTIMATION METHOD.

SD v EPro EBas Err ACTPro ACTBas Spe
(s) (V) (J) (J) (%) (s) (s) (×)

0.9 7.45 7.18 3.6
5 1.0 13.78 13.29 3.5 3.8 34 8.9

1.1 24.01 23.25 3.2
0.9 15.16 14.57 3.9

10 1.0 29.74 28.84 3.0 4.1 46 11.2
1.1 52.48 50.93 2.9
0.9 31.22 30.16 3.4

20 1.0 60.57 58.94 2.7 4.0 58 14.5
1.1 99.85 96.91 2.9

Let EPro and EBas denote the system energy consumption
calculated by using the proposed method and baseline ap-
proach [14], respectively. Err = EPro−EBas

EPro
× 100% denotes

the relative error of the proposed method when compared to
the baseline approach in terms of system energy estimation.
Let ACTPro and ACTBas denote the average CPU time
consumed by the proposed method and baseline approach [14],
respectively. Spe = ACTBas

ACTPro
denotes the speedup achieved by

the proposed method when compared to the baseline approach
in terms of average CPU time. The simulation results given in
TABLE II clearly show that the proposed estimation method is
accurate and efficient. As can be seen in the table, the system
energy consumption estimated by the proposed method is close
to that of the baseline approach. The maximal relative error is
no more than 3.9%. On the other hand, the proposed method

can reduce the computational cost and achieves up to 14.5
times of speedup in terms of average CPU time.

2) Comparison of the Energy Consumption: We compare
the proposed scheme with the methods RMFF, RMBF [33],
and HWGA [16] in energy efficiency. The benchmarking
methods RMFF and RMBF first arrange tasks in the order
of increasing task periods, then allocate tasks to individual
processors using the first fit and best fit heuristics. The state-
of-the-art approach HWGA allocates tasks to individual pro-
cessors using the genetic-algorithm worst-fit based heuristics.
In the proposed scheme, processors are arranged in the order of
increasing processor power dissipation factor while tasks are
organized in the order of decreasing task power dissipation
factor. Tasks with large power dissipation factor are then
assigned to processors with small power dissipation factor,
which has been proved to be able to minimize system dynamic
energy consumption in Section IV-A. The available slack on
the processor is allocated to tasks for achieving a uniform
steady state temperature. Through this slack distribution, the
peak temperature of tasks on the processor is minimized, as
proved in Section V-A, then the temperature-dependent system
leakage energy savings is hence maximized.

Fig. 5 shows the average energy consumed by the sys-
tem when executing four benchmarks (automotive-industrial,
consumer-networking, telecom, and mpeg) under four system
thermal constraints using the proposed algorithm and three
benchmarking schemes HWGA [16], RMBF, and RMFF [33].
The system thermal constraint takes the values of Tmax =
60◦C, 65◦C, 70◦C, and 75◦C. The energy consumption given
in the figure is averaged over 1000 test instances. As can be
seen in the figure, the proposed algorithm consumes the least
energy for a given thermal constraint among the four algo-
rithms. Specifically, the proposed algorithm achieves energy
savings of up to 11.1%, 20.1% and 23.3% as compared to
benchmarking methods HWGA, RMBF, and RMFF, respec-
tively. For example, for the scenario of benchmark automotive-
industrial under the constraint Tmax = 70◦C, the energy
consumption (EPro = 311.7J) of the proposed scheme is
11.1% lower than that (EHWGA = 350.6J) of HWGA. For
the scenario of benchmark mpeg under the constraint Tmax =
75◦C, the energy consumption (EPro = 312.7J) of the pro-
posed algorithm is 20.1% lower than that (ERMBF = 391.6J)
of RMBF. For the scenario of benchmark automotive-industrial
under the constraint Tmax = 75◦C, the energy consumption
(EPro = 301.5J) of the proposed algorithm is 23.3% lower
than that (ERMFF = 393.2J) of RMFF.

3) Comparison of the Schedule Feasibility: We also com-
pare the proposed scheme with benchmarking algorithms
HWGA [16], RMBF, and RMFF [33] from the aspects of
schedule feasibility under different thermal constraints. In
addition to the algorithm adopted, the schedule feasibility is
affected by two factors, that is, the input benchmark (task set)
assigned to processor set and the thermal constraint set by
system designer. In the simulation, we adopt four benchmarks
and the temperature limits Tmax are set to 60◦C, 65◦C, 70◦C,
and 75◦C. The feasibility is calculated as the ratio of the
number of benchmark instances that can be feasibly scheduled
to the total number of benchmark instances. The total number

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

220

270

320

370

420

470

520

En
er

gy
 c

on
su

m
pt

io
n

(J
)

60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C

Proposed HWGA
RMBF RMFF

automotive-industrial consumer-networking telecom mpeg

Benchmarks

Fig. 5. The average energy consumption of benchmarks under four system thermal constraints using the proposed algorithm and three benchmarking schemes.

65

70

75

80

85

90

95

100

60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C 60°C 65°C 70°C 75°C
automotive-industrial consumer-networking telecom mpeg

Benchmarks

Fe
as

ib
ili

ty
 (%

)

Proposed HWGA RMBF RMFF

Fig. 6. Compare the proposed algorithm with benchmarking schemes HWGA [16], RMBF, and RMFF [33] in schedule feasibility.

of benchmark instances employed in feasibility test is 1000.

The feasibility test results are given in Fig. 6. As shown in
the figure, when thermal constraint is loose (Tmax = 75◦C),
the feasibility of the proposed algorithm, HWGA, RMBF, and
RMFF are nearly 100%. As expected, the feasibility of the four
algorithms are decreasing with the increase in benchmark size
for a given thermal constraint. For instance, for the scenario
of Tmax = 65◦C, the feasibility rates achieved by HWGA
in the case of benchmarks automotive-industrial (N = 16),
consumer-networking (N = 20), telecom (N = 17), and mpeg
(N = 15) are 95.2%, 92%, 94.5%, 96% respectively. This is
because increasing benchmark size leads to heavier workload
on processors, which may incur violation of thermal and
timing constraints. It also has been demonstrated in Fig. 6 that
for a given benchmark, the feasibility of the four algorithms
decreases when a rigorous thermal constraint is applied.

The proposed algorithm outperforms benchmarking algo-
rithms HWGA, RMBF, and RMFF in feasibility by up to
15%. For example, for the scenario of benchmark consumer-
networking under the constraint Tmax = 60◦C, the feasibility
of the proposed algorithm exceeds that of HWGA, RMBF, and
RMFF by 6%, 11%, and 15%, respectively. This is primarily
due to that the proposed algorithm allocates tasks to indi-
vidual processors with considerations of timing and thermal
constraints, while RMBF and RMFF performs task allocation
without considering the thermal constraint. As compared to
the state-of-the-art method HWGA, the proposed algorithm
utilizes a thermal-aware slack assignment heuristic to improve
processor temperature profiles and exploits feasibility analysis
techniques to ensure the timeliness of the system.

4) Comparison of the Time Complexity: Due to the dif-
ferences in the hardware platforms, it is difficult to directly

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12

Chart&Title&Series1' Series2' Series3' Series4'�Proposed HWGA ������RMBF RMFF

100 101 102
100

106

3×106

Task set size

Ti
m

e
co

m
pl

ex
ity

Fig. 7. Log-log plot of the time complexity of the proposed scheme and
benchmarking methods HWGA [16], RMBF, and RMFF [33].

compare running time with the three benchmarking algorithms.
Therefore, we provide a time complexity analysis in this
subsection. The time complexity of the proposed scheme and
benchmarking methods HWGA [16], RMBF, and RMFF [33]
are O(M2N2), O(Maxgen ·M2NlogM), O(MNlogN), and
O(MNlogN), respectively, where M is the number of pro-
cessors in the processor set, N is the number of tasks in the
task set, and Maxgen is the maximum number of generations
for the genetic algorithm used in method HWGA.

Fig. 7 shows the log-log plot of time complexity for the
proposed scheme and benchmarking methods HWGA, RMBF,
and RMFF. The plot is generated based on the setting of
M = 6 and Maxgen = 1000. It has been demonstrated in
the figure that the time complexity of the proposed scheme
is much lower when compared to that of the state-of-the-art
method HWGA, and is close to that of benchmarking methods
RMBF and RMFF. The reason why RMBF and RMFF have
the lowest time complexity is that they donot take into account
the thermal constraint and thermal control, which adversely
impacts their performance in schedule feasibility, as the results
in Section VI-B3. However, the proposed scheme can not only
achieve a similar low time complexity, but also has a high
schedule feasibility, as the results in Section VI-B3 and VI-B4.

VII. CONCLUSION

This paper proposes a task allocation scheme and a slack as-
signment policy for heterogeneous real-time MPSoC systems.
The proposed task allocation scheme minimizes the system
dynamic energy consumption by assigning tasks to individual
processors in the way that the processor with a small power
dissipation factor ends up with allocated tasks in a subset
having a large power dissipation factor. The proposed slack
assignment policy that reduces the system leakage energy
consumption by improving processor temperature profiles, is
motivated by the observation that the peak temperature of tasks
on a processor is minimal if tasks assume a uniform steady
state temperature. Feasibility analysis techniques are utilized
to ensure the timing and thermal constraints can be satisfied.

The proposed energy estimation method is evaluated with
aspects to accuracy and efficiency. The simulation results
show that as compared to the baseline approach, the proposed
method can not only accurately estimate the energy consump-
tion within 3.9% relative error, but also achieve up to 14.5×
speedup in terms of CPU time. The proposed algorithms are

compared with benchmarking schemes RMFF, RMBF, and
HWGA in terms of energy efficiency and schedule feasibility.
The simulation results show that the proposed algorithms
consume up to 23.3% less energy and achieve up to 15%
higher feasibility as compared to benchmarking schemes.

ACKNOWLEDGEMENTS

This work was in part supported by National Natural
Science Foundation of China under the grant 91418203 and
61202103. This work was also partially supported by ECNU
Outstanding Doctoral Dissertation Cultivation Plan of Action
under the grant PY2015047.

REFERENCES

[1] F. Wang, C. Nicopoulos, X. Wu, X. Xie, and N. Vijaykrishnan, “Variation-
aware task allocation and scheduling for MPSoC,” in Proc. Int. Conf.
Computer-Aided Design, pp. 598-603, 2007.

[2] H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran, “Energy-efficient
adaptive pipelined MPSoCs for multimedia applications,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no.
5, pp. 663-676, 2014.

[3] S. Pagani, J. Chen, and J. Henkel, “Energy and peak power efficiency
analysis for the single voltage approximation (SVA) scheme,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 2015.

[4] A. Ejlali, B. Al-Hashimi, and P. Eles, “Low-energy standby-sparing
for hard real-time systems,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 3, pp. 329-342, 2012.

[5] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM combina-
tion,” ACM Trans. Embedded Computing Systems, vol. 13, no. 3s, 2014.

[6] M. Shafique, L. Bauer, and J. Henkel, “Adaptive energy management
for dynamically reconfigurable processors,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 33, no. 1, pp. 50-63, 2014.

[7] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Exploiting structural
duplication for lifetime reliability enhancement,” in Proc. Int. Symp.
Computer Architecture, pp. 520-531, 2005.

[8] R. Viswanath, W. Vijay, A. Watwe, and V. Lebonheur, “Thermal perfor-
mance challenges from silicon to systems,” Intel Technology Journal, vol.
4, no. 3, pp. 1-16, 2000.

[9] A. Colin, A. Kandhalu, and R. Rajkumari, “Energy-efficient allocation of
real-time applications onto heterogeneous processors,” in Proc. Int. Conf.
Embedded and Real-Time Computing Systems and Applications, pp. 1-10,
2014.

[10] M. Awan and S. Petters, “Energy aware partitioning of tasks onto a
heterogeneous multi-core platform,” in Proc. Int. Symp. Real-Time and
Embedded Technology and Applications, pp. 205-214, 2013.

[11] W. Quan and A. Pimentel, “A hybrid task mapping algorithm for
heterogeneous MPSoCs,” ACM Trans. Embedded Computing Systems,
vol. 14, no. 1, 2015.

[12] H. Yu, R. Syed, and Y. Ha, “Thermal-aware frequency scaling for
adaptive workloads on heterogeneous MPSoCs,” in Proc. Int. Conf.
Design, Automation and Test in Europe, 2014.

[13] T. Wang, M. Fan, G. Quan, and S. Ren, “Heterogeneity exploration for
peak temperature reduction on multi-core platforms,” in Proc. Int. Symp.
Quality Electronic Design, pp. 107-114, 2014.

[14] Y. Liu, R. Dick, L. Shang, and H. Yang, “Thermal vs energy optimization
for DVFS-enabled processors in embedded systems,” in Proc. Int. Symp.
Quality Electronic Design, pp. 204-209, 2007.

[15] D. Li and J. Wu, “Minimizing energy consumption for frame-based
tasks on heterogeneous multiprocessor platforms,” IEEE Trans. Parallel
and Distributed Systems, vol. 26, no. 3, pp. 810-823, 2015.

[16] S. Saha, Y. Lu, and J. Deogun, “Thermal-constrained energy-aware par-
titioning for heterogeneous multi-core multiprocessor real-time systems,”
in Proc. Int. Conf. on Embedded and Real-Time Computing Systems and
Applications, pp. 41-50, 2012.

[17] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu, “Throughput
maximization for periodic real-time systems under the maximal tempera-
ture constraint,” ACM Trans. Embedded Computing Systems, vol. 13, no.
2s, 2014.

[18] N. Weste and K. Eshraghian, “Principles of CMOS VLSI design: A
system perspective,” Addison-Wesley Publishing Company, 1992.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2501286, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

13

[19] W. Liao, L. He, and K. Lepak, “Temperature and supply voltage aware
performance and power modeling at microarchitecture level,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no.
7, pp. 1042-1053, 2005.

[20] Y. Liu, R. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in Proc.
Int. Conf. Design Automation and Test in Europe, pp. 1526-1531, 2007.

[21] G. Quan and V. Chaturvedi, “Feasibility analysis for temperature con-
straint hard real-time periodic tasks,” IEEE Trans. Industrial Informatics,
vol. 6, no. 3, pp. 329-339, 2010.

[22] N. Fisher, J. Chen, S. Wang, and L. Thiele, “Thermal-aware global real-
time on multicore systems”, in Proc. Int. Symp. Real-Time and Embedded
Technology and Applications, pp. 131-140, 2009.

[23] T. Chantem, X. Hu, and R. Dick, “Temperature-aware scheduling and
assignment for hard real-time applications on MPSoCs,” IEEE Trans. Very
Large Scale Integration Systems, vol. 19, no. 10, pp.1884-1897, 2011.

[24] S. Zhang and K. Chatha, “Approximation algorithm for the temperature-
aware scheduling problem”, in Proc. Int. Conf. Computer-Aided Design,
pp. 281-288, 2007.

[25] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Architecture and Code Optimization, vol.
1, no. 1, pp. 94-125, 2004.

[26] HotSpot. University of Virginia. [Online]. Available: http://lava.cs.
virginia.edu/HotSpot.

[27] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE Trans.
Industrial Informatics, vol. 6, no.3, pp. 316-328, 2010.

[28] D. Zhu, R. Melhem, and B. Childers, “Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor real-
time systems,” in Proc. Int. Symp. Real-Time Systems, pp. 84-94, 2001.

[29] J. Chen, H. Hsu, and T. Kuo, “Leakage-aware energy-efficient schedul-
ing of real-time tasks in multiprocessor systems,” in Proc. Int. Symp. Real-
Time and Embedded Technology and Applications, pp. 408-417, 2006.

[30] K. Li, “Scheduling precedence constrained tasks with reduced processor
energy on multiprocessor computers”, IEEE Trans. Computers, vol. 61,
no. 12, pp. 1668-1681, 2012.

[31] R. Jayaseelan and T. Mitra, “Temperature aware task sequencing and
voltage scaling,” in Proc. Int. Conf. Computer-Aided Design, pp. 618-
623, 2008.

[32] B. Korte, J. Vygen, B. Korye, and J. Vygen, “Combinatorial Optimiza-
tion,” Springer, 2002.

[33] O. Zapata and P. Alvarez, “EDF and RM multiprocessor scheduling
algorithms: survey and performance evaluation,” Seccion de Computacion
Av. IPN, 2005.

[34] E3S. [Online]. Available: http://ziyang.eecs.umich.edu/∼dickrp/e3s/.
2013.

http://lava.cs.virginia.edu/HotSpot
http://lava.cs.virginia.edu/HotSpot
http://ziyang.eecs.umich.edu/~dickrp/e3s/

