
Short Papers___

An Interconnect Reliability-Driven Routing
Technique for Electromigration

Failure Avoidance

Xiaodao Chen, Student Member, IEEE,
Chen Liao, Tongquan Wei, Member, IEEE,

and Shiyan Hu, Senior Member, IEEE

Abstract—As VLSI technology enters the nanoscale regime, design reliability is

becoming increasingly important. A major design reliability concern arises from

electromigration which refers to the transport of material caused by ion movement

in interconnects. Since the lifetime of an interconnect drastically depends on the

current flowing through it, the electromigration problem aggravates with

increasingly growing thinner wires. Further, the current-density-induced

interconnect thermal issue becomes much more severe with larger current. To

mitigate the electromigration and the current-density-induced thermal effects,

interconnect current density needs to be reduced. Assigning wires to thick metals

increases wire volume, and thus, reduces the current density. However,

overstretching thick-metal assignment may hurt routability. Thus, it is highly

desirable to minimize the thick-metal usage, or total wire cost, subject to the

reliability constraint. In this paper, the minimum cost reliability-driven routing,

which consists of Steiner tree construction and layer assignment, is considered.

The problem is proven to be NP-hard and a highly effective iterative rounding-

based integer linear programming algorithm is proposed. In addition, a unified

routing technique is proposed to directly handle multiple current levels, which is

critical in analog VLSI design. Further, the new algorithm is extended to handle

blockage. Our experiments on 450 nets demonstrate that the new algorithm

significantly outperforms the state-of-the-art work [1] with up to 14.7 percent wire

reduction. In addition, the new algorithm can save 11.4 percent wires over a

heuristic algorithm for handling multiple currents.

Index Terms—VLSI circuit computer-aided design, interconnect reliability,

electromigration, Steiner tree construction, integer linear programming.

Ç

1 INTRODUCTION

DESIGN reliability becomes increasingly important in nanoscale
circuit design. A major reliability concern is due to the electro-
migration which refers to the transport of material caused by ion
movement in interconnects. The lifetime of an interconnect
drastically depends on the current flowing through according to
Black’s Law [2]. Consequently, the problem aggravates when the
wire becomes increasingly thinner. In addition, the current-
density-induced interconnect thermal issue becomes more severe
with larger current density. To mitigate the electromigration effect
and the induced thermal effect, it is in a great demand to reduce
the current density along wires. Assigning wires to thick metals
improves reliability due to their tolerance of large current density.
However, overstretching thick-metal assignment may make the
design unroutable [3]. Thus, it is highly desirable to minimize the
thick-metal usage, or total wire cost, subject to the constraint on

Mean Time To Failure (MTTF) which is a commonly used metric
of reliability.

There are some previous works addressing this reliability-driven
minimum cost Steiner routing and layer assignment problem [1],
[4], [5], [6], [7]. However, they are mainly focused on applying the
optimizations in the global routing stage. Since timing closure is
already very difficult to achieve in advanced technology, it is not
desirable to perform simultaneous timing and reliability-driven
global routing. This may necessarily put more burden on the
already oversqueezed global routing stage. Thus, our application
target is on the detailed routing stage in a design flow for
interconnect lifetime improvement. Note that previous works [1],
[4], [8] perform wire sizing to approximate the layer assignment. In
reality, only discrete routing layers are presented and continuous
wire sizing may not be practical. There are also works (e.g., [3]) on
layer assignment for timing optimization; however, they do not
consider the reliability issue.

In this paper, a new reliability-driven minimum cost Steiner
routing and layer assignment approach is proposed. In contrast to
all the previous work that designs heuristics, our new algorithm is
based on the integer linear programming (ILP) formulation. This
allows us to compute the optimal routing on small nets and greatly
improve the solution quality on large nets when compared to the
state-of-the-art schemes presented in [1]. A striking feature for the
new algorithm is its capability to handle multiple currents. This is
particularly important in analog VLSI design due to the existence
of a large multitude of current levels. In [1], a single current value
is used to approximate the effects of multiple current values. This
technique cannot be extended to handle multiple current values
due to its underlying limitation. In contrast, the proposed routing
technique directly handles the multiple current values by a novel
unified multiple current routing technique.

In this paper, the reliability-driven routing problem is for-
mulated as simultaneous Steiner tree construction and layer
assignment. The main contribution of this paper is summarized
as follows:

. The minimum cost reliability-driven Steiner routing and
layer assignment problem is proven to be NP-hard.

. A highly effective iterative rounding-based integer linear
programming algorithm is proposed, allowing us to
compute optimal solutions on small nets and well
approximate the optimal solutions on large nets.

. Multiple currents are handled by the proposed unified
multiple current routing technique, which is critical in
analog VLSI design.

. The new algorithm is extended to handle blockage, which
makes it ready for practical use.

. Our experiments on 450 test cases demonstrate that the new
algorithm significantly outperforms the state-of-the-art
work [1] with up to 14.7 percent wire reduction. In addition,
the new algorithm can save 11.4 percent wire as compared
to the heuristic algorithm for handling multiple currents.

The rest of the paper is organized as follows: Section 2
formulates the reliability-driven routing problem. Section 3
describes the iterative rounding-based integer linear programming
approach for the problem. Section 4 describes the algorithm for
handling multiple currents. Section 5 presents the experimental
results with analysis. A summary of work is given in Section 6.

2 PRELIMINARIES

2.1 Interconnect Reliability

In this paper, the interconnect reliability is measured by a

commonly used metric, namely, MTTF. According to Black’s Law

[2], interconnect MTTF is given as

770 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012

. X. Chen, C. Liao, and S. Hu are with the Department of Electrical and
Computer Engineering, Michigan Technological University, Houghton,
MI 49931. E-mail: {cxiaodao, cliao, shiyan}@mtu.edu.

. T. Wei is with the Computer Science and Technology Department, East
China Normal University, Shanghai 200241, China.
E-mail: tqwei@cs.ecnu.edu.cn.

Manuscript received 20 Apr. 2009; revised 12 Feb. 2010; accepted 16 June
2010; published online 21 Oct. 2010.
Recommended for acceptance by Y. Zorian.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2009-04-0055.
Digital Object Identifier no. 10.1109/TDSC.2010.57.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

MTTF ¼ A

J2
e

E
KT ; ð1Þ

where A denotes the cross-section area of the interconnect, J
denotes the current density, E denotes the activation energy, K
denotes the Boltzmann constant, and T denotes the temperature.
The above Black’s Law clearly indicates the significance of
current density in the interconnect reliability. In the design, one
needs to suppress maximum current density to increase the
interconnect lifetime.

2.2 Problem Formulation

The technique presented in this paper is applied to net level. The
input to the reliability-driven routing problem is a driver r and a
set of n sinks, denoted by S ¼ fs1; s2; . . . ; sng, which belong to a
net. We are to construct a Steiner tree (with layer assignment) over
the driver and sinks such that the reliability constraint is satisfied.
Due to layer assignment, we are also given a set of m routing layers
as L ¼ fl1; l2; . . . ; lmg. Given an edge e on a layer l, the width,
length, height, cost, and delay of the edge are denoted by wðe; lÞ,
lðe; lÞ, hðe; lÞ, cðe; lÞ, and dðe; lÞ, respectively.

Before defining wire cost and wire delay, note that the driver
and sinks are associated with currents. Denote by Ia the value of
the current associated with node a. If the current is injected into the
node, Ia is positive. Otherwise, Ia is negative. Denote by Ie the
current flowing through an edge e. Note that there can be a set of
currents associated with each sink/driver that forms a time-
varying series (e.g., a sinusoidal waveform) in analog VLSI design.
The driver/sink currents can be computed by either circuit
simulation or manually attaching current values by designers [1].

Let us now link the MTTF metric to the layer assignment. We
follow the formulation in [1]. As shown in [1], for a wire to have
reasonable MTTF, the width of the wire layer wðe; lÞ needs to
satisfy [1]

wðe; lÞ � hðe; lÞ � Ie � s
Jpeak

; ð2Þ

where Ie is the current flowing through the wire e, s is a guard-
band factor to balance the MTTF and routing resource usage, Jpeak
is the maximum allowable peak current density determined by the
technology, and hðe; lÞ is the thickness of routing layer l. MTTF and
s are highly correlated. Varying s, different trade-offs between
routing resource usage and MTTF can be obtained. In practice, s is
set to be within ½1:1; 1:2� as shown in [1].

Given a wire e at a layer l, the cost for a wire is generic. In

this paper, to illustrate the effectiveness of the proposed

technique, the wire cost is defined by wire volume, i.e., cðe; lÞ ¼
lðe; lÞ � wðe; lÞ � hðe; lÞ. This is a commonly used metric in routing

and layer assignment. Equation (2) says that wðe; lÞ � hðe; lÞ � �Ie,
where � ¼ s

Jpeak
is a constant with a given MTTF target. For a

routing tree T , define the total wire cost as the sum of the costs

for all edges in T . Given an s which corresponds to a constraint

on MTTF, one aims to compute a Steiner routing and layer

assignment solution such that the total wire cost is minimized.
In this paper, since the reliability-driven routing technique needs

to change the routing topology and the layer assignment, timing
degradation may be introduced to the initial design. To evaluate the
timing, the widely used Elmore delay model is adopted. That is,
dðe; lÞ ¼ Re � ðCe=2þ ClÞ, where Re, Ce, and Cl are edge resistance,
edge capacitance, and load capacitance, respectively.

The problem is to meet an MTTF target (through fixing s) by
Steiner tree construction and layer assignment with minimum total
wire cost. It can be formulated as follows:

Reliability-driven minimum cost Steiner routing and layer

assignment. Given a driver and a set of sinks, each of which is
associated with a current vector, a set of routing layers L, and cost
of each wire on each layer, to compute a Steiner tree with layer

assignment such that reliability constraint is satisfied and the total
wire cost is minimized.

The problem is NP-hard. This can be shown by reducing
from minimum length Steiner tree problem which is known to
be NP-hard [9]. Given an instance of a minimum Steiner tree
problem, assign it as an instance for our problem where there is
only one layer (with one size) and it can hold all possible
currents. We are to compute a minimum volume Steiner tree,
which is the same as a minimum length Steiner tree since wire
width and wire height are constants in a single layer. Thus, this
problem is NP-hard given that the minimum length Steiner tree
problem is NP-hard. We have

Theorem 1. The reliability-driven minimum cost Steiner routing and
layer assignment problem is NP-hard.

3 THE ALGORITHM

3.1 Integer Linear Programming Formulation

In the proposed algorithm for interconnect reliability-driven
routing, both Steiner tree construction and layer assignment will
be performed. Each wire/edge at a layer is associated with an
MTTF constraint as computed by (2). The problem is first
formulated as an ILP problem, and then, solved by the iterative
rounding technique. Previous works [10], [11] also focus on the
ILP-based routing. However, none of them considers the relia-
bility-driven current issues as handled in this paper.

A Hannan grid is first constructed on the given set of the driver
and sinks. Each grid point is associated with a node. Some of them
are driver and sinks. Our Steiner tree will only use Hannan edges
thus resulting in the commonly used Hannan routing. For
simplicity, index each Hannan edge e by its two endpoints ða; bÞ
which are Hannan grid points. In the ILP formulation, each
Hannan edge is associated with a variable Ia;b corresponding to the
value of the current flowing through e.

By Kirchhoff’s Law, for each node g, the sum of input currents
is equal to the sum of output currents. That is, for a Steiner node s
which is neither a driver nor a sink

X
Is�in ¼

X
Is�out; 8 Steiner node s: ð3Þ

For a driver d, denoting by Id�drive the current flowing from the
driver, one has

X
Id�in þ Id�drive ¼

X
Id�out; 8 driver d: ð4Þ

For a sink s, denoting by Is�sink the current flowing out of the
sinks s, one has

X
Ig�in ¼

X
Ig�out þ Ig�sink; 8 sink g: ð5Þ

According to the MTTF constraint computed by (2), each wire e
needs to satisfy wðe; lÞ � hðe; lÞ � � � IðeÞ. Denote by ve the unit
volume of a wire e at layer l which is computed as wðe; lÞ � hðe; lÞ.
Since the wire volume needs to be larger than the current subject to
the factor of �, we have

ve � �IðeÞ; ð6Þ

where � denotes Ie �s
Jpeak

.
Note that ve ¼ 0 means that wire e is not used in the routing.

In practice, there are only limited number of layers (e.g., eight in
some advanced technology) and each wire layer has its own
characteristics. Let m denote the number of layers. ve cannot take
arbitrary continuous values, and it needs to be chosen from the
set ve 2 fV1; V2; . . . ; Vmg, where Vi denotes the unit volume that
corresponds to assigning wire e to layer i.

It is helpful to look at a simple example as shown in Fig. 1. If the
node a is a Steiner node, then Iba þ Iea ¼ Iad þ Iac. If the node a is a
sink, then Iba þ Iea ¼ Iad þ Iac þ Ia�sink. If the node a is a drive,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012 771

then Iba þ Iea þ Id�drive ¼ Iad þ Iac. The MTTF constraints can be
formulated as vba � �Iba; vea � �Iea; vad � �Iad, and vac � �Iac.

The objective of the routing is to minimize the total cost of
wires. The cost function is generic. To illustrate the effectiveness of
the proposed technique, wire volume is used as the cost which is a
commonly used metric. Precisely, wire cost is computed as ve � le,
where le denotes the wire length (which is a constant if the edge
is given) and ve is the unit volume. The reliability-constrained
minimum cost Steiner routing and layer assignment problem can
be formulated to an integer linear program as follows:

min
X

e

ve � le

s:t:

ve � �Ie; 8eP
Is�in ¼

P
Is�out; 8 Steiner node s

P
Id�in þ Id�drive ¼

P
Id�out; 8 driver d

P
Ig�in ¼

P
Ig�out þ Ig�sink; 8 sink g

ve 2 fV1; V2; . . . ; Vmg; 8e:

ð7Þ

After solving the ILP using standard LP solver, routing tree and
layer assignment can be constructed by ve. However, it is well
known that the large-scale ILP cannot be efficiently solved due to the
integer constraints. Thus, the classic iterative rounding technique is
used in Section 3.3 to efficiently compute the integer solution.

Note that there can be multiple solutions for a net and the
solution can be a nontree. Consider the example shown in Fig. 3.
There are at least two solutions for this net (Figs. 3a and 3b). In the

net, there are one driver, one sink, and two Hanan nodes. For
simplicity, we assume that the width of layer 1 is one, the width of
layer 2 is two, and the lengths of all Hanan edges are equal to one.
Our LP program may produce either solution which has the same
objective value four. Therefore, for a net, there might be more than
one solution, and those solutions may be tree-based (Fig. 3b) or
non-tree-based (Fig. 3a) because of the reconvergent path.

3.2 Handling Blockage

In VLSI design, there are often routing blockages (such as big
macros) which need to be considered in constructing the route.
Suppose that two blockages are introduced in Fig. 2, which results
in Fig. 4.

The blockage needs to be avoided in routing. To handle this, a
weighting factor �e for each edge is introduced. Given an edge e, if
it is blocked, set �e to infinity. Otherwise, set �e to 1. In practice, a
large number is used to serve as infinity. The objective function is
changed to min

P
e �e � ve � le, where �e is the weighting factor on

the edge e, while the remaining ILP is the same as (7). The new ILP
is as follows:

min
X

e

�e � ve � le

s:t:

ve � �Ie;8eP
Is�in ¼

P
Is�out; 8 Steiner node s

P
Id�in þ Id�drive ¼

P
Id�out; 8 driver d

P
Ig�in ¼

P
Ig�out þ Ig�sink; 8 sink g

ve 2 fV1; V2; . . . ; Vmg; 8e:

ð8Þ

Fig. 5 shows an example to illustrate a rerouted Steiner tree with
blockage avoidance. Blocked edges are with large weighting
factors. The part of the objective corresponding to edges ðA;BÞ

772 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 1. Illustration of node current computation in LP formulation.

Fig. 3. Two solutions with the same objective solution.

Fig. 4. An example with blockage.Fig. 2. A routing solution.

and ðE;F Þ can be written as �AB � vAB � lAB and �EF � vEF � lEF ,
where �AB ¼ 100 k and �EF ¼ 100 k. In contrast, the weighting
factor of �e of unblocked edges is set to 1. For example, the part of
the objective corresponding to edges ðB;CÞ and ðC;DÞ can be
written as �BC � vBC � lBC and �CD � vCD � lCD, where �BC ¼ 1 and
�CD ¼ 1. The large �e prevents the LP solver from choosing those
edges in routing tree.

3.3 Iterative Rounding to Solve ILP

Since there are many integer constraints in the linear programming
formulation, the problem of the reliability-driven minimum cost
Steiner routing and layer assignment cannot be efficiently solved
on large nets. To handle this, a commonly used iterative rounding
technique is adopted. This technique has been used in a number of
works in VLSI CAD such as [12].

As integer constraints ve 2 fV1; V2; . . . ; Vmg in (7) are the most
difficult constraints, they are relaxed as 0 � ve � vmax, where vmax
denotes the largest value in fV1; V2; . . . ; Vmg. Consequently, the
problem is translated into a relaxed linear programming problem
which is well known to be much more efficient to solve. The
iterative rounding is accomplished by iteratively adding new
constraints to the problem and solving the problem until all the
variables have integer values.

First, the original relaxed linear program is solved, where the
solution may contain fractional numbers. Define the feasible unit
volumes as the unit volumes in fV1; V2; . . . ; Vmg. All variables in
the solution that are equal to the corresponding feasible unit
volume vt, where vt 2 fV1; V2; . . . ; Vmg, will be first fixed to vt. This

is accomplished by adding new constraints such as ve ¼ vt, to (7) if
ve is equal to vt in the solution. If there is no variable equal to any
feasible unit volume, those close to vt in the current solution will
be chosen and fixed. Precisely, a round up and fix strategy will be
used. That is, the variable with the rounding error (when being
rounded up) smaller than �, which is a user input, will be rounded
up. If there is no variable having rounding error smaller than �, the
variable with the smallest rounding error (when being rounded
up) will be chosen, rounded up, and fixed during the following
iterations. In this way, the rounding procedure will converge and
no oscillation may occur. The new linear program will be solved
by LP again to obtain a new solution. This process is iterated until
all variables have feasible unit volumes. These strategies guarantee
that in each iteration, there will be at least one new rounded
variable which is fixed during following iterations and ensure that
an integer solution will be obtained.

4 THE ALGORITHM FOR MULTIPLE CURRENT LEVELS

The continuous-valued current in analog VLSI design is often
quantized to discrete current values. Since the current flowing
through wires of an analog VLSI design varies at different instants,
the discrete current values associated with sinks and the driver
change with time. Let Iti denote the discrete current value at
instant ti for 1 � i � k. The driver and sinks are associated with
nþ 1 discrete current values as Iti ¼ fI1ti ; I2ti ; . . . ; Inti ; Iðnþ1Þtig,
where the driver is indexed as 1 and the sinks are indexed from
two to nþ 1. Since the topologies derived at each single current
level are not guaranteed to be the same, directly applying the
single current value technique described in Section 3 may not
generate a feasible solution in the multicurrent case. For example,
the topology produced using ILP at the current level It1 may be
different from the topology produced using ILP at the current
level It2 . This can be clearly seen from Fig. 6 by comparing blue
route (for It1) and red route (for It2).

An intuitive approach to the multicurrent problem is to derive
the routing topology at a certain current level, and then, adjust the
layer assignment to satisfy the constraints corresponding to other
current levels. However, this heuristic approach does not globally
optimize the volume. Refer to Fig. 7. Two sets of current levels are
given and they are shown as ðIt1 ; It2 Þ, where It1 corresponds to the
first set of currents and It2 corresponds to the second set of currents.
The computed topology of the first set of currents is shown in blue
edges. In order to satisfy the constraint on the second set of
currents, the heuristic algorithm needs to increase the layers on
some blue edges as shown in Fig. 7, e.g., from layer 1 to layer 2, and
from layer 2 to layer 3. Blue edges will then satisfy the constraints of
both sets of currents and the total cost is 33. However, if we handle
both sets of current levels simultaneously, the total cost is only 29,
as shown in red edges. One can see that the topology and the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012 773

Fig. 6. Routes with different topologies by different sets of current levels.

Fig. 7. Illustration of different topologies in a multicurrent problem.
Fig. 5. A routing solution with blockage. The weighting factor of edges with
blockage is set to 100k.

layer assignment are significantly different between blue edges and

red edges. This clearly demonstrates that the heuristic algorithm

cannot compute the optimal routing solution.
In this paper, a global optimization method is proposed for the

multiple current problem. In the new approach, all constraints at k

current levels are incorporated in a unified fashion for any node

including the driver, Steiner nodes, and sinks. This is why our

approach is called unified multiple current routing.
The example as shown in Fig. 8 illustrates the proposed

algorithm. Assume that each sink and driver have two current

values. For the sink g with current values of -1 and -4, its

constraints are given by

X
Iin t1 ¼

X
Iout t1 þ 1;

X
Iin t2 ¼

X
Iout t2 þ 4:

ð9Þ

The constraints of the Steiner node s are given by

X
Iin t1 ¼

X
Iout t1 ;

X
Iin t2 ¼

X
Iout t2 :

ð10Þ

Similarly, the constraints on the driver d with current values 17

and 18 are given by

X
Iin t1 þ 17 ¼

X
Iout t1 ;

X
Iin t2 þ 18 ¼

X
Iout t2 :

ð11Þ

The constraints on edges are the same as those in the single

current value case, that is, ve � �Iti .
The objective function of the multicurrent optimization pro-

blem is the same as the single current case. The problem

formulation based on integer linear program is as follows:

min
X

e

ve � le

s:t:

ve � �Ie; 8eP
I flows in s Iti ¼

P
I flows out of s Iti ; 8ti; Steiner node s

P
I flows in d Iti þ Idriverti ¼

P
I flows out of g Iti ; 8ti; driver d

P
I flows in g Iti ¼

P
I flows outof g Iti þ Isink ti ; 8ti; sink g

ve 2 fV1; V2; . . . ; Vmg;8e:
ð12Þ

As indicated by our experimental results, the new approach
achieves area savings of up to 11.4 percent compared to the
heuristic approach described in the beginning of this section. In
addition, our technique is extended to deal with blockage, as is
described in Section 3.2.

5 EXPERIMENTAL RESULTS

The proposed algorithm for the reliability-constrained Steiner
routing problem is implemented in C, and tested on a Pentium IV
machine with 2.4 GHz CPU and 8 GB memory. Experiments are
performed on a set of 450 nets at various scales. Due to the lack of
access to industrial analog nets, we randomly generated these 450
nets. The generated nets have varying numbers of sinks, current
values, and coordinates. The number of sinks is in the range from 1
to 30. The number of Hanan edges varies from 4 to 3,000, and the
current values vary from 1 to 40 mA. Since blockage is crucial in
practical applications, we also investigate the algorithm perfor-
mance with blockage. For those nets with blockage, we randomly
generate 1-20 blockages on each net. In this paper, to illustrate the
effectiveness of the proposed technique, the wire cost is defined by
wire volume. However, our approach can also be extended to
handle other cost metrics. The proposed algorithm in Section 3 is
denoted by NEW and the proposed algorithm for handling multiple
current levels in Section 4 is denoted by NEW w/multicurrent. Note
that the shown Cost and Delay values are averaged over 450 nets.

5.1 Optimality Study

An optimality study is performed to validate the proposed
algorithm. NEW takes randomly generated small nets as the input
without considering blockage. Various experiments have been
performed and 50 nets with 3-5 pins are chosen. Refer to Table 1
for the results. The following observations are made:

. Due to the small size of the net, we can afford to solve ILP
exactly and the optimal average cost is 41.

. NEW also works well on small nets. One can see the
average cost by NEW is 42, which implies that NEW can
almost optimally solve the problem on our small nets. No
significant discrepancy in the runtime has been found. This
is primarily due to the fact that both algorithms can run
very fast on small nets. However, for large nets, ILP
becomes computationally prohibitive while NEW can still
solve them efficiently, which will be demonstrated in the
next two sections.

5.2 Performance on Single Current Case

We would compare our NEW algorithm to ILP, as described in the
above section, on large nets. However, ILP becomes computation-
ally prohibitive for handling most of the nets. Thus, we choose to
compare NEW with the state-of-the-art algorithm in [1]. The

774 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012

Fig. 8. An example with multicurrent.

TABLE 1
Optimality Study on 50 Small Test Cases

AVG. of 50 nets refers to averaged results on 50 nets. Results on five
representative nets are also shown. CPU refers to the runtime in seconds.

experimental results without blockage are shown in Table 2 and
the results with blockage are shown in Table 3. Ratio is computed
as 1 minus the ratio of the cost or delay of NEW to that of [1]. The
following observations are made:

. Without considering blockage, NEW exhibits better perfor-
mance in terms of cost as compared to [1] (refer to Table 2),
especially for the large nets. For example, for the net with
21-30 sinks, NEW achieves 1� 12;822=14;680 ¼ 12:7%
reduction in cost compared to [1].

. With blockage, NEW also outperforms [1] (refer to Table 3)
in cost. For example, for large nets, NEW achieves up to
1� 12;900=15;128 ¼ 14:7% reduction in cost.

. NEW exhibits better performance in the delay for most
nets compared to [1]. For large nets, NEW achieves up to
44.9 percent saving in delay. Although the results of NEW
for the small nets are not as good as those of [1], there are
only slight differences. For instance, the difference is only
1.4 percent for the nets with blockage. NEW significantly
outperforms [1] in delay when the size of the net increases.

. Although the optimal ILP solutions cannot be computed,
the lower bound of the optimal solutions can be obtained
by solving the relaxed LP. NEW can compute solutions
much closer to the optima in both the cases with and
without blockage compared to [1].

. There exists a trade-off between the solution quality and
runtime. It is true that [1] saves some runtime over NEW.
However, its solution quality is much worse. As discussed
above, the reduction in the cost by NEW is up to 14.7 percent
and the reduction in delay by NEW is up to 44.9 percent. The
significant improvement in solution quality by NEW clearly
outweighs the runtime slowdown.

5.3 Performance on Multiple Current Case

The proposed algorithm NEW w/multicurrent is then validated

for the multicurrent case, which is important in analog VLSI

design. To the best of our knowledge, this is the first work which

directly handles the multiple current levels. NEW w/multicurrent

is compared to the heuristic algorithm as described in the

beginning of Section 4. The results are summarized in Tables 4

and 5. We make the following observations:

. As shown in Table 4, without blockage, NEW signifi-
cantly outperforms the heuristic algorithm. For example,
for the net with 11-20 sinks, NEW achieves the cost
reduction by 1� 6;507=7;320 ¼ 11:1% compared to the
heuristic algorithm.

. With blockage, NEW is also much better than the heuristic
algorithm, especially in large nets. For example, for the
nets with 11-20 sinks, NEW achieves the cost reduction of
11.4 percent.

6 CONCLUSION

With fast technology scaling, a major design reliability concern

arises from electromigration. In this paper, the minimum cost

reliability-driven routing, which consists of Steiner tree construc-

tion and layer assignment, is considered. The problem is proven to

be NP-hard and a highly effective iterative rounding-based integer

linear programming algorithm is proposed. In particular, the first

algorithm to directly handle multiple currents is designed, which is

critical in analog VLSI design due to the existence of various current

levels. Further, the new algorithm is extended to handle blockage,

which makes it ready for practical use. Our experiments on 450 nets

demonstrate that the new algorithm significantly outperforms the

state-of-the-art work [1] with up to 14.7 percent wire reduction. In

addition, the new algorithm can save 11.4 percent wires over a

heuristic algorithm for handling multiple currents.

ACKNOWLEDGMENTS

This work was supported in part by the Fundamental Research

Funds for the Central Universities of China under the grant

No. 78220021.

REFERENCES

[1] J. Lienig and G. Jerke, “Current-Driven Wire Planning for Electromigration
Avoidance in Analog Circuits,” Proc. IEEE Asia and South Pacific Design
Automation Conf. (ASP-DAC), pp. 783-788, 2003.

[2] J. Black, “Electromigration—A Brief Survey and Some Recent Results,”
Proc. IEEE Int’l Reliability Physics Symp., pp. 338-347, 1968.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012 775

TABLE 4
Result of Multicurrent without Blockage

TABLE 5
Result of Multicurrent with Blockage

CPU refers to the runtime in seconds.

TABLE 2
Comparison of Previous Work [1] and the New LP Algorithm without Blockage

CPU refers to the runtime in seconds. Cost and delay refer to average value per net.

TABLE 3
Comparison of Previous Work [1] and the New LP Algorithm with Blockage

CPU refers to the runtime in seconds. Cost and delay refer to average value per net.

[3] S. Hu, Z. Li, and C. Alpert, “A Polynomial Time Approximation Scheme for
Timing Constrained Minimum Cost Layer Assignment,” Proc. IEEE/ACM
Int’l Conf. Computer-Aided Design (ICCAD), pp. 112-115, 2008.

[4] J. Lienig, G. Jerke, and T. Adler, “Electromigration Avoidance in Analog
Circuits: Two Methodologies for Current-Driven Routing,” Proc. IEEE Asia
and South Pacific Design Automation Conf. (ASP-DAC), pp. 372-380, 2002.

[5] G. Jerke, J. Lienig, and J. Scheible, “Reliability-Driven Layout Decom-
paction for Electromigration Failure Avoidance in Complex Mixed-
Signal IC Designs,” Proc. IEEE/ACM Design Automation Conf. (DAC),
pp. 181-184, 2004.

[6] G. Jerke and J. Lienig, “Hierarchical Current Density Verification in
Arbitrarily Shaped Metallization Patterns of Analog Circuits,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 1,
pp. 80-90, Jan. 2004.

[7] G. Jerke and J. Lienig, “Hierarchical Current Density Verification for
Electromigration Analysis in Arbitrarily Shaped Metallization Patterns of
Analog Circuits,” Proc. Design, Automation and Test in Europe (DATE) Conf.
and Exhibition, pp. 464-469, 2002.

[8] J. Lienig, “Introduction to Electromigration-Aware Physical Design,” Proc.
Int’l Symp. Physical Design (ISPD), vol. 23, no. 1, pp. 80-90, 2004.

[9] M. Garey and D. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[10] L. Behjat and A. Chiang, “Fast Integer Linear Programming Based Models
for VLSI Global Routing,” Proc. IEEE Int’l Symp. Circuits and Systems
(ISCAS), pp. 6238-6243, 2005.

[11] T. Terlaky, A. Vannelli, and H. Zhang, “On Routing in VLSI Design and
Communication Networks,” Discrete Applied Math., vol. 156, no. 11,
pp. 2178-2194, 2008.

[12] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw, and V. Zolotov,
“Discrete Vt Assignment and Gate Sizing Using a Self-Snapping Contin-
uous Formulation,” Proc. IEEE/ACM Int’l Conf. Computer-Aided Design
(ICCAD), pp. 705-712, 2005.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

776 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 5, SEPTEMBER/OCTOBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

