
1 23

Journal of Signal Processing Systems
for Signal, Image, and Video Technology
(formerly the Journal of VLSI Signal
Processing Systems for Signal, Image,
and Video Technology)

ISSN 1939-8018
Volume 84
Number 1

J Sign Process Syst (2016) 84:111-121
DOI 10.1007/s11265-015-0994-4

Peak Temperature Minimization via Task
Allocation and Splitting for Heterogeneous
MPSoC Real-Time Systems

Junlong Zhou, Jianming Yan, Jing Chen
& Tongquan Wei

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Sign Process Syst (2016) 84:111–121
DOI 10.1007/s11265-015-0994-4

Peak Temperature Minimization via Task Allocation
and Splitting for Heterogeneous MPSoC Real-Time
Systems

Junlong Zhou · Jianming Yan · Jing Chen ·
Tongquan Wei

Received: 30 November 2014 / Revised: 27 February 2015 / Accepted: 6 March 2015 / Published online: 9 April 2015
© Springer Science+Business Media New York 2015

Abstract With the continued scaling of the CMOS devices,
the exponential increase in power density has strikingly
elevated the temperature of on-chip systems. Thus, thermal-
aware design has become a pressing research issue in
computing system, especially for real-time embedded sys-
tems with limited cooling techniques. In this paper, the
authors formulate the thermal-aware real-time multiproces-
sor system-on-chip (MPSoC) task allocation and scheduling
problem, present a task-to-processor assignment heuristics
that improves the thermal profiles of tasks, and propose a
task splitting policy that reduces the on-chip peak temper-
ature. The thermal profiles of tasks are improved via task
mapping by minimizing task steady state temperatures, and
the task splitting technique is applied to reduce the peak
temperature by enabling the alternation of hot task exe-
cution and slack time. The proposed algorithms explicitly
exploits thermal characteristics of both tasks and proces-
sors to minimize the peak temperature without incurring

J. Zhou · J. Yan · T. Wei (�)
Shanghai Key Laboratory of Multidimensional Information
Processing, Shanghai, 200241, China
e-mail: tqwei@cs.ecnu.edu.cn

J. Zhou
e-mail: joe@ecnu.cn

J. Yan
e-mail: yanjianming2005@ecnu.cn

J. Zhou · J. Yan · T. Wei
Computer Science and Technology Department of East China
Normal University, Shanghai, 200241, China

J. Chen
Baidu Corporation, Shanghai, 200241, China
e-mail: chenjing11@baidu.com

significant overheads. Extensive simulations of benchmark-
ing tasks were performed to validate the effectiveness of
the proposed algorithms. Experimental results have shown
that the task steady state temperature achieved by the pro-
posed algorithm is 3.57 ◦C lower on average as compared
to the benchmarking schemes, and the peak temperature of
the proposed algorithm can be up to 11.5 % lower than that
of the benchmarking schemes

Keywords Thermal-aware · Task allocation and
scheduling · Task splitting · MPSoC real-time systems

1 Introduction

As technology advances towards the deep submicron region,
the shrinking device sizes and growing transistor counts
result in exponential increase of chip power density, which
in turn leads to the elevated chip temperature. High tem-
peratures are responsible for transient faults caused by
timing errors since every 10 ◦C temperature increase can
cause about 5 % interconnect delay [1]. In addition, ele-
vated temperatures directly impact electromigration and
hence reduce the mean time to failure (MTTF) of the
chip. In a word, a system will fall into the predicament
of functional incorrectness, low reliability and even hard-
ware failures if the operating temperature exceeds a certain
threshold. Therefore, thermal management has been a sig-
nificant and pressing research issue in computing systems,
especially for the embedded system with limited cooling
techniques.

Considerable research effort has been devoted to the
design of temperature-aware task allocation and schedul-
ing in real-time MPSoC systems [2–10]. Research works
on temperature-aware task allocation and scheduling can

Author's personal copy

mailto:tqwei@cs.ecnu.edu.cn
mailto:joe@ecnu.cn
mailto:yanjianming2005@ecnu.cn
mailto:chenjing11@baidu.com

112 J Sign Process Syst (2016) 84:111–121

be classified into two categories. One category of research
works aims to maximize the system performance or min-
imize the energy consumption under thermal constraints
[2–6]. For instance, Chantem et al. [2] investigated the
impacts of temperature and thermal cycling on system life-
time reliability, and presented an online task assignment
and scheduling algorithm to maximize MTTF. Static and
dynamic temperature-aware scheduling techniques were
studied in [3] for MPSoCs to minimize energy, balance
energy, and minimize hot spots. An integer linear program-
ming (ILP) solution was first proposed to statically solve
the temperature-aware task scheduling problem of MPSoC,
then an adaptive dynamic policy that modifies the work-
load allocation policy in the runtime was designed based on
the temperature history. Saha et al. [4] developed a genetic
algorithm-based approach to solve the thermal constrained
energy-aware real-time task mapping for heterogeneous
multiprocessor systems. The proposed task mapping strat-
egy minimizes the energy consumption with considerations
of real-time constraint and maximum temperature limit. The
widely utilized system-level power management technique,
dynamic voltage scaling (DVS), has also been exploited in
[5, 6] to minimize the energy consumption under thermal
constraints. However, scaling down the operating frequency
of a processor degrades the performance of the processor
[11]. In addition, all the above works focus on improving
lifetime reliability or minimizing energy for MPSoCs under
the thermal constraint, however, the thermal optimization
is not taken into account. This is not suitable for real-time
systems deployed certain safety-critical applications (e.g.
implantable cardioverters in medical applications) where
temperature optimization is crucial for the correct and safe
operation of systems.

Another category of existing research works concentrates
on reducing the peak temperature under the constraint of
a given threshold temperature [7–10]. An effective ther-
mal management technique, that is load balancing through
activity/task migration, has been utilized in [7, 8] to opti-
mize the peak temperature of MPSoCs. Ebi et al. [7]
presented an extremum-seeking control-based method to
minimize on-chip peak temperature and optimize thermal
balancing by finding an optimal scheme of activity migra-
tion based on observed temperatures. In the literature [8],
a task migration algorithm that balances the loads on dif-
ferent cores was proposed to reduce hotspots. Ghahfarokhi
and Ejlali [9] developed a schedule swapping scheme to
mitigate the peak temperature of multiple processors in a
distributed system. The peak temperature is reduced by
swapping tasks of overheated processors with the coldest
processor, and deadline constraints of tasks are guaranteed
using a feasibility checking technique at static time. How-
ever, the schemes proposed in [7–9] may incur significant
time and energy overheads due to frequent task migration

or swapping. An optimal phased steady-state mixed integer
linear programming (MILP) based solution was designed in
[10] to solve the problem of temperature-aware real-time
MPSoC mapping and scheduling for minimizing the chip
peak temperature. However, the thermal characteristics of
tasks and processors are not considered in the above works
for temperature optimization.

In this paper, we proposed a thermal-ware task allo-
cation and scheduling scheme for heterogeneous MPSoC
systems to reduce peak temperature. The proposed scheme
first attempts to improve the thermal profiles of tasks by
minimizing the task steady state temperatures through task
mapping, then further reduces the peak temperature of tasks
on the processors by using the task splitting technique. The
thermal characteristics of tasks and processors are exploited
in the proposed task mapping strategy, and two scenarios
(ideal and realistic scenarios) are considered in the proposed
task splitting policy.

The rest of the paper is organized as follows. Section 2
introduces the system model and defines the thermal-aware
MPSoC task mapping and scheduling problem. Section 3
presents the proposed temperature-aware task allocation
strategy. Section 4 describes the proposed temperature-
aware task splitting policy. The benefits and efficiency of
the proposed algorithms are experimentally determined in
Section 5. Section 6 concludes the paper.

2 System Model and Problem Definition

This section describes the system model and the thermal-
aware task-to-processor mapping and scheduling problem.

2.1 Processor and Task Model

Processing element (PE) is the fundamental computational
block integrated in the MPSoC system. For heterogeneous
MPSoC platforms, the PEs can be instruction set proces-
sors (ISP), digital signal processors (DSP), general-purpose
CPUs or FPGA fabric tiles. In addition, each PE can sup-
port a wide range of voltages and operating speeds (e.g.
[3, 12, 13]), or equipped with a fixed voltage and oper-
ating frequency (e.g. [14, 15]). This work considers the
latter system architecture (no DVS) for separate concerns
since DVS would add another dimension for optimization.
Specifically, the MPSoC system PE is composed of M het-
erogeneous processing elements {PE1, PE2, · · · , PEM},
where each processing element PEm (1 ≤ m ≤ M) is
assumed to support one active mode and one sleep mode.
The active mode of PEm is characterized by a fixed supply
voltage/frequency pair (vm, fm). Tasks are only executed
when the processor is in active mode while the processor
is idle in sleep mode. It is assumed that a processor can be

Author's personal copy

J Sign Process Syst (2016) 84:111–121 113

switched from one mode to another mode at any time with
the timing overhead of t sw, during which no computation is
allowed.

Consider a task set � comprising N independent peri-
odic real-time tasks {τ1, τ2, · · · , τN }. The characteristics of
a task τi (1 ≤ i ≤ N) is modeled using a quadruplet
τi : {ci, μi, pi, di}, where ci is the worst case execution
cycles of task τi , and μi (ranging in (0, 1]) is an active fac-
tor that defines how intensively functional units have been
utilized by the task τi [16]. pi and di are the period and
relative deadline of the task, respectively. For a given task
set (e.g. �), the hyper-period of the task set, denoted by
L, is the lowest common multiple (LCM) of all task peri-
ods {p1, p2, · · · , pN }. Assume the task τi is running on the
processing element PEm, then the corresponding execution
time of task τi is given by

ci

fm
.

2.2 Power Model

The power consumption of a CMOS device can be modeled
as the sum of leakage power dissipation and dynamic power
dissipation. The leakage power is temperature dependent
and can be expressed as P leak = NgateV ddI leak , where
Ngate is the number of gates, V dd is the supply voltage, and
I leak is the leakage current. The leakage current I leak can
be formulated by a nonlinear exponential equation [17] as

I leak = I s(AT 2e(ϑ1V
dd+ϑ2)/T + Be(ϑ3V

dd+ϑ4)), (1)

where I s is the leakage current at a certain temperature
and supply voltage, T is the operating temperature, and
A,B, ϑ1, ϑ2, ϑ3, and ϑ4 are all empirical technology con-
stants. Since the leakage current changes super linearly
with temperature [18], the leakage power consumption of
processing element PEm can be closely approximated by
P leak

m = αmvm + δmT vm [18], where αm and δm are both
curve fitting constants and dependent on the architecture of
PEm. The dynamic power P

dyn
m is independent of the tem-

perature and can be estimated by a strictly increasing and
convex function of the operating frequency, that is, P dyn

m ∝
f 3

m [19]. As the operating frequency is nearly linear with the
supply voltage [19], the power consumption Pm,i of task τi

on the processing element PEm is formulated as

Pm,i = μi(C
ef
m v3m + αmvm + δmT vm), (2)

where μi is the active factor of task τi , and C
ef
m is the

effective switching capacitance of processor PEm.

2.3 Temperature Model

An accurate and practical dynamic model of temperature is
needed to accurately characterize the thermal behavior of
an application. In this paper, a lumped RC thermal model

proposed by Skadron et al. [20] that is widely used in the
literature is adopted as the temperature model to predict the
temperature of the processor. Let T (t) be the temperature at
time instance t , as is given by

RC
dT (t)

dt
+ T (t) − RP(t) = T a, (3)

where P(t) is the power consumption at time instance t . R
and C are thermal resistance and capacitance, respectively.
They are both processor architecture dependent constants.
T a is the ambient temperature of the die.

Consider a task τi executing on the processing element
PEm during the time interval [t0, t0+�t]. Let T0 be the ini-
tial temperature at time instance t0, the ending temperature
of the task τi at time instance t0 + �t is derived by solving
(3) and then formulated as

Tm,i(t0 + �t) = T0e
−Km,i�t + T std

m,i (1 − e−Km,i�t), (4)

where

T std
m,i = Rm(αmvm + C

ef
m v3m)μi + T a

1 − Rmδmvmμi

(5)

is the steady state temperature of task τi on the processing
element PEm, and Km,i = 1−Rmδmvmμi

RmCm
is a time constant

that depends on the task and processing element.

2.4 Problem Definition

Given an input task set � of N tasks {τ1, τ2, · · · , τN }
on a MPSoC system PE of M heterogeneous process-
ing elements {PE1, PE2, · · · , PEM}, a task partition
{�1, �2, · · · , �M} is feasible if �m

⋂
�k = ∅ ∀m �= k

(1 ≤ m, k ≤ M) and �1
⋃

�2
⋃ · · · ⋃�M = �, where �m

and �k indicate the subset of tasks allocated to processing
element PEm and PEk , respectively. In addition, all tasks
should be finished before their individual deadlines, that is,
RTm,i ≤ di holds for ∀1 ≤ m ≤ M and ∀1 ≤ i ≤ N , where
RTm,i is the worst case response time of task τi executing
on the processing element PEm, and di is the relative dead-
line of task τi . The worst case response time of task τi is
formulated as

RTm,i = ci

fm
+ ∑

τj ∈�m,pj <pi

⌈RTm,i

pj

⌉ × cj

fm
, (6)

where ci

fm
and

cj

fm
are the execution time of task τi and τj

on the processing element PEm, respectively. Task τj has a

higher priority than task τi for j < i, and
⌈RTm,i

pj

⌉
indicates

the number of instances of task τj during the time interval
of RTm,i . The objective of the studied problem is to find an
optimal task partition and scheduling strategy, which gen-
erates the minimum on-chip peak temperature. Let T Peak

denote the on-chip peak temperature, then it is given by

T peak = max
∑

m∈[1,M]
∑

τi∈�m
Tm,i(t), (7)

Author's personal copy

114 J Sign Process Syst (2016) 84:111–121

where Tm,i(t) is the temperature of task τi on the processing
element PEm at time instance t and can be obtained using
Eq. 4.

3 The Proposed Temperature-aware Task Allocation
Strategy

The steady state temperature of a task is defined as the tem-
perature that will be reached if infinite number of instances
of the task execute continuously on the processor, which is
in general utilized to represent the thermal characteristics
of a task. Specifically, the lower the task steady state tem-
perature, the better thermal characteristics the task [21]. For
instance, a task is assumed to be a hot task if its steady
state temperature exceeds the system maximum tempera-
ture limit, otherwise it is assumed to be a cool task [21,
22]. As is shown in Eq. 5, the steady state temperature of a
given task is explicitly determined by parameters of the pro-
cessor where the task executes. In other words, the steady
state temperature of tasks depends on the task-to-processor
assignment. Therefore, this paper aims to minimize the
steady state temperature of all tasks by finding an optimal
task mapping strategy.

Given a set � of N real-time tasks, it can be partitioned
into M subsets {�1, �2, · · · , �M}, where �m (1 ≤ m ≤ M)

indicates the subset of tasks assigned to processing element
PEm. It is clear that there are MN partitioning instances.
In other words, assigning tasks to processors is essentially a
NP hard problem. Thus, this work focuses on proposing a
suboptimal task-to-processor assignment heuristic, in which
the preference of a task to any processor is set according
to its ascending order of steady state temperature. The most
preferred processor for a task is the one that makes the task
has a minimal steady state temperature. On the contrary, the
processor that produces a maximal steady state temperature
of the task is least preferred.

The proposed thermal-aware task allocation heuristic
attempts to assign tasks to their most preferred processor to
minimize the steady state temperature of individual tasks in
the system. However, due to the real-time constraint of tasks
and the limited capacity of processors, not all tasks can be
assigned to their respective most preferred processor. As a
result, a ranking mechanism needs to be designed in the pro-
posed algorithm to handle the competition for a processor
between multiple tasks.

Let �T std
m,i be the minimum steady state temperature

increment of task τi from its current processing element
PEm to other processing elements, as is given by

�T std
m,i = min

k �=m,1≤k,m≤M
{T std

k,i |T std
k,i ≥ T std

m,i } − T std
m,i , (8)

where T std
k,i and T std

m,i are the steady state temperature of task
τi on processing element PEk and PEm, respectively. They
can be obtained using Eq. 5. The minimum steady state tem-
perature increment of a task reflects the degradation of task
thermal profiles when the task is allocated to its less pre-
ferred processor. This metric can be utilized to rank the tasks
that are competing for the same processor. More specifi-
cally, for a given processor, tasks are sorted by the values
of �T std in decreasing order and the tasks with larger val-
ues have higher priorities to occupy the processor. Based
on the ranking mechanism, a thermal-aware task allocation
heuristic is designed. The task-to-processor assignment can
be started from any processor, for instance, it starts from the
processor with index 1 in Algorithm 1 (line 18). The prin-
ciple of the heuristic is that a task assigned to a processor
is not considered for an assignment to any other processor
where the task has a higher steady state temperature than its
currently assigned processor. The same process is repeated
for all the processors, and is stopped when all the tasks are
assigned to exactly one processor.

The proposed thermal-aware task allocation heuris-
tic given in Algorithm 1 operates as follows. It takes
as input a task set �, a processor set PE, M subsets
{�1, �2, · · · , �M}, and the utilization {U1, U2, · · · , UM}
of M processors. Lines 1-2 of the algorithm initial-
ize the subsets {�1, �2, · · · , �M} and the utilizations
{U1, U2, · · · , UM} to {∅,∅, · · · ,∅} and {0, 0, · · · , 0},
respectively. The minimum steady state temperature incre-
ment of tasks on each processor is iteratively derived in lines
3-15. Lines 5-6 compute the steady state temperatures of
task τi on M processors, and obtain the maximum using
δi = max{T std

1,i , T std
2,i , · · · , T std

m,i , · · · , T std
M,i}. If the task τi

is not on its least suitable processor, that is, T std
m,i �= δi , the

minimum steady state temperature increment �T std
m,i of the

task is calculated using Eq. 8 (lines 9-10); otherwise, it is set
to 0 (lines 11-13). The iteration stops when the minimum
steady state temperature increment of all tasks are derived.
Then a M × N matrix A is constructed to store these incre-
ments by ami = �T std

m,i , where ami is the element of matrix
A (line 16).

Lines 17-35 describe the procedure of task allocation to
M processors. For each processor PEm, tasks in the task set
� are sorted in decreasing order of ami (line 19), then the
algorithm iteratively selects the top (τi) of ordered task list
and attempts to assign it to processor PEm. If the processor
PEm whose utilization is Um has the capacity to accom-
modate task τi whose utilization is Um,i (lines 20-21), the
task is assigned to the processor (line 22), and not consid-
ered for allocation to other processors where the task has
a higher steady state temperature as compared to the cur-
rent processor PEm. If the task τi was previously assigned

Author's personal copy

J Sign Process Syst (2016) 84:111–121 115

to other processors that generate higher steady state tem-
peratures (lines 23-24), such task assignments need to be
removed, and the matrix A, the processor utilization Uk

need to be updated accordingly (lines 25-26). Then the same
procedure repeats for next processor. When the first iter-
ation is completed, the algorithm starts the next iteration
again from the first processor, and repeats the iterations
until all the tasks in the task set are assigned to exactly
one processor. Finally, the algorithm outputs the M sub-
sets {�1, �2, · · · , �M}, which is allocated to M processors
(line 35).

4 The Proposed Temperature-aware Task Splitting
Policy

Task splitting refers to the technique that equally parti-
tions a task into multiple sections and executes them with
slack time alternatively. Unlike the previous work presented
in [16] that utilizes task splitting technique to maximize
throughput, the proposed thermal-aware task scheduling
algorithm adopts the task splitting technique and exploits
the slack that is generated due to the early completion of
real-time tasks to reduce the peak temperature. A motiva-
tional example given in Fig. 1 shows the effectiveness of
task splitting in reducing peak temperature. Consider a task
τ with execution time of 600 ms, deadline of 1000 ms, and
steady state temperature of 105 ◦C. The initial temperature
is set to 45 ◦C. As is shown in Fig. 1a, the task τ has a slack
time of 400 ms. When the task is executing in active mode,
its temperature increases from 45 ◦C to 96.9 ◦C, then drops
to 55 ◦C when the processor is idle. The peak temperature
of 96.9 ◦C is reached at the end of task execution. Figure 1b
demonstrates the temperature profiles of task τ when the
task is equally split into 5 sections and executed alternately
with the slack time. The peak temperature of 82.8 ◦C is
reached at the end of the 5th section. Thus, in this example,
the peak temperature can be reduced up to 14.1 ◦C by using
the task splitting technique.

The proposed scheduling algorithm first identifies hot
tasks from the task set based on the task steady state tem-
perature,then splits each hot task into multiple sections
to enable the alternation of hot task execution and slack
time, such that the thermal profile is improved and the
peak temperature is hence reduced. Two scenarios, that is,
one ideal scenario that does not consider the mode switch-
ing overhead and another realistic scenario that covers the

0 600 1000 t(ms)

slack

45 96.9 55 T

0 600 1000 t(ms)

45 64.8 59 74.2 66.2 79 69.9 81.5 71.8 82.8 72.7 T

Temperature
is increasing

Temperature
is decreasing

(a)

(b)

Figure 1 The motivational example of task splitting.

Author's personal copy

116 J Sign Process Syst (2016) 84:111–121

mode switching overhead are both taken into account in the
algorithm.

4.1 The Ideal Scenario without Considering the Mode
Switching Overhead

In the ideal scenario, all the slack on the processor can
be exploited to cool down the execution of hot tasks and
each hot task can be split into endless sections when mode
switching overhead is negligible. This is motivated by the
observation in [16] that the more the task splitting opera-
tion, the lower the task peak temperature. Additionally, all
the hot tasks on the processor are assumed to have a uniform
ideal peak temperature after thermal optimization, which is
realized by endless task splitting and slack distribution. The
focus of the ideal scenario is to calculate the uniform ideal
peak temperature of tasks on the processor and determine
the corresponding ideal slack allocated to each task.

Let �m be the subset of tasks allocated to processing
element PEm, then the total slack SLtot

m generated on the
processor during a hyper-period Lm is given by

SLtot
m = Lm −

∑

τi∈�m

ci

fm

× Lm

pi

, (9)

where Lm is the hyper-period of tasks in the subset �m,
ci

fm

is the execution time of task τi at the frequency fm, and
Lm

pi

is the number of instances of task τi during the time interval
of Lm.

A task can be either a hot task or a cool task based on
its steady state temperature. Specifically, if the steady state
temperature of task τi is larger than the maximum tempera-
ture limit T max , the task τi is deemed to be a hot task and is
inserted into the hot subset �h

m; otherwise it is a cool task.
According to the definition of ideal scenario, all the avail-
able slack time on the processor are assigned to hot tasks for
reducing temperature, that is
∑

τi∈�h
m

slideal
i × Lm

pi

= SLtot
m , (10)

where slideal
i is the ideal slack allocated to hot task τi . As

is mentioned above, all the hot tasks on the processor will
assume a uniform ideal peak temperature T ideal

m through
endless task splitting and slack distribution, that is,

lim
∀τi∈�h

m,Si→∞
T std

m,i = T ideal
m , (11)

where Si is the split number of task τi , and the steady state
temperature T std

m,i of task τi is given in Eq. 5.

Hence slideal
i and T std

m,i , which are given as follows, can
be derived by solving the system of the Eqs. 5, 9, 10, and 11.

slideal
i = (

T std
m,i

T ideal
m

− 1)
ciBm,i

fm

, (12)

T ideal
m =

∑
τi∈�h

m

Lm

pi

ci

fm
T std

m,i Bm,i

Lm − ∑
τi∈�m

Lm

pi

ci

fm
+ ∑

τi∈�h
m

Lm

pi

ci

fm
Bm,i

, (13)

where Bm,i = (1 − μiRmδmvm).

4.2 The Realistic Scenario with Considering the Mode
Switching Overhead

In the realistic scenario that considers the mode switching
overhead, the key point of minimizing the peak temperature
is find the optimal split number for each hot task. This is due
to the fact that given a hot task, increasing the number of
task splitting operation can further reduce the task peak tem-
perature, but also cause a larger switching overhead. It has
been proved in [16] that the effectiveness of task splitting
technique in reducing peak temperature is maximized when
the switching overhead of a task is equal to its allocated
slack time. In addition, considering that the processing ele-
ment needs to change its mode twice for each task splitting
operation. Therefore, the optimal split number Si of task τi

is given by

Si = � sli

2 × t sw
, (14)

where Si is the optimal split number of task τi , sli is the
slack time allocated to task τi , and 2 × t sw is the mode
switching overhead of one task splitting operation.

4.3 The Proposed Temperature-aware Task Splitting
Algorithm

Both the ideal scenario and realistic scenario are discussed
in the proposed temperature-aware task splitting algorithm,
as is described in Algorithm 2. The algorithm takes as input
the tasks of subset �m on the processing element PEm,
the maximum temperature limit T max , and an arbitrarily
small positive number ε. Line 1 identifies the hot tasks
in the subset �m based on their steady state temperatures.
Specifically, if T std

m,i ≥ T max , the task τi is a hot task and

inserted into the hot subset �h
m. Lines 2-9 show the ideal sce-

nario that does not consider the mode switching overhead
t sw. Line 3 calculates the uniform ideal peak temperature
T ideal

m using Eq. 13, and lines 4-5 derive the ideal slack
slideal

i of each hot task using Eq. 12. Then the available
slack allocated to task τi under the real-time constraint is
obtained using the procedure slrti = SLK(τi, �m) in line
6. The slack sli = min{slideal

i , slrti } is finally assigned to
task τi with endless task splitting for thermal optimization,
where the operator� indicates the operation of task splitting
(lines 7-8).

Author's personal copy

J Sign Process Syst (2016) 84:111–121 117

The realistic scenario is described in lines 10-16. The
slack assigned to task τi is sli = SLK(τi, �m) and the opti-
mal split number Si of the task is computed using Eq. 14

(lines 12-13). Then line 14 splits task τi into Si sections
and alternates their execution with slack time to reduce peak
temperature.

The procedure SLAK that derives the maximum avail-
able slack for a task is a binary search-based approach.
Inputs to the procedure are the task τi , the subset �m,
and the arbitrarily small positive number ε. A search space
[sllow, slhigh] is defined and initialized to [0, di − RTm,i],
where sllow and slhigh denote the lower and upper bound
of the space, respectively, and di and RTm,i are the dead-
line and response time of task τi , respectively (line 17).
The search length, which is denoted by ρ, is set to ρ =
slhigh − sllow (line 18). Lines 19-28 describe the search-
ing process. In each round of iteration, a dummy task τtem

is created and initialized to τi , the median slmid of the
search space [sllow, slhigh] is calculated and taken as the
slack assigned to the dummy task τtem, and a dummy sub-
set �tem is created and set to �m + τtem. The procedure
RTFA presented in Algorithm 2 is called to check if the tim-
ing constraint of tasks in the subset �tem is met. The search
space [sllow, slhigh] and the search length ρ are updated in
each iteration, and the process stops when the ρ is less than
yet close enough to the arbitrarily small positive number ε.
The lower bound sllow of the search space is returned as the
maximum available slack that could be assigned to the task
τi (line 29). The feasibility analysis technique, referred to as
real-time feasibility analysis (RTFA), is utilized to check if
the timing constraint is satisfied. If the response time RTm,i

of the task τi exceeds the deadline di of the task, the task τi

cannot be feasibly assigned to the processing element PEm

(lines 30-40).
There is a possibility that the available slack time dur-

ing the system is insufficient to control the peak tem-
perature below the maximum temperature limit. In this
scenario, the thermal characteristics of cool tasks can be
exploited to further reduce the peak temperature by split-
ting cool tasks into multiple sections and alternating the
execution of cool subtasks and hot subtasks. If cool tasks
still cannot help to limit the peak temperature under the
safe threshold, in which case the task set is deemed
infeasible.

5 Experimental Results And Discussions

Extensive simulation experiments have been conducted to
validate the effectiveness of the proposed task allocation and
scheduling scheme in thermal management. The proposed
algorithms were implemented in C++, and the simulation
was performed on a machine with Intel Dual-Core 2.3 GHz
processor and 8GB memory. This section first describes
experimental settings for the simulation, then compares
the proposed algorithms with benchmarking schemes.

Author's personal copy

118 J Sign Process Syst (2016) 84:111–121

Moreover, the same simulation settings are adopted for the
proposed algorithms and benchmarking schemes for the
sake of fair comparison.

5.1 Experimental Settings

A simulated platform of multiple processing elements is
constructed. The number of processing elements is assumed
to be six, and the corresponding supply voltages of six
processing elements PE1, PE2, PE3, PE4, PE5, PE6 are
set to 0.85 V, 0.9 V, 0.95 V, 1.0 V, 1.05 V, 1.1 V [23]. The
parameters of the operating point of each processing ele-
ment are constant, that is, the supply voltage v, curve fitting
constants α and δ, effective switching capacitance Cef and
operating frequency f of each processing element are fixed,
as is listed in Table 1.

25 benchmarking tasks are selected from Mibench [24]
and Mediabench [25] to form the task set � for validating
the proposed task allocation and scheduling algorithm. The
numbers of clock cycles of these tasks are in the range of
[4 × 107, 6 × 108]. The architecture-level power simula-
tor McPAT [26] is utilized to obtain power consumptions
of tasks. It can model all three types of power dissipa-
tion, including dynamic, leakage, and short-circuit power,
and provide a complete view of power consumptions. The
task active factor μ evenly takes values between [0.4, 1]
to manifest the heterogeneous nature of tasks [16]. The
average of thermal resistance R and thermal capacitance
C of processing elements are assumed to be 0.80 K/W
and 340 J/K, respectively [23], and the variance of the
R and C of a processing element is deemed to be 0.05
and 10.0, respectively. The overhead of mode switching
is assumed to be 5 ms [16], and the ambient temper-
ature T a is set to 35 ◦C. The temperature is obtained
using the thermal simulator HotSpot [20], which is an
accurate yet fast and practical tool to capture thermal
profiles.

Table 1 Parameters of the simulated platform [23].

v α δ Cef f

0.85 7.3249 0.1666 15.0 0.8010

0.90 8.6126 0.1754 15.0 0.8291

0.95 10.238 0.1846 15.0 0.8553

1.00 12.315 0.1942 15.0 0.8797

1.05 14.998 0.2043 15.0 0.9027

1.10 18.497 0.2149 15.0 1.0

5.2 Experimental Results

5.2.1 Comparison of the Task Steady State Temperature

Two benchmarking methods are implemented and com-
pared to evaluate the effectiveness of the proposed task
allocation heuristics in minimizing task steady state temper-
ature. The first one is the Random algorithm that randomly
assigns tasks to processors without utilizing any techniques.
The second one, referred to as RMBF [27], is the partition-
ing heuristic that assigns the task with the highest priority
to the processor with smallest unused capacity among those
processors on which it fits. The proposed thermal-aware
task allocation heuristic attempts to select the most suitable
processing element in terms of task steady state temperature
for each task in the system.

Figure 2 shows the steady state temperature of 25 tasks
under the proposed method, and benchmarking schemes
Random and RMBF [27]. It has been demonstrated in Fig. 2
that the steady state temperature of the proposed algorithm
is almost much lower than that of the Random and RMBF
[27] method. For example, the average steady state tem-
perature of 25 tasks achieved by the proposed algorithm,
benchmarking schemes Random and RMBF are 68.86 ◦C,
72.4 ◦C, and 71.32 ◦C, respectively. Thus, the average
steady state temperature achieved by the proposed algorithm
is 3.57 ◦C lower than that of scheme Random, and 2.46 ◦C
lower than that of scheme RMBF [27]. The proposed algo-
rithm outperforms the benchmarking methods Random and
RMBF [27] in thermal management since it fully takes the
thermal characteristics of tasks and processing elements into
account during the task allocation.

5.2.2 Comparison of the Peak Temperature

In the proposed scheme, the thermal profiles of tasks in the
task set are improved by selecting the most suitable pro-
cessing element for each task, then the peak temperature
is reduced by splitting hot tasks into multiple sections and
enabling the alternation of hot task execution and slack time.
The proposed algorithm is compared with two benchmark-
ing methods in terms of peak temperature to demonstrate
its effectiveness of thermal management. The first bench-
marking scheme, referred to as NOTM, does not utilize any
thermal management techniques while the second bench-
marking scheme, referred to as task sequencing (TS) [21],
utilizes thermal characteristics of tasks to derive a task
sequence in the alternate order of being cool-hot.

Figure 3 plots the peak temperature of six processing
elements under the proposed method, and benchmarking

Author's personal copy

J Sign Process Syst (2016) 84:111–121 119

Figure 2 The steady state
temperature of 25 tasks under
the proposed method, and
benchmarking schemes Random
and RMBF [27].

0 5 10 15 20 25
45

50

55

60

65

70

75

80

85

St
ea
dy

st
at
e
te
m
pe
ra
tu
re

(°
C
)

Tasks (1- 25)

Proposed
Random
RMBF

schemes TS [21] and NOTM. The initial temperature of
each processing element is assumed to equal the ambient
temperature T a , which is set to 35 ◦C in this study. It
has been shown in Fig. 3 that the peak temperature of six
processing elements achieved by the proposed method is
much lower than that of benchmarking schemes TS [21]
and NOTM. For instance, the proposed method reduces the
peak temperature of tasks on the processing element PE2

by 5.8% as compared to the TS [21] scheme, and 11.5% as
compared to the NOTM scheme. The NOTM method does
not employ any thermal control techniques and is utilized

1 2 3 4 5 6
40

50

60

70

80

90

Pe
ak

te
m
pe
ra
tu
re

(°
C
)

Processing Element (PE1-PE6)

Proposed
TS
NOTM

Figure 3 The peak temperature of six processing elements under the
proposed method, and benchmarking schemes TS [21] and NOTM.

as a baseline to show the highest efficiency of the proposed
algorithm in reducing peak temperature. The proposed algo-
rithm also outperforms the state-of-the-art scheme TS [21]
in thermal management since it first improves the thermal
profiles of each task through a thermal-ware task mapping
heuristics, then exploits the task splitting technique and
slack time to cool down the execution of hot tasks on the
processor for a lower peak temperature.

In addition, Fig. 4 compares the instantaneous tempera-
ture of benchmarking scheme TS [21] and the proposed task
splitting algorithm. Two tasks are running on the processor.
One is a cool task with execution time of 520 s and another

0 200 400 600 800 1000 1200

30

40

50

60

70

80

90

100

Te
m
pe
ra
tu
re

(°
C
)

Time (s)

TS
Proposed

Figure 4 Compare the instantaneous temperature of benchmarking
scheme TS [21] and the proposed task splitting algorithm.

Author's personal copy

120 J Sign Process Syst (2016) 84:111–121

is a hot task with execution time of 560 s. The TS [21]
method executes the two tasks in the order of being cool-
hot. The proposed task splitting algorithm first partitions the
cool task and hot task into two cool subtasks and two hot
subtasks respectively, then interleaves the execution of cool
subtasks and hot subtasks. The peak temperature of the pro-
posed task splitting algorithm is 92.59 ◦C, which is 5.75 ◦C
lower than that of the benchmarking method TS [21].

6 Conclusions

This paper explores the thermal-aware task mapping and
scheduling for heterogeneous MPSoC systems to reduce
the on-chip peak temperature under the real-time constraint.
The proposed algorithms explicitly exploit thermal char-
acteristics of both tasks and processors to minimize the
peak temperature without incurring significant overheads.
The proposed algorithms are implemented in two steps. In
the first step, tasks are assigned to individual processors to
minimize their respective steady state temperature, while in
the second steps, tasks with undesired thermal characteris-
tics (hot tasks) are selected and split into multiple sections
to enable the alternation of hot task execution and slack
time, such that the peak temperature of tasks is reduced.
Experimental results show that a 11.5% reduction of peak
temperature can be achieved by the proposed algorithms as
compared to the benchmarking schemes.

Acknowledgments This work was supported in part by the Natural
Science Foundation of Shanghai City under the grant 12ZR1409200
and by the Scientific Research Foundation for Returned Scholars,
Ministry of Education of China, under the grant 44420340.

References

1. Narayanan, V., & Xie, Y. (2006). Reliability concerns in embedded
system designs. Computer, 39(1), 118–120.

2. Chantem, T., Xiang, Y., Hu, X., & Dick, R. (2013). Enhanc-
ing multicore reliability through wear compensation in online
assignment and scheduling. In Proceedings of the international
conference on design, automation and test in Europe (pp. 1373–
1378).

3. Coskun, A., Rosing, T., Whisnant, K., & Gross, K. (2008).
Static and dynamic temperature-aware scheduling for multipro-
cessor SoCs. IEEE Transactions on Very Large Scale Integration
Systems, 16(9), 1127–1140.

4. Saha, S., Lu, Y., & Deogun, J. (2012). Thermal-constrained
energy-aware partitioning for heterogeneous multi-core multi-
processor real-time systems. In Proceedings of the international
conference on embedded and real-time computing systems and
applications (pp. 41–50).

5. Bao, M., Andrei, A., Eles, P., & Peng, Z. (2008). Temperature-
aware voltage selection for energy optimization. In Proceedings
of the international conference on design, automation and test in
Europe (pp. 1083–1086).

6. Gupta, N., & Mahapatra, R. (2011). Temperature aware energy
management for real-time scheduling. In Proceedings of the inter-
national symposium on quality electronic design (pp. 1–6).

7. Ebi, T., Amrouch, H., & Henkel, J. (2012). Cool: control-
based optimization of load-balancing for thermal behavior. In
Proceedings of the international conference on hardware/software
codesign and system synthesis (pp. 255–264).

8. Mulas, F., Pittau, M., Buttu, M., Carta, S., Acquaviva, A., Benini,
L., & Atienza, D. (2008). Thermal balancing policy for streaming
computing on multiprocessor architectures. In Proceedings of the
international conference on design, automation and test in Europe
(pp. 734–739).

9. Ghahfarokhi, F., & Ejlali, A. (2010). Schedule swapping: a tech-
nique for temperature management of distributed embedded sys-
tems. In Proceedings of the international conference on embedded
and ubiquitous computing (pp. 1–6).

10. Chantem, T., Hu, X., & Dick, R. (2011). Temperature-aware
scheduling and assignment for hard real-time applications on
MPSoCs. IEEE Transactions on Very Large Scale Interation
Systems, 19(10), 1884–1897.

11. Wei, T., Mishra, P., Wu, K., & Zhou, J. (2012). Quasi-static fault-
tolerant scheduling schemes for energy-efficient hard real-time
systems. Journal of Systems and Software, 85(6), 1386–1399.

12. Singh, A., Das, A., & Kumar, A. (2013). Energy optimization by
exploiting execution slacks in streaming applications on multipro-
cessor systems. In Proceedings of the international conference on
design automation.

13. Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd,
S., & Micheli, G. (2007). Temperature-aware processor fre-
quency assignment for MPSoCs using convex optimization. In
Proceedings of the international conference on hardware/software
codesign and system synthesis (pp. 111–116).

14. Chen, G., Huang, K., Huang, J., & Knoll, A. (2013). Cache
partitioning and scheduling for energy optimization of real-
time MPSoCs. In Proceedings of the international conference
on application-specific systems, architectures and processors
(pp. 35–41).

15. Intel Corporation, Single-chip cloud computer (SCC). [Online].
Available: http://www.intel.com/content/www/us/en/research/
intel-labs-single-chip-cloud-overview-paper.html.

16. Huang, H., Chaturvedi, V., Quan, G., Fan, J., & Qiu, M. (2014).
Throughput maximization for periodic real-time systems under the
maximal temperature constraint. ACM Transactions on Embedded
Computing Systems, 13(2s).

17. Liao, W., He, L., & Lepak, K. (2005). Temperature and supply
voltage aware performance and power modeling at microarchi-
tecture level. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(7), 1042–1053.

18. Liu, Y., Dick, R., Shang, L., & Yang, H. (2007). Accurate
temperature-dependent integrated circuit leakage power estima-
tion is easy. In Proceedings of the international conference on
design, automation and test in Europe (pp. 1526–1531).

19. Weste, N., & Eshraghian, K. (1992). Principles of CMOS VLSI
design: a system perspective. Addison-Wesley Publishing Com-
pany.

20. Skadron, K., Stan, M., Sankaranarayanan, K., Huang, W.,
Velusamy, S., & Tarjan, D. (2004). Temperature-aware microar-
chitecture: Modeling and implementation. ACM Transactions on
Architecture and Code Optimization, 1(1), 94–125.

21. Jayaseelan, R., & Mitra, T. (2008). Temperature aware task
sequencing and voltage scaling. In Proceedings of the interna-
tional conference on computer-aided design (pp. 618–623).

22. Zhou, J., & Wei, T. (2015). Stochastic thermal-aware real-time
task scheduling with considerations of soft errors. Journal of
Systems and Software, 102, 123–133.

Author's personal copy

http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-overview-paper.html

J Sign Process Syst (2016) 84:111–121 121

23. Quan, G., & Chaturvedi, V. (2010). Feasibility analysis for temper-
ature constraint hard real-time periodic tasks. IEEE Transactions
on Industrial Informatics, 6(3), 329–339.

24. Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., &
Brown, R. (2001). Mibench: a free, commercially representative
embedded benchmark suite. In Proceedings of the international
workshop on workload characterization (pp. 3–14).

25. Lee, C., Potkonjak, M., & Mangione-Smith, W. (1997). Medi-
abench: a tool for evaluating and synthesizing multimedia and
communications systems. In Proceedings of the international
symposium on microarchitecture (pp. 330–335).

26. Li, S., Ahn, J., Strong, R., Brockman, J., Tullsen, D., & Jouppi,
N. (2009). Mcpat: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures. In
Proceedings of the international symposium on microarchitecture
(pp. 469–480).

27. Zapata, O., & Alvarez, P. (2005). EDF and RM multiproces-
sor scheduling algorithms: survey and performance evaluation.
Seccion de Computacion Av. IPN.

Junlong Zhou is currently
working towards his Ph.D.
degree in Computer Science
and Technology Department
at East China Normal Univer-
sity. Now he is also a research
visitor at the University of
Notre Dame. His research
interests are in the areas of
real-time systems, energy effi-
cient and reliable embedded
system design, and thermal-
aware scheduling techniques.
He is an active reviewer of
many international journals,
including IEEE transactions

on Industrial Informatics, Journal of Systems and Software, Journal of
Scheduling, Journal of Circuits, Systems, and Computers (World Sci-
entific), Journal of Modeling and Simulation (ACTA Press). He is a
student member of IEEE.

Jianming Yan is currently
pursuing the master’s degree
with the Department of Com-
puter Science and Technology,
East China Normal Univer-
sity, Shanghai, China. His cur-
rent research interests include
task allocation and scheduling
techniques in heterogeneous
real-time MPSoC systems.

Jing Chen received her M.S.
degree in Computer Science
and Technology from East
China Normal University,
Shanghai, China, in 2013.
She is currently with Baidu
Corporation, Shanghai, China.
Her current research inter-
ests include the management
of energy and reliability for
real-time embedded systems.

Tongquan Wei received his
Ph.D. degree in Electrical
Engineering from Michigan
Technological University in
2009. He is currently an Asso-
ciate Professor in the Depart-
ment of Computer Science and
Technology at the East China
Normal University.

His research interests are
in the areas of real-time sys-
tems, green and reliable com-
puting, and parallel and dis-
tributed systems. He serves as
a Regional Editor for Jour-
nal of Circuits, Systems, and

Computers (World Scientific) since 2012. He also served as the Guest
Editor of the IEEE Transactions on Industrial Informatics Special
Section on Building Automation, Smart Homes, and Communities,
and the ACM Transactions on Embedded Computing Systems Spe-
cial Issue on Embedded Systems for Energy-Efficient, Reliable, and
Secure Smart Homes. He is a member of the IEEE.

Author's personal copy

	Peak Temperature Minimization via Task Allocation and Splitting for Heterogeneous MPSoC Real-Time Systems
	Abstract
	Introduction
	System Model and Problem Definition
	Processor and Task Model
	Power Model
	Temperature Model
	Problem Definition

	The Proposed Temperature-aware Task Allocation Strategy
	The Proposed Temperature-aware Task Splitting Policy
	The Ideal Scenario without Considering the Mode Switching Overhead
	The Realistic Scenario with Considering the Mode Switching Overhead
	The Proposed Temperature-aware Task Splitting Algorithm

	Experimental Results And Discussions
	Experimental Settings
	Experimental Results
	Comparison of the Task Steady State Temperature
	Comparison of the Peak Temperature

	Conclusions
	Acknowledgments
	References

