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Abstract—With the rapid deployment of cloud computing infrastructures, understanding the economics of cloud computing has
become a pressing issue for cloud service providers. However, existing pricing models rarely consider the dynamic interactions
between user requests and the cloud service provider. Thus, the law of supply and demand in marketing is not fully explored in these
pricing models. In this paper, we propose a dynamic pricing model based on the concept of user perceived value that accurately
captures the real supply and demand relationship in the cloud service market. Subsequently, a profit maximization scheme is designed
based on the dynamic pricing model that optimizes profit of the cloud service provider without violating service-level agreement. Finally,
a dynamic closed loop control scheme is developed to adjust the cloud service price and multiserver configurations according to the
dynamics of the cloud computing environment such as fluctuating electricity and rental fees. Extensive simulations using the data
extracted from real-world applications validate the effectiveness of the proposed user perceived value-based pricing model and the
dynamic profit maximization scheme. Our algorithm can achieve up to 31.32 percent profit improvement compared to a state-of-the-art

approach.

Index Terms—Cloud computing, dynamic pricing model, user perceived value, profit maximization, augmented Lagrange function

1 INTRODUCTION

CLOUD computing has become a popular commercial
computing model that distributes user requests to a set
of servers and delivers services over communication net-
works. As a business model, it turns resources of computing,
storage, and communication into ordinary commodities and
utilities in a pay-as-you-go manner [1], [2], [3], [4]. It is natu-
ral for cloud service providers to pursue the goal of profit
maximization. Thus, the cloud service pricing strategy is of
particular importance to cloud service providers.

The pricing model of a cloud service provider consists of
two parts, namely, the revenue and the cost [5]. The revenue
is the income that the cloud service provider gets through
the sales of cloud services. The cost is the expenditure that
includes not only the rental and electricity fees to operate
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multiserver systems, but also the reward and penalty paid
by the cloud service provider to users based on service-level
agreement. Profit maximization can be achieved by increas-
ing revenue or reducing cost. On one hand, cloud service
providers attempt to increase revenue by setting a high
price for cloud services and attracting a great amount of ser-
vice purchases. However, service price and purchase activ-
ity interplay, which cannot be optimized simultaneously
[6]. On the other hand, cloud service providers try to reduce
operational cost, such as electricity bill and rental fees,
which are related to multiserver configurations. Thus,
aspects including electricity price and multiserver configu-
rations need to be considered in cloud pricing modeling.

Numerous investigations have been made into pricing
mechanisms for profit maximization in cloud computing.
Fixed pricing strategies such as pay-per-use, subscription
based pricing, and tiered pricing are the most common pric-
ing methods used by major cloud service providers [7], [8],
[9]. For example, Li [7] proposes a flat rate pricing strategy
that sets a fixed price for all service requests. Kesidis et al.
[8] point out that usage-based pricing strategy can use cloud
resources more efficiently when compared with flat rate
pricing strategy. However, these fixed pricing methods can-
not meet the dynamic needs of users and cannot capture the
dynamics of supply and demand in market.

Handling the disadvantages of fixed pricing strategies
necessitates the dynamic pricing strategies that adjust price
of cloud services according to market situations and user
requirements for service quality. Macias et al. [10] propose a
genetic model based dynamic pricing strategy that obtains
optimal pricing in an iterative way. This strategy offers
competitive prices in the negotiation of services in cloud
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computing markets. Amazon [11], [12] utilizes a spot pricing
strategy that dynamically adjusts prices for a virtual service
instance to accommodate changes in supply and demand.
Based on a study of the spot price history of Amazon, Xu
etal. [13] propose a dynamic pricing strategy to better under-
stand the current market demand. Zhao et al. [14] design an
efficient online algorithm for dynamic pricing of virtual
machine resources across datacenters in a geo-distributed
cloud to pursue long-term profit maximization. Although
these works investigate dynamic pricing strategies from dif-
ferent perspectives, service-level agreement is not considered
in their pricing mechanisms which is however important.

A service-level agreement is defined as an official commit-
ment between a service provider and a client [15]. It uses a
price compensation mechanism that provides certain com-
pensations to users when their service requests are processed
with low quality of service. Cao et al. [5] present a pricing
model that takes service-level agreement and consumer sat-
isfaction into considerations to maximize the profit of cloud
service providers. Ghamkhari et al. [16] propose a two-tier
ladder charging method to ensure user satisfaction. Specifi-
cally, a cloud service provider will charge users if their
requests are processed before deadlines. Otherwise, the
cloud service provider will not charge users for this execu-
tion. Lee and Irwin et al. [17], [18] claim that the price of the
cloud service will decrease as the waiting time of service
requests grows until the cloud service is free. These works
study service-level agreement to ensure user satisfaction in
the pricing process for profit maximization. However, they
ignore the crucial concept of user perceived value in tradi-
tional market environment, which reflects the users’ willing-
ness to purchase cloud services. User perceived value is an
important concept in pricing process since it ultimately will
impact the profit of cloud service providers.

In this paper, we propose a user perceived value-based
dynamic pricing mechanism that conforms to the law of
supply and demand in economics. The contributions of this
paper are summarized as follows.

e A dynamic pricing model that considers the interac-
tion between users and the cloud service provider is
proposed. The model is built upon the concept of
user perceived value, user reward, and cloud service
provider penalty in the domain of economics, which
accurately captures the dynamics of supply and
demand in cloud pricing strategies. In particular,
user perceived value is nicely modeled using kernel
density estimation method in our context.

e A profit maximization scheme is developed based on
the dynamic pricing model to optimize the profit of
the cloud service provider by configuring multi-
server systems under service-level agreement con-
straint. Our scheme also includes a runtime control
loop to adjust service price and muitlserver configu-
rations to the dynamics of cloud computing environ-
ment such as fluctuating electricity and rental fees.

e Extensive simulations using the data extracted from
real-world applications validate the effectiveness of
our proposed user perceived value-based pricing
model and the dynamic profit maximization scheme.
Our algorithm achieves 31.32 percent profit improve-
ment compared to a state-of-the-art approach.
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The remainder of the paper is organized as follows.
Section 2 presents the system architecture and models,
Section 3 presents the problem definition and overview of
the proposed scheme. Section 4 describes the proposed user
perceived value-based pricing mechanism. The effective-
ness of the proposed scheme is validated in Section 5 and
concluding remarks are given in Section 6.

2 SYSTEM ARCHITECTURE AND MODELS

We consider a common three-tier cloud service provision
structure that consists of users, cloud service providers, and
infrastructure vendors [5], [9], [19], [20]. Among the three
entities that form a market in cloud computing, the infra-
structure vendor charges the cloud service provider for rent-
ing infrastructures to deploy service capacity, and the cloud
service provider charges users for processing their service
requests. In this paper, users and the cloud service provider
are of our particular interest. We introduce our user model
and cloud service provider model in the following sections.

2.1 Cloud User Model

To maximize the profit of a cloud service provider, the cloud
service provider needs to know the aggregate demands of
users. When a cloud service provider sets up the price of a
service, different users have different responses to this price.
Based on the concepts of user perceived value, we give the
first derivation of such a model in the cloud computing con-
text. In the following, we introduce the concepts of user per-
ceived value and then present our derivations.

2.1.1 User Perceived Value

In conventional markets, the arrival rate of customers to a
store is often a response to their regular buying patterns
rather than a reaction to individual prices [6]. Thus, it is rea-
sonable to assume that the change of the list price has no
effect on the total number of customers who are visiting the
store. Typically, not all of the customers are willing to buy a
specific commodity. That is, the total number of customers
who buy commodities are no larger than the total number
of people that visit the store.

Customer perceived value is the fundamental basis for all
marketing activities [21]. It reflects the worth that a product
or service has in the mind of a consumer and this concept has
been widely used in modeling other markets [22]. In general,
customers are unaware of the true cost of production for the
products they buy, which means that they simply have an
internal feeling for how much certain products are worth to
them. In the conventional market environment, only the cus-
tomer whose perceived value is higher than the real price of
the product is willing to pay for the product.

In this paper, we use X; to denote the perceived value
that user ¢ has for the service. X; is a continuous random
variable and 0 < X; < oo holds. As with other pricing mod-
els [23], X, X5, ..., X, are assumed to be independent and
identical random variables. The probability density function
of the perceived value X, denoted by f(z), is known or can
be estimated a priori. Perceived value is a process of valuing
and is much harder to determine. Roig et al. [24] observe
that the customer value is perceived by customers, and can-
not be determined objectively by the seller. Factors such as
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scarcity, marketing efforts, novelty, and brand associations
all play into customer perceived value [25]. Usually, con-
sumers will offer a range of price options. Thus, in the
experimental section, a normal distribution is used to
describe the initial distribution of user perceived value. Sub-
sequently, the distribution of user perceived value is fitted
using kernel density estimation based on historical price
data. Kernel density estimation is a non-parametric way to
estimate the probability density function of a random vari-
able based on a finite data sample [26].

In the following sections, we adopt the terminology of
customer perceived value used in traditional market. The
cloud computing environment is taken as a store and the
cloud service is deemed as a special commodity provided
in the store. The terminology of customer perceived value
and user perceived value are used interchangeably.

2.1.2 User Demand Distribution

Unlike traditional methods that use the expected demand to
model user behavior [23], [27], the probability distribution
of total demands is used in this work to model user service
requests. We consider a slotted time model that deals with
the pricing decision and constraints for sales periods 7" of
equal length. Let 7 denote the length of each time slot over
the sales period 7, and N be the number of time slots t over
the sales period 7' That is, T'= N - 7. A cloud service pro-
vider sets list price for the service at the beginning of regular
sales periods. The list price during each sales period is
assumed to be constant, but varies from period to period.

Suppose that the cloud service provider will charge w per
user for a specific cloud service during a sales period T'. Let
n denote the total number of users that have interest in the
service at the price of w during the sales period 7', and A,
denote the number of users arriving per unit time, respec-
tively. n is assumed to be independent of all other parame-
ters of the system, and follows a discrete Poisson
distribution as [27]

(AT e MT

' ,n=0,1,2,...,00. (1)
n.

P(n|A,) =
The user arrival rate A\, may not be constant in many situa-
tions. Taking into account the heterogeneity of arrival rate,
a Gamma distribution characterized by parameters («, g) is
utilized to represent the arrival rate \,. « is the shape
parameter that determines the shape of the distribution
curve while f is the scale parameter that decides the size of
the distribution curve. The probability density function of
arrival rate )\, is given by

1
)\u _ A((xfl)e*ku/ﬁ7 O < Au < 00, (2)
9(A) T(a)p* - -

where the expectation and variance of A, is given by
E[\,] = ap and Var[\,] = af?, respectively, and I'(a) is a
complete gamma function.

Among the n users, any one whose perceived value of
the service is no less than the list price w is considered as a
potential buyer of the service. Let m denote the number of
potential buyers. It is a non-negative discrete random vari-
able taking the value of 0,1,2,...,00 and m <n holds.
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Based on user perceived value, we use f(x) to denote the
probability density function of the perceived value X, and
F(w) to represent the cumulative distribution function of =
evaluated at w. F(w) describes the probability that users do
not want to pay w to buy a cloud service. It is a non-decreas-
ing function of w, and 0 < F(w) < 1 and lim,_.., F(0) =1
hold [28]. Let P,(m|n) be the probability that m out of n
users are inclined to buy in the sales period when the ser-
vice price is set equal to w. It follows a binomial distribution
of probability, which is given by

Po(min) = (™)1 = Fo)"[F(@)) " ®)

Combining (1), (2), and (3), we can derive the probability
of having m potential buyers during the sales period T
when the service price is set equal to w. The probability is
denoted by F,,(m) and given by

Py(m) = / io i P (mln) P(n|A) g )dAs

=0 (4)
BTl — F(w)] 1 o

m+a—1 m
:( m >H+mﬂ-ﬂ@ﬂh+mﬂ-ﬂ@ﬂ

Clearly, it is a negative binomial distribution. Thus, the
expected number of actual buyers of the service at price w
during period T, denoted by E,(m), can be computed as

E,(m) =aBT(1 — F(w)), (%)

where « and  are parameters of the Gamma distribution of
user arrival rate \,, and F(w) is the cumulative distribution
function of x evaluated at w. The revenue of the cloud ser-
vice provider in a sales period 7 is thus given by

Revenue = w - E,(m) = wafT(1 — F(w)). (6)

2.2 Cloud Service Provider Model

The cloud service provider rents a multiserver system that
is constructed and maintained by an infrastructure vendor
to serve user service requests. The architecture details of the
multiserver system are quite flexible [5]. They can be blade
centers where each server is a server blade [29], clusters of
traditional servers where each server is an ordinary proces-
sor [30], and multicore server processors where each server
is a single core [31]. For the ease of presentation, these
blades/processors/cores are simply called servers. Users
submit their service requests to the cloud service provider,
and the cloud service provider serves these service requests
(i.e., run these tasks) on the multiserver system.

2.2.1 Multiserver Model

We consider a multiserver system that consists of M homo-
geneous servers operating at a common speed of s. The
multiserver system can be modeled as an M/M/M queuing
system where arrivals of user service requests governed by
a Poisson process form a single queue and M servers can
process these service requests in parallel. Let ¢ be the ser-
vice rate of user service requests that arrive at the rate of \,.
It is clear that ¢ user service requests can be processed by
servers if the number of user service requests in the system
is not greater than M. The service time of a user service
request on a server is an exponential random variable
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denoted by z; =r/s with mean Z; =7/s, where r is the
number of instructions to be executed for the service
request. A first-come-first-served (FCFS) queue of infinite
capacity is maintained by the multiserver system for wait-
ing tasks when all the servers are busy. Let p be server utili-
zation, which is defined as the average percentage of time
that a server is busy. It can be expressed as

)‘u _ >\1l _ )‘ulf

T Mo M: Ms’ @

Let P, be the probability of k service requests being wait-
ing or processing in the M/M/M queuing system. Based on
queuing theory [5], [32], [33], P is given by

P! Mﬂ k<M
P, = (8)

Aj\]\[k
P50 k= M

where P, is the probability that there are no tasks in the
queue, and is formulated into [32]

M-1 k M -1
(Mp)" | (Mp) 1
Po= (ZM R VI ,0) ' ©

The probability that there are exact M service requests in the

system is thus given by Py, = PO Through Taylor series

A[ !

expansions of S_0" (Mp)*/k! = eM? and M! ~ 2 M ()M
it can be rewritten as
1—
Py = (10

p)(“ 1

This form of Pj; is necessary for deriving multiserver con-
figurations in Section 4.

When all the servers in the system are busy, a newly sub-
mitted service request must wait and will be inserted into
the FCFS queue. Let P, denote the probability of queuing a
newly arrived task when no servers are idle at the time of
arrival. P, can be formulated as

2rM(1 —

- Py
Py=> Pi=—"-. (11)

Let N be the average number of requests being waiting or
executing in the multiserver system. N is calculated as

00

; =Mp + = qu.

(12)

The average service response time R is defined as the
average time elapsed between the time when a service
request is submitted and the time when the service request
is finished. In this paper, it is adopted to evaluate the service
quality. It is in fact the sum of task execution time and wait-
ing time, and can be derived by applying Little’s Law [34] as

—~ N _ P, - Py
Rfk_uf“ﬁ(lﬂ%(l—p)) J31<1+1\4(1/0)2>. 9

The average service response time R is utilized in this paper
as a metric for service-level agreement. If the response time
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of a service exceeds the predefined deadline, service-level
agreement is deemed to be violated.

2.2.2 Billand Rent

A cloud service provider needs to rent infrastructure and
pay electricity to maintain the operation of the computing
infrastructure. Let § be the fee the cloud service provider
pays to rent a server per second during a sales period 7', the
rent the cloud service provider needs to pay for a system of
M servers during the sales period T is

Rent = M6 -T. (14)

As a portion of the cloud service cost, electricity fee has
become a significant expense for today’s data centers. It can
be derived by multiplying energy consumed by a server
with electricity price. The energy consumed by a server can
be modeled at different levels of abstraction. At the abstrac-
tion level of digital CMOS circuit, the power consumption,
which is denoted by P,,;, can be modeled as

Pyot = Paa + dena (15)

where Py, is the static power dissipation while P, is the
dynamic power dissipation. Py, is independent of switch-
ing activity and maintains the basic circuit state, thus can be
deemed as a constant [5]. Py, is related to processor switch-
ing activity and dominates the total power consumption,
which can be formulated as a function of supply voltage v
and processing speed s. In addition, the supply voltage is
usually linearly proportional to the processing speed, i.e.,
v s. The dynamic power consumption Fyy, is then
expressed as £s”, where ¢ is a processor dependent coeffi-
cient and y is a constant that equals to 2¢ + 1 (¢ > 0). Based
on the static and dynamic power consumption described
above, Eq. (16) is used to denote the total power consump-
tion of a multiserver system, which is,

-Ptot — M((den - stu)p + Psta)7 (16)

where M is the server number and p is the server utilization.
Let E” denote the energy consumed by all M servers in

the system during the sales period T'. It is given by
E" = M((Pyyn —

Psf,a,)p + Psta) -T. (17)

Let CT(ET) be the price of the energy consumed by all serv-
ers in the period 7, then CT (ET) can be formulated as

K, o< ET <

18
kY, ET > 1L 1%

CT(ET) = {
where kI, k] > 0 are differentiated price and [}, is the
energy consumption threshold in the sales period 7'. The

electricity bill of the multiserver system in the sales period
T is hence formulated as

Bill= E" - CT(E")

(19)
= M((den - Psta)p + Rta) T CT(ET)

2.3 Reward and Penalty Mechanism

Oftentimes, users have different sensitivities to postponing
their requests. For users whose service requests can be
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deferred to a certain extent, the cloud service provider will
reward them based on the degree of deferment. However,
once the deferment of service requests exceeds a threshold,
the cloud service provider will compensate users based on
the degree of the deferment. In the following, we will dis-
cuss the reward and penalty mechanism from perspectives
of users and the cloud service provider, respectively.

2.3.1 User Reward Model

We divide users into [ types, each type of users has a sensi-
tivity to the service deferment of their service requests. We
define a sensitivity factor, denoted by v;, to quantify the
sensitivity of users of type i to the deferment of their service
requests, which is denoted by D;. For the users of type ¢, the
factor ; is negatively proportional to the sensitivity of the
users to the deferment of their service requests. That is, a
larger sensitivity factor indicates a more delay-sensitive
user service request. For users running interactive applica-
tions with no delay tolerance, set v/; = oc.

The cloud service provider will return more rewards to
those users who are less sensitive to service deferment. Let
L; be the monetary loss of the users of type i due to their
degree of sensitivity to service deferment. The users with a
larger degree of sensitivity (y;) to service deferment (D;)
will get less rewards from the cloud service provider, result-
ing in a larger amount of monetary loss (L;) of the users of
type i. The monetary loss function of the users of type i is
given by L; = ¥, D;.

We define a reward function, denoted by #;, to represent
the reward the cloud service provider returns to users of
type i. The reward £; is a function of the service deferment
D;, and is given by h; =6 -log (1 + D;), where # > 0 and
0 < D; < D,,,q, hold. 0 is called the reward factor and D,
is the maximum value of service deferment. The log func-
tion is adopted to prevent users from setting excessive ser-
vice deferment, which is unfair to cloud service providers.

Users need to make decisions on their own service defer-
ment D; to get the maximum reward from the cloud service
provider based on the monetary loss and reward function.
Thus, the optimization problem is to maximize (h; — L;)
subject to (0 < D; < D,,4,), where D; is regarded as a con-
tinuous variable to simplify the optimization problem, and
the solution to the problem is given by

D; = max (min (E -1, Dm(m) , O) . (20)
¥,
Substitute D; back into reward function #;, then one has
. 6
h; = 0log (1 +max<m1n($— 1,Dmam),0)). 21)
i

Let Reward denote the total monetary reward returned to
users from the cloud service provider over the sales period
T, then one has

N I
Reward = Z Z ,]‘r,
=1

where by [N ] denotes the arrival rate of the users of type ¢ in
the N'th time slot. In practice, the cloud service provider
can learn the sensitivity factor i; from experiments or

(22)
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historical data. The adopted user reward model is similar to
the one presented in [35].

2.3.2 Cloud Service Provider Penalty Model

The high degree of user satisfaction is determined by the
fast response of a cloud service provider to service requests.
Once the service response time exceeds the threshold value
specified in service-level agreement, users will be compen-
sated by the cloud service provider for low quality of ser-
vice. Given server benchmarking speed (sy), the average
response time of service requests (R), and the number of
instructions for each service request (r), the penalty function
of users of type i, denoted by u;, can be formulated as [5]

0, 0SR< £+D;
u(r,R) = dR—=D;), £+ Di < R< (1+4L+D;
w, R > (1+%)%+Di,
(23)

where d is the degree of punishment, D; denotes the service
deferment of users of type i, and w is the cloud service price
charged by the cloud service provider to users. In the future
we will adopt super linear function to describe the relation
between compensation and average response time.

The details of Eq. (23) are described below. For users of
type i, if the average response time satisfies 0 < R < L+ D;,
the cloud service provider will regard this execution of the
service request as a successful process with high quality of
service and users will not be compensated by the cloud
service provider. Otherwise, if the average response time sat-
isfies =+ D; < R<(1 +4) &+ D, the cloud service pro-
vider will regard this execution of the service request as a
process with low quality of service. In this case, the com-
pensation provided by the cloud service provider to users
will increase linearly as the average response time R
increases. Finally, if the average response time satisfies
R > (14 ) + D;, the cloud service provider will regard
this executlon of the service request as a failed process and
will not charge users for this execution.

We use Penalty to denote the total compensation pro-
vided by the cloud service provider to users, then we have

N I
Penalty = Z Zui(nﬁ))\ul\/}f,
N'=1i=1

where X [N'|t is the average number of user requests of
type 4 in the time slot 7, and u;(r, R) is the incurred penalty
for the service requests due to low quality of service.

(24)

2.3.3 Gross Profit

The gross profit a cloud service provider earns is the total
revenue subtracted by the cost of generating that revenue.
In other words, gross profit is sales minus cost of the cloud
service sold. Assuming the price of cloud service is constant
in a sales period 7, the revenue earned is given by
o - E,(m), where o denotes the service price per user and
E,(m) indicates the expected number of actual buyers at
price @ during the sales period 7.

Besides the reward for flexible users and penalty for low
quality of service mentioned above, the cost of cloud service
provider sold also consists of the cost paid to rent cloud
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computing infrastructures, and the electricity expense
incurred by the cloud service provider to maintain the oper-
ation of the computing infrastructures. We define the profit
of the cloud service provider in a sales period 7" as the reve-
nue minus the various expenses including the reward cost,
penalty cost, electricity cost, and rental cost, that is,

Profit = Revenue — Reward — Penalty — Bill — Rent, (25)

where Revenue, Reward, Penalty, Bill, and Rent are given
in Egs. (6), (22), (24), (19), and (14), respectively.

3 PROBLEM DEFINITION AND OVERVIEW OF THE
PROPOSED APPROACH

In this section, we formally define the profit maximization
problem, followed by a brief overview of our proposed
approach to the profit maximization problem.

3.1 Problem Definition

The price of a cloud service interplays with users who pur-
chase the service, which in turn affects the revenue of the
cloud service provider. This paper aims to maximize the
profit of the cloud service provider by deriving the optimal
number of servers, operating speed of servers, and price of
cloud services provided without violating service-level
agreement. Assume that the cloud service provider opti-
mizes its decisions at the beginning of each sales period 7'
Let b; denote the upper bound on the power consumption
of the M servers, and b, be the upper bound on the expected
response time of user requests. Our optimization problem
can be formulated as

Maximize : Profit (26)
Subject to: 6 >0 27)
]Df,ot S bl (28)
R < by (29)
0<¢[N]<XI[NJe, Vie LN eN (30)
N+|D;] ) N

Y. NINTt=¢IND = > NN, -
N'=1 N'=1

Vic I,N € N,

where Profit, Py, and R are given in Egs. (25), (16), and
(13), respectively.

In the above formulation, the reward factor 6 is non-
negative (Eq. (27)), the total energy consumption P of the
multiserver within the sales period 7' can not exceed b;
(Eq. (28)), and the average service response time R can not
exceed by (Eq. (29)). Eq. (30) ensures that the amount of
delayed service requests is nonnegative and not larger than
the total number of service requests in each time slot t,
where ¢,[N'] and X [N']t are the number of delayed and
total service requests in the N'th time slot, respectively.
Eq. (31) ensures that the processing of the arrived user
requests of type i in a sales period 7' can not be delayed
longer than the allowed service deferment D; of user service
requests. We will then use the augmented Lagrange

2747

construct profit
maximization model of
cloud service provider

f o
=4 b
e I
| establish user -
+ 1 demand distnbunon:
- based on user

H : perceived value )

revenue model

expenditure model

sohve profit maximizing
problem using
augmented Lagrange
multiplier method

Bl 2 e

update the cloud service
price and multisenver
system configurations
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multiplier method to solve the optimization problem, which
will be described in detail in Section 4.

3.2 Overview of the Proposed Approach

The optimization problem given in Eq. (26) tries to maxi-
mize the Profit of the cloud service provider under the con-
straints mentioned above. Fig. 1 outlines the overview of
our proposed approach to solve the optimization problem.
We first establish user demand distribution based on the
concept of user perceived value. Subsequently, based on
user demand distribution, the revenue model and the
expenditure model are developed to construct the profit
maximization problem. This optimization problem is then
solved using the augmented Lagrange multiplier method.
Finally, since the parameters of electricity bill and rental
fees change over time, these parameters are monitored and
a dynamic closed loop control scheme is proposed to adapt
the service price and mulitserver configurations to the
changes in these parameters. The details of the proposed
scheme are provided in Section 4.

4 USER PERCEIVED VALUE-AWARE PROFIT
OPTIMIZATION SCHEME

In this section, we first leverage the augmented Lagrange
multiplier method to compute the optimal solution, includ-
ing the service price, the number of servers, and the speed of
servers. Subsequently, a dynamic closed loop control scheme
is proposed to adapt the service price and multiserver config-
urations to the dynamic cloud computing environment.

4.1 Build Augmented Lagrange Function

Unconstrained optimization can be solved in many ways,
such as steepest descent method [36], Newton’s method [37],
multiplier method [38], etc. However, it is difficult to opti-
mize constrained optimization directly. A common method
to solve constrained optimization is to transform the con-
strained optimization problem into an unconstrained opti-
mization problem. Numerous techniques on constrained
optimization have been investigated in the literature [39],
[40], [41]. Of these techniques, the augmented Lagrange mul-
tiplier method is a powerful tool for solving this class of
problems, which is adopted in this work to solve the profit
optimization problem. Refer to Eq. (26), we first build aug-
mented Lagrange function to convert the constrained optimi-
zation problem into an unconstrained optimization problem,
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and then use the multiplier method to solve the uncon-
strained optimization problem.

The Bill given in Eq. (19) is a function of power con-
sumption of the multiserver system, the length of the sales
period T, and real-time price of electricity. Since real-time
price is flat within each sales period 7" and T itself is con-
stant, the Bill for T is fixed and can be expressed as
Bill = byP,,;, where P, given in Eq. (16) is the total power
consumed by the multiserver system and b; is a constant
coefficient. The profit optimization problem given in
Eq. (26) can then be re-written as

O(w, M, s) = wE,m] — bsP,y — SMT

= YN o Dica(hi = L)X [N]e

_Zv’ 1Zi L ui(r, R)NL[N ] (32)
(M, ) = by =71 (14 525) > 0
92(M,s)  =by — M((§" = Pita)p + Pista) > 0,

where O(w, M, s) denotes the objective function of Profit
given in Eq. (25), and ¢;(M,s) and g2(M, s) are constraint
equations of M and s, respectively.

Next, we convert the problem given in Eq. (32) with
inequality constraints into an augmented Lagrange func-
tion. Let y be the vector that converts the problem with
inequality constraints to a problem with equality con-
straints, and v be the Lagrange multiplier vector, the aug-
mented Lagrange function is thus given by

2
d(w, M, s,y,v,0) = O(w, M,s) — Zvj(gj(M, s) — y?)
=1

> (gi(M,s) —y2),

=1

(33)
_|_

| Q

where the constant parameter o denotes the penalty factor
and o > 0 holds. The augmented Lagrange function given
in Eq. (33) can be converted into the form of

d(w, M, s,y,v,0) = O(w, M,s)
2 2 2 (34)
2 {y] ——(og;(M,s) — )] —247

by using the method of completing the square, a technique
to derive the quadratic formula [42], and the function given
in (34) can be easily maximized when

1
yf =—max(0,09;(M,s) —v;),j=1,2. (35)
o
Plugging y? given in Eq. (35) back into the original Eq. (33),
one obtains the augmented Lagrange function

d(w, M, s,v,0) = O(w, M, s)

12 (36)
+on S llmax(0, v, — og, (M, ) — 0.
g

Through this quadratic relaxation of the original problem
given in Eq. (32), we can derive analytical form of solutions
to the profit maximization problem. We aim to maximize
the profit of the cloud service provider and obtain the opti-
mum solutions including service price w, number of servers
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M, and speed of servers s. Specifically, we seek to solve the
augmented Lagrange function given in Eq. (36) by first com-
puting partial derivatives of Eq. (32) with respect to w, M,
and s. Here, the details are omitted. We only show key steps
for solving the partial derivatives of Eq. (32) with respect to
w, M, and s.

Calculate the Partial Derivative of Eq. (32) with Regard to w.
The partial derivative of FE,[m| with regard to o is

3 m] —apftf(w), thus, the partial derivative of O(w, M, s)
w1th regard to w is

30(w, M, s) IEu[m] w0+ Bo[m]
ow ow

=aft(l — of(w) — F(w)),

where f(w) and F(w) are the probability density and the
cumulative distribution function at w, respectively.

Calculate the Partial Derivative of Eq. (32) with Regard to M.
The partial derivative of g, (14, s) with regard to A can be
expressed as

o (M,s) 0 | T 1
oM M | M \[V2rM(1 — p)(er/ep)™ + 1](1 — p)
7 Py
M (1—p)*
(37)
Let D) = 2xM(1 — p)(e”/ep)™ +1 =27 M1 — p)L +1,
Dy=1—p,and L = (¢*/ep)™, then Eq. (37) becomes
g1 (Mys) 3 [ T ( 1 oL Pu
aM BM{ M (Dlpg)} e D}’ 38

The partial derivative of L, Dy, and D, with regard to M are
calculated as follows:

oL Bp
D (1 P i
MF@(QWQ p>L+m( 8M)L+\/M(1 p)aM)
f\/_( \/“(l—b—,o)L VM(1 — )1an),
oDy dp _ p
M BM M
Substitute £ ]\L[, Zﬁ}, and % back into the Eq. (38), one has

391(M75): 1 %jjjul D2+8]\)D1 1
oM MDDy D1 D M|

The partial derivative of go(), s) with regard to M can be
easily calculated as

992(M, s)

M - (§SV—Psm)',0+Psm-
Caculate the Partial Derivative of Eq. (32) with Regard to s.
The partial derivative of L, Dy, and D, with regard to s are

calculated as follows:
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L LM

as s s

D L L
3 _ anKf%L +(1=)p) 1)] = Varlp+ M1~ p)]

as as
Dy 9p _ P
s s s

The partial derivatives of ¢(M,s) and g.(M,s) with
regard to s are hence computed as

dp(Mys) @ 9 ( Py \_ m (gDt gD
ds M 95\ (1-p)* M (D\Dy)* |’
992(M, 5) (BM, J Mptys'™.
S

Once we obtain the above partial derivatives of Eq. (32)
with regard to w, M and s, we can compute and obtain the
optimal solutions by letting these partial derivatives of
Eq. (32) with regard to w, M, and s equal 0.

4.2 Solve Augmented Lagrange Function

We present in this section an augmented Lagrange multi-
plier method based algorithm that solves the profit optimi-
zation problem given in (33) and derives its optimum
solutions, including the service price and multiserver con-
figurations. The proposed algorithm first computes an opti-
mum Lagrange multiplier, which guarantees that the
solution of original objective function and the solution of
Lagrange function are consistent in the case where the opti-
mal multiplier is obtained. Subsequently, the optimal ser-
vice price and multiserver configurations are determined.

Let M, s and v(¥) indicate the kth iteration of M, s,and
vin the algor1thm. Let ¢, n, and ¥ be three positive numbers, [
be the number of iterations, and L be the maximum number
of iterations. Algorithm 1 describes the proposed augmented
Lagrange algorithm. Inputs to the algorithm are electricity
price C* during time slot 7, the rent §, and user requests
arrival rate \,. The algorithm iteratively derives the optimal
cloud service price w and multiserver configurations which
includes the optimal number of servers M, the server speed
s, and the Profit of the cloud service provider.

The algorithm works as follows. It first formulates the
optimization problem into the form in Eq. (26), then sets
parameters of ¢, n, ¥, and L, and initializes variables of
MO, 50 ! and [ (lines 1-3). In each round of iteration, the
algorithm calls the augmented Lagrange function solver,
denoted by ALF — Solver(¢(w, MU~V =1 () 4)), to
obtain a local optimum of the w, M, and s (line 5). The
ALF — Solver(¢(w, M= 5= () &) derives the local
optimum by computing partial derivatives of ¢(w, M, s, v, o)
with regard to w, M, and s, and solving a system of equa-
tions of w, M, and s (lines 18-21).

The algorithm finishes if the Lagrange multiplier vector v
converges and approximates the optimum by an error of .
Let Q;(M",s0) = g;(M",sV) —y? for j=1,2 be the pen-
alty item of the augmented Lagrange functlon given in
Eq. (33), then the Lagrange multiplier vector v converges
if |Q(M®,sV)|| < & holds (lines 6-10). If it does not
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converge or converges too slowly, that is, |Q(M®,s")]||/

QM1 s=1))|| > W holds for a positive number W, the
penalty factor o is updated to no for n > 1 to speed up the
convergence process (lines 11-13). Accordingly, the
Lagrange multiplier for the next iteration is updated to
vé-“ = max(0, vfl-l —og; (M, s"))(j =1,2) (lines 14-15), and
the procedure moves to the next iteration. Once the algo-
rithm converges, the optimum of w, M, and s are obtained,
and the optimal Profit of the cloud service provider can be
calculated by using Eq. (25) (line 7). Line 17 returns the opti-
mal service price, multiserver configurations, and Profit of
the cloud service provider.

Algorithm 1. Iteratively Solve the Augmented Lagrange
Function

Input: Electricity price C* during sales period t, rent 8, user
requests arrival rate \,;
Output: The optimal service price w, number of servers M,
server speed s, and Profit;
1 Formulate the optimization problem into the form in
Equation (26);
2 Set parameters«, B, v, ¢, 1, ¥, and L;
3 Initialize M, s© o) and 1=1;
4 whilel < L do
5 [0®, MO, 0] = ALF — Solver(¢(w, M) s
// exit when {v"} converges;
6 if |Q(MY, s)|| < ¢ then
7 Calculate the Profit using the Equation (25);
// record the optlmal solution;
8 Result = [Profit, o, M® | s0];

0,00,0));

9 break;
10 end

// otherwise, 1ncrease penalty factor o;
1 elseif QMY sO)[ /| Q(MIY, 50-1)[| > ¥ then
12 o =no;
13  end

// update themultiplier vectoryv;
14 o™ = max(0, v, — ag; (MY, s0))(j = 1,2);
15 1=1+1;
16 end
17 return Result;
// solve the Lagrange function in (36);
18 ALF — Solver(¢(w, MU= 5= 1) &)
19 Compute partial derivatives of ¢ w.r.t. w, M, and s as dp(w,
MDY 500 00 o) /8w, M, 5);
20 %alculate w, M, and s based on a system of equations of 2
and %

ar
21 return [w J\L sl;

o’

4.3 Design a Dynamic Closed Loop Control Scheme
The solution to the profit maximization problem described
above focuses on the interaction between users and the
cloud service provider. However, the impact of dynamic
cloud computing environment such as fluctuating electricity
bill and rental fees on profit maximization mechanism is not
investigated. On one hand, the variation of electricity bill or
rental fees has a direct impact on the expenditure of the
cloud service provider. On the other hand, the variation of
electricity bill or rental fees has an indirect influence on user
perceived value which affects the user demand of the cloud
service, and ultimately impacts the revenue of the cloud
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Fig. 2. Overview of closed loop control scheme.

service provider. Thus, it is necessary to design a scheme to
adjust service price and multiserver configurations accord-
ing to the dynamics of the cloud computing environment.

In this section, a closed loop control scheme is designed
to dynamically update the optimal service price and multi-
server configurations. As illustrated in Fig. 2, the runtime
control scheme monitors the dynamic cloud computing
environment. Once the electricity bill or rental fees changes,
the proposed control scheme first fits a new probability dis-
tribution function of user perceived value using kernel den-
sity estimation based on the historical price data set ().
Subsequently, it reconstructs and resolves the profit maxi-
mization problem based on the new probability distribution
and the variation of electricity bill or rental fees.

The kernel density estimation technique adopted in the
proposed control scheme is a stochastic non-parametric way
to estimate the probability density function of a random vari-
able [26]. It is a fundamental data smoothing technique
where inferences about the population are made based on a
finite data sample. Given a univariate independent and iden-
tically distributed sample drawn from some distribution
with an unknown density function, the technique can be
used to estimate the shape of the density function.

The details of the proposed runtime control scheme are
described in Algorithm 2. Inputs to the algorithm are the
historical price data set () and the output of system monitor.
The closed loop control scheme works as follows. It moni-
tors whether parameters of the cloud computing environ-
ment change at all times (line 2). If no change, the system
will run with the current multiserver configurations (lines
3-5). Otherwise, it updates and solves the profit maximiza-
tion problem (lines 6-15). Lines 7-8 fit the probability den-
sity function (pdf) of user perceived value using MATLAB
function ksdensity(-) based on historical price data set ().
Line 9 updates the profit maximization problem according
to the change of the cloud computing environment (.e.,
electricity bill or rental fees). Line 10 solves the profit maxi-
mization problem using algorithm 1. The algorithm updates
the optimal cloud service price and multiserver configura-
tions in line 11, and calculates the profit of the cloud service
provider using Eq. (25) in line 12. Finally, it inserts the ser-
vice price w into the historical price data set ) in line 13.
Line 14 returns the optimal cloud service price, multiserver
configurations, and Profit of the cloud service provider.

The MATLAB function ksdensity(-) is used to fit the
probability density function of user perceived value based
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on historical price data by using kernel smoothing density
estimation. Line 18 first calculates the number of samples in
the historical price data set (). The kernel bandwidth % is a
free parameter that exhibits a strong influence on the result-
ing estimate [26]. Here, Gaussian basis functions are used to
approximate univariate data. Thus, the optimal choice for
kernel bandwidth A is calculated as line 19, which mini-
mizes the mean integrated squared error used in density
estimation [43]. std({)) computes the standard deviation of
the samples in (). Line 20 uses operator @(z) to define the
function handle g, which represents a normal probability
density function. exp(z) and sqrt(z) represent exponential
function and square root function, respectively. Based on
normal probability density function g and bandwidth A, line
21 computes the kernel density, that is probability density
function by defining the function handle ksden. mean(x) is
used to compute the average of the array. Line 22 returns
the final fitted probability density function.

Algorithm 2. Dynamic Closed Loop Control Scheme

Input: The historical price data set ), the output of system
monitor;
Output: The optimal service price w, number of servers M,
server speed s, and Profit;
1 while true do
2 Monitor if parameters of cloud computing environment
change;
3 if no change then
4 continue;
5 end
6 else
7 Q) = historical price data set;
// fit pdf using ksdensity({});
8 fx(w) — ksdensity(Q);

9 Update profit maximization problem given in (26);
10 Solve profit maximization problem using Algorithm 1;
11 Update the optimal service price w, number of servers

M, and server speed s;
12 Calculate the Profit using Equation (25);

13 Insert price w into historical price data set ();
14 return [w, M, s, Profit];

15 end

16 end

// fit pdf of user perceived value using MATLAB
function ksdensity(Q);
17 ksdensity(Q));
// get the sample number of ();
18 n =length((2);
// set the optimal bandwidth h;
19 h=std(Q) «(4/3/n)"(1/5);
// obtain the normal pdf;
20 g=@Q(z)(exp(—.5* z.2)/sqrt(2 * pi));
// compute kernel density with gandh;
21 ksden = Q(z)mean(g((x — Q)/h)/h);
22 return ksden;

5 SIMULATION-BASED EVALUATION

Extensive simulation experiments have been conducted to
validate the effectiveness of the proposed scheme. We first
describe simulation settings in detail, and then verify the
effectiveness of the proposed user perceived value-based
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TABLE 1
Experimental Parameters Table

Parameter Definition Value
T sales period 30d
T time slot 1h
N number of time slot 720
Doz maximum value of service deferment 24
Yy sensitivity factor of users of type 1 00
Wy sensitivity factor of users of type 2 0.1
Yy sensitivity factor of users of type 3 0.11

dynamic pricing model, followed by the validation of the
optimal pricing and multiserver configurations and a com-
parison study with benchmarking schemes in terms of the
profit of the cloud service provider.

5.1 Simulation Settings

The simulation experiments are conducted on a machine
equipped with 2.56 GHz Intel i7 quad-core processor and 8
GB DDR4 memory, and running a Windows version of Mat-
lab_x64. For the sake of a fair comparison, three types of
users used in [35] are also adopted in our simulation experi-
ments. Users of type 1 are delay-sensitive while users of
type 2 and 3 are delay-insensitive to the deferment of the
service requests. Data of type 1 are extracted from Youtube
USS. traffic from January 1, 2014 to January 31, 2014 [44].
Data of type 2 and 3 are extracted from GMaps and GMail
USS. traffic from January 1, 2014 to January 31, 2014 [44],
respectively. The one day ahead real-time pricing data
released by Ameren Illinois Power Corporation at January
2014 are taken as the price input in the experiment [45]. We
also assume that user perceived value X obeys the follow-
ing normal distribution, X ~ N(0,0.22)[6], [22]. In addition,
the value of other parameters used in our simulation experi-
ment are shown in Table 1.

5.2 Verify User Perceived Value-Based Dynamic
Pricing Model

This section verifies the proposed user perceived value-

based dynamic pricing model from the perspective of sup-

ply and demand law.

5.2.1 Revenue versus Service Requirement

We first analyze the relationship between the service require-
ment in terms of the number of instructions, which is
denoted by r, and the revenue of the cloud service provider.
In addition to the parameters given in Table 1, we set the
average service requirement denoted by 7 to 1 billion instruc-
tions. The number of servers M is initialized to 7, the base
speed sy and speed s of servers are both initialized to 1 billion
instructions per second, and the static power consumption
Py, is set to 2W. The parameters of dynamic power con-
sumption are assumed to be y =2.0 and ¢ = 9.4192, and
parameters of Gamma distribution are assumed to be & = 2.0
and g = 1.5[5].

Fig. 3a shows the relationship between service require-
ments and the revenue of the cloud service provider when
service request arrival rate A, is 16.15, 16.35, 16.55, 16.75,
and 16.95 billions instructions per second, respectively. It
can be seen from Fig. 3a that the revenue increases as
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service requirements increase. This indicates that the usage
of cloud services and the revenue obtained are positively
correlated under the user perceived value-based pricing
model. In addition, as shown in the figure, the revenue
decreases as )\, increases. This is because with the increase
of \,, servers can not process service requests in time, lead-
ing to a higher response time and lower quality of service.
Low quality of service will result in a smaller number of
users to purchase cloud services, thus, the revenue of the
cloud service provider decreases accordingly.

Fig. 3b shows the relationship between service require-
ments and the normalized service price when service request
arrival rate )\, is 16.15, 16.35, 16.55, 16.75, and 16.95 billions
instructions per second, respectively. From the figure, we
can see that when service requirement » < 1.4 billions, the
normalized price fluctuates with the increase of the service
requirement. When service requirement 1.4 < r < 2.6 bil-
lions, the normalized price increases with the increase of the
service requirement. When service requirement > 2.6 bil-
lions, the normalized price eventually converges to a stable
value with the increase of the service requirement.

5.2.2 Purchase Amount and Revenue versus
Service Price

Figs. 4a, 4b, 4c, and 4d demonstrate how the relationship
among the cloud service purchase amount, revenue, and the
price of cloud service changes when service request arrival
rate \, is 16.15, 16.55, 16.75, and 16.95 billions instructions
per second, respectively. As we can see from these figures,
before the service price reaches user perceived value of the
service, the purchase amount of the cloud service increases
with the increases of the price. Once the price exceeds user
perceived value of the service, the purchase amount declines
sharply. This observation is consistent with real market situ-
ation, that is, users are willing to accept a price and purchase
when the price is lower than their perceived value. However,
the user’s purchase intention will decline sharply when the
price is beyond user perceived value.

It also can be seen from Figs. 4a, 4b, 4c, and 4d that the
point where purchase amount is maximum is not necessar-
ily the point where the revenue is maximum. That is, the
revenue for the scenario of the low price and high purchase
amount is not necessarily higher than the revenue for the
scenario of the high price and low purchase amount. When
service request arrival rate A\, = 16.55, the cloud service pro-
vider can get the maximum revenue.
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5.2.3 Purchase Amount and Revenue versus Service
request arrival rate

Figs. 5a and 5b demonstrate that how the cloud service pur-
chase amount and revenue change when service request
arrival rate \, is 16.15, 16.35, 16.55, 16.75, and 16.95 billions
instructions per second, respectively. From Fig. 5a, we can
see that the optimal prices for the maximum service pur-
chase are different under diverse service request arrival rate
Ay. For the case where A, = 16.55 billions instructions per
second, the service purchase amount and the service price @
reach the maximum value at the same time when compared
to cases of different service request arrival rates. Mean-
while, the maximum purchase amount at A\, =16.35 is
approximately the same as the maximum purchase amount
at A\, = 16.75. This situation holds for the case where
A = 16.15 and A\, = 16.95. This is because with the increase
of \,, limited number of servers can not process arrived ser-
vice requests in time, leading to a higher response time,
lower quality of service, and thus a lower maximum pur-
chase amount of cloud services.

The revenue in Fig. 5b is obtained by multiplying the
purchase amount and service price in Fig. 5a. Fig. 5b shows
that the optimal prices for the maximum revenue are differ-
ent under various service request arrival rate \,. From this
figure, we observe that with the increase of )\,, the maxi-
mum revenue at different )\, increases first and then
decreases. The cloud service provider obtains the maximum
revenue when ), = 16.55 billions instructions per second.
Similarly, this is because with the increase of \,, limited
number of servers can not process arrived service requests
in time, leading to a lower maximum purchase amount of
services, and thus a lower revenue. Based on above experi-
mental results, our user perceived value-based pricing
model conforms to the supply and demand law in market.

ond)
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Fig. 5. Purchase amount and revenue versus service request arrival rate.
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5.3 Validate Multiserver Configurations for Profit
Maximization

We set the response time constraint for user requests,

denoted by b, to 0.33 seconds and the power consumption

of the server system, denoted by bs, to 10°W. The rental cost

denoted by § is set to 1.5 cents per second [6].

Fig. 6a shows the relationship between profit and the
number of working servers. It can be seen from the figure
that when service request arrival rate A, = 12.9, 13.9, 14.9,
15.9, and 16.9 billions instructions per second, the optimal
number of servers denoted by M is 16, 17, 19, 18, and 17,
respectively. It is clear that when M is small, the utilization
of working servers is approaching 1, leading to a long
response time for user requests and low quality of service
accordingly, and in turn a low profit under the user per-
ceived value-based dynamic pricing model. As M increases,
the number of user requests in the waiting queue decreases
quickly, the user requests do not have to wait too long, and
thus the profit increases under the user perceived value-
based dynamic pricing model. However, as M continues
increasing, the profit does not increase. This is because the
increase in the number of servers leads to an increase in the
maintenance cost of working servers including electricity
and rental cost.

Fig. 6b shows the relationship between profit and the
server speed s. We notice from the figure that in order to
maximize the profit, the optimal speed s is set to 0.7642,
0.9435, 1.1044, 1.1293, and 1.2838 billions instructions per
second when the service request arrival rate A, = 12.9,
13.9, 14.9, 15.9, and 16.9 billions instructions per second,
respectively. It is clear that when the server speed s is
low, the utilization of servers is approaching 1, leading to
a long response time for user requests and low quality of
service accordingly, and in turn a low profit under the
user perceived value-based pricing model. When the
server speed s is high, service requests are more likely to
be executed on time, leading to an increase in the profit
under the user perceived value-based pricing model.
However, with the continued increase in s, the profit
does not increase as expected. This is because the increase
in s leads to an increase in the cost of operating a multi-
server system.

Fig. 6¢ gives the optimal M and s of servers that maxi-
mize the profit when A, = 16.9 billions instructions per
second. It can be seen that the maximal profit is obtained
when s and M is set to 1.4351 billions instructions per
second and 17, respectively. That is, 687.9 cents of profit is
obtained when 17 servers are open and each server runs at
1.4351 billions instructions per second.
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Fig. 6. Validate server configurations for profit maximization.

5.4 Compare the Maximal Profit with Benchmarking
Pricing Strategies

The proposed user perceived value-based profit maximiza-
tion scheme is compared with two benchmarking methods
OMCPM [5] and UPMR [35]. OMCPM [5] is an efficient
pricing model that takes such factors into considerations as
service-level agreement and customer satisfaction. It derives
an optimal server configuration and service price for profit
maximization. UPMR [35] is a usage based pricing model
used by today’s major cloud service providers. The UPMR
model rewards users proportionally based on the time
length that users set as deadlines for completing their
service requests. Compared with OMCPM and UPMR, our
pricing method is based on user perceived value that
reflects users willingness to purchase cloud services.

We compare the maximal profit generated by proposed
pricing model with that generated by the two benchmark-
ing pricing models under the same experimental settings.
Two comparison experiments are conducted. In the first
experiment, user service request arrival rate ), is set to 16.9
billions instructions per second and the number of working
servers M is set to 17. In the second experiment, )\, is set to
12.55 billions instructions per second and M is set to 18. It is
clear from Fig. 7 that our proposed dynamic pricing model
is superior to the two benchmarking models. For instance,
the proposed pricing model can obtain up to 21.55 cents per
second more (31.32 percent) as compared to OMCPM
method, and 15.66 cents per second more (22.76 percent) as
compared to UPMR when A, = 16.9 billions instructions per
second, M =17, and s = 0.93 billion instructions per second.
Thus, the pricing strategy based on user perceived value
can better reflect the market demand and the cloud service
provider can obtain higher profit.

OOMCPM @UPMR B8 Proposed OOMCPM SUPMR  EProposed

Normalized profit

Normalized profit

145 63 1.96 212 o

Speed (billion instructions/second)

(@) A\y=16.9, M=17.

145

Speed (billion instructions/second)

(b) A\y=12.55, M=18.

Fig. 7. Compare the maximal profit with two benchmarking pricing
models.

Speed (billion instructions/second)

(b) Profit vs. server speed (s).

Speed (billion instructions/second)

(c) Optimal server configurations.

We further verify how the expected number of actual
buyers (E,(m)) and the corresponding revenue change
when user perceived value obeys normal distributions with
different parameters. Figs. 8a, 8b, 8c, 8d, 8e, and 8f show the
expected number of actual buyers (E,(m)) under different
expectations p and variances o? of user perceived value in
our proposed dynamic pricing model. From Figs. 8a, 8b,
and 8c, we can see that under different expectations 1, as
increases, the cloud service provider needs to increase the
service price @ to obtain the same amount of purchases.
From Figs. 8d, 8e, and 8f, we can see that under different
variances ¢?, when service price w is less than p, as o2
increases, the cloud service provider needs to decrease the
service price @ to obtain the same amount of purchases.
However, when service price w is greater than u, as o2
increases, the cloud service provider needs to increase the
service price @ to obtain the same amount of purchases.
This is because the larger the o2, the more dispersed the per-
ceived value’s distribution. Thus, in the case of the same
service price w, the purchase amount changes accordingly.

Figs. 9a, 9b, 9¢, 9d, 9¢, and 9f show the revenue under dif-
ferent expectations p and variances o® of user perceived
value in our proposed dynamic pricing model. From
Figs. 9a, 9b, and 9c, we can find that under the same pur-
chase amount, the cloud service provider needs to increase
expectation u of normal distribution, that is, users’ per-
ceived value of services, to achieve higher revenue. From
Figs. 9d, 9e, and 9f, we can see that under the same purchase
amount, the cloud service provider needs to decrease vari-
ance o2 of normal distribution to achieve higher revenue. In
general, to obtain the higher revenue, the cloud service pro-
vider needs to carry out market strategies to improve per-
ceived value of service in users’ mind. This is because
under the same purchase amount, that is, under the same
number of requests that the cloud service provider needs to
process, the corresponding expenses are the same. Thus, it
is reasonable to grow the profit of the cloud service provider
by increasing the revenue.

6 CONCLUSION

In this paper, we first propose a user perceived value-based
dynamic profit maximization mechanism that takes into
account the interaction between users and the cloud service
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Fig. 9. Verify the change in the revenue when user perceived value obeys normal distributions with different parameters (i.e., 1 and o).

provider. Subsequently, the augmented Lagrange multiplier
method is leveraged to solve the optimization problem to
derive the optimal solution, including the service price,
number of servers, and speed of servers. Finally, a dynamic
closed loop control scheme is designed to update the service
price and multiserver configurations using kernel density
estimation method. Extensive simulation results demon-
strate that our proposed profit maximization scheme fol-
lows the supply and demand law in market, and are able to
obtain 31.32 and 22.76 percent more profit compared to the
state of the art benchmarking methods OMCPM [5] and
UPMR [35], respectively.
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