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A B S T R A C T

Dynamic Voltage and Frequency Scaling (DVFS) has been widely used as a promising power management
method to reduce the energy consumption of cloud workflows. However, due to the increasing chip density,
lowering CPU voltages improperly in cloud data centers may inevitably increase soft error rate during workflow
execution. Consequently, failures of timely completion of workflow applications may often take place, which
raises serious concerns during the operation and maintenance of cloud data centers. To address such a problem,
this paper proposes a soft error-aware energy-efficient task scheduling approach for workflow applications in
DVFS-enabled cloud data centers. Under reliability and completion time constraints requested by tenants, our
approach can generate energy-efficient task schedules for workflows by allocating tasks to appropriate virtual
machines with specific operating frequencies. Comprehensive experiments on various well-known scientific
workflow benchmarks show the effectivenss of our approach. Compared with state-of-the-art methods, our
approach can achieve more than 30% energy savings while satisfying both reliability and completion time
requirements.

1. Introduction

Along with the increasing popularity of pay-as-you-go cloud ser-
vices, more and more enterprises and communities choose cloud com-
puting platforms to deploy their commercial or scientific workflow
applications, which facilitates the automated data distribution and
computation-intensive applications [1]. To achieve increasing profit in
the fierce cloud computing market, energy consumption is becoming a
major concern of workflow service providers, as the rising energy
consumption significantly contributes high operating costs and carbon
footprints to the environment. Although the execution of more cloud
workflow applications needs more energy, the high energy consump-
tion of cloud workflow execution is mainly due to the inefficient utili-
zation of computing resources [2].

As one of the most effective power management techniques,
Dynamic Voltage and Frequency Scaling (DVFS) has been widely in-
vestigated to reduce energy consumption in cloud data centers [3,4]. By
dynamically scaling down the processor frequency and voltage, DVFS
enables a task to be accomplished before its deadline with the minimum
energy consumption. Fig. 1 shows the basic components (i.e., workflow

analyzer and task scheduler) and procedures of a DVFS-enabled sche-
duler adopted by most cloud workflow service providers. To carry out a
workflow application, a user needs to submit the corresponding work-
flow request together with requirements of Quality of Service (QoS) to
some cloud workflow service provider. Such requirements usually
contain the information of expected completion time, reliability
(bearable failure ratio), and so on. Once receiving a workflow request,
the workflow analyzer will firstly analyze both the expected execution
time of each task and precedence relations among tasks, and then send
such information to the task scheduler. To efficiently execute workflow
tasks based on cloud infrastructures, a typical workflow service pro-
vider usually maintains a large set of Virtual Machines (VMs). Based on
the derived workflow task information and available VM resources, the
task scheduler can figure out an energy-efficient schedule, where each
workflow task is allocated to a VM with a specific frequency. Such a
schedule can ensure minimized energy consumption without adversely
affecting required QoS levels.

By properly lowering the frequency and voltage of VMs, the energy
consumption of DVFS-enabled cloud workflow applications can be
drastically reduced. However, since scaling down processor frequency
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and voltage increases the arrival rate of transient faults (i.e., soft er-
rors), the reliability of workflow execution will be decreased [5]. This
situation will become even worse since modern processors used in
cloud data centers are based on CMOS technology. Typically, a CMOS
processor contains billions of transistors where one or more transistors
are used to represent a logic bit with the binary values of either 0 or 1.
Unfortunately, various phenomena such as high energy cosmic particles
and cosmic rays can cause the change of binary values held by tran-
sistors by mistake, resulting in the notorious soft errors. As the in-
creasing number of transistors have a direct impact on the reliability of
a chip [6], the susceptibility of cloud data centers to transient faults
continuously increases [7]. In other words, the probability of incorrect
results or system crashes due to soft errors during cloud workflow ex-
ecutions becomes increasingly higher.

To mitigate the impact of soft errors, checkpointing with rollback-
recovery has been widely employed in cloud systems to ensure the
system reliability [8]. By using this approach, the correct VM execution
states are periodically saved in stable storages at each checkpoint.
Whenever a soft error is detected, the rollback-recovery operation en-
ables the restoration of the latest correct system state. Although
checkpointing with rollback-recovery is promising, frequent utilization
of such fault-tolerance operations is very time-consuming and ex-
pensive. The unpredictable overheads of checkpointing with rollback-
recovery operations may inevitably cause severe temporal violations in
cloud workflows [1]. Consequently, the timeliness of workflow execu-
tion results cannot be guaranteed. This is not acceptable in many sce-
narios, e.g., a daily weather forecast scientific workflow has to be ac-
complished before the broadcasting of the weather forecast programme.

To address the above problem, this paper proposes a novel three-
phase approach that can generate energy-efficient and soft error re-
silient schedules for workflow applications considering both the
checkpointing with rollback-recovery mechanism and DVFS-enabled
cloud infrastructures. In the first phase, our approach leverages the
well-known HEFT (Heterogeneous Earliest Finish Time) method [9] to
generate a feasible schedule under the given completion time and re-
liability requirements by binding each task-VM pair with an appro-
priate operating frequency. Based on our developed task remapping
approach, the second phase updates the task-to-VM mapping obtained
from the first phase by moving tasks to corresponding VMs with higher
energy-efficiency. To fully exploit the potential of spare time slots, a
reliability-aware DVFS algorithm is devised in the last phase to further
reduce the overall energy consumption. Under the given completion
time and reliability constraints, experimental results show that our
approach can generate a schedule with optimized energy consumption.

The rest of this paper is organized as follows. Section 2 presents

related work on energy and reliability-aware scheduling for workflows.
After an introduction to the modeling and problem definition of
workflow scheduling in DVFS-enabled cloud in Section 3, Section 4
describes our approach in detail. Section 5 presents the experimental
results. Finally, Section 6 concludes the paper.

2. Related work

Due to the fierce competition in todays cloud workflow market, to
save the operating costs while guaranteeing quality of service, con-
siderable scheduling algorithms have been designed to improve work-
flow energy consumption and completion time. For example,
Topcuouglu et al. [9] introduced a Heterogeneous Earliest Finish Time
(HEFT) method, which can schedule precedence constrained tasks for
workflows on a set of heterogeneous processors with the objective of
minimizing workflow completion time. To maintain sustainable cloud
data centers with ever-increasing size, Cao and Zhu [10] proposed an
energy-efficient workflow scheduling algorithm to minimize the energy
consumption while satisfying a certain QoS level. Durillo et al. [11]
developed a Pareto-based multi-objective algorithm for scheduling
workflows, which can derive optimal solutions in terms of makespan
and energy efficiency. Although the above works can effectively mini-
mize the completion time or energy consumption of workflow appli-
cations, none of them considered reliability during the task scheduling.

To guarantee the reliability of embedded and cloud systems, various
scheduling-based methods have been investigated. For example, Zhu
et al. [12] focused on the slack allocation problem for a set of real-time
tasks to minimize their energy consumption while preserving the
overall system reliability. They identified that the problem is NP-hard
and proposed two heuristic schemes to find optimized solutions. Wang
et al. [13] proposed a look-ahead genetic algorithm that can optimize
both the makespan and reliability of a workflow simultaneously. Rather
than dealing with system-level reliability, Yan et al. [14] introduced a
task-level reliability computation method based on the evaluation of
dynamic service capacity of resources. By wisely managing resources,
they proposed a reliability enhanced workflow scheduling algorithm to
maximize the reliability of task executions under budget constraint.
Zhang et al. [15] developed a bi-objective genetic algorithm (BOGA) to
pursue low energy consumption and high system reliability for work-
flow scheduling. As two mainstream fault-tolerance techniques, ex-
ecution replication and checkpointing are promising to enhance the
reliability of cloud data centers. For example, Sedaghat et al. [16]
presented an approximation technique based on their statistical relia-
bility models, which can compute the reliability of task execution in
cloud data centers considering correlated failures. To satisfy reliability
constraints, they proposed an effective scheduling algorithm that can
achieve the desired reliability with a minimum number of replicas. To
construct soft error resilient cloud computing systems, Gao et al. [17]
proposed an energy-aware fault-tolerant scheduling framework. By
using error detection and active replication, the framework can achieve
high error coverage and fault tolerance confidence. Based on check-
pointing techniques, Zhou et al. [18] proposed a heuristic that can not
only guarantee service reliability, but also minimize network and sto-
rage resource usage in cloud. Although the above approaches can
guarantee the reliability of cloud workflows, few of them consider the
impact of DVFS on transient fault occurrences.

As an efficient power management technique, DVFS has been widely
used in reducing the energy consumption of cloud computing systems.
For example, Wang et al. [3] presented an energy-efficient method to
schedule precedence-constrained parallel tasks in a DVFS-enabled
cluster by efficiently utilizing slack time for non-critical jobs. Jiang
et al. [19] presented a DVFS-based scheduling approach, which can
make a reasonable trade-off between execution time and energy con-
sumption for workflow applications. Huang et al. [20] proposed an
Enhanced Energy-efficient Scheduling (EES) algorithm for parallel ap-
plications to reduce energy consumption while meeting the

Fig. 1. Architecture of a DVFS-enabled cloud workflow scheduler.
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performance-based service level agreement (SLA). Lin et al. [4] pro-
posed a novel DVFS-based algorithm for mobile cloud computing. It can
satisfy the specified task-precedence requirements and the application
completion time constraint while minimizing the total energy dissipa-
tion in a mobile device. Tang et al. [21] proposed a DVFS-enabled
Energy-efficient Workflow Task Scheduling (DEWTS) algorithm, which
can optimize the energy savings while meeting the deadlines for par-
allel applications. Our approach is inspired by both EES and DEWTS.
We also utilize the HEFT algorithm and DVFS to optimize the overall
energy consumption of workflow tasks. However, unlike the above
methods, only our approach considers the reliability issues.

To mitigate the overheads incurred by checkpointing with rollback
recovery technique, Salehi et al. [22] introduced a two-state check-
pointing scheme for fault-tolerant hard real-time systems. By combing
with dynamic voltage scaling technique, their approach can achieve
significant energy saving while satisfying reliability constraints. How-
ever, their approach only considers independent application tasks
without considering the precedence relations among tasks. Similar to
our work, Zheng et al. [8] presented a strategy that utilizes DVFS and
checkpointing techniques to minimize energy consumption for work-
flow execution while meeting the requirements of reliability and
deadline. However, their work focuses on the design of checkpointing
and recovery strategies rather than task scheduling. To the best of our
knowledge, our work is the first attempt to minimize energy con-
sumption of cloud workflows while considering soft errors in DVFS-
enabled cloud data centers.

3. Models and problem formulation

The goal of this paper is to obtain energy-efficient task schedules for
given workflows while guaranteeing tenant-defined reliability and
completion time constraints within DVFS-enabled cloud data centers.
This section presents the system models and defines the scheduling
problem. To explain our problem more clearly, Table 1 summarizes all
the notations used in our approach.

3.1. Modeling of virtual machines

Consider a cloud platform that provides a set of heterogeneous VMs
denoted by = …S s s s{ , , , }n1 2 . Each VM is assumed to execute on a DVFS-
enabled physical processor that can operate at different voltage and
frequency levels. The physical processor of VM si is characterized by a
triplet (Vi, Fi, ci), where = …V v v v{ , , , }i i i i k,1 ,2 , represents the voltage set,

= …F f f f{ , , , }i i i i k,1 ,2 , indicates the clock frequency set, and ci denotes the
maximum processing capacity of the processor assigned to si. To sim-
plify modeling, we have < = < < …< =v v v v v0 i i i i k i

min
,1 ,2 ,

max and
< = < < …< =f f f f f0 ,i i i i k i

min
,1 ,2 ,

max where v ,i
min v ,i

max fi
min and fi

max

indicate the minimum voltage, maximum voltage, minimum frequency
and maximum frequency of the processor assigned to VM si, respec-
tively. When a processor operates at a clock frequency of fi, j, its cor-
responding supply voltage will be vi, j. The processing capacity of VM si
is measured in Million Instructions Per Second (MIPS), which is pro-
portional to its specified clock frequency. In our model, we allow VMs
to communicate with each other. We use bi, j to indicate the network
bandwidth between VM si and VM sj. Similar to the work presented in
[23], we do not consider network congestion in this paper.

3.2. Modeling of workflows

The structure of a workflow W can be modeled as a Directed Acyclic
Graph (DAG) =G E( , ),T where = …τ τ τ{ , , , }m1 2T represents the task
set and E represents the edge set of the graph. Each edge euv∈ E in the
form of (τu, τv) indicates that there is a precedence constraint between
task τu and task τv, where task τu is an immediate predecessor of task τv
and task τv is an immediate successor of task τu. Since a task may have
multiple predecessors and successors, we use pred(τu) and succ(τu) to

denote the set of immediate predecessors and successors of task τu,
respectively. A task without any predecessors is called an entry task,
and a task without any successors is called an exit task.

To model the communication between tasks, each edge euv is asso-
ciated with a weight wu, v, which denotes the size of data that needs to
be transferred from task τu to task τv. Note that a task cannot start ex-
ecution until it completely receives the output data from all of its
predecessors. Assume that task τu and task τv are assigned to VM si and
VM sj, respectively. If i≠ j, the communication cost between these two
tasks can be calculated as w

b
u v

i j

,

,
. Otherwise, since both tasks share the

same VM (i.e., =i j), the communication cost will be zero.

3.3. Modeling of tasks with fault recovery

In our approach, a workflow task is the basic execution unit. A VM
can only execute one task at a time, and a task cannot change its spe-
cified processor frequency when running on a VM. Since our model
supports DVFS, a frequency transition of VM may occur when a new
task starts. Let ci be the processing capacity (in MIPS) of VM si operating
at its maximum clock frequency f ,i

max iu be the number (in millions) of
instructions that task τu needs to execute, and fi(τu) be the actual run-
ning clock frequency of task τu on VM si. The execution time of task τu
on VM si at the maximum clock frequency fi

max is i
c
u
i
. When the clock

frequency of VM si is set to fi(τu), the execution time of task τu can be

calculated as ·i
c

f
f τ( )

u
i

i

i u

max
.

Due to the ever-increasing trend of technology scaling and wide use
of DVFS technique, CMOS logic circuits are becoming more vulnerable
to transient faults. To ensure the required system reliability, in this
paper we adopt equidistant checkpointing technique [22,24], which
assumes that the lengths of checkpoint intervals for a given task are the
same. At each checkpoint of a running task, the latest correct task state
is saved in a secure device to enable rolling back to the most recent
checkpoint by restoring its state to the saved value. In case of no fault
occurrences, we can get the best case execution time of a task that can
be calculated as the sum of original task execution time and checkpoint
overhead. Let Ni, u(f) denote the number of checkpoints deployed
during the execution of task τu on VM si with a frequency of f. The best
case execution time Φi u

best
, of task τu on VM si with a given frequency fi(τu)

can be calculated using

= +f τ i
c

f
f τ

N f τ OΦ ( ( )) ·
( )

( ( ))· ,i u
best

i u
u

i

i
max

i u
i u i u cp, ,

(1)

where Ocp denotes the time overhead of checkpointing.
Whenever a transient fault occurs during the execution of a task, the

most recent checkpoint saved in the secure device will be used to re-
cover task execution. Let

=
+

l f τ
N f τ

i
c

f
f τ

( ( )) 1
( ( )) 1

· ·
( )i u i u

i u i u

u

i

i
max

i u
,

, (2)

denote the checkpoint interval length of task τu running on VM si at a
frequency of fi(τu). Let Ku denote the worst case number of fault oc-
currences during the execution of task τu. The worst case execution time
Φi,u of task τu on VM si equals the sum of the best case execution time
Φi u

best
, and the fault recovery overhead in the presence of the maximum

Ku fault occurrences. Thus, Φi,u is formulated as

= + +f τ f τ K l f τ K OΦ ( ( )) Φ ( ( )) · ( ( )) 2· · ,i u i u i u
best

i u u i u i u u cp, , , (3)

where Ku · li, u(fi(τu)) indicates the recovery overhead of tolerating Ku

faults, and 2 · Ku ·Ocp represents the accumulative overhead of Ku

checkpoint saving operations and Ku checkpoint retrieval operations
[25]. Note that in our model the fault detection and fault recovery are
two separate processes. The fault detection process is triggered upon
the finish of a checkpoint interval. Similar to the checkpointing me-
chanism presented in [26], we assume that the fault detection overhead
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is negligible.
Let N f τ( ( ))i u

opt
i u, denote the optimal number of checkpoints that

minimizes the worst case execution time Φi, u(fi(τu)) of task τu on VM si
at the specified frequency, i.e., fi(τu). According to the inequality of
arithmetic and geometric means, N f τ( ( ))i u

opt
i u, can be derived from

Eq. (3). It can be formulated as

⎜ ⎟=
⎡

⎢
⎢
⎢

⎛
⎝

⎞
⎠

−
⎤

⎥
⎥
⎥

N f τ K
O

i
c

f
f τ

( ( )) · ·
( )

1 .i u
opt

i u
u

cp

u

i

i
max

i u
,

(4)

We can find that Ni u
opt
, is independent from the arrival rate of transient

faults. This is because in this formula we only consider the worst case
number of fault occurrences (i.e., Ku). Note that to simplify the model,
in general case we assume that Ni, u(fi(τu)) equals N f τ( ( ))i u

opt
i u, .

Assuming that the average arrival rate of transient faults on VM si at
the frequency of f is λi(f), which can be calculated using

=
−

−λ f λ( ) ·10i i
ξ

,0
·i

fi f

fi fi

max

max min [5], where λi, 0 represents the average fault
arrival rate when VM si operates at the maximum frequency f ,i

max and ξi
is a system-dependent parameter that measures the sensitivity of the
fault arrival rate to frequency scaling. Typically, the occurrence pattern
of transient faults follows the Poisson distribution. Therefore, the
probability of k transient faults occurring during the execution of task τu
on VM si at the frequency of fi(τu) can be formulated as

=
−

P k f τ
e λ f τ f τ

k
( , ( ))

·( ( ( ))·Φ ( ( )))
!

.i u i u

λ f τ f τ
i i u i u i u

k

,

( ( ))·Φ ( ( ))
,i i u i u i u,

(5)

The reliability of a task is defined as the probability that the task can
successfully finish all its execution in the presence of soft errors. In the
worst case of k transient fault occurrences, to ensure the successful
completion of task τu on VM si, k task segments in between consecutive
checkpoints are re-executed to tolerate these faults. Since the

probability of successfully recovering k faults is eλ f τ k l( ( ))·( · )i i u i u, [8], the
probability of successfully executing task τu can be calculated using

=R k f τ P k f τ e( , ( )) ( , ( ))· .i u i u i u i u
λ f τ k l

, ,
( ( ))·( · )i i u i u, (6)

Since Ku indicates the maximum number of fault occurrences, a task τu
is considered to be reliable if it can tolerate up to Ku errors during its
execution. Otherwise, the task τu will fail to finish if there are more than
Ku transient fault occurrences during its execution. Therefore, the re-
liability Ri,u of task τu on VM si at the frequency of fi(τu) can be for-
mulated as

∑=
=

R f τ P k f τ e( ( )) ( , ( ))· .i u i u
k

K

i u i u
λ k l

,
0

,
·( · )

u
i i u,0 ,

(7)

3.4. Modeling of energy consumption

Generally speaking, energy consumption of data centers comes from
various sources including cooling systems, network equipments and
physical processors. To simplify the modeling, in this paper we only
consider the energy consumption of physical processors employed by
VMs. This is mainly due to the two following reasons. First, processors
dominate system-wide power consumption [27]. Reducing the average
power consumed by physical processors can lead to lower overall en-
ergy consumption of VMs. Second, based on the observations by
Guerout et al. [28], the system-wide power consumption is in propor-
tion to the power consumed by processors. Therefore, if the energy
consumption of physical processors can be decreased by task sche-
duling, the system-wide energy consumption can also be reduced ac-
cordingly.

During the execution of a VM, its power consumption consists of
two parts, i.e., dynamic power and static power. The power

Table 1
Definitions of notations used to solve our problem.

Notations Definition

= ⋯S s s s{ , , , }n1 2 A set of VMs.
= ⋯τ τ τ{ , , , }m1 2T A task set of the given workflow.
= ⋯F f f f{ , , , }i i i i k,1 ,2 , The supply frequency set of VM si.

f ,i
max fi

min The maximum and minimum supply frequencies of VM si.

pred(τu), succ(τu) The set of immediate predecessors and successors of task τu in the given workflow.
fi(τu) The actual running clock frequency of task τu on VM si.
wu, v The size of data that needs to be transferred from task τu to τv.
bi, j The network bandwidth between VM si and sj.
iu The number (in millions) of instructions of task τu.
ci The processing capacity of VM si operating at a frequency of fi

max .
Ocp The time overhead of one checkpoint.
li, u(f) The checkpoint interval length of task τu running on VM si with a frequency of f.
Ku The maximum number of fault occurrences of task τu.

fΦ ( ),i u
best
, Φi, u(f) The best and worst case execution time of task τu on VM si with a frequency of f.

Ni, u(f) The number of checkpoints deployed during the execution of task τu on VM si with a frequency of f.

N f( )i u
opt
,

The optimal number of checkpoints that minimizes Φi, u(f).

λi(f) The average arrival rate of soft errors on VM si at the frequency of f.
λi, 0(f) The average arrival rate of soft errors on VM si at the maximum frequency fi

max .
ξi A system dependent parameter of VM si that measures the sensitivity of the fault arrival rate to frequency scaling.
Pi,u(k,f) The probability of k faults occurring during the execution of task τu that runs on VM si at a frequency of f.
Ri,u(k,f) The probability of successfully recovering k faults when task τu runs on VM si at a frequency of f.
Ri,u(f) The reliability of task τu on VM si with a frequency of f.
Pi,u(f) The power consumption of task τu on VM si with a frequency of f.
Ei,u(f) The energy consumption of task τu on VM si with a frequency of f.
STi,u(f), FTi,u(f) The actual start and finish time of task τu on VM si with a frequency of f.
A A task-to-VM mapping for a task schedule, where =A iu holds if task τu is allocated to VM si.
FLA The frequency level assignment of all tasks on their host VMs based on A, where =FL li u

A
, indicates =f τ f( )i u i l, .

R(A, FLA) The workflow reliability based on A and FLA.
E(A, FLA) The total energy consumption of a workflow based on A and FLA.
M(A, FLA) The completion time of a workflow based on A and FLA.
Rgoal The required reliability for a given workflow.
D The required completion time for a given workflow.
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consumption of executing task τu on VM si can be formulated as

= +P f τ P f τ P( ( )) ( ( )) ,i u i u i u
d

i u i u
s

, , , (8)

where Pi u
d
, and Pi u

s
, denote the dynamic power and static power of ex-

ecuting task τu on VM si, respectively. Since each VM executes on a
DVFS-enabled processor, the dynamic power Pi u

d
, of VM si can be ex-

pressed as a function of its given supply voltage vi(τu) and operating
frequency fi(τu) [27,29], i.e.,

=P f τ α v τ f τ( ( )) · ( )· ( ),i u
d

i u i i u i u,
2 (9)

where αi is a processor related constant. To evaluate the energy con-
sumption of a task, we investigate the worst case total energy Ei, u of
task τu running on VM si at the frequency fi(τu). It can be calculated as
follows:

=E f τ P f τ f τ( ( )) ( ( ))·Φ ( ( )).i u i u i u i u i u i u, , , (10)

3.5. Problem formulation

The objective of this paper is to find a task schedule that minimizes
the energy consumed by tasks of a given workflow under the reliability
and completion time constraints. This is mainly because that comple-
tion time and reliability are two major concerns of cloud tenants, which
need to be clearly specified in service level agreements. Let →A S: T
denote a task-to-VM mapping in a task schedule. We use Au to indicate
the index of the VM assigned to task τu (1≤ u≤m). For each task τu in
the workflow, =A iu holds if it is allocated to VM si in A. Let FLA be the
frequency level assignment of all the tasks on their host VMs based on
A, where =FL li u

A
, indicates that task τu is assigned to VM si with a

specified frequency, i.e., =f τ f( )i u i l, . Note that if Au≠ i, FLi u
A
, is set to

− 1 which indicates that τu cannot be allocated to si. In this paper, a task
schedule is defined as a set of triplets in the form of

⎧
⎨⎩

≤ ≤ ⎫
⎬⎭

( )τ s f u m, , 1 ,u A A FL,u u Au u
A

,
where sAu denotes the VM assigned to

τu and fA FL,u Au u
A

,
denotes the specified frequency when executing τu on

sAu. Note that a task schedule can be derived from the pair of A and FLA.
Since a workflow consists of a set of tasks with precedence con-

straints, a workflow is considered to be finished successfully when all its
tasks are finished successfully. Therefore, based on the given A and FLA

for workflow W, we can calculate the workflow reliability R as the
cumulative product of reliabilities of all the workflow tasks [15,30]. It
is formulated as

∏=
=

( )R A FL R f( , ) .A

u

m

A u A FL
1

, ,u u Au u
A

, (11)

Assuming that the workflow has a reliability constraint of Rgoal, the
derived task schedule satisfies the reliability requirement only when
Rgoal≤ R holds.

Given a workflow, we only consider the energy consumed by all its
tasks. We do not consider the energy consumed by VMs in their idle
states, or the energy wasted by turning on/off VMs, though the leakage
current or static power has dominated in the overall energy consump-
tion when the size of transistor is shrinking. This is mainly because
more and more servers support sleep mode, where the servers switch off
unneeded subsystems and put the RAM into a minimum power state. In
the sleep mode, the servers have a low power consumption. For ex-
ample, IBM is developing a new deep-sleep mode for its Power pro-
cessors that will allow them to consume almost no power when they are
idle. Moreover, the overhead of switching modern processors from
sleep mode to active mode is only about 300 ms [31]. Comparing with
the long execution time of workflow tasks, such on/off switching
overhead of VMs is negligible. Based on the energy consumption model
for an individual task presented in Eq. (10), the energy consumption of
a workflow can be formulated as

∑=
=

( )E A FL E f( , ) .A

u

m

A u A FL
1

, ,u u Au u
A

, (12)

Let STi, v and FTi, v denote the actual start time and actual finish time
of task τv on VM si following a task schedule, respectively. According to
the precedence constraints, STi, v can be calculated using

=
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w
b u v

τ pred τ
A u A FL

, ( )
, ,

( )
, ,

u v
u u Au u

A
u v

Au Av

u v
u u Au u

A

,
,
,

,

(13)

The actual finish time of task τv can be approximated as
= +FT f τ ST f τ f τ( ( )) ( ( )) Φ ( ( ))i v i v i v i v i v i v, , , considering fault recovery over-

heads. Therefore, the workflow makespan M can be calculated as

=
∈ { }( )M A FL FT f( , ) max .A

τ
A u A FL, ,

u
u u Au u

A
,T (14)

Consider a workflow W consisting of a set of tasks T with pre-
cedence constraints E, and a set of heterogeneous VMs S supporting
different voltage and frequency levels. This paper tries to find a task-to-
VM mapping A and corresponding frequency level assignment FLA, such
that the energy consumption E(A, FLA) of the workflow can be opti-
mized without violating the specified workflow completion time re-
quirement D and reliability constraint Rgoal. The problem to be ad-
dressed can be formalized as follows:

E A FLMinimize: ( , )A (15)

≤R R A FLsubject to: ( , ),goal
A (16)

≤M A FL D( , ) .A (17)

It is worth noting that although scaling down the frequencies of tasks
can reduce the overall energy consumption of a workflow, due to the
increasing chance of transient faults more checkpointing operations
may be required. This may prolong the task execution time, resulting in
completion time violation or even the increase of energy consumption.
It has been proven that the problem of reliability-aware energy man-
agement for multiple tasks is NP-hard [12]. However, the problem in-
troduced in [12] did not consider task dependencies. Since our task
scheduling problem tries to optimize the allocation of multiple depen-
dent tasks to different VMs with appropriate operating frequencies, it is
more complex than the work presented in [12]. Therefore, the problem
to be solved is NP-hard. To quickly obtain a solution, this paper pro-
poses a three-phase heuristic which can find a near-optimal task sche-
dule for a given workflow. The details of our approach are described in
the following section.

4. Our task scheduling approach

Fig. 2 presents an overview of our task scheduling approach. The
proposed approach consists of three phases: initial scheduling, task
remapping and DVFS. Given an input workflow (a set of precedence
constrained tasks), a set of heterogeneous VMs, a target completion
time D and a target reliability Rgoal, our approach can generate a task
schedule which consists of a task-to-VM mapping A and a frequency
level assignment FLA. In the first phase, the initial scheduling algorithm
firstly checks all the combinations of tasks, VMs and corresponding
frequency levels, and then figures out one feasible task-to-VM mapping
together with selected frequencies using the HEFT approach [9]. Since
HEFT always chooses a powerful VM for each task to minimize task
completion time rather than an energy-efficient VM, the energy con-
sumption of the obtained schedule is generally not optimal. Therefore,
in the second phase we develop a task remapping algorithm that can
reduce the overall energy consumption by updating the task-to-VM
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mapping obtained in the first phase. Moreover, due to the precedence
constraints among tasks, spare time slots may exist between each pair of
neighboring tasks on non-critical workflow paths. To fully take ad-
vantage of these spare time slots, a reliability-aware DVFS algorithm is
devised in the third phase to further optimize the energy consumption.
Finally, a task schedule with optimized energy consumption will be
reported satisfying both completion time and reliability constraints.
The following subsections will introduce each phase of our approach in
detail.

4.1. Initial scheduling algorithm

HEFT is a promising heuristic that can generate a minimal-delay
schedule for a given workflow on a set of heterogeneous VMs. When
searching for a schedule, HEFT firstly ranks the workflow tasks based
on their average execution cost, average communication cost and pre-
cedence constraints. Given the execution time Φi, u of task τu on VM si,
the average computation cost Φu of task τu is calculated as the average
execution time of τu on all the VMs, i.e.,

=
≤ ≤

Φ avg {Φ }.u
i n

i u
1

,
(18)

Note that the value of Φi, u is strongly affected by the assigned fre-
quency according to Eq. (3). Therefore, different frequency assignment
FLA of a task-to-VM mapping A will lead to different task ranks. Let bi, j
denote network bandwidth between VM si and VM sj. The average
communication bandwidth bavg among VMs is represented by

=
≤ ≤ ≤ ≤

b bavg { }.avg
i n j n

i j
1 ,1

,
(19)

Based on the average communication bandwidth bavg, the average
communication cost between task τu and τv can be calculated as

=c
w
b

.u v
u v

avg
,

,

(20)

Based on the above definitions, the rank of task τu (1≤ u≤m) is de-
fined as

=
⎧
⎨
⎩

+ +
∈

rank
if τ is an exit task

c rank otherwise
Φ
Φ max { } .u

u u

u
τ succ τ

u v v
( )

,
v u (21)

Note that the rank information implicitly reflects the precedence rela-
tions among tasks. It can be recursively calculated by traversing the
workflow structure starting from exit tasks.

After calculating the ranks for all the tasks, HEFT starts to dispatch

tasks to VMs one by one. At a time, HEFT selects an unassigned task
with the highest rank and assigns it to an available VM that can mini-
mize the task completion time. Once all the tasks are assigned, a task-to-
VM mapping A is generated. Although original HEFT can quickly find a
short schedule, it does not take the DVFS into account and its optimi-
zation objective is to minimize the completion time. To allow the tuning
of task frequencies, the first phase of our approach extends the HEFT
method. It enables the generation of a feasible schedule with low en-
ergy consumption while satisfying both reliability and completion time
constraints.

Algorithm 1 presents the implementation details of our initial
scheduling algorithm. The inputs of this algorithm are a set of VMs
provided by a cloud data center, a given workflow submitted by some
cloud tenant with a task set = …τ τ τ{ , , , },m1 2T and workflow completion
time and reliability constraints (i.e., D and Rgoal).

In Algorithm 1, step 1 initializes two data structures FL and Θ,
which are both two-dimensional arrays with a size of n×m. We use FL
to record the selected frequency levels for all the combinations of tasks
and VMs, where FLi, u denote the selected frequency level for task τu on
VM si. Note that FL is different from FLA. FLA is only a projection of FL
based on the task-to-VM mapping A. We use Θ to record the worst
execution time of all the task and VM combinations for the selected
frequency levels. Steps 2-5 enumerate all the task-VM pairs and select a
best frequency level for each pair with the minimum energy con-
sumption. During the enumeration, if a better frequency with lower
energy consumption is found, step 3 will update the lowest energy
consumption for the pair of τu and si searched so far, and steps 4–5 will
update the worst execution time Θi, u and frequency level FLi, u ac-
cordingly. Based on HEFT approach, step 6 figures out a preliminary
task-to-VM mapping A for the workflow based on the obtained Θ in-
formation. Note that based on A and the selected frequency levels saved
in FL, we can derive a task schedule for the workflow. Steps 7–8 cal-
culates the reliability and makespan of the schedule based on A and
FLA. If the derived schedule violates either the reliability constraint Rgoal

or the completion time constraint D, steps 9–15 will try to iteratively
adjust the frequency levels of all the task-VM pairs to achieve a better
reliability and shorter completion time. To save the generation time of
an initial near-optimal schedule, in the algorithm we do not check all
the combinations of task-VM pairs and frequencies. Instead, we tune the
frequency levels in a coarse manner as shown in steps 9–11. In each
iteration of frequency adjustment, step 10 will increase one frequency
level of the pair τu and si if its current frequency fi, l is not the highest,
and step 11 will update the worst execution time for the pair based on
the new frequency. After all the task-VM pairs updating their

Fig. 2. An overview of our approach.

T. Wu et al. Journal of Systems Architecture 84 (2018) 12–27

17



In
pu

t:
i)

A
se

to
f

V
M

s
S
=
{s

1
,s

2
,.
..
,s

n
};

ii)
A

w
or

kfl
ow

W
w

ith
ta

sk
se

tT
=
{τ

1
,τ

2
,.
..
,τ

m
};

iii
)

A
gi

ve
n

ta
rg

et
co

m
pl

et
io

n
tim

e
D

;
iv

)
A

gi
ve

n
ta

rg
et

re
lia

bi
lit

y
R

go
al

;
O

ut
pu

t:
A

n
in

iti
al

ta
sk

sc
he

du
le

ge
nI

ni
tS

ch
ed

ul
e(

S
,W
,D
,R

go
al

)
be

gi
n 1.
In

iti
al

iz
e

tw
o-

di
m

en
si

on
al

ar
ra

ys
F

L
an

d
Θ

w
ith

-1
;

fo
re

ac
h
τ u

in
W
.T

do
fo

re
ac

h
s i

in
S

do
2.

et
em

p
=
+
∞

;
fo

re
ac

h
f i,

j
in

s i
.F

i
do

if
E

i,u
(f

i,
j)
<

et
em

p
th

en
3.

et
em

p
=

E
i,u

(f
i,

j)
;/
/

E
qu

at
io

n(
10

)
4.
Θ

i,u
=
Φ

i,u
(f

i,
j)

;/
/E

qu
at

io
n

(3
)

5.
F

L
i,u
=

j;
en

d
en

d
en

d
en

d
6.

A
=

H
E

F
T

(S
,W
,Θ

);
7.

R
=

R
(A
,F

L
A
);
//

E
qu

at
io

n
(1

1)
8.

M
=

M
(A
,F

L
A
);
//

E
qu

at
io

n
(1

4)
w

hi
le

R
<

R
go

al
∨

D
<

M
do

fo
re

ac
h
τ u

in
W
.T

do
fo

re
ac

h
s i

in
S

do
9.

l
=

F
L

i,u
;

if
f i,

l
<

fm
ax

i
th

en
10

.l
=

l+
1;

F
L

i,u
=

l;
11

.Θ
i,u
=
Φ

i,u
(f

i,l
);
//

E
qu

at
io

n
(3

)
en

d
en

d
en

d
12

.A
=

H
E

F
T

(S
,W
,Θ

);
13

.R
=

R
(A
,F

L
A
);
//

E
qu

at
io

n
(1

1)
14

.M
=

M
(A
,F

L
A
);
//

E
qu

at
io

n
(1

4)
en

d
15

.r
et

ur
n

(A
,F

L
);

en
d

A
lg
or

it
hm

1.
In
it
ia
l
sc
he

du
lin

g
al
go

ri
th
m
.

T. Wu et al. Journal of Systems Architecture 84 (2018) 12–27

18



frequencies, step 12 will generate a new schedule and steps 13–14 will
re-calculate its reliability and makespan. Finally, step 15 reports the
obtained initial schedule in the form of (A, FL), where A represents the
task-to-VM mapping and FL contains the selected frequencies for A.
Note that during the frequency adjustment (steps 9–11) all the fre-
quencies of task-VM pairs are increased monotonically. In this way, the
occurrence chance of soft errors becomes less. Due to the increased
frequency levels and reduced number of checkpoints, the worst case
execution time and reliability of each task-VM pair will also be im-
proved monotonically. Consequently, when more frequency adjustment
iterations are executed, the generated initial schedule is more closer to
a feasible schedule satisfying the given constraints.

Fig. 3 presents an example of a workflow with six tasks (i.e.,
−τ τ1 6). The DAG illustrates the structure of the workflow and the

communication overhead (in Mb) between tasks. For example, when
task τ1 finishes, it will send a data block with a size of 1125 Mb to τ3.
The table in Fig. 3 shows the number of instructions (in billions) that
the tasks need to execute. We assume that there are four VMs (i.e.,

−s s1 4), where VMs s1 and s2 execute on AMD Turion MT-34 pro-
cessors, and other two VMs execute on AMD Opteron 2218 processors.
The configurations of both processors can be found in Table 4 in
Section 5.1. For example, task τ1 has 18 billion instructions and the
lowest frequency (i.e., f3, 1) of AMD Opteron 2218 processors is
1.0 GHz. Since each processor has two hardware threads, it needs 9 s to
execute task τ1 with the frequency of f3, 1. However, by considering the
overhead of Ku soft errors, the worst case execution time (i.e., Φi, u(f)) at
the frequency of f3, 1 is 13.81 s. In this example, we set the network
bandwidth between two tasks to 1 Gbps. For the workflow, we assume
that its target reliability Rgoal is 0.996 and its target completion time D
is 48 s.

Our initial scheduling algorithm consists of two parts. The first part
(steps 1–8) is to generate an intermediate schedule for the given
workflow. Based on the most energy-efficient task-VM pair information
(i.e., indicated by Θ in Algorithm 1), this part tries to obtain a schedule
with optimized completion time using the HEFT algorithm. Table 2
shows the intermediate schedule generated from the workflow pre-
sented in Fig. 3. Note that in this example all the tasks are allocated to
the VMs s3 and s4, because the HEFT algorithm does not take the energy
consumption into account. Based on Eq. (11) and Eq. (14), we can get
that the reliability and completion time of the immediate schedule are
0.9925 and 57.25 s, respectively. Neither of them satisfies the given
workflow constraints. The overall energy consumption of the im-
mediate schedule is 1803 J. The second part of our initial scheduling
algorithm tries to adjust task frequencies to meet both the completion
time and reliability constraints. Table 2(b) presents the schedule gen-
erated by the whole algorithm. We can find that by increasing the
frequency levels of tasks, we can achieve a feasible schedule under the
given completion time and reliability constraints. In this case, the
schedule can be finished within 37.25 s with a reliability of 0.9995. The
energy consumption of this schedule is 2271 J, which is more than the
one of the immediate schedule.

4.2. Task remapping algorithm

In Algorithm 1, the initial schedule is mainly generated on top of the

HEFT approach, which does not take DVFS into account. Once the
frequency levels of task-VM pairs are selected, HEFT aims at figuring
out one task-to-VM mapping with minimum completion time rather
than the lowest energy consumption. Furthermore, the granularity of
frequency adjustment is coarse in Algorithm 1. It does not consider all
possible combinations of task-VM pairs and VM frequencies. Conse-
quently, the initial schedule may not have the best task-to-VM mapping
that can lead to the lowest energy consumption. Therefore, in the
second phase our approach tries to optimize the initial schedule by
tuning its task-to-VM mapping. The goal of our task remapping algo-
rithm presented in Algorithm 2 is to search for a better task-to-VM
mapping to further reduce the overall energy consumption of the given
workflow.

Similar to the inputs of Algorithm 1, the task remapping algorithm
has two more parameters (A and FL) which indicate the initial schedule
generated by Algorithm 1. In Algorithm 2, step 1 calculates the energy
consumption Emin of the initial schedule as the baseline energy con-
sumption for the following comparison. Step 2 sorts all the tasks by
their ranks (see definitions in Eq. (21) in descending order, and saves
the result in a priority queue TPQ. While TPQ is not empty, step 3 de-
queues a task with the highest rank and records the index of its current
VM host in temp. Steps 4–12 tentatively switch tasks among VMs to
achieve better energy consumption. Step 4 declares and initializes a
variable dest to indicate the target VM of τu. If dest equals −1, it means
that there is no need to change the VM for τu. Steps 3–10 tries to
evaluate the energy consumption of the allocation for τu on different
VMs. Based on the frequency level information derived by Algorithm 1
and the new task-to-VM mapping indicated by step 5, a new schedule
can be inferred. Steps 6–8 calculate the reliability, total energy con-
sumption and makespan of this schedule, respectively. If the new
schedule satisfies all the given constraints and has a better energy
consumption, steps 9 updates the best energy consumption achieved so
far and step 10 assigns τu to a better VM (i.e., si) that costs less energy.
After a try of all VM allocations for τu, if ≠ −dest 1, we will update the
VM allocation for τu permanently. Otherwise, we will keep the VM al-
location for τu without any change. Finally, step 13 reports the newly
updated task-to-VM mapping with better overall energy consumption.

Due to the frequency adjustment in the second part (steps 9–16 of
Algorithm 1) of our initial scheduling algorithm, we sacrifice the energy
consumption to meet both the completion time and reliability con-
straints. To reduce the overall energy consumption, the second phase of
our approach tries to move tasks to VMs with better energy-efficiency.
Fig. 4 shows the remapped schedule generated by Algorithm 2 based on
the result in Table 2(b). Since VM s1 and s2 have better energy-effi-
ciency, by using Algorithm 2 task τ4 is move to s1. The completion time
and reliability of the newly obtained schedule are 43.28 s and 0.9991,
respectively. The energy consumption of this schedule is 2158 J, which
is 5% less than the schedule shown in Table 2(b) without violating the

Fig. 3. A workflow example and its task settings.

Table 2
Results of initial scheduling algorithm.

(a) Intermediate schedule generated by steps 1–8 of Algorithm 1

Tasks τ1 τ2 τ3 τ4 τ5 τ6
Host VM s3 s4 s3 s3 s4 s4
Frequency f3,1 f4,1 f3,1 f3,1 f4,1 f4,1
WCET (Φi, u(f)) 13.81 13.81 13.81 7.34 15.01 11.88
Start Time 0 15.95 13.81 32.02 30.36 45.37
Finish Time 13.81 29.76 27.62 39.36 45.37 57.25
(b) Resultant schedule of the whole Algorithm 1

Tasks τ1 τ2 τ3 τ4 τ5 τ6
Host VM s3 s4 s3 s3 s4 s4
Frequency f3,2 f4,2 f3,2 f3,2 f4,2 f4,2
WCET (Φi, u(f)) 8.75 8.75 8.75 4.96 9.45 7.56
Start Time 0 10.9 8.75 21.91 20.24 29.69
Finish Time 8.75 19.65 17.5 26.87 29.69 37.25
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given constraints.

4.3. Reliability-aware DVFS algorithm

When generating an initial schedule, our approach focuses on
quickly finding a feasible schedule in an iterative manner. In each
iteration, Algorithm 1 coarsely increases the frequency of each task-VM
pair by one level. Due to the lack of checking every possible combi-
nations of task-VM pairs and frequencies, Algorithm 1 may generate an
initial schedule with high energy consumption. Although the second
phase of our approach can improve the energy consumption by task
remapping, the updated task-to-VM mapping may be still not energy
efficient, since the effect of selected task frequencies is not studied in
Algorithm 2. Due to the precedence constraints among tasks and the
disturbance caused by task remapping process, the schedule generated
by Algorithm 2 may have large spare time slots between neighboring
tasks on non-critical workflow paths. Such slots can be utilized to en-
able DVFS, which can save the energy of tasks by scaling down their
operating frequencies. Based on these observations, we develop a re-
liability-aware DVFS method to further optimize energy consumption of
the schedule that is generated from the first two phases.

Algorithm 3 presents the details of our reliability-aware DVFS al-
gorithm. Note that for the inputs the task-to-VM mapping is generated
by Algorithm 2 and the frequencies of task-VM pairs comes from
Algorithm 1. In step 1, we create a task queue Qi for each VM si and sort
the tasks based on their temporal relations. Step 2 constructs a priority
queue TPQ to save all the tasks, which are sorted by their ranks in
descending order. For each task τu dequeued from TPQ in step 3, steps
4–9 calculate its available execution time and steps 10–16 apply DVFS
to reduce its energy consumption. To calculate the available execution
time for τu, we need to figure out two kinds of tasks: the next task that
follows τu on the same VM, and the immediate successors of τu. In step
4, we use lim1 to denote the start time of task τv that follows τu on the
same VM, use lim2 to denote the latest possible finish time for τu, and
use i to indicate the index of the assigned VM for τu. In step 5, we
calculate the earliest start time of the following task on the same VM
and save it in lim1. If τv does not exist, lim1 will be equal to the given
completion time constraint D. In our problem model, each task is as-
sumed to transfer its output data to all of its successors on time. We
need to make sure that all the successors of τu can start execution no
later than their predefined start time. Therefore, to calculate the latest
possible finish time of τu, we need to investigate the start time of all its
successive tasks as shown in steps 6–8. In step 6, we use j to denote the
index of τv. If τu and τv are allocated to different VMs, the latest possible
finish time of τu can be calculated based on the formula presented in
step 7 considering the data transfer overhead. Otherwise, if τu and τv
share the same VM, step 8 updates the latest possible finish time for τu
without considering the communication overhead between τu and τv.
Therefore, the latest possible finish time of τu can be calculated as MIN
(lim1, lim2). In step 9, atime saves the length of the maximum available
time slot for τu. After figuring out the maximum execution time slot for
τu, our approach tries to use DVFS to optimize the energy consumption
of τu. Step 10 calculates the energy consumption of τu without changing
its original frequency, which can be used as a baseline for the com-
parison. Steps 11–16 try each frequency level of VM si for task τu in an
ascending order. Step 11 records the best frequency level information

for τu on si searched so far, and tries to assign a new frequency to the
pair of τu and si. Step 12 calculates the new worst execution time for τu
based on the frequency update, and step 13 calculate the new energy
consumption accordingly. If the new frequency can lead to a better
energy consumption, step 15 will update the best energy consumption
for τu. Otherwise, both the energy and frequency information will not
be updated for τu as shown in step 16. When all the tasks in TPQ have
been optimized, step 17 will return a new frequency assignment for the
task-to-VM mapping A. Note that Algorithm 3 does not change the VM
assignment for any tasks.

In addition to task remapping that reduces energy consumption by
finding VMs with better energy-efficiency, DVFS can be used to further
lower the overall energy consumption. To achieve this goal,
Algorithm 3 tries to scale down the task frequencies by fully utilizing
the slack time between tasks. Table 3 shows the updates of task fre-
quencies for the resultant schedule in Fig. 4 after using our DVFS al-
gorithm. In this example, only the frequency level of τ6 is scaled down.
The completion time and reliability of the updated schedule are 47.6 s
and 0.998, respectively. The energy consumption of this schedule is
2085 J, which is 3.4% less than the one of the schedule obtained in
Fig. 4.

4.4. Schedule generation

Algorithm 4describes the overall process of our approach, which has
been illustrated in Fig. 2. In this algorithm, step 1 uses the function
genInitSchedule implemented in Algorithm 1 to search for an initial task
schedule that satisfies both completion time and reliability constraints.
Based on the initial schedule, step 2 invokes the function remap im-
plemented in Algorithm 2, which can be used to re-allocate tasks to
VMs with less energy consumption. To further reduce the overall energy
consumption, based on DVFS technique step 3 tries to fully utilize the
spare time slots for workflow tasks to scale down their frequencies.
Finally, step 4 reports two data structures: the task-to-VM mapping A
generated by step 2, and the optimized frequency levels for A (i.e., FLA)
derived by step 3. These two outputs can be used to derive a feasible

energy-efficient schedule in the form of {( )τ s f, ,u A A FL,u u Au u
A

,

≤ ≤u m1 }.

4.5. Complexity analysis

To analyze the computation complexity of our workflow scheduling
approach, we need to take the three phases (i.e., initial scheduling, task
remapping, DVFS) into account. Assume that n is the number of
available VMs provided by a cloud data center, m is the number of tasks
in a given workflow, and k is the maximum number of frequency levels
of all the VMs. The computation complexity of the initial scheduling
phase is O(n×m× k). Note that the computation complexity of HEFT
adopted in the first phase is O(n×m). Since the computation com-
plexity of calculating Eqs. (11) and (12) is O(m), the whole task re-
mapping phase has a computation complexity of O(n×m2). For the
third phase, the reliability-aware DVFS algorithm has a computation
complexity of O(m2× k). Since modern processors have limited number
of frequency levels (e.g., ≤ 10), we can treat k as a constant. Therefore,
the overall computation complexity of our workflow scheduling is O
(n×m2).

When the workflow scheduling problem contains a large number of
tasks and VMs, it may take a longer time to generate a task schedule
using our approach. To reduce this time, proper task clustering method
can be adopted. By partitioning workflow tasks into several clusters and
scheduling the tasks of each cluster to a set of selected VMs using our
approach, we can quickly figure out a schedule for the workflow with
reduced energy consumption. Assuming that workflow tasks are parti-
tioned into c clusters, the complexity to achieve an optimized schedule
based on task and VM clustering is O( ×n m

c

2
2 ), which needs much less

Fig. 4. Resultant schedule of the task remapping algorithm.
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schedule generation time than the scheduling method without task
clustering.

5. Performance evaluation

To evaluate the effectiveness of our approach, we investigated three
types of well-known workflows [32] from different scientific areas: (i)
CyberShake from the earthquake science filed, (ii) LIGO Inspiral from the
astrophysics area, and (iii) Montage from the astronomy field. For each
type, we consider two workflows with different scales, i.e., small
workflows that consist of 30 tasks and large workflows that have 60
tasks for each workflow. All these workflows were generated by the
toolkit WorkflowGenerator [33] based on its default configurations.

Based on the generated workflows, this section compares the per-
formance of our approach with two promising DVFS techniques, i.e.,
DEWTS [21] and EES [20] from the perspective of energy consumption
with different completion time and reliability requirements. The
DEWTS algorithm has three stages. Firstly, DEWTS tries to efficiently
allocate all the given tasks to a set of VMs using the HFET algorithm
without considering DVFS. Secondly, DEWTS greedily consolidates
tasks to as few VMs as possible. Finally, by fully utilizing the slack time
based on task scaling and reassigning, DEWTS can achieve a task-to-VM
allocation solution with optimized power consumption. Similar to
DEWTS, the EES algorithm has two phases. In the first phase, EES
prioritizes the tasks and generates a task-to-processor mapping using
the HEFT algorithm without considering DVFS. In the second phase,
EES improves the energy consumption of the mapping based on DVFS
by scheduling the nearby tasks of a non-critical jobs with a uniform
frequency. Note that the original DEWTS and EES methods focus on
minimizing the overall energy consumption while guaranteeing the
completion time of workflows. None of them support the workflow
reliability analysis. To enable fair comparison, we modified these two
approaches to incorporate the reliability modeling and evaluation
considering the effects of DVFS. All the experiments were performed on
a desktop with 3.10GHz Intel Core i5 CPU and 10GB RAM.

5.1. Experimental setup

We adopted the cloud simulator CloudSim [34] to simulate a cloud
data center which consists of 20 VMs running on two different types of
physical processors. In the experiments, we assumed that each VM
executes on one individual physical processor. We let half of the VMs
execute on AMD Turion MT-34 processors and the other half execute on
AMD Opteron 2218 processors. Both kinds of AMD processors support
DVFS operations during VM executions. Table 4 presents the voltage

Table 3
Frequency updates by the DVFS algorithm.

Tasks τ1 τ2 τ3 τ4 τ5 τ6

Pre-DVFS Frequencies f3,2 f4,2 f3,2 f1,2 f4,2 f4,2
Post-DVFS Frequencies f3,2 f4,2 f3,2 f1,2 f4,2 f4,1

Table 4
Voltage/Frequency/Power Settings of AMD Processors.

AMD Turion MT-34 AMD Opteron 2218

Frequency Voltage Power Frequency Voltage Power

0.8 GHz 0.90 V 6.25 W 1.0 GHz 1.10 V 26.16 W
1.0 GHz 1.00 V 9.65 W 1.8 GHz 1.15 V 51.47 W
1.2 GHz 1.05 V 12.76 W 2.0 GHz 1.15 V 57.19 W
1.4 GHz 1.10 V 16.34 W 2.2 GHz 1.20 V 68.49 W
1.6 GHz 1.15 V 20.41 W 2.4 GHz 1.25 V 81.08 W
1.8 GHz 1.20 V 25.00 W 2.6 GHz 1.30 V 95.00 W
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and corresponding frequency settings [35,36] of these two kinds of
processors. Based on these settings, the power consumption of a VM
running at different frequencies can be approximated using Eq. (8)
which is adopted in [37]. Note that an AMD Turion MT-34 only has one
core, while an AMD Opteron 2218 processor has two cores. Therefore,
the full processing capacity of an AMD Turion MT-34 processor (with 1
hardware thread) is 1800 MIPS, and the full processing capacity of an
AMD Opteron 2218 processor (with 2 hardware threads) is 5200 MIPS.
In the experiments, we consider the communication delays among VMs.
We set the maximum network bandwidth between two VMs to 1 Gbps.

Similar to the experimental settings presented in [5,38], in our ex-
periments the checkpoint information is saved in secure devices. We set
the time overhead of each checkpoint (i.e., Ocp) to 0.5 s. We assume that
for both types of physical processors the occurrence of transient faults
follows the same Poisson distribution, where the constant parameters λi,
0 and ξi (1≤ i≤ n) defined in Eq. (5) are set to −10 6 and 2, respectively.
For the worst case, we set the maximum number of transient faults Ku

(1≤ u≤m) during the execution of task τu to 2.
To achieve the tightest possible initial schedules, in the first phase of

our approach, we adopt the HEFT method which does not take DVFS
into account. Since HEFT assumes that all the VMs are running at the
maximum processor frequency levels, it can generate schedules with
high reliability. For example, Table 5 shows the reliability information
of the schedules generated by HEFT considering the effects of check-
pointing and rollback-recovery techniques. From this table, we can find
that HEFT can achieve high reliability (≥ 0.9995) for all the workflows
with different types and scales.

Although the HEFT approach can simultaneously maximize the

reliability and minimize the makespan of a workflow, the task execu-
tion at the highest frequencies will inevitably result in high energy
consumption. To make a tradeoff between energy consumption and
reliability, our approach tries to exploit the potential of DVFS to save
workflow energy consumption under given makespan constraints. In
the experiments, we use HEFT as the baseline approach for the com-
parison of power consumption. We set the desired workflow completion
time to =D βM ,H where MH denotes the makespan of a workflow
schedule derived by HEFT and β (≥ 1) is a constant real number. To
check the performance of our approach under different completion time
constraints, in the experiments we set β to 1.2, 1.4, 1.6 and 1.8, re-
spectively.

5.2. Results and analysis

To validate the effectiveness of our approach, we compare the en-
ergy consumption of workflows under the constraints of reliability and
completion time, respectively.

5.2.1. Results of workflows with fixed reliability goals
Figs. 5 and 6 compare the overall energy consumption of schedules

generated from the three workflows (i.e., CyberShake, LIGO Inspiral, and
Montage) under the constraints of a fixed reliability but different com-
pletion time. In these two experiments, we set the reliability constraint
Rgoal to 0.99. We used the makespan of schedules achieved by HEFT as
the baseline of completion time requirements, and used β to indicate
the relative length of completion time requirements. For example,

=β 1.2 indicates that the makespan of target schedules cannot be 1.2
times longer than the makespan of schedules derived by the HEFT ap-
proach. Note that since HEFT approach focuses on finding minimum
makespan schedules without considering DVFS, for a specific workflow
the schedules derived using the HEFT approach with different com-
pletion time constraints are the same.

In Fig. 5, we only generated one small workflow for each sub-figure.
Since all the three small workflows have the same number of tasks, their
schedule generation time for different workflow task scheduling

Table 5
Reliability of workflow schedules generated by HEFT.

CyberShake LIGO Inspiral Montage

Small 0.9997 0.9998 0.9999
Large 0.9995 0.9995 0.9997

Fig. 5. Energy consumption of small workflows under the constraints of a fixed reliability ( =R 0.99goal ) and varying completion time.

Fig. 6. Energy consumption of large workflows under the constraints of a fixed reliability ( =R 0.99goal ) and varying completion time.
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methods is quite similar. By using our approach, it costs around 1.1 s on
average to generate one schedule for a given workflow. Similar to
Fig. 5, Fig. 6 investigates the performance of our approach on three
large workflows, each of which consists of 60 tasks. By using our pro-
posed approach, it costs around 3.2 s to obtain a feasible schedule on
average. Note that the DEWTS approach is not good at dealing with
large workflows. When handling small workflows, the performance of
DEWTS is similar to the one of HEFT. However, when handling large
workflows, its performance is worse than the HEFT approach though
DVFS is enabled. For example, when dealing the large CyberShake
workflow with =β 1.2, the power consumption of the schedule derived
by DEWTS is 10% worse than the one generated by HEFT.

From Figs. 5 and 6, we can find that our approach significantly
outperforms the methods HEFT, DEWTS and EES. As an example of
CyberShake workflow shown in Fig. 5, although EES method outper-
forms both HEFT and DEWTS approaches in all the cases in terms of
power consumption, its performance is still far behind our approach.
When we adopt the completion time constraint with =β 1.8, our pro-
posed approach can save 31.3% energy as compared with EES method.
With the same constraints, our approach can save 37.1% energy as
compared with DEWTS method. From Fig. 5, we can find that DEWTS
does not improve the energy consumption too much as compared with
HEFT. In Fig. 6, the energy consumption of schedules generated by
DEWTS is worse than the one of schedules generated by HEFT. This is
because DEWTS tries to consolidate more tasks on a VM to reduce the
amount of VMs used for workflow execution. To complete tasks in time,
DEWTS has to increase execution frequencies of tasks, which leads to
high energy consumption.

When we relax completion time constraints in both Figs. 5 and 6
with larger β, we can observe that the schedules generated by our ap-
proach require less energy in a consistent manner. However, this trend
does not hold for the EES approach. We can even observe an uptrend of
energy consumption for schedules with looser completion time con-
straints in both Figs. 5 and 6. In other words, when completion time is
not a major concern in workflow scheduling with a fixed reliability
constraint, EES approach cannot guarantee its effectiveness in finding

schedules with small energy consumption. The reason of this phe-
nomenon is primarily because EES tends to assign the lowest possible
operating frequencies to workflow tasks. When the constraint of
workflow completion time extends, more tasks suffer from low relia-
bility due to their low operating frequencies. To guarantee the specified
reliability by using checkpointing and rollback-recovery techniques, the
overall workflow execution time will be prolonged. In this case, the
increased idle time between tasks together with lowered CPU utiliza-
tion may lead to more waste on static power. In contrast, our approach
considers the impacts of frequency scaling on task execution time and
scales down operating frequency for a task only if its energy con-
sumption can be decreased. Therefore, when the workflow deadline
constraint extends, the energy consumption of schedules generated by
our approach will not increase. Moreover, since our approach allows
task remapping among physical processors in the second phase, the
overall energy consumption of workflows can be further optimized.

5.2.2. Results of workflows with fixed deadlines
Figs. 7 and 8 compare the overall energy consumption of schedules

generated from the three workflows with a fixed completion time
constraint but different reliability requirements. For each workflow in
both figures, we set the completion time constraint using =β 1.4, and
we investigated the energy consumption of schedules generated by
different approaches with four reliability requirements, i.e.,

=R 0.990,goal =R 0.992,goal =R 0.994goal and =R 0.996goal . Note that in
the same sub-figure, the schedules generate by HEFT have a reliability
larger than 0.999 (see details in Table 5). Fig. 7 presents the results for
small workflows. Since the workflow size is the same and reliability
requirements are quite similar, the schedule generation time for dif-
ferent scheduling approaches here is almost the same. To achieve a
feasible schedule for a small workflow under both completion time and
reliability constraints, our approach costs around 0.92 s. Similarly, to
achieve a feasible schedule for a large workflow as shown in Fig. 7, our
approach costs around 3.14 s on average.

From these figures, we can find that the schedules generated by our
approach consume much less energy than their counterparts generated

Fig. 7. Energy consumption of small workflows under the constraints of a fixed completion time ( =β 1.4) and varying reliability.

Fig. 8. Energy consumption of large workflows under the constraints of a fixed completion time ( =β 1.4) and varying reliability.
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by HEFT, DEWTS and EES. As an example of the Montage workflow
shown in Fig. 7, when the reliability requirement is 0.996, our approach
can reduce energy consumption by 34.1% as compared to EES. More-
over, as the reliability target goes high, from these two figures we can
find a trend of increasing the overall energy consumption for each
workflow, though the difference is negligible for the DEWTS method.
This is mainly because when the completion time constraint is fixed but
the reliability target goes high, we need to increase the frequency levels
for tasks in order to reduce the average fault arrival rate during their
executions.

6. Conclusion

As a popular power management technique, DVFS has been in-
creasingly adopted in cloud data centers to reduce the energy con-
sumption of workflow applications. However, due to the scaling of
technology, improper selection of CPU frequency for VMs may drasti-
cally increase the susceptibility of cloud data centers to soft errors,
which may significantly impact the QoS and reliability of workflow
executions. Therefore, how to accomplish workflow applications on
time with less energy in the presence of soft errors is becoming a key
issue for cloud service providers. To address this problem, we proposed
a novel three-phase approach that can generate energy-efficient task
schedules for cloud workflows under both reliability and completion
time constraints. Comprehensive experimental results obtained from
various scientific workflow benchmarks show the effectiveness of our
approach. Compared to state-of-the-art approaches, our approach can
save more than 30% energy without violating reliability and comple-
tion time constraints.

In this paper, each task in a workflow is assigned with a fixed ex-
ecution time. However, this is not always true in many scenarios. For
example, due to performance variations, the execution time of the same
task on different processors of the same type can be different [39,40]. In
the future, we plan to take such factors into account to make our ap-
proach more adaptive to practical complex scenarios. Meanwhile, be-
sides power consumption, the operating cost is another major concern
of cloud service providers. Within a DVFS-enabled cloud data center,
how to optimize the cost of a given workflow while satisfying specific
deadline and reliability requirements is also an interesting topic that is
worthy of further study.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.sysarc.2018.03.001.
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