
Future Generation Computer Systems 93 (2019) 278–289

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Minimizing cost and makespan for workflow scheduling in cloud
using fuzzy dominance sort based HEFT✩

Xiumin Zhou a, Gongxuan Zhang a, Jin Sun a, Junlong Zhou a,∗, Tongquan Wei b, Shiyan Hu c

a School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
b Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China
c Department of Electrical and Computer Engineering, Michigan Technological University, MI 49931, USA

h i g h l i g h t s

• Achieving the joint optimization of monetary cost and makespan.
• Featuring the consideration of real-world pricing and resource models.
• Designing a novel workflow scheduling algorithm.
• Conducting a full validation on both real-world and synthetic workflows.

a r t i c l e i n f o

Article history:
Received 11 June 2018
Received in revised form 20 October 2018
Accepted 24 October 2018
Available online 3 November 2018

Keywords:
Cloud computing
Workflow scheduling
Multi-objective optimization
Fuzzy dominance sort
HEFT

a b s t r a c t

More and more enterprises and communities choose cloud computing platforms to deploy their com-
mercial or scientific workflow applications along with the increasing popularity of pay-as-you-go cloud
services. A major task of cloud service providers is to minimize the monetary cost and makespan of
executingworkflows in the Infrastructure as a Service (IaaS) cloud.Most of the existing techniques for cost
and makespan minimization are designed for traditional computing platforms which cannot be applied
to the cloud computing platforms with unique service-based resource managing methods and pricing
strategies. In this paper, we study the joint optimization of cost and makespan of scheduling workflows
in IaaS clouds, and propose a novel workflow scheduling scheme. In this scheme, a fuzzy dominance sort
based heterogeneous earliest-finish-time (FDHEFT) algorithm is developed which closely integrates the
fuzzy dominance sort mechanism with the list scheduling heuristic HEFT. Extensive experiments using
the real-world and synthetic workflows demonstrate the efficacy of our scheme. Our scheme can achieve
significantly better cost-makespan tradeoff fronts with remarkably higher Hypervolume and can run up
to hundreds of times faster than the state-of-the-art algorithms.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has become a very popular and effective
commercial computing model that distributes user requests on a
shared resource pool and delivers hosted services over Internet.
As a business model, it turns computing, storage, and commu-
nication resources into ordinary commodities and utilities in a
pay-as-you-gomanner [1–3]. This feature brings the opportunities
of large-scale computation without physically owning a cloud.
Infrastructure as a Service (IaaS) is one of the most common cloud

✩ This work was partially supported by National Natural Science Foundation
of China under Grants 61802185, 61272420, 61872185, and 61502234, Natural
Science Foundation of Jiangsu Province, China under Grants BK20180470 and
BK20150785, and Natural Science Foundation of Shanghai, China under Grant
16ZR1409000.
∗ Corresponding author.

E-mail address: jlzhou@njust.edu.cn (J. Zhou).

service models, offering users the ability to provision or release
pre-configured virtualmachines (VMs) froma cloud infrastructure.
Using the VMs, users can access to almost unlimited number of
computing resources with much lower ownership cost for execut-
ing applications [4].

Workflow is a widely-used model to describe scientific and
data-intensive applications deployed andhosted on the IaaS clouds
such as Amazon EC2 and other cloud providers [5–7]. It is formed
by a number of tasks and the data or control dependencies be-
tween tasks and can be represented as a directed acyclic graph
where nodes represent tasks and edges represent data or control
dependencies. Users buy services from the IaaS service provider to
execute their submittedworkflows, each ofwhich is usually associ-
ated with a deadline for the quality of services (QoS) requirement.
The IaaS service provider charges users based on the execution
of their workflows and QoS requirements. Therefore, it is natural
for the service provider to pursue the goal of reducing monetary

https://doi.org/10.1016/j.future.2018.10.046
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.10.046
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.10.046&domain=pdf
mailto:jlzhou@njust.edu.cn
https://doi.org/10.1016/j.future.2018.10.046


X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 279

cost and execution makespan, in order to gain more profits and
ensure QoS. Alkhanak et al. [8] summarized the challenges in cost-
aware approaches considering QoS performance (e.g., makespan)
as well as system functionality and architecture. Following the
concerns discussed in [8], in this paper we focus on designing a
workflow scheduling scheme that minimizes both monetary cost
and makespan.

Considerable research efforts have been devoted to the in-
vestigation of workflow scheduling for optimizing monetary cost
and execution makespan in heterogeneous computing environ-
ments. Multi-objective optimization are the most common ap-
proaches used tominimizemonetary cost and executionmakespan
simultaneously. Su et al. [9] formulated an optimization prob-
lem of scheduling tasks with multiple VMs and different pric-
ing models for jointly minimizing cost and makespan, and pro-
posed a pareto optimal scheduling heuristic that combines cost
and makespan into one parameter to represent the preference of
the both objectives. Based on the classical Particle Swarm Opti-
mization (PSO) algorithm,Garg and Singhdeveloped two improved
versions of PSO, i.e., non-dominated sort PSO (NSPSO) [10] and
ε-Fuzzy PSO [11]. NSPSO [10] extends the basic form of PSO by
making a better use of particle personal bests and offspring for
effective non-domination comparisons while ε-Fuzzy PSO [11] in-
corporates a fuzzy based mechanism into PSO for determining the
best compromised solutions. Similarly, NSGAII* and SPEA2* [12]
are designed for the workflow scheduling problem, which im-
prove the evolutionary algorithms NSGAII and SPEA2, respectively.
Recently, Durillo et al. [13] introduced a novel multi-objective
method called multi-objective heterogeneous earliest-finish-time
(MOHEFT) algorithm for scheduling workflows in Amazon EC2,
which is an extension to the well-known list heuristic HEFT [14]
that solves themono-objective workflow scheduling problem. Un-
like HEFT [14], MOHEFT [13] builds several intermediate workflow
schedules in parallel in each step instead of a single schedule and
uses dominance relationships and crowding distance to ensure the
diversity of tradeoff solutions. However, all the aboveworks cannot
be directly applied to cloud environments since they are almost
designed for traditional heterogeneous computing environments.

In this paper, we focus on the workflow scheduling problem of
minimizing cost and makespan simultaneously under the prece-
dence constraints of tasks in theworkflow.Wedesign a fuzzy dom-
inance sort based heterogeneous earliest-finish-time (FDHEFT) al-
gorithm to solve the workflow scheduling problem in cloud. Sim-
ilar to MOHEFT, FDHEFT is also an improved version of HEFT and
can be divided into two major phases, i.e., task prioritizing phase
and instance selection phase. In the task prioritizing phase, the
scheduling priorities of all tasks in the workflow are assigned and
then in the instance selection phase, the best instance for each
task in the scheduling list is determined. Compared to MOHEFT,
FDHEFT can not only achieve a lower time overhead by pruning the
candidate tradeoff solutions but also find out the better solutions
by using fuzzy dominance sort. To the best of our knowledge, FD-
HEFT is the first attempt that extends the list-based heuristic HEFT
for multi-objective workflow scheduling in a cloud computing
environment using fuzzy dominance sort. The major contributions
of this paper can be summarized as follows.

• We formulate the problem of jointly minimizing monetary
cost and makespan for executing workflows in cloud under
the constraint of task precedence.
• We propose a new list scheduling algorithm FDHEFT to solve

the multi-objective workflow scheduling problem. Specifi-
cally, we apply fuzzy dominance sort to HEFT and use fuzzy
dominance to measure the relative fitness of solutions in
multi-objective domain.

• We conduct extensive simulation experiments to validate
FDHEFT. We compare our FDHEFT with a number of repre-
sentative multi-objective optimization algorithms, including
NSPSO [10], ε-Fuzzy PSO [11], SPEA2* [12], andMOHEFT [13].
Extensive experimental results on standard and synthetic
workflow applications show the efficacy of our scheme.

Our scheme can achieve better solutions with higher Hypervol-
ume and less CPU runtime as compared to a number of peer
approaches. Concretely, the cost-makespan pareto optimal solu-
tions obtained by our algorithms have a distinct advantage over
the peer approaches and the time overhead of our algorithms for
generating solutions are only a small percentage of that of the peer
approaches.

The remainder of this paper is organized as follows. Section 2
introduces system models and Section 3 defines our concerned
workflow scheduling problem. Section 4 describes our proposed
FDHEFT algorithm to solve the problem and Section 5 validates the
effectiveness of FDHEFT. Concluding remarks are given in Section
6.

2. Systemmodels

This section introduces theworkflowmodel aswell as the cloud
resource model used in the paper.

2.1. Workflow model

The structure of a workflow W can be modeled as a direct
acyclic graph (DAG) G = (T ,D), where T = {T1, T2, . . . , Tn}
represents the set of n tasks in the workflow application and D =
{(Ti, Tj)|Ti, Tj ∈ T } represents the set of data flow dependencies
among tasks. The data flow dependency, represented by (Ti, Tj),
indicates that there is a precedence constraint between tasks Ti and
Tj, where task Ti is an immediate predecessor of task Tj and task Tj
is an immediate successor of task Ti. Since a taskmay havemultiple
predecessors and successors, we use Pre(Ti) and Succ(Ti) to denote
the set of immediate predecessors and successors of task Ti. That
is,

Pre(Ti) = {Tj|(Tj, Ti) ∈ D}, (1)

Succ(Ti) = {Tj|(Ti, Tj) ∈ D}. (2)

A task without any predecessors is called an entry task Tentry and
satisfies

Pre(Tentry) = ∅, (3)

while a task without any successors is called an exit task Texit and
satisfies

Succ(Texit) = ∅. (4)

Fig. 1 gives an example of a workflow represented by a DAG with
7 nodes and 10 edges. As we know, most workflow scheduling
algorithms require a DAG with only one Tentry and one Texit, which
can be easily realized by adding a pseudo Tentry and/or a pseudo
Texit with zero weight to the DAG. As in [4,15,16], we also use the
same assumption that every workflow has only one Tentry and one
Texit.

2.2. Resource model

IaaS provides pre-configured VMs from a cloud infrastructure
for users to deploy their own applications, and thus are most
suitable for executing workflows [17]. The running VM in an IaaS
platform is also called an instance. As we know, an IaaS platform
is able to provide a variety of instance types such as CPU capacity,
network bandwidth, andmemory storage. For example, real-world



280 X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289

Fig. 1. An example of workflow application with data precedence.

IaaS cloud platform Amazon EC2 provides VM instances with dif-
ferent CPU capacities tomeet different demands of various applica-
tions. In this paper, we consider CPU capacities that determine task
execution time and bandwidths that affect data transformation
time, for each instance type.

Let I =
⋃
∞

s=1{Is} denote all the available instances in an IaaS
platform, which means the number of instances that a client can
access is unlimited. Let R =

⋃m
k=1{Rk} denote the all the instance

types where m is the number of the types. Then we can use Rk =

Type(Is) to indicate the relation that instance Is belongs to type Rk.
The concept of compute unit (CU) is adopted by IaaS providers to
accurately describe the CPU capacities of different instance types,
which follows that the larger the CU, the higher computing perfor-
mance of the instance. Apparently, CU determines the execution
time of tasks. For example, if the CU of an instance is doubled,
the execution time of the tasks running on this instance would be
halved.We also define that the reference execution time of a task is
the time of executing this task on an instancewhose CU equals to 1.
Let CU(Ti) and RET(Ti) be the compute unit and reference execution
time of task Ti, respectively, the actual execution time AET(Ti) of
task Ti running on instance Is is then formulated as

AET(Ti) =
RET(Ti)

CU
(
Type(Is)

) = RET(Ti)
CU

(
Rk

) . (5)

CMT(Ti, Tj) =

⎧⎨⎩
DATA(Ti,Tj)

min
{
BW

(
Type(Iα )

)
,BW

(
Type(Iβ )

)} , Iα ̸= Iβ ,

0, Iα = Iβ .
(6)

Inter-task communications need to be taken into account due
to the data flow dependency among tasks. The communication
time between two tasks is determined by the communication
bandwidths of instances and the size of transferred data, and is
considered negligible only when the two tasks are running on
the same instance. In general, the communication bandwidths are
different for different instance types. The order of data transfers
among tasks on instances is consistent with the scheduling order
of tasks, which is decided by a rank function and is discussed
in detail later. Taking tasks T1 − T3 of Fig. 1 as an example, we
assume that task T1 is running on instance I1 and tasks T2, T3 are
running on instance I2. If the scheduling order of these tasks is
determined as ⟨T1, T2, T3⟩, the data transfer between T1 and T3
accordingly needs to be after the data transfer between T1 and T2.
In other words, the two data transfers would not use the same
communication link at the same time. Thus we can safely assume
that each data transfer is allowed to use the full bandwidth, same
as in [4]. Let BW(Rk) represent the bandwidth of instance type Rk,
and DATA(Ti, Tj) represent the size of data transferred from Ti to
Tj. Supposing tasks Ti and Tj are running on instances Iα and Iβ ,
respectively, the communication time CMT(Ti, Tj) between tasks Ti
and Tj is then described in Eq. (6).

3. Problem definition

This section first formulates the multi-objective workflow
scheduling problem thatwe are trying to solve and then introduces
the basics of multi-objective optimization.

3.1. Problem formulation

In this paper, we address the scheduling problem ofminimizing
makespan and cost simultaneously for workflows in cloud. Before
giving the formal definition of our problem, we first show how to
calculate makespan and cost. Let ST(Ti) and FT(Ti) denote the start
time and finish time of task Ti, respectively. Since the start time
of task Ti depends on the finish time of all its predecessors Pre(Ti),
the communication time CMT(Tj, Ti) between its predecessors and
itself, and the finish time FT(Tj) of the previous task that has been
executed on the same instance, the finish time FT(Ti) of task Ti is
calculated as

FT(Ti) = ST(Ti)+ AET(Ti) = max
{
AVA

(
Ins(Ti)

)
,

max
Tj∈Pre(Ti)

(
FT(Tj)+ CMT(Tj, Ti)

)}
+ AET(Ti), (7)

whereAVA
(
Ins(Ti)

)
is the available timeof instance Ins(Ti) that task

Ti executes on, and changes dynamically during scheduling. Note
that the start time of entry task Tentry is zero, i.e., FT(Tentry) = 0.
The makespan defined as the finish time of exit task Texit is then
formulated as

Makespan = FT(Texit), (8)

where FT(Texit) can be obtained using Eq. (7).
Let PC = {PC1, PC2, . . . , PCH} denote the set of pricing op-

tions for using the services provided by an IaaS platform, and
MC(PCh, Rk, Is) denote the monetary cost of running instance Is
with type Rk using pricingmodel PCh, where PCh ∈ PC (1 ≤ h ≤ H).
We do not have any further assumption on the pricing model such
that the model could be generic for most IaaS platforms. Based on
the pricing model, the total monetary cost of executing all tasks in
the workflow can be expressed as

Cost =
∑
Is∈I∗

MC(PCh, Type(Is), Is)

=

∑
Is∈I∗

MC(PCh, Rk, Is), (9)

where I∗ = {Is | ∃Ti ∈ T : Ins(Ti) = Is} is the set of instances used
to execute all tasks in the set T .

Now we define our studied problem as follows. Given a work-
flow represented by a directed acyclic graph G = (T ,D) and an
IaaS platform represented by S = (I, R, PC), design a workflow
scheduling scheme that determines the scheduling order of tasks
and two assignments (task-to-instance assignment and instance-
to-type assignment), in order to minimize makespan (given in
Eq. (8)) and cost (given in Eq. (9)) simultaneously while satisfying
the constraint on task precedence. The task scheduling order is
used to ensure the dependency constraints between tasks, that is,
a task cannot be scheduled unless all its predecessors have been
scheduled. The task-to-instance assignment indicates which in-
stance every task is put on while the instance-to-type assignment
indicates which type of every instance is.

3.2. Basics of multi-objective optimization

Our workflow scheduling problem of jointly minimizing
makespan and cost is a typical multi-objective optimization prob-
lem (MOP), which is a type of problem that has several conflicting



X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 281

Fig. 2. Pareto optimal front for bi-objective minimization.

objectives which need to be optimized simultaneously:

Minimize F(x) =
(
F1(x), F2(x), . . . , Fr (x)

)T
Subject to x ∈ X (10)

where X is the solution space and Fr (x) is the rth objective of
solution x. Our concernedworkflow scheduling problem is anMOP
since optimizing makespan and cost conflict with each other. To
handle the conflict between both objectives, pareto dominance is
commonly used to compare solutions. Let x1 and x2 be the two
solutions to an MOP (i.e., x1, x2 ∈ X), x1 is then said to dominate x2
if and only if

∀p : Fp(x1) ≤ Fp(x2) ∧ ∃q : Fq(x1) < Fq(x2). (11)

A solution xopt is pareto optimal if it is not dominated by any other
solutions. The set of all pareto optimal solutions in the objective
space is called pareto optimal front (see [18] for more details). As
illustrated in Fig. 2, each point from x1 to x8 represents a solution of
a bi-objective minimization problem. The points x1, x2, x3, x4, and
x5 are pareto optimal while points x6, x7, and x8 are not since they
are dominated by other points.

4. Our approach to minimize makespan and cost

We design a novel algorithm FDHEFT to solve the multi-
objective workflow scheduling problem, which is an extension
to the classical list scheduling heuristic HEFT. Below, we first
have some discussion on HEFT and HEFT-based algorithms, then
introduce the basics of fuzzy dominance sort, and finally present
the details about FDHEFT.

4.1. Discussion on HEFT and HEFT-based algorithms

HEFT [14] is the most popular algorithm for obtaining the op-
timized workflow scheduling on a bounded number of heteroge-
neous computing resources. As a list-based heuristic, HEFT has two
major phases: task prioritizing phase and instance selection phase.
In the task prioritizing phase, HEFT calculates the priorities of all
tasks and then in the instance selection phase, HEFT selects the
tasks in the order of their priorities and schedules each selected
task on its best instance to minimize the task’s finish time. How-
ever, HEFT can only solve themono-objectiveworkflow scheduling
problem. Thus, Durillo et al. [13] extends HEFT to amulti-objective
algorithm (MOHEFT) by building several intermediate workflow
schedules in parallel in each step, instead of a single one. However,
complete coverage traversing is adopted in MOHEFT to generate
new solutions for assigning tasks to instances, leading to a large
amount of time.

To reduce the time complexity ofMOHEFT and obtain the trade-
off solutions with better quality, we design a fuzzy dominance
sort based heterogeneous earliest-finish-time algorithm named
FDHEFT that incorporates a fuzzy dominance sort based mecha-
nism to determine the best compromised solutions. The proposed
FDHEFT is highly effective in exploring tradeoff solutions of high
quality and providing fast convergence for our concerned multi-
objective problem.

4.2. Basics of fuzzy dominance sort

The concept of pareto optimality is introduced to compare the
multiple solutions to anMOP since it is impossible to find a solution
that is best with respect to all the objectives. However, all the
pareto optimal solutions must be treated as equally good since
they are non-dominated. As a result, non-dominance based sorting
algorithms would inevitably have the drawback of not providing
a complete framework for easy implementation of new methods
since the algorithms do not measure the extents by which one
solution dominates another [11]. A newmeasure called fuzzy dom-
inance [19]which correlatesmore directlywith the crisp definition
of dominance and has been shown to produce a quick convergence,
is proposed to solve the aforementioned defects. In this paper,
we design a fuzzy dominance sort based heterogeneous earliest-
finish-time algorithm FDHEFT to solve the workflow scheduling
problem of minimizing makespan and cost. We introduce the
basics of fuzzy dominance sort as follows and show the details of
our FDHEFT in Section 4.3.

Suppose the multi-objective minimization problem involvesM
simultaneous objective functions fr (·) where r = 1, 2, . . . ,M , and
letΨ ⊂ Rσ be the solution space that contains all the possible solu-
tion vectors where σ is the dimensionality. Then, fuzzy dominance
related conceptions [19] can be described below.

• Definition 1: Fuzzy r-dominance by a solution. Given a
monotonically non-decreasing function µdom

r whose value is
in the range of [0, 1], where r ∈ {1, 2, . . . ,M}. A solution
u ∈ Ψ is said to r-dominate solution v ∈ Ψ iff fr (u) < fr (v)
holds. This relationship can be represented as u ≻F

r v. If
u ≻F

r v, the degree of fuzzy r-dominance is equal to

µdom
r (fr (v)− fr (u)) ≡ µdom

r (u ≻F
r v). (12)

Fuzzy dominance can be regarded as a fuzzy relationship
u ≻F

r v between u and v.
• Definition 2: Fuzzy dominance by a solution. Solution u ∈

Ψ is said to fuzzy dominate solution v ∈ Ψ iff ∀r ∈
{1, 2, . . . ,M}, u ≻F

r v holds. This relationship can be rep-
resented as u ≻F v. The degree of fuzzy dominance can be
defined by invoking the concept of fuzzy intersection. If u ≻F

v, the degree of fuzzy dominanceµdom(u ≻F v) is obtained by
computing the intersection of the fuzzy relationships u ≻F

r v
for each r as

µdom(u ≻F v) =
M⋂
r=1

µdom
r (u ≻F

r v), (13)

where
⋂

is the fuzzy intersection operation and µdom
r (u ≻F

r
v) is given in Eq. (12).
• Definition 3: Fuzzy dominance in a solution set. Given a

solution set S ⊂ Ψ , a solution v ∈ S is said to be fuzzy
dominated in S iff it is fuzzy dominated by any other solution
u in S. In such a case, the degree of fuzzy dominance can
be calculated by performing a union operation

⋃
over every

possible µdom(u ≻F v), i.e.,

µdom(S ≻F v) =
⋃
u∈S

µdom(u ≻F v), (14)

where µdom(u ≻F v) is given in Eq. (13).

It is clear fromDefinitions 1–3 that the selection ofmembership
functions µdom

r (·) are crucial to find high quality solutions. Accord-
ing to the implementation of fuzzy dominance [19], the member-
ship functions µdom

r (·) for obtaining the fuzzy r-dominance are
required to be zero for negative arguments. In other words, the
value of µdom

r (fr (v) − fr (u)) is necessarily zero if fr (u) ≥ fr (v). Let
∆r represent the maximum value of fr (v) − fr (u). Similar to the



282 X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289

membership functions defined in [11], we setµdom
r (fr (v)− fr (u)) to

1 if fr (v) − fr (u) = ∆r , indicating that µdom
r (fr (v) − fr (u)) reaches

its maximum value, and set it to the ratio between fr (v)− fr (u) and
∆r . Mathematically, the membership function µdom

r (fr (v) − fr (u))
is written as

µdom
r (∆fr ) =

⎧⎪⎪⎨⎪⎪⎩
0, ∆fr ≤ 0
∆fr
∆r

, 0 < ∆fr < ∆r

1, ∆fr ≥ ∆r

⎫⎪⎪⎬⎪⎪⎭ = µdom
r (u ≻F

r v), (15)

where ∆fr = fr (v)− fr (u).
After determining themembership functions, each solution can

be assigned a single value of fuzzy dominance to reflect the degree
that this solution dominates the other solutions in a solution set.
The lower the fuzzy dominance value is assigned, the better the
solution is. Therefore, sorting solutions according to their fuzzy
dominance values can easily help us find the solutions close to
the pareto front. In this paper, we use a fuzzy dominance sorting
procedure to find and select the best K solutions in each round of
solution generation.

4.3. Details on our FDHEFT algorithm

As discussed in Section 4.1, FDHEFT is an extension to the
list-based scheduling algorithm HEFT, and thus can be divided
into two phases: task prioritizing phase and instance selection
phase. In the task prioritizing phase, FDHEFT sorts all the tasks
of a given workflow in the non-increasing order of upward rank
values, i.e., taskswith larger upward rank valueswould be assigned
higher priorities. In the instance selection phase, FDHEFT sorts all
the generated schedule solutions based on their fuzzy dominance
values and selects the best K solutions. The pseudo code of FDHEFT
is given in Algorithm 1. Before showing the details of Algorithm
1, we first define some key variables used in the algorithm. Let
S =

⋃K
ℓ=1 Sℓ denote the set of K selected tradeoff solutions, where

Sℓ =
⋃n

i=1(Ti, Is, Type(Is)) is the ℓth selected solution and each of
the K selected solutions decides the instance and instance type for
n tasks. Since each task can be only executed on one instance, up to
n instances are needed for a workflow containing n tasks to ensure
that all possible solutions of task-to-instance assignments can be
created.

The algorithm takes as inputs a workflow W represented by
G = (T ,D) and a set of instances represented by I =

⋃n
s=1 Is.

The n instances can be any type of R =
⋃m

k=1{Rk}. Similar to HEFT,
the algorithm first determines the scheduling order of tasks in set
T by Rank ← UpRank(T ) (line 1), where UpRank() is a function
used to calculate the task upward rank values and sort tasks based
on upward rank values, and Rank is a scheduling list in which
tasks are in the non-increasing order of upward rank value. The
details of UpRank function can be found in [14]. The algorithm then
initializes the solution set S by S ← {S ′ℓ} and S ′ℓ ← ∅ (line 2),where
S ′ℓ is a temporary solution and is initialized to empty. Afterwards,
the algorithm iteratively determines the tradeoff solutions of task-
to-instance and instance-to-type assignments for all tasks (lines
3–17). In each round of iteration, the algorithm first employs a
temporary set S ′ to store all possible solutions of assigning task Ti to
n instances and determining the types of assigned instances, which
is initialized to empty (line 4). The algorithm then creates the
possible solutions in the following way. At the beginning the type
of each instance is not determined andwill be fixed once a task has
been assigned to the instance. Thus, when the algorithm creates a
solution of assigning task Ti to instance Is, the algorithm needs to
check whether the type of instance Is is determined. If the type of
instance Is has not been decided, the solution can be generated by
binding Is to an arbitrary type, then S ′ℓ and S ′ are hence updated
(lines 11–14). Otherwise, the solution is directly generated when

Algorithm 1: Fuzzy Dominance Sort Based HEFT
Input: WorkflowW , represented by G = (T ,D);
A set of n instances withm types, represented by I =

⋃n
s=1 Is

and R =
⋃m

k=1{Rk};
1 Rank← UpRank(T );
2 S ← {S ′ℓ}where S ′ℓ ← ∅; // len(S) = 1, S1 = ∅
3 for i← 1 to n do
4 S ′ ← ∅ ;
5 for ℓ← 1 to len(S) do
6 for s← 1 to n do
7 if type of instance Is in solution Sℓ has been decided

then
8 S ′ℓ ← Sℓ ∪ (Ranki, Is, Type(Is));
9 S ′ ← S ′ ∪ {S ′ℓ};

10 else
11 for k← 1 to m do
12 Type(Is)← Rk;
13 S ′ℓ ← Sℓ ∪ (Ranki, Is, Type(Is));
14 S ′ ← S ′ ∪ {S ′ℓ};
15 break;

16 S ′ ← FuzzyDomianceSort(S ′);
17 S ← SelectFirstKItems(S ′, K );

18 return S =
⋃K

ℓ=1 Sℓ;

task Ti is assigned to instance Is with a fixed type, then S ′ℓ and S ′ are
also updated (lines 7–9). After obtaining all the possible solutions,
the algorithm sorts these solutions based on their fuzzy dominance
values by S ′ ← FuzzyDomianceSort(S ′), and chooses the first K
solutions in S ′ to form S by S ← SelectFirstKItems(S ′, K ) (lines
16–17). If the assignments of all tasks have been determined, the
algorithm exits and returns the set of tradeoff solutions, which is
represented by S =

⋃K
ℓ=1 Sℓ where Sℓ =

⋃n
i=1(Ti, Is, Type(Is)) (line

18).
For the purpose of a better understanding of FDHEFT, Fig. 3

gives an example to show the process of generating and selecting
solutions for a given task set T = {T1, T2, T3} running on an
instance set I = {I1, I2} with type R = {R1, R2}. The three tasks
have been sorted using UpRank function and will be assigned
in sequence. The number of selected tradeoff solutions used in
this example, K , is set to 2. When task T1 is ready, two possible
solutions are constructed and stored in the temporary solution
set S ′, i.e., S ′ = {S1, S2} = {{(T1, I1, R1)}, {(T1, I1, R2)}}. Both
solutions are selected and stored in the solution set S using S ′ ←
FuzzyDomianceSort(S ′) and S ← SelectFirstKItems(S ′, K ). In a
similar manner, when task T1 has been assigned and task T2 is
ready, six possible solutions are constructed and stored in set S ′,
and solutions S2, S5 are selected from S ′ and stored in set S. Finally,
when tasks T1 and T2 have been assigned and task T3 is ready, eight
solutions are constructed and stored in set S ′, and solutions S1, S4
are selected from S ′ and stored in set S. As a result, S = {S1, S4} =
{{(T1, I1, R1), (T2, I2, R1), (T3, I1, R1)}, {(T1, I1, R2), (T2, I2, R1),
(T3, I3, R2)}} is the set of tradeoff solutions obtained by FDHEFT.
Note that we focus on presenting the high-level overview of FD-
HEFT and thus omit introducing how to perform fuzzy dominance
sort in this example.

The fuzzy dominance sort FuzzyDomianceSort() consists of two
major parts, i.e., fuzzy dominance value calculation (FDVC) proce-
dure used to derive the fuzzy dominance values of solutions and
perimeter value assignment (PVA) procedure used to handle the
solutions with identical dominance values. The details about these
two procedures are described in Algorithms 2 and 3, respectively.



X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 283

Fig. 3. An example to show the high-level overview of FDHEFT.

Algorithm 2: Fuzzy Dominance Value Calculation
Input: Solution set S;

1 for ℓ← 1 to len(S) do
2 κ ← 0; // a temporary variable to store the value of

µdom(S ≻F Sℓ)
3 for j← 1 to len(S) do
4 if ℓ = j then
5 continue;
6 µ← 1;
7 if Sj ≻ Sℓ then
8 for r ← 1 to M do
9 derive µdom

ℓ (fr (Sℓ)− fr (Sj)) using Eqs. (12) and
(15);

10 according to Eq. (13), calculate µ by
µ← µ ∩ µdom

ℓ (fr (Sℓ)− fr (Sj)) ;

11 according to Eq. (14), obtain κ by κ ← κ ∪ µ;
12 µdom(S ≻F Sℓ)← κ ;

Algorithms 2 iteratively determines the fuzzy dominance value of
each solution in a given solution set S based on Definitions 1–3
presented in Section 4.2. The algorithmmainly operates as follows.
It uses a temporary variable κ to store the value of fuzzy dominance
in a solution set represented by µdom(S ≻F Sℓ) (lines 2 and 12).
To derive the fuzzy dominance in a solution set using Eq. (14), it
needs to calculate the fuzzy r-dominance by a solution using Eqs.
(12) and (15) and to compute the fuzzy dominance by a solution
using Eq. (13) at first (lines 9–10).

After calculating the fuzzy dominance values of solutions, one
immediate question is how to determine which solution is better
if some solutions have the same fuzzy dominance value. To handle
this case, we employ the diversity fitness function [20] as the
criteria to compare the solutions with the same fuzzy dominance
value, which equals to the perimeter of the largest M dimensional
hypercube in the objective space. The perimeter of a solution

indicates the region of sparsity along the solution. Given a solution
Sℓ in set S, the perimeter value of Sℓ is

P(Sℓ) =
M∑
r=1

fr (u)− fr (v)
max fr −min fr

(16)

where M is the number of objective functions, and u and v are
solutions that are adjacent to solution Sℓ with the same fuzzy
dominance value. fr (u) and fr (v) are the values of rth objective of
solutions u and v, respectively. max fr and min fr are the maximal
and minimal values of rth objective of all solutions in set S.
Algorithm 3: Perimeter Value Assignment

Input: Solution set S;
1 L← len(S);
2 for ℓ← 1 to L do
3 P(Sℓ)← 0;
4 for r ← 1 to M do
5 S ← Sort(S, fr ); // sort all solutions in set S based on their

values of objective fr
6 P(S1)←∞;
7 P(SL)←∞;
8 for ℓ← 2 to (L− 1) do
9 P(Sℓ)← P(Sℓ)+

Sr
ℓ+1−S

r
ℓ−1

max Sr−min Sr ;
// derive P(Sℓ) using Eq. (16)

According to the definition of diversity fitness function [20],
the perimeters of boundary solutions on the tradeoff optimal front
are assigned infinity. In addition, solutions with higher perimeter
values are preferred since using this way is beneficial to main-
taining the diversity of the solutions. The pseudo code of PVA is
given in Algorithm 3. It first calculates the number L of solutions
in set S and initializes the perimeter values of all solutions to
zero (lines 1–3), and then iteratively derives the perimeter values
of all solutions with respect to their M objectives (line 4–9). In
each round of iteration, the algorithm sorts all solutions in set S
based on their values of objective fr (line 5), sets the perimeters of



284 X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289

Table 1
Characteristics of the real-world workflows.
Workflow Number

of nodes
Number
of edges

Average
data size

Average task
runtime (CU=1)

CyberShake 30 30 112 747.48 MB 23.77 s
CyberShake 50 50 188 864.74 MB 29.32 s
CyberShake 100 100 380 849.60 MB 31.53 s

Inspiral 30 30 95 9.00 MB 206.78 s
Inspiral 50 50 160 9.16 MB 226.19 s
Inspiral 100 100 319 8.93 MB 206.12 s

Montage 25 25 95 3.43 MB 8.44 s
Montage 50 50 206 3.36 MB 9.78 s
Montage 100 100 433 3.23 MB 10.58 s

Sipht 30 30 91 7.73 MB 178.92 s
Sipht 60 60 198 6.95 MB 194.48 s
Sipht 100 100 335 6.27 MB 175.55 s

boundary solutions S1 and SL to infinity (lines 6–7), and calculates
the perimeters of remainder solutions using Eq. (16) (lines 8–9).

5. Evaluation

We validate our cost- and makespan-aware workflow schedul-
ing scheme through two sets of simulation experiments. The first
set of simulations is based on real-world workflows while the
second set of simulations is based on synthetic applications. This
section introduces the experimental setups and analyzes the ex-
perimental results.

5.1. Simulation setup

Below, we describe the setups of real-world and synthetic
workflows, IaaS model, comparative algorithms, simulator, and
performance metrics used in the simulations.

5.1.1. Workflows
In the first set of simulations, we consider four types of real-

world benchmark workflows provided by the Pegasus workflow
management system [21,22], i.e., CyberShake, Inspiral, Montage,
and Sipht. These workflows are widely used for evaluating the
performance of scheduling algorithms. The DAG characteristics
of these workflows, including the number of nodes and edges,
average data size and task execution time at CU = 1, are presented
in Table 1. The structures of these four workflow applications are
illustrated in Fig. 4. In the second set of simulations, we test our
scheme and peer algorithms on synthetic DAGs. Same as in [4,23],
we utilize a widely-used Workflow Generator [24] to produce 100
syntheticworkflows, which follows the real-worldworkflow types
provided by the Pegasus workflow management system [22] and
varies the number of workflow nodes ranging from 20 to 100. To
obtain realistically synthetic workflows, the generator uses the in-
formation gathered from actual executions of scientific workflows
on the Grid. In addition, the generator is highly encapsulated and
its inputs are workflow type and node number. Once the type
and node number of a desired synthetic workflow are set, the rest
characteristics of this workflow such as the edge number and the
average data size as well as the computation and communication
costs of tasks in this workflow, are automatically determined. The
determination process (including how to calculate task computa-
tion and communication costs) is actually similar to the calculation
method introduced in this paper and thus is not discussed in the
manuscript. For more details refer to the source-code provided
in [25].

Fig. 4. Structures of four real-world workflows.

Table 2
IaaS parameters used in the experiments.
Instance type Compute unit Bandwidth (Mb/s) Price ($)

m4.large 6.5 56.25 0.120
m4.xlarge 13 93.75 0.239
m4.2xlarge 26 125 0.479
m4.4xlarge 53.5 250 0.958
m4.10xlarge 124.5 500 2.394
m3.medium 3 56.25 0.067
m3.large 6.5 56.25 0.133
m3.xlarge 13 62.5 0.266
m3.2xlarge 26 125 0.532

5.1.2. IaaS model
We select the pricing scheme of Amazon EC2 as our pricing

model due to its widespread application. Among the various types
of instances provided by Amazon EC2, the General Purpose in-
stance group in US East region with the purchasing option of On-
Demand Instance [26] is used. The relevant parameters includ-
ing instance type, compute unit, bandwidth, and price are listed
in Table 2. Note that in the experiments we only employ the
instances provided by US East region since using Amazon Web
Services (AWS) to run Pegasus workflows requires us to stick to
one Region [27] in order to avoid failures occurring across regions.
As a result, the monetary cost of data transfers between instances
in different regions are not included.

5.1.3. Comparative algorithms
We compare our FDHEFT with several multi-objective opti-

mization algorithms, including ε-Fuzzy PSO [11], MOHEFT [13],
NSPSO [10], and SPEA2* [12]. These comparative algorithms are
described below.

• ε-Fuzzy PSO [11] is an improved version of PSO. It also utilizes
fuzzy dominance to measure the relative fitness of solutions
in multi-objective domain, which has been proven to be
highly effective and can provide faster convergence for most
difficult MOPs.
• NSPSO [10] is also a variant of PSO. Unlike PSO, NSPSO can

discover more non-dominated relations by comparing the



X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 285

Table 3
HV of five algorithms (our FDHEFT and peer algorithms ε-Fuzzy PSO [11], NSPSO [10], SPEA2* [12], andMOHEFT [13]) on real-world workflows, and HV differences between
FDHEFT and ε-Fuzzy PSO, NSPSO, SPEA2*, and MOHEFT.
Workflow HV of five algorithms HV difference (%, against FDHEFT)

ε-Fuzzy PSO NSPSO SPEA2* MOHEFT FDHEFT ε-Fuzzy PSO NSPSO SPEA2* MOHEFT

CyberShake 30 0.615 0.954 0.905 0.945 0.961 56.1 0.7 6.1 1.6
CyberShake 50 0.917 0.932 0.876 0.929 0.954 4.0 2.4 8.9 2.7
CyberShake 100 0.822 0.863 0.871 0.935 0.949 15.4 9.9 8.9 1.5
Inspiral 30 0.716 0.365 0.762 0.787 0.847 18.2 132.2 11.1 7.6
Inspiral 50 0.408 0.652 0.634 0.785 0.846 107.5 29.6 33.4 7.7
Inspiral 100 0.269 0.200 0.502 0.697 0.782 191.2 291.2 55.9 12.3
Montage 25 0.944 0.945 0.915 0.947 0.960 1.6 1.6 4.9 1.3
Montage 50 0.721 0.637 0.916 0.966 0.978 35.6 53.4 6.8 1.3
Montage 100 0.429 0.928 0.813 0.934 0.961 124.0 3.6 18.2 2.9
Sipht 30 0.126 0.398 0.117 0.519 0.519 311.0 30.3 342.5 0.0
Sipht 60 0.200 0.595 0.391 0.722 0.762 281.2 28.1 94.8 5.6
Sipht 100 0.279 0.200 0.347 0.820 0.837 200.0 318.3 141.3 2.1

Table 4
Runtime of five algorithms (our FDHEFT and peer algorithms ε-Fuzzy PSO [11], NSPSO [10], SPEA2* [12], and MOHEFT [13]) on real-world workflows, and runtime ratios of
ε-Fuzzy PSO, NSPSO, SPEA2*, and MOHEFT against FDHEFT.
Workflow Runtime of five algorithms (s) Runtime ratios (against FDHEFT)

ε-Fuzzy PSO NSPSO SPEA2* MOHEFT FDHEFT ε-Fuzzy PSO NSPSO SPEA2* MOHEFT

CyberShake 30 13.96 13.13 5.12 9.55 0.13 104.14 98.01 38.21 71.28
CyberShake 50 36.99 35.31 5.69 43.51 0.34 107.53 102.65 16.54 126.47
CyberShake 100 143.12 138.12 7.46 555.31 1.51 94.85 91.53 4.95 368.00
Inspiral 30 13.06 12.38 5.93 11.93 0.54 24.37 23.09 11.06 22.25
Inspiral 50 36.90 34.20 5.50 50.56 0.50 74.24 68.81 11.06 101.72
Inspiral 100 139.05 134.09 7.02 622.71 1.19 116.56 112.40 5.89 521.97
Montage 25 10.00 8.93 5.15 5.60 0.11 92.60 82.64 47.67 51.88
Montage 50 36.05 34.21 5.32 46.30 0.33 107.94 102.43 15.94 138.63
Montage 100 140.00 135.37 6.52 552.32 1.74 80.32 77.66 3.74 316.88
Sipht 30 12.74 11.94 7.97 10.52 0.12 104.43 97.89 65.30 86.26
Sipht 60 48.57 45.66 8.62 74.72 0.40 122.97 115.61 21.83 189.18
Sipht 100 133.23 130.15 7.16 518.55 0.94 142.49 139.20 7.66 554.60

personal bests and offspring of all particles in a combined
swarm population, providing a more appropriate selection
pressure for the population to approach the true pareto-
optimal front.
• MOHEFT [13] is an improved version of HEFT. It employs

dominance relationships and a metric called crowding dis-
tance to avoid the exhaustive search and the computationally
expensive approach for pruning the set of tradeoff solutions.
• SPEA2* [12] is an improved version of SPEA2. It redefines

the crossover and mutation operators of SPEA2 such that the
resultant evolutionary algorithm can search better solutions
more efficiently.

5.1.4. Simulator
We performed all the experiments on a desktop PC equipped

with a 3.3 GHz Intel Core i5 CPU and 16 GB RAM. Considering
that our FDHEFT and the comparative algorithms are all MOP
methods, we adopt a common simulator jMetal [28], an object-
oriented Java-based framework aimed at the development, experi-
mentation, and study of metaheuristics for solving MOP problems,
to implement all the algorithms. jMetal is featured by including
a number of classic and modern state-of-the-art optimizers, a
wide set of benchmark problems, and a set of well-known quality
indicators for performance assessment. The inputs to jMetal are the
algorithm to be implemented and its associated setup. We list the
key parameters of the algorithms implemented in jMetal below.

• For MOHEFT [13] and our FDHEFT, the number of trade-off
solutions are 30 and 50, respectively.
• For all ε-Fuzzy PSO [11], MOHEFT [13], NSPSO [10], and

SPEA2* [12], the size of population is 100 and the number of
generations is 10 000.
• For SPEA2* [12], the probabilities of crossover and mutation

are 0.9 and 0.2, respectively.

• For both ε-Fuzzy PSO and NSPSO, we use the same parame-
ters as in [11] and [10], respectively.

5.1.5. Performance metric
Three comparative experiments are carried out in each set of

simulations to validate our scheme from different perspectives.
First, we compare the Hypervolume (HV) [29] of our FDHEFT with
that of four comparative algorithms. HV [29] is one of the most
widely-used performancemetrics in themulti-objective optimiza-
tion area. It is calculated as the volume of the objective space
between the obtained solution set and the reference point and
thus can provide a combined information about convergence and
diversity of the solution set. According to its calculation, a largerHV
value is preferred, indicating that the solution set is closer to the
pareto front and also has a good distribution. Second, we compare
the CPU runtime taken by FDHEFT with that of four comparative
algorithms. Third, we compare the cost-makespan trade-off fronts
obtained by FDHEFT with that of four comparative algorithms.

5.2. Results and analysis

We discuss the results of our simulations verified on both real-
world and synthetic workflows.

5.2.1. Results of real-world workflows
Table 3 presents the HV results achieved by our FDHEFT and

four comparative algorithms ε-Fuzzy PSO [11], NSPSO [10], SPEA2*
[12], and MOHEFT [13] on 12 real-world workflows. For a more
intuitive comparison, the table also shows the HV differences be-
tween FDHEFT and ε-Fuzzy PSO, NSPSO, SPEA2*, and MOHEFT,
which are readily derived from the HV results. For example, the



286 X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289

Fig. 5. Cost-makespan trade-offs for our FDHEFT and four peer algorithms on real-world workflows.



X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 287

Fig. 6. Box plots for the HV ratios of SPEA2* [12], NSPSO [10], MOHEFT [13], and
ε-Fuzzy PSO [11] against FDHEFT on 100 random workflows.

Fig. 7. Box plots for the runtime ratios of SPEA2* [12], NSPSO [10], MOHEFT [13],
and ε-Fuzzy PSO [11] against FDHEFT on 100 random workflows.

HV difference between FDHEFT and ε-Fuzzy PSO, represented by
Diff(ε-Fuzzy PSO), is calculated as

Diff(ε-Fuzzy PSO) =
HV(FDHEFT)

HV(ε-Fuzzy PSO)
× 100%− 1.

Apparently, the HV difference is positivewhen our FDHEFT out-
performs a comparative algorithm and negative otherwise. Thus,
HV difference can be considered as the improvement achieved by
our FDHEFT. As can be seen from the table, all HV differences are
positive, indicating that our FDHEFT always have a better perfor-
mance than ε-Fuzzy PSO, NSPSO, SPEA2*, and MOHEFT regardless
ofwhichworkflows used in the experiment. TheHV improvements
achieved by our FDHEFT over ε-Fuzzy PSO, NSPSO, SPEA2*, and
MOHEFT can be up to 311%, 318.3%, 342.5%, and 12.3%, respec-
tively.

Table 4 gives theCPU runtime statistics by our FDHEFT and com-
parative algorithms ε-Fuzzy PSO [11], NSPSO [10], SPEA2* [12], and
MOHEFT [13] for executing 12 real-world workflows. The results
show that our FDHEFT ismuchmore computationally efficient than
the four comparative algorithms. Specifically, the CPU runtime of
our FDHEFT and four comparative algorithms are in the ranges
of [12.74 s, 143.12 s], [8.93 s, 138.12 s], [5.12 s, 8.62 s], [5.60 s,
622.71 s], and [0.11 s, 1.74 s], respectively. The table also lists the
runtime ratios of the four comparative algorithms against our FD-
HEFT, which directly validate the time efficiency of our algorithms.
For example, the CPU runtime of MOHEFT can be dozens or even
hundreds of times higher than that of our FDHEFT. From the table,
we can also find that the execution time of all algorithms increases
with the number of tasks in the application.

Fig. 5 plots the produced cost-makespan trade-offs for different
algorithms, our FDHEFT and four comparative algorithms ε-Fuzzy
PSO [11], NSPSO [10], SPEA2* [12], and MOHEFT [13], on real-
world workflows CyberShake, Inspiral, Sipht, and Montage with
varying number of nodes. Note that all the x-axes are logarithmic
and each point on the plot represents a possible task schedule.

Fig. 8. Cost-makespan trade-offs for our FDHEFT and four peer algorithms on selected synthetic workflows.



288 X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289

The plots given in Fig. 5 indicate that the trade-off fronts obtained
by our FDHEFT are significantly superior to those obtained by
the comparative algorithms. In other words, the task schedules
generated by our FDHEFT can provide better cost-makespan trade-
offs.

5.2.2. Results of synthetic workflows
We also evaluate our FDHEFT and four peer algorithms on

100 synthetic applications in the following three steps. First, we
compare the HV ratios of peer algorithms against our FDHEFT on
each tested synthetic application. If the ratio is less than 1, our
FDHEFT is shown to performbetter than the competitor, andworse
otherwise. Then, we compare the cost-makespan trade-off plots
achieved by our FDHEFT and four peer algorithms for a set of
randomly selected synthetic applications. Finally, we compare the
runtime ratios of our FDHEFT and peer algorithms on each tested
synthetic application. If the ratio is larger than 1, our FDHEFT is
shown to be more time-efficient than the competitor, and less
otherwise.

Fig. 6 shows the box plots for the HV ratios of ε-Fuzzy PSO [11],
NSPSO [10], SPEA2* [12], and MOHEFT [13] against our FDHEFT
on 100 synthetic applications. The results in the figure clearly
show that our FDHEFT is slightly better than SPEA2* and MOHEFT,
and remarkably better than ε-Fuzzy PSO and NSPSO, respectively.
Fig. 7 presents the box plots for the runtime ratios of ε-Fuzzy
PSO, NSPSO, SPEA2*, and MOHEFT against our FDHEFT on 100
synthetic applications. As can be seen in the figure, the runtime
ratios of four peer algorithms are all above 1, indicating that our
FDHEFT is the fastest algorithm. The time overhead of our FDHEFT
for generating solutions is only a small percentage of that of the
peer algorithms. Fig. 8 gives the cost-makespan trade-off plots of
our FDHEFT and four peer algorithms for some randomly selected
synthetic applications (Nos. 2, 13, 36, 59, 86, 99). The plots in the
figures show that our FDHEFT can obtain trade-off frontswith clear
advantage over the competitors.

6. Conclusion

In this paper, we aimed to minimize cost and makespan si-
multaneously for workflows deployed and hosted on IaaS clouds.
For a workflow with precedence constraints among tasks, we pro-
posed a new list scheduling algorithm FDHEFT that integrates
the fuzzy dominance sort mechanism with heuristic HEFT. Two
sets of simulation experiments were implemented on real-world
workflows and synthetic applications to validate the effectiveness
of the proposed FDHEFT. The extensive experiments are based
on the actual pricing and resource parameters of Amazon EC2,
and results have demonstrated that the proposed FDHEFT can
explore better makespan-cost trade-offs for scheduling workflows
with a much lower CPU runtime when compared to a number
of peer approaches. In future, we plan to extend our algorithm
to solve the workflow scheduling problem when considering the
monetary costs and time overheads of both communication and
storage.

References

[1] P. Cong, L. Li, J. Zhou, K. Cao, T. Wei, M. Chen, S. Hu, Profit-driven dynamic
cloud pricing for multiserver systems considering user perceived value, IEEE
Trans. Parallel Distrib. Syst. (2018).

[2] T.Wu, H. Gu, J. Zhou, T.Wei, X. Liu, M. Chen, Soft error-aware energy-efficient
task scheduling for workflow applications in DVFS-enabled cloud, J. Syst.
Archit. 84 (2018) 12–27.

[3] X. Zhang, T.Wu,M. Chen, T.Wei, J. Zhou, S. Hu, R. Buyya, Energy-aware virtual
machine allocation for cloud with resource reservation, J. Syst. Softw. 147
(2019) 147–161.

[4] Z. Zhu, G. Zhang,M. Li, X. Liu, Evolutionarymulti-objectiveworkflow schedul-
ing in cloud, IEEE Trans. Parallel Distrib. Syst. 27 (5) (2016) 1344–1357.

[5] Amazon Case Studies. [Online] Available: https://aws.amazon.com/cn/
solutions/case-studies/.

[6] Windows Azure Case Studies. [Online] Available: https://www.microsoft.
com/azure/casestudies.mspx.

[7] I. Casas, J. Taheri, R. Ranjan, L. Wang, A.Y. Zomaya, A balanced scheduler
with data reuse and replication for scientific workflows in cloud computing
systems, Future Gener. Comput. Syst. 74 (2017) 168–178.

[8] E.N. Alkhanak, S.P. Lee, S.U.R. Khan, Cost-aware challenges for workflow
scheduling approaches in cloud computing environments: taxonomy and
opportunities, Future Gener. Comput. Syst. 50 (2015) 3–21.

[9] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, J. Wang, Cost-efficient task schedul-
ing for executing large program in the cloud, Parallel Comput. 39 (4) (2013)
177–188.

[10] R. Garg, A.K. Singh, Multi-objective workflow grid scheduling based on dis-
crete particle swarm optimization, in: Swarm, Evolutionary, and Memetic
Computing, 2011, pp. 183–190.

[11] R. Garg, A.K. Singh, Multi-objective workflow grid scheduling using ε-fuzzy
dominance sort based discrete particle swarm optimization, J. Supercomput.
68 (2) (2014) 709–732.

[12] J. Yu, M. Kirley, R. Buyya, Multi-objective planning for workflow execution on
grids, in: IEEE/ACM International Conference on Grid Computing, 2007, pp.
10–17.

[13] J.J. Durillo, R. Prodan, Multi-objective workflow scheduling in Amazon EC2,
Clust. Comput. 17 (2) (2014) 169–189.

[14] H. Topcuoglu, S. Hariri, M.Y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib.
Syst. 13 (3) (2002) 260–274.

[15] G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li, K. Li, Energy management for multiple
real-timeworkflows on cyber-physical cloud systems, Future Gener. Comput.
Syst. (2018).

[16] X. Zhu, J. Wang, H. Guo, D. Zhu, L.T. Yang, L. Liu, Fault-tolerant scheduling for
real-time scientific workflows with elastic resource provisioning in virtual-
ized clouds, IEEE Trans. Parallel Distrib. Syst. 27 (12) (2016) 3501–3517.

[17] G. Xie, G. Zeng, R. Li, K. Li, Quantitative fault-tolerance for reliable workflows
on heterogeneous IaaS clouds, IEEE Trans. Cloud Comput. (2018).

[18] K. Deb, Multi-objective optimiation using evoluationary algorithms, in:
Wiley-Interscience Series in Systems and Optimization, Wiley, Chichester,
2001.

[19] P. Koduru, Z. Dong, S. Das, S.M. Welch, J.L. Roe, E. Charbit, A multiobjective
evolutionary-simplex hybrid approach for the optimization of differential
equation models of gene networks, IEEE Trans. Evol. Comput. 12 (5) (2008)
572–590.

[20] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[21] E. Deelman, et al., Pegasus: A framework for mapping complex scientific onto
distributed systems, Sci. Program. 13 (3) (2005) 219–237.

[22] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi, Character-
izing and profiling scientific workflows, Future Gener. Comput. Syst. 29 (3)
(2013) 682–692.

[23] H. Arabnejad, J.G. Barboss, A budget constrained scheduling algorithm for
workflow applications, J. Grid Comput. 12 (2014) 665–679.

[24] Workflow Generator, [Online] Available: https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator.

[25] Source-Code of Workflow Generator, [Online] Available: https://github.com/
pegasus-isi/WorkflowGenerator.

[26] Amazon, Amazon ec2 pricing, [Online] Available: http://aws.amazon.com/
ec2/pricing/.

[27] Pegasus, [Online] Available: https://confluence.pegasus.isi.edu/display/
pegasus/Cloud+Tutorial.

[28] J.J. Durillo, A.J. Nebro, jmetal: A java framework for multi-objective optimiza-
tion, Adv. Eng. Softw. 42 (2011) 760–771.

[29] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach, IEEE Trans. Evol. Comput. 3 (4)
(1999) 257–271.

Xiumin Zhou received the B.S. degree in computer sci-
ence and Engineering from Nanjing University of Science
and Technology, Nanjing, China, in 2012. He is currently
pursuing the Ph.D. degree with Nanjing University of
Science and Technology. His current research interests
are in the areas of embedded systems, cloud computing
and distributed systems.

http://refhub.elsevier.com/S0167-739X(18)31408-0/sb1
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb1
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb1
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb1
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb1
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb2
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb2
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb2
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb2
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb2
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb3
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb4
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb4
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb4
https://aws.amazon.com/cn/solutions/case-studies/
https://aws.amazon.com/cn/solutions/case-studies/
https://aws.amazon.com/cn/solutions/case-studies/
https://www.microsoft.com/azure/casestudies.mspx
https://www.microsoft.com/azure/casestudies.mspx
https://www.microsoft.com/azure/casestudies.mspx
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb7
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb8
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb9
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb10
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb11
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb13
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb14
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb15
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb16
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb17
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb18
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb19
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb20
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb21
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb22
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb23
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb23
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://github.com/pegasus-isi/WorkflowGenerator
https://github.com/pegasus-isi/WorkflowGenerator
https://github.com/pegasus-isi/WorkflowGenerator
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
https://confluence.pegasus.isi.edu/display/pegasus/Cloud+Tutorial
https://confluence.pegasus.isi.edu/display/pegasus/Cloud+Tutorial
https://confluence.pegasus.isi.edu/display/pegasus/Cloud+Tutorial
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb28
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb29
http://refhub.elsevier.com/S0167-739X(18)31408-0/sb29


X. Zhou et al. / Future Generation Computer Systems 93 (2019) 278–289 289

Gongxuan Zhang received the B.S. degree in electronic
computer from Tianjin University in 1983 and the M.S.
and Ph.D. degrees in Computer Application from the Nan-
jing University of Science and Technology in 1991 and
2005, respectively. He was a Senior Visiting Scholar in
Royal Melbourne Institute of Technology from 2001.9 to
2002.3 and University of Notre Dame from 2017.7 to
2017.10. Since 1991, he has been with the Nanjing Uni-
versity of Science and Technology, where he is currently
a professor in the School of Computer Science and Engi-
neering. His current research interests include multicore

and parallel processing and distributed computing. He is a senior member of IEEE.

Jin Sun received the B.S. and M.S. degrees in computer
science from Nanjing University of Science and Technol-
ogy, Nanjing, China, in 2004 and 2006, respectively, and
the Ph.D. degree in electrical and computer engineering
from the University of Arizona in 2011. Between January
2012 and September 2014, he was with Orora Design
Technologies, Inc. as a member of technical staff. He
is currently an Associate Professor with the School of
Computer Science and Engineering, Nanjing University
of Science and Technology, Nanjing, China. His research
interests include integrated circuitmodeling and analysis

and computer-aided design. Dr. Sun has been an Associate Editor for the Journal of
Circuits, Systems, and Computers since 2018. He is a member of IEEE.

Junlong Zhou received the Ph.D. degree in Computer Sci-
ence fromEast China Normal University, Shanghai, China,
in 2017. He was a Visiting Scholar with the University
of Notre Dame, Notre Dame, IN, USA, during 2014-2015.
He is currently an Assistant Professor with the School of
Computer Science and Engineering, Nanjing University of
Science and Technology, Nanjing, China. His research in-
terests include real-time embedded systems, cloud com-
puting and IoT, and cyber–physical systems. Dr. Zhou is
an Active Reviewer of 20 international journals, including
IEEE Transactions on Computers, IEEE Transactions on

CAD of Integrated Circuits and Systems, IEEE Transactions on Industrial Informatics,
IEEE Transactions on Systems, Man and Cybernetics: Systems, ACM Transactions on

Design Automation of Electronic Systems, and ACMTransactions on Cyber–Physical
Systems. He received the Reviewer Award from Journal of Circuits, Systems, and
Computers, in 2016. Dr. Zhou has been anAssociate Editor for the Journal of Circuits,
Systems, and Computers since 2017, and a Guest Editor for the ACM Transactions
on Cyber–Physical Systems in 2018. He is a member of IEEE.

Tongquan Wei received the Ph.D. degree in electri-
cal engineering from Michigan Technological University,
Houghton, MI, USA, in 2009. He is currently an Asso-
ciate Professor with the Department of Computer Science
and Technology, East China Normal University, Shanghai,
China. His current research interests include real-time
embedded systems, green and reliable computing, par-
allel and distributed systems, and cloud computing. Dr.
Wei has been a Regional Editor for the Journal of Circuits,
Systems, and Computers since 2012. He served as a Guest
Editor for several special sections of the IEEE Transactions

on Industrial Informatics, ACMTransactions on Embedded Computing Systems, and
ACM Transactions on Cyber–Physical Systems. He is a member of IEEE.

Shiyan Hu received his Ph.D. in Computer Engineering
from Texas A&M University in 2008. He is an Associate
Professor at Michigan Technological University. He has
been a Visiting Professor at IBM Research (Austin) in
2010, and a Visiting Associate Professor at Stanford Uni-
versity from 2015 to 2016. His research interests include
Cyber–Physical Systems (CPS), CPS Security, Computer
Aided Design of VLSI Circuits, and Embedded Systems,
where he has published more than 100 refereed papers.
He is an ACM Distinguished Speaker, an IEEE Systems
Council Distinguished Lecturer, an invited participant for

U.S. National Academy of Engineering Frontiers of Engineering Symposium, a re-
cipient of National Science Foundation (NSF) CAREER Award, a recipient of ACM
SIGDA Richard Newton DAC Scholarship (as the faculty advisor), and a recipient of
JSPS Faculty Invitation Fellowship. He is the Chair for IEEE Technical Committee on
Cyber–Physical Systems. He is the Editor-In-Chief of IET Cyber–Physical Systems:
Theory & Applications. He serves as an Associate Editor for IEEE Transactions
on Computer-Aided Design, IEEE Transactions on Industrial Informatics, and IEEE
Transactions on Circuits and Systems. He is also a Guest Editor for 7 IEEE/ACM
Transactions such as Proceedings of IEEE and IEEE Transactions on Computers. He
has served as general chairs, TPC chairs, TPC track chairs and TPC members for
numerous conferences. He is a Fellow of IET.


	Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT
	Introduction
	System Models
	Workflow Model
	Resource Model

	Problem Definition
	Problem Formulation
	Basics of Multi-objective Optimization

	Our Approach to Minimize Makespan and Cost
	Discussion on HEFT and HEFT-based algorithms
	Basics of Fuzzy Dominance Sort
	Details on Our FDHEFT algorithm

	Evaluation
	Simulation Setup
	Workflows
	IaaS Model
	Comparative Algorithms
	Simulator
	Performance Metric

	Results and Analysis
	Results of Real-World Workflows
	Results of Synthetic Workflows


	Conclusion
	References


