
Variation-Aware Task Allocation and Scheduling for
Improving Reliability of Real-Time MPSoCs

Junlong Zhou†, Tongquan Wei‡, Mingsong Chen‡, X. Sharon Hu§, Yue Ma§, Gongxuan Zhang†, Jianming Yan‡
†School of CSE, Nanjing University of Science and Technology, Nanjing 210094, China

‡School of CS&SE, East China Normal University, Shanghai 200241, China
§Department of CSE, University of Notre Dame, Notre Dame, IN 46656, USA

Abstract—Both soft-error reliability (SER) due to transient
faults and lifetime reliability (LTR) due to permanent faults
are key concerns in real-time MPSoCs. Existing works have
investigated related problems, however, most of them only focus
on one of the two reliability concerns. A few efforts do consider
both types of reliability together, but ignore the impacts of
hardware- and application-level variations on reliability, thus are
not applicable to state-of-the-art MPSoCs under variations.

In this paper, we focus on increasing SER without sacrificing
LTR since transient faults occur much more frequently than
permanent faults. Specifically, we propose a novel task allocation
and scheduling scheme to maximize SER while satisfying a LTR
constraint for soft real-time MPSoCs. Considering that SER is
the objective while LTR is a constraint in our problem, and LTR
is highly related to core temperature profiles, we dedicate to
investigating the effects of variations in core soft-error rate, task
vulnerability to soft errors, and task execution time on SER.
To the best of our knowledge, our work is the first attempt
that jointly handles the two reliability issues as well as taking
into account the effects of variations on reliability. Experimental
results show that our scheme improves the SER by up to 66%
as compared to a number of representative existing approaches
while meeting the same LTR constraint.

Index Terms—Soft-error reliability; Lifetime reliability; Vari-
ations; Real-time MPSoC systems.

I. INTRODUCTION

The advance of technology scaling enables the integration of
multiple processing elements, memory hierarchies, dedicated
hardware, and I/O components on a single silicon die to
form a multiprocessor system-on-chip (MPSoC). Due to the
advantages of powerful parallel processing capability, higher
computing density, and lower clock frequencies, MPSoCs
have replaced uniprocessors to become the mainstream for
microprocessors in various application domains. The distinct
features of MPSoCs can be exploited to meet the stringent
design requirements of emerging real-time applications.

Many real-time embedded systems running on MPSoCs are
deployed in critical applications and harsh environments, thus
are expensive as well as inconvenient to repair and replace.
To maintain quality of service and reduce cost of repair-
ing/replacing an entire system, soft-error reliability (SER) due
to transient faults and life-time reliability (LTR) due to perma-
nent faults are imperative design concerns. In this paper, we
are interested in solving the reliability concerns for real-time

This work was partially supported by Natural Science Foundation of China
(Grant Nos. 61272420 and 61672230), Shanghai Municipal Natural Science
Foundation (Grant No. 16ZR1409000), and U.S. NSF (Grant No. CNS-
1319904). J. Zhou is the corresponding author, email: jlzhou@njust.edu.cn.

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46
 

Fr
eq

ue
nc

y
(G

Hz
)

Core ID

Measured 50oC

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80

5.7
GHz

7.3 GHz

1.2V 0.9V 0.8V

Figure 1: Measured process variations on Intel’s 80-core processor showing
substantially different core frequencies [6] (used with permission).

to be clocked at frequencies higher than that allowed by min-max.
We propose to achieve both goals with the use of thread scheduling
policies implemented at fine temporal scheduling windows, below
the O/S in the hardware/firmware. Our scheduling policies seek ap-
pearance of uniform, single frequency (for a HCF chip), near the
arithmetic mean of all cores’ frequencies, which we call apparent
mean frequency (AMF). Performance guarantees near the AMF fre-
quency, which is higher than the min-max frequency, increase the
number of premium chips that can be sold for higher prices.

One natural solution to achieve fairness in scheduling while
clocking each core at its individual maximum frequency is naively
fairness-driven, round-robin scheduling of processes across each
core in the chip. Round-robin scheduling creates the appearance
of a uniform, single-frequency at AMF since each process spends
equal time on each core. Unfortunately, as we demonstrate later,
brute-force round-robin reschedulings, largely oblivious to appli-
cation performance requirements, miss opportunities to substan-
tially increase throughput without sacrificing performance of any
process. On the other hand, if maximum throughput is our goal,
then an alternative to round-robin is throughput-driven scheduling.
However, our results show that throughput-driven scheduling in-
creases average system throughput at the cost of hurting perfor-
mance of some processes. Thus, throughput-driven scheduling is
unfair, as certain processes experience performance below the de-
sired AMF-level, and is inconsistent with our goal of maximizing
performance yet providing a single, uniform-level of performance
for all processes.

To achieve fairness and high throughput under HCF config-
urations, we propose throughput-driven fairness (TDF) schedul-
ing. TDF combines the opposing policies of fairness-driven and
throughput-driven scheduling in a manner transparent to the O/S
and end user, implemented at the hardware-level. The fairness-
driven component estimates each process’ throughput at the AMF
and avoids schedules that would reduce throughput below that
level. The throughput-driven component estimates each process’
throughput on high-frequency and low-frequency cores and op-
portunistically schedules to increase throughput. In effect, TDF
provides the appearance of a single uniform frequency to proces-
sors, near AMF frequency, and significantly boosts average perfor-
mance.

The main contributions of this paper are:

1. We evaluate the throughput of chips running all cores at
the min-max frequency compared to chips exploiting het-
erogeneous frequencies, and illustrate that using round-robin
scheduling achieves fairness and the appearance of uniform

performance across cores on a chip with heterogeneous fre-
quencies.

2. We propose a throughput-driven scheduling policy which in-
creases throughput up to 20% over round-robin scheduling and
a fairness-driven scheduling policy that approximates the fair-
ness of round-robin without relying on continuous brute-force
process migration.

3. We propose throughput-driven fairness (TDF) scheduling which
combines throughput and fairness considerations. TDF im-
proves the throughput of workloads that are sensitive to fre-
quency choices by 12% on average.

4. We demonstrate that TDF policy significantly increases the
number of premium chips that guarantee performance near
AMF-level instead of min-max-level: 90% of the chips ex-
ceed AMF-level total throughput while 98% of the chips
have minimum performance within 10% of the desired AMF
performance-level. In contrast, without our TDF policy, only
2% of chips exceed AMF-level throughput, and only 80% of
the chips have minimum performance within 10% of the AMF-
level.

The rest of this paper is organized as follows. In Section 2,
we discuss process variation and its impact on core frequencies,
impact of core-frequency variation on workload performance, and
motivate the need for hardware- or firmware-based process man-
agement. Section 3 discusses fairness-driven, throughput-driven,
and TDF scheduling policies. Section 4 describes our simulation
methodology, and Section 5 presents our results. We discuss related
work in Section 6 and conclude in Section 7.

2. Motivation: Impact and Handling of Process
Variation on CMPs

Process variations have always occurred in microprocessor manu-
facturing, but their impact and management has changed over time.
In this section, we discuss impact of process variations on multi-
core processors, effects on application performance, and the need
for an O/S and end-user transparent solution.

2.1 Process Variations
Process variations include both systematic and random inconsis-
tencies in the silicon and lead to variations in transistor size and
threshold voltages [24]. Ultimately, the impact is variation in tran-
sistor latency and power.

In the era of single-core microprocessors, process variations
were managed across die. While intra-die variations may have been
present, clocking components of a single microprocessor core at
different frequencies would have introduced synchronization logic
and complexity [25]. Instead, the core (and thus chip) were clocked
at the fastest speed the entire core could support. Manufacturers
used speed binning to market the faster microprocessors at a faster
clock speed and sell them at a higher price.

The introduction of chip multi-processors (CMPs) increases in-
terest in intra-die variations. If different cores in the chip support
different maximum frequencies, it is tempting to increase perfor-
mance by running the faster cores at higher clock speeds. Be-
cause the interconnects between cores (e.g., bus, on-chip-network,
or shared cache) tend to be asynchronous with the core clock, it
is not overly complicated to have different clock speeds for each
core. There may be little benefit to supporting multiple clocks in a
chip with few cores (e.g., two cores), but as core counts increase,
the inter-core variation and thus potential performance increase be-
comes larger. In fact, current multi-core production systems already

4

Sample ID

So
ft
Er
ro
rR

at
e
(!
"#

$ )

(a) (b)

Simulated Core 1 Simulated Core 2

Fig. 1: Core-to-core variations in (a) maximum frequency due
to manufacturing process variation [11], and (b) soft-error rate.

MPSoCs. As transient faults occur much more frequently than
permanent faults [1], we focus on the problem of maximizing
SER while satisfying the constraints of real-time requirements,
an upper bound on LTR, and peak temperature limit. Such
problems can be found in real-world applications such as
mobile devices and in-vehicle infotainment systems [2].

Considerable research efforts have been devoted to the
design of reliability-aware real-time systems. However, most
of them either focus on SER [1], [3], [4] or LTR [5]–
[7]. A few recent works [8]–[10] have examined both SER
and LTR together. To maximize system availability, Zhou et
al. [8] designed a static framework that balances SER and
LTR by determining the replication and frequency of tasks.
Ma et al. [9] developed a dynamic heuristic for enhancing
SER and LTR of real-time systems running on “Big-Little”
type MPSoCs. Kim et al. [10] introduced two energy and
lifetime optimization techniques that adopt DVFS-aware re-
liability model and Q-learning-based method for many-core
microprocessors considering both SER and LTR. However,
the effects of hardware- and application-level variations on
reliability are not taken into account in these works.

In this paper, we study the effects of variations in core soft-
error rate, task vulnerability to soft errors, and task execution
time on SER. Based on the study, we design a scheme that
maximizes SER under a constraint of LTR. We leave the
investigation of the effects of variations at hardware and
application levels on LTR to future work since LTR is set as a
constraint in our problem and is decided by core temperatures.

II. IMPACTS OF CORE AND TASK VARIATIONS ON SER

Fig. 1(a) shows that core-to-core frequency variations in
an Intel’s 80-(homogeneous) core test chip are 28% at 1.2V
and 59% at 0.8V [11]. Since soft-error rates of cores are
highly dependent on core frequencies, core-to-core frequency
variations must lead to core-to-core soft-error rate variations.
In addition to homogeneous cores, we investigate the soft-error



0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

1 2 3 4 5 6 7 8 9 10Av
er
ag
e	
Ex
ec
ut
io
n

Ti
m
e	
[K
Cy
cle

s]
	

Ta
sk
	V
ul
ne

ra
bi
lit
y

to
So
ft
Er
ro
rs

Task IDTask ID(a) (b)

Fig. 2: Task-to-task variations in (a) vulnerability to soft errors,
and (b) execution time in terms of number of clock cycles [3].

rate variations of heterogeneous cores using Monte Carlo sim-
ulation1. The results are illustrated in Fig. 1(b), in which each
data is averaged over 200 Monte Carlo samples. Clearly, the
soft-error rates of two heterogeneous cores are quite different.
Besides the hardware-level variations, different applications
also exhibit distinct variations in vulnerability to soft errors
and execution time. Fig. 2(a) and Fig. 2(b) [3] show the task-
to-task variations in vulnerability to soft errors, and average
execution time in terms of number of clock cycles, where
ten tasks are real-world benchmarks DCT, FIR, SAD, SATD,
BubleSort, MergeSort1, MergeSort2, QuickSort1, QuickSort2,
SelectionSort [3]. Such task-to-task variations are due to the
diverse data and control flow properties.

Since the system-level SER of running tasks on cores is a
function of hardware-level soft-error rate, task vulnerability,
and task execution time, the variations shown in Fig. (1) and
Fig. (2) must have non-negligible impacts on SER and need
to be considered in the design for SER optimization.

III. OUR CONTRIBUTIONS

In this paper, we aim to solve the problem of maximizing
SER for real-time MPSoC systems under the constraints of
LTR, peak temperature, and task deadline. We make the
following major contributions.

1) We investigate the impacts of variations at hardware and
application levels in terms of core soft-error rate, task
vulnerability and execution time on SER.

2) We develop a variation-aware task allocation approach
that exploits the diverse reliability properties of cores
and tasks to maximize SER.

3) We present a cross entropy-based task scheduling ap-
proach that utilizes the power of cross entropy for
optimization to minimize SER degradation incurred by
meeting system design constraints.

IV. SYSTEM MODEL

In this section, we describe the architecture and application
model as well as SER and LTR models.

1We take 10,000 Monte Carlo samples to compare the soft-error rate of
two simulated heterogeneous cores. The heterogeneity of simulated cores is
realized by assuming that cores consist of different components with various
proportions. Specifically, simulated core 1 is made up of 6T SRAM cell, Latch,
and NAND2 while simulated core 2 is made up of 8T SRAM cell, Latch, and
NAND2 [12]. For each core, the respective proportions of 3 components are
represented by ψ1, ψ2, ψ3 and hold for ψ1+ψ2+ψ3 = 1, and the respective
architecture vulnerability factors of 3 components are represented by AV F1,
AV F2, AV F3 and take the value of (0, 1]. Using the sum-of-error rate model
[13] and the error rate λ1, λ2, λ3 of 3 components measured in [12], the soft-
error rate of a core can be estimated as ψ1 ·AV F1 ·λ1 +ψ2 ·AV F2 ·λ2 +
ψ3 ·AV F3 ·λ3. Without loss of generality, Monte Carlo simulation is used
to produce samples by randomly setting the value of ψ1, ψ2, ψ3 and AV F1,
AV F2, AV F3. Two produced cores with different ψ1, ψ2, ψ3, AV F1 and
same AV F2, AV F3 constitute one sample of Monte Carlo simulation.

A. Architecture and Application

Consider an MPSoC system C consisting of m cores
{C1, · · · , Cm} and a task set Γ consisting of n independent
periodic tasks {τ1, · · · , τn} with soft real-time constraints.
Each task τi (1 ≤ i ≤ n) is characterized by a quadruplet
{pi, di, wci, TV Fi}, where pi is the period, di is the relative
deadline, wci is the worst-case execution time in cycles, and
TV Fi is the task vulnerability factor indicating the probability
that a transient fault at the hardware level ultimately leads to a
program failure at the task level [3]. In general, the period of a
task is equal to its deadline, i.e., pi = di. The hyper-period of
the task set, denoted by HP , is the lowest common multiple
of all task periods {p1, · · · , pn}.

The task set is periodically executing on the MPSoC, each
core of which is dynamic frequency scaling enabled and sup-
ports a discrete set of frequencies varying from the minimum
frequency to the maximum frequency. Denoting the minimum
and maximum frequency of core Cj (1 ≤ j ≤ m) as Fj,min
and Fj,max, respectively, the frequency Fj,k (1 ≤ k ≤ γj)
of core Cj satisfies Fj,min = Fj,1 < · · · < Fj,k < · · · <
Fj,γj = Fj,max, where γj is the number of frequency levels
supported by core Cj . For the sake of easy presentation, let
fj ∈ {Fj,1, · · · , Fj,γj} denote the operating frequency of core
Cj . With respect to SER, cores are diverse in their fault rates
and tasks are diverse in their vulnerability and durations.

B. Soft-Error Reliability (SER)

Transient faults can be modeled using a Poisson distribution
with the average fault arrival rate, which represents the expect-
ed number of failures occurring per second and increases as
the frequency decreases [3]. Let λ(fj) denote the raw fault
rate of core Cj at frequency fj , it then can be expressed as

λ(fj) = λFj,max · 10
Fj,max−fj

∆ , (1)

where λFj,max is the fault rate at the maximum frequency
Fj,max, and ∆ is a parameter that shows how the fault rate
increases with frequency decrease. Considering the task error
probability, the ultimate fault rate of executing task τi on core
Cj at frequency fj is then calculated as λ(fj) ·TV Fi.

The SER of a task is defined as the probability of its
successful execution without the occurrence of transient faults,
and is decided by the exponential failure law. Using the ex-
ponential distribution assumption, the SER of task τi running
on core Cj during the hyper-period HP is expressed as

R(τi, Cj) = e
−λ(fj) ·TV Fi · wcifj · HPpi , (2)

where wci/fj is the execution time of task τi at frequency fj
and HP/pi is the number of task instances of τi during the
hyper-period. The system SER at a hyper-period is calculated
as the product of reliabilities of all individual tasks, i.e.,

Rsys =
Y

τi∈Γ

Y
Cj∈C

R(τi, Cj). (3)

C. Lifetime Reliability (LTR)

The increase in power density leads to elevated operating
temperature and frequent temperature variations, which accel-



erate chip wear-out due to electromigration (EM), time depen-
dent dielectric breakdown (TDDB), stress migration (SM), and
thermal cycling (TC). Such accelerated wear-outs eventually
result in permanent faults occurring earlier and reduce system
lifetime. Mean time to failure (MTTF) is typically used to
quantify LTR, which depends on multiple wear-out effects [6].
We focus on the four failure mechanisms in this paper. Other
failure mechanisms can be incorporated using the sum-of-fault
rate model [9]. We leverage the system-level modeling tool
[7] to estimate LTR when considering the four failure mecha-
nisms. The tool integrates three levels of models, i.e., device-,
component- and system-level models. At the device level, the
LTR models due to the four mechanisms are established. At
the component level, each failure mechanism is assumed to
obey a specific distribution. Based on the device-level LTR
models and assumed distributions, the component-level MTTF
is calculated. Then using the component-level LTR as input,
the system-level MTTF is obtained by Monte Carlo simulation.

V. FRAMEWORK TO MAXIMIZE SYSTEM-LEVEL SER
In this section, we first formally define the SER maximiza-

tion problem and then briefly describe our two-stage solution.

A. SER Maximization Problem
We address the reliability concerns for real-time systems

running on MPSoCs. To be specific, we solve the following
problem. Given a set Γ of n periodic real-time tasks and a
set C of m cores, design a reliability-aware task allocation
and scheduling scheme that maximizes SER while satisfying
the real-time requirements, an upper bound on LTR, and the
constraint on temperature. The problem is formulated as

max: Rsys =
Y

τi∈Γ

Y
Cj∈C

R(τi, Cj)

s.t. : ET (τi) ≤ di, ∀i = 1, 2, · · · , n (4)
MTTF (Cj) ≥MTTFth, ∀j = 1, 2, · · · ,m (5)
Tpeak(Cj) ≤ Tth, ∀j = 1, 2, · · · ,m. (6)

The first constraint captures the real-time requirement that
each task needs to be finished before deadline, where ET (τi)
is the execution time of τi. The second constraint requires the
MTTF of each core, MTTF (Cj), should be no less than a
threshold MTTFth. The last constraint is introduced to ensure
that the peak temperature of each core, Tpeak(Cj), cannot
exceed a temperature limit Tth. For soft real-time systems
like infotainment systems, temporarily violating the first two
constraints is acceptable, but the last constraint must be
satisfied to avoid the timing faults resulting from overheating.

B. Overview of Our Two-Stage Solution
The system-level SER given in Eq. (3) can be re-written as

Rsys =
Y
τi∈Γ

Y
Cj∈C

R(τi, Cj) =
Y
τi∈Γ

Y
Cj∈C

e
−λ(fj) ·TV Fi · wcifj · HPpi

= e
−
P

τi∈Γ

P
Cj∈C

λ(fj) ·TV Fi · wcifj · HPpi

= e
−HP ·

Pm

j=1

�
λ(fj)

fj
·
P

τi∈Γj

TV Fi ·wci
pi

�
, (7)

Input

Cores on the Chip

+
Periodic Tasks

0 t
…

Stage 1: Variation-Aware
Task Allocation (Section IV)

Stage 2: Cross Entropy based
Task Scheduling (Section V)Tw

o-
St

ag
e

Sc
he

m
e

+
Core Variation Task Variation

Cross Entropy
Optimization

Output

…Core 1 …

…Core 2 …

Frequency

…Core m …

…

Task Schedule on Cores

t

t

t

Fig. 3: Overview of our proposed two-stage scheme.

where Γj is the set of tasks allocated to core Cj . Clearly, the
system SER depends on the task-to-core allocation (represent-
ed by Γj) and the frequency setups (represented by fj).

We solve the SER maximization problem at two stages. In
the first stage, we develop a variation-aware task allocation
approach to maximize system SER by exploiting core and
task variations. The task allocation approach assumes that all
the tasks are to be executed at the highest frequencies of their
respectively allocated cores for the sake of decreasing transient
fault rates thus increasing SER. However, high frequencies
cause high temperatures, which may lead to violation of
MTTF and temperature constraints. Thus, we check the two
constraints in the second stage. If the highest frequencies of
individual cores are safe to use for improving SER, the SER-
optimum task allocation and the highest frequencies are output
as the final task schedule2. Otherwise, the optimality of SER
is traded for a larger MTTF and a lower peak temperature
by scaling down the operating frequencies of tasks. Since
our objective is to maximize SER, the less sacrifice of SER
optimality is made for satisfying the constraints, the higher
SER can be obtained. It is well known that our frequency
scaling (or called selection) in the second stage is an NP-hard
combinatorial optimization problem, which can be success-
fully solved by a powerful tool, cross entropy method [14].
Therefore, we design a cross entropy-based approach in the
second stage to address our task frequency selection problem
of minimizing SER degradation and satisfying the design
constraints. The overview of our scheme is shown in Fig. 3.

VI. VARIATION-AWARE TASK ALLOCATION

This section analyzes the optimality of allocating tasks to
multiple cores in terms of SER, presents a theorem on the
optimum task allocation, and develops a task-to-core allocation
heuristic based on the theorem.

A. Optimality Analysis of Task Allocation

Assuming that tasks are executed at the maximum frequen-
cies of their respectively assigned cores, the system-level SER
given in Eq. (7) can be formulated as

Rsys = e
−HP ·

Pm

j=1

�
λ(Fj,max)

Fj,max
·
P

τi∈Γj

TV Fi ·wci
pi

�
, (8)

where Fj,max is the maximum frequency of core Cj .
Clearly, the system SER Rsys is maximal when the ter-
m
Pm
j=1

�
λ(Fj,max)
Fj,max

·
P
τi∈Γj

TV Fi ·wci
pi

�
is minimized. Thus,

2The task execution order can be determined by adopting one of classical
priority assignment algorithms (e.g., RM) widely used in real-time systems.



the term can be defined as a metric used to characterize the
system SER. It is represented by MetricSER and can be
formulated into the product of two vectors U and V , i.e.,

MetricSER =
Xm

j=1

�λ(Fj,max)

Fj,max
·
X

τi∈Γj

TV Fi ·wci
pi

�
=

λ(F1,max)

F1,max
·
X

τi∈Γ1

TV Fi ·wci
pi

+ · · ·+ λ(Fj,max)

Fj,max
·
X

τi∈Γj

TV Fi ·wci
pi

+ · · ·+ λ(Fm,max)

Fm,max
·
X

τi∈Γm

TV Fi ·wci
pi

=

U1 · V1 + · · ·+ Uj · Vj + · · ·+ Um · Vm = U · V (9)

where U = [U1,U2, · · · ,Um] and V = [V1,V2, · · · ,Vm]T .
Vector U captures core dependent parameters, where Uj =

λ(Fj,max)
Fj,max

is referred to as the vulnerability index of core
Cj . Vector V captures task related parameters, where Vj =P
τi∈Γj

vi =
P
τi∈Γj

TV Fi ·wci
pi

is referred to as the vulner-
ability index of task set Γj and vi = TV Fi ·wci

pi
is referred

to as the vulnerability index of task τi. According to these
definitions, we can draw the following conclusion.
• Given a task set Γ, the sum of vulnerability index of all

the tasks in the set is a constant.
• Given an MPSoC system C, vector U can be readily

derived based on the core parameters while vector V is
not and depends on task-to-core allocation.

• The core having smaller vulnerability index is more
reliable and the task having larger vulnerability index is
more vulnerable to soft errors.

Based on the above, we introduce a theorem below to show
that the system SER metric MetricSER is minimized (thus
Rsys is maximized) when the core having smaller vulnerability
index ends up with the set of its allocated tasks having
larger vulnerability index. In other words, the system SER is
maximal when the unreliable tasks are executed on the reliable
cores. We omit the proof of the theorem due to page limit.

Theorem 1: If the core vulnerability index in U =
[U1,U2, · · · ,Um] satisfy U1 ≤ U2 ≤ · · · ≤ Um, and the
sum of the corresponding task set vulnerability index in
V = [V1,V2, · · · ,Vm]T is constant, then the system SER Rsys
given in Eq. (7) is minimized if V1 ≥ V2 ≥ · · · ≥ Vm holds.

B. Our Task Allocation Heuristic

In this work, we propose a task allocation heuristic which
is motivated by Theorem 1, that is, allocating the unreliable
tasks to the reliable cores can maximize the system SER.
The heuristic operates as follows. Tasks in the set with the
maximum vulnerability index are allocated to the core with the
minimum vulnerability index, and tasks in the set with the next
maximum vulnerability index are allocated to the core with the
next minimum vulnerability index. This process repeats until
all sets of tasks are allocated to individual cores.

The pseudo code of our heuristic is given in Alg. 1. Inputs
to the algorithm are task set Γ and core set C. The vulnerability
index of m cores are supposed to satisfy U1 ≤ U2 ≤ · · · ≤ Um.
Alg. 1 first initializes the sets of tasks allocated to cores to
empty (lines 1-2), then determines these task sets by iteratively
allocating tasks having larger vulnerability index to cores

1

Cost-Constrained QoS Optimization for Approximate Computation
Real-Time Tasks in Heterogeneous MPSoCs

Algorithm 1: Determine Task-to-Core Allocation

Input: Task set � = {⌧1, ⌧2, · · · , ⌧n} and core set C =
{C1, C2, · · · , Cm} satisfying U1  U2  · · ·  Um

Output: Task-to-core allocation scheme {�1,�2, · · · ,�m}
1 for j = 1 to m do
2 initialize the task set allocated to core Cj by �j = ; ;

3 j = 1;
4 while � 6= ; and j  m do
5 for i = 1 to size(�) do
6 calculate the vulnerability index vi of task ⌧i;

7 sort all tasks ⌧i 2 � in the decreasing order of task vulnerability
index vi using Heapsort;

8 create a temporary set �0 to test the feasibility of task allocation;
9 for i = 1 to size(�) do

/* Group tasks in a first-fit manner */
10 �0 = �j + ⌧i;
11 if �0 can be feasibly scheduled on core Cj then

/* Check deadline and schedulability */
12 � = �� ⌧i, �j = �j + ⌧i;

13 j = j + 1;

14 if � 6= ; and j > m then
15 exit;

Algorithm 2: Determine Task Operating Frequency

Input: Task-to-core allocation scheme {�1,�2, · · · ,�m} and core set
C = {C1, C2, · · · , Cm}

Output: The frequency setup solution
1 initialize parameters of mean and variation with Gaussian distributions

for all tasks allocated to m cores: ✓1 = [✓
(1)
1 , · · · , ✓

(j)
1 , · · · , ✓

(m)
1 ] and

⇠1 = [⇠
(1)
1 , · · · , ⇠

(j)
1 , · · · , ⇠

(m)
1 ], where ✓ is the mean value, ⇠ is the

standard deviation, and m is the number of cores;
2 ⌘ = 1;
3 repeat
4 generate J solution samples [X1, · · · , X`, · · · , XJ ] using Latin

hypercube sampling method according to distribution N(✓⌘ , ⇠⌘),
where each sample X` = [X

(1)
`

, · · · , X
(j)
`

, · · · , X
(m)
`

] is
a solution to the frequency setups of tasks executing on m

cores /* X
(j)
`

represents the frequency setup of
tasks in set �j allocated to core Cj */;

5 select Q (Q < J ) feasible solution samples satisfying constraints
in Eq. (4)-(6) from J samples using acceptance-rejection method;

6 evaluate the Q selected solution samples based on their system SER
Rsys calculated by Eq. (3);

7 choose top K (K < Q) elite samples with respect to Rsys and define
I as the set of indices of elite samples;

8 update the parameters ~✓⌘+1 and ~⇠⌘+1: ✓(j)⌘+1 =
P

`2I X
(j)
`

/K and

⇠
(j)
⌘+1 =

»P
`2I(X

(j)
`

� ✓
(j)
⌘+1)/K ;

9 ⌘ = ⌘ + 1;
10 until predefined converge criteria of solutions is met or the total iteration

number ⌘ reaches the limit ⌘max;

having smaller vulnerability index (lines 4-13). In each round
of iteration, the vulnerability index of tasks in set Γ are
calculated (lines 5-6) and the tasks are sorted in the decreasing
order of the vulnerability index using Heapsort (line 7). A
temporary task set Γ′ is created and used to test the feasibility
of allocating task τi to core Cj (lines 8-10). After adding τi, if
the temporary set Γ′ can be feasibly scheduled on core Cj , the
task is allocated to the core, and both Γ and Γj are updated
(lines 11-12). The procedure then moves to the next iteration
and considers the allocation of the next task. Otherwise, the
task is not allocated and the procedure directly moves to
the next iteration. If there is no feasible schedule under the
constraints, the algorithm exits (lines 14-15). Otherwise, the
algorithm outputs the task allocation scheme.

VII. CROSS ENTROPY BASED TASK SCHEDULING

Cross entropy (CE) method is a versatile heuristic tool that
has been successfully applied to solve NP-hard combinatorial
optimization problems [14], [15]. Our task frequency selection
is an NP-hard combinatorial optimization problem. Thus, we
apply the CE method to solve our problem. This section
introduces the theoretic background of the CE method as well
as the proposed CE-based task scheduling heuristic.

A. Theoretical Foundation of Cross Entropy

Consider an optimization problem with the objective of
finding the minimum of real-valued function F(x) over the
solution space X , which is formulated as

S∗ = minx∈X F(x). (10)

In CE method, the minimization objective associates with an
estimation probability that is given by

Ψ(S) = Pσ
�
F(X) ≤ S

�
= Eσ[I{F(X)≤S}]

=

Z
x
I{F(X)≤S}f(x;σ)dx, (11)



where S is a threshold, Pσ is the probability of F(X) ≤ S, Eσ
is the expectation of F(X) ≤ S, and I{F(X)≤S} is the indicator
function. X = [X1, X2, · · · , XN ] is a vector consisting of N
random samples generated by a family of probability density
functions (PDF) distributed in X , denoted by f(x;ω) and
parameterized by ω. In Eq. (11), ω in f(x;ω) is set to σ.

The target of CE optimization is to find the maximal S
such that the probability of F(X) ≤ S, represented by Ψ(S),
approaches 0. At that moment, the probability of F(X) > S
then approaches 1, indicating S is the maximum lower bound
on the objective F(x) and thus the optimal solution. To realize
the CE method, two key issues need to be solved. 1) How to
calculate the Ψ(S) for a given S? 2) How to derive a better
S for a given current S?

1) In CE method, importance sampling technique is adopted
to generate samples using an PDF g(x) on X and compute the
estimation of Ψ(S) as ÒΨ(S) using

ÒΨ(S) =
1

N

XN

`=1
I{F(X`)≤S}

f(X`;σ)

g(X`)
. (12)

The optimal importance sampling PDF g∗(x) for which the
variance of ÒΨ(S) is minimal, is expressed as

g∗(x) = I{F(X`)≤S} · f(x;σ)/Ψ(S). (13)

The idea of CE method is to choose the importance sam-
pling PDF g such that the Kullback-Leibler divergence (also
the cross entropy) between the optimal importance sampling
PDF g∗ and g is minimal. The divergence is given by

D(g∗, g) =

Z
g∗(x) ln g∗(x)dx−

Z
g∗(x) ln g(x)dx. (14)

Clearly, D(g∗, g) is minimal when −
R
g∗(x) ln g(x)dx is

minimized, equivalent to finding the optimal δ to realize
maxδ

R
g∗(x) ln f(x; δ)dx. The optimal δ, denoted by δ∗, is

δ∗ = arg max
δ

Z
g∗(x) ln f(x; δ)dx

= arg max
δ

EσI{F(X`)≤S} ln f(x; δ). (15)

2) The CE method iteratively derives a better S given the
current S until the stop condition is met or the number of
iterations reaches a predefined limit. Each solution is treated
as a sample. In each round of iteration, samples are generated
according to the PDF and their solution performance are evalu-
ated. Afterwards, the best samples in terms of solution quality,
called elite samples, are selected to update the characterizing
parameter δ in the PDF. The updated PDF will be used to
generate new samples in the next iteration.

B. Our CE-based Task Scheduling Heuristic

The objective of our task scheduling is to minimize SER
degradation caused by satisfying system design constraints,
which can be achieved by selecting the optimal frequencies for
all tasks executing on individual cores. Due to the effectiveness
of CE method in solving NP-hard combinatorial optimization
problems, we apply it to solve our frequency selection prob-
lem. The basic idea of CE method has been introduced in
Section VII-A. In our CE-based task scheduling heuristic, each

1

Cost-Constrained QoS Optimization for Approximate Computation
Real-Time Tasks in Heterogeneous MPSoCs

Algorithm 1: Determine Task-to-Core Allocation

Input: Task set � = {⌧1, ⌧2, · · · , ⌧n} and core set C =
{C1, C2, · · · , Cm} satisfying U1  U2  · · ·  Um

Output: Task-to-core allocation scheme {�1,�2, · · · ,�m}
1 for j = 1 to m do
2 initialize the task set allocated to core Cj by �j = ; ;

3 j = 1;
4 while � 6= ; and j  m do
5 for i = 1 to size(�) do
6 calculate the vulnerability index vi of task ⌧i;

7 sort all tasks ⌧i 2 � in the decreasing order of task vulnerability
index vi using Heapsort;

8 create a temporary set �0 to test the feasibility of task allocation;
9 for i = 1 to size(�) do

/* Group tasks in a first-fit manner */
10 �0 = �j + ⌧i;
11 if �0 can be feasibly scheduled on core Cj then

/* Check deadline and schedulability */
12 � = �� ⌧i, �j = �j + ⌧i;

13 j = j + 1;

14 if � 6= ; and j > m then
15 exit;

Algorithm 2: Determine Task Operating Frequency

Input: Task-to-core allocation scheme {�1,�2, · · · ,�m} and core set
C = {C1, C2, · · · , Cm}

Output: The frequency setup solution
1 initialize parameters of mean and variation with Gaussian distributions

for all tasks allocated to m cores: ✓1 = [✓
(1)
1 , · · · , ✓

(j)
1 , · · · , ✓

(m)
1 ] and

⇠1 = [⇠
(1)
1 , · · · , ⇠

(j)
1 , · · · , ⇠

(m)
1 ], where ✓ is the mean value, ⇠ is the

standard deviation, and m is the number of cores;
2 ⌘ = 1;
3 repeat
4 generate J solution samples [X1, · · · , X`, · · · , XJ ] using Latin

hypercube sampling method according to distribution N(✓⌘ , ⇠⌘),
where each sample X` = [X

(1)
`

, · · · , X
(j)
`

, · · · , X
(m)
`

] is
a solution to the frequency setup of tasks executing on m

cores /* X
(j)
`

represents the frequency setup of
tasks in set �j allocated to core Cj */;

5 select Q (Q < J ) feasible solution samples satisfying constraints
in Eq. (4)-(6) from J samples using acceptance-rejection method;

6 evaluate the Q selected solution samples based on their system SER
Rsys calculated by Eq. (3);

7 choose top K (K < Q) elite samples with respect to Rsys and define
I as the set of indices of elite samples;

8 update the parameters ✓⌘+1 and ⇠⌘+1: ✓(j)⌘+1 =
P

`2I X
(j)
`

/K and

⇠
(j)
⌘+1 =

»P
`2I(X

(j)
`

� ✓
(j)
⌘+1)/K ;

9 ⌘ = ⌘ + 1;
10 until predefined converge criteria of solutions is met or the total iteration

number ⌘ reaches the limit ⌘max;

sample represents a solution to the frequency setups of tasks
executing on m cores, and the sample is deemed feasible when
it meets the constraints given in Eqs. (4)-(6).

The pseudo code of our heuristic is described in Algo-
rithm 2. The algorithm takes as input task-to-core allocation
scheme {Γ1,Γ2, · · · ,Γm} and core set C = {C1, C2, · · · , Cm}.
It first initializes the expected value and standard deviation of
Gaussian distributions that are used to generate samples, and
initializes the iteration counter η (lines 1-2). It then explores
the optimal frequency setup solution in an iterative manner
(lines 3-10). In each round of iteration, the algorithm generates
J solution samples according to the distribution PDF and
selects Q feasible samples that satisfy the design constraints
using acceptance-rejection method (lines 4-5). Afterwards,
the selected samples are evaluated in terms of system SER
Rsys (line 6) and a certain number (K) of elite samples
are chosen to update the distribution PDF for generating a
new set of solution samples used in the next iteration (lines
7-9). The iteration stops if the predefined converge criteria
is satisfied or the total iteration number is reached. The
algorithm can be strikingly accelerated by running it in the
parallel programming environment. This is because that for
each solution sample, the evaluation process of this solution
sample is independent from other solution samples.

VIII. EVALUATION

To evaluate the effectiveness of our scheme, we have
performed several simulation-based studies. Specifically, we
compare the system SER of our scheme to two representative
methods: energy-aware reliability management (ERM) [16]
and multi-objective optimization of reliability (MOR) [17].
ERM optimizes system overall energy consumption by deter-
mining the number of replicas and the frequency assignment
for all tasks under a given SER target and all timing con-
straints. MOR develops a genetic algorithm based approach



0.991
0.992
0.993
0.994
0.995
0.996
0.997

1 2 3
0.92

0.93

0.94

0.95

0.96

1 2 3
0.48

0.52

0.56

0.6

0.64

0.68

1 2 3

Sy
st
em
SE
R

Proposed ERM MOR

(a) (b) (c)

× 10−6

0.987

0.992

0.997

1 2 3
0.88

0.9

0.92

0.94

0.96

0.98

1 2 3

Sy
st
em
SE
R

0.26

0.46

0.66

0.86

1 2 3(d) (e) (f)

Benchmark ID Benchmark ID Benchmark ID

Synthetic Task Set ID Synthetic Task Set ID Synthetic Task Set ID

× 10−5 × 10−4

Sy
st
em
SE
R

Sy
st
em
SE
R

Sy
st
em
SE
R

Sy
st
em
SE
R

Proposed ERM MOR Proposed ERM MOR

Proposed ERM MOR × 10−6 × 10−5 × 10−4Proposed ERM MOR Proposed ERM MOR

Fig. 4: System SER of (a)-(c) three real-world benchmarks and (d)-(f) three synthetic task sets under varying transient fault
arrival rate levels (×10−6,×10−5,×10−4) using the proposed scheme and representative methods ERM [16] and MOR [17].

to find the Pareto-optimization of SER and LTR by mapping
tasks to cores and scaling core frequencies. We leave other
performance evaluations to future work due to page limit.

Two sets of simulations have been carried out to validate
our scheme. In the first set of simulations, three real-world
benchmarks from Embedded System Synthesis Benchmark
Suite [18] and the Nvidias TK1 board [19] that includes 4
high-performance cores and 1 low-power core, are utilized to
verify the proposed algorithms. The three benchmarks are au-
tomotive, consumer, and telecom, which consist of 16, 13, 17
tasks, respectively. In the second set of simulations, three syn-
thetic task sets are randomly generated to validate the proposed
algorithms, which consist of 20, 40, 80 tasks, respectively.
The three task sets are allocated to three simulated multicore
systems, which include 5, 10, 20 cores, respectively. In the
both sets of simulations, we investigate the system SER under
varying transient fault rate levels (i.e., ×10−6,×10−5,×10−4)
[1]. The running temperature is obtained using a widely
used thermal modeling tool HotSpot [20] and the MTTF is
derived using a system-level LTR modeling tool [7]. Details
on parameter extraction are omitted due to page limit.

Fig. 4 (a)-(c) show the system SER of running three
benchmarks on TK1 under different fault rate levels using our
proposed scheme, ERM, and MOR. As can be readily seen,
the system SER of our scheme is greater than that of ERM
and MOR but not by too much when the fault rate is low
(10−6), whereas is far greater than that of ERM and MOR
when the fault rate is high (10−4). In the scenario of high
fault rate, our scheme can improve the SER by up to 27.5%
and 25% compared with ERM and MOR, respectively. Fig. 4
(d)-(f) show the system SER of running three synthetic task
sets on simulated platforms under different fault rate levels
using the proposed scheme, ERM, and MOR. We can find the
same observation in these figures that our scheme outperforms
ERM and MOR in terms of SER. The improvement of SER
achieved by our scheme can be up to 66% and 45.3% when
compared to ERM and MOR, respectively.

IX. CONCLUSION

We proposed a two-stage task allocation and scheduling
scheme for real-time MPSoC systems to maximize soft-error

reliability under the constraints of lifetime reliability, temper-
ature, and deadline. Simulation results demonstrate that the
proposed scheme can improve soft-error reliability by up to
66% as compared to representative methods ERM and MOR.

REFERENCES

[1] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real- time embedded
applications under hard energy constraint,” IEEE TII, vol. 6, no. 3, pp. 316-328,
2010.

[2] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle infotainment software
architecture based on Google Android,” SIES, pp. 257-260, 2009.

[3] M. Salehi, M. K. Tavana, S. Rehman, F. Kriebel, M. Shafique, A. Ejlali, and J.
Henkel, “DRVS: Power-efficient reliability management through dynamic redun-
dancy and voltage scaling under variations,” ISLPED, pp. 225-230, 2015.

[4] J. Zhou and T. Wei, “Stochastic thermal-aware real-time task scheduling with
considerations of soft errors,” Elsevier JSS, vol. 102, pp. 123-133, 2015.

[5] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu, “Improving system-level lifetime
reliability of multicore soft real-time systems,” IEEE TVLSI, vol. 25, no. 6, pp.
1895-1905, 2017.

[6] T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick, “Enhancing multicore reliability
through wear compensation in online assignment and scheduling,” DATE, pp. 1373-
1378, 2013.

[7] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-level reliability
modeling for MPSoCs,” CODES+ISSS pp. 297-306, 2010.

[8] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-error reliability
to improve system availability,” ASPDAC, pp. 685-690, 2016.

[9] Y. Ma, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu, “An on-line framework for
improving reliability of real-time systems on Big-Little type MPSoCs,” DATE, pp.
446-451, 2017.

[10] T. Kim, Z. Sun, H. Chen, H. Wang, and S. X. D. Tan, “Energy and lifetime
optimizations for dark silicon many core microprocessor considering both hard and
soft errors,” IEEE TVLSI, vol. 25, no. 9, pp. 2561-2574, 2017.

[11] K. K. Rangan, M. Powell, G. Y. Wei, and D. Brooks, “Achieving uniform
performance and maximizing throughput in the presence of heterogeneity,” HPCA,
pp. 3-14, 2011.

[12] M. Riera, R. Canal, J. Abella, and A. Gonzalez, “A detailed methodology to
compute soft error rates in advanced technologies,” DATE, pp. 212-222, 2016.

[13] X. Li, S. V, P. Bose, and J. River, “Architecture-level soft error analysis: examining
the limits of common assumptions,” DSN, pp. 266-275, 2007.

[14] X. Zhao, Y. Guo, Z. Feng, and S. Hu, “Parallel hierarchical cross entropy
optimization for on-chip decap budgeting,” DAC, pp. 843-848, 2010.

[15] R. Rubinstein and D. Kroese, “The cross entropy method: a unified approach to
combinatorial optimization, monte-carlo simulation, and machine learning,” Annals
of Operations Research, 2004.

[16] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management of energy-aware
real-time systems through task replication,” IEEE TPDS, vol. 28, no. 3, pp. 813-825,
2017.

[17] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined DVFS
and mapping exploration for lifetime and soft-error susceptibility improvement in
MPSoCs,” DATE, pp. 1-6, 2014.

[18] E3S. [Online]. Available: http://ziyang.eecs.umich.edu/∼dickrp/e3s/. 2013.
[19] Nvidia, “Jetson Tegra K1”. [Online]. Available: https://developer.nvidia.com/

embedded/develop/hardware.
[20] K. Skadron et al., “Temperature-aware microarchitecture: modeling and implemen-

tation,” ACM TACO, vol. 1, no. 1, pp. 94-125, 2004.

http://ziyang.eecs.umich.edu/~dickrp/e3s/
https://developer.nvidia. com/embedded/develop/hardware
https://developer.nvidia. com/embedded/develop/hardware

