
Fixed-Priority Allocation and Scheduling for
Energy-Efficient Fault Tolerance in Hard

Real-Time Multiprocessor Systems
Tongquan Wei, Piyush Mishra, Member, IEEE, Kaijie Wu, Member, IEEE, and Han Liang

Abstract—Energy-efficient task allocation and scheduling schemes with deterministic fault-tolerant capabilities are proposed for

symmetric multiprocessor systems executing tasks with hard real-time constraints. The proposed heuristic achieves energy savings by

optimally balancing the application workload among processors in a system. Based on the observation that a fault-free operation is

expected to remain dominant in the near future and the probability of the worst case faults is low, an optimistic fault-tolerant heuristic is

then proposed to achieve optimum energy savings in the absence of faults and meet application timing requirements in the worst case

faults at the cost of energy inefficiency. Extensive simulation experiment results show that when compared to the state-of-art schemes,

the proposed optimistic heuristic achieves average energy savings of up to 70 percent and exhibits higher tolerance to variations in

application utilizations and more resilience to fault occurrences beyond system specification.

Index Terms—Energy-aware systems, multiprocessor systems, real-time and embedded systems, scheduling and task partitioning.

Ç

1 INTRODUCTION

AN increasing number of embedded systems are being
deployed in mission-critical applications with hard

real-time constraints, such as navigation, process control,
automated surveillance, and system monitoring. Many of
these systems such as satellite-based parallel signal proces-
sing, parallel computing in sensor networks, and automated
target recognition (ATR) are rich in thread-level parallelism
(TLP). Unlike applications rich in instruction-level paralle-
lism (ILP), whose timing requirements are usually satisfied
by high-performance uniprocessors, TLP-rich applications
are better suited to multiprocessor systems where multiple
threads can be executed simultaneously on different
processors to provide high computing throughput.

A scheduler in hard real-time multiprocessor systems
operates in three phases. In phase 1, tasks are allocated and
bounded to processors. In phase 2, tasks allocated to an
individual processor are scheduled according to some
scheduling scheme, and in phase 3, the scheduler prepares
the tasks to be dispatched for execution. Real-time task
allocation and scheduling in symmetric multiprocessor
(SMP) systems is a well-studied problem, and traditionally,
the focus has been on trading off the feasibility and
performance with resource requirements. Of late, the

number of faults in hardware has been rising continuously
due to increasing complexity of design, aggressive technol-
ogy scaling, and extreme operating conditions. In particular,
susceptibility to transient faults has been on the rise due to
the increasing level of integration, reducing size of transistor
features, lowering voltage levels in integrated circuits, and
harsh operating environments [1], [2]. The probability of
fault occurrences is even higher in a multiprocessor system
as a result of the large number of components and increased
design complexity. Since hard real-time systems demand
both temporal and logical correctness, it is essential that
even in the presence of faults all tasks finishes execution
before their respective deadlines. Therefore, real-time
embedded systems deployed in mission- or safety-critical
applications are typically designed with enough margins to
tolerate the worst case expected number of faults by trading
off fault coverage and fault detection latency with system
performance. Since multiprocessor systems are more amen-
able to fault-tolerant techniques due to their inherent
redundancy, several techniques have been developed with
varying the levels of granularity: 1) triple modular redun-
dancy (TMR), 2) primary backup (PB), and 3) checkpointing
scheme. The TMR technique tolerates faults by running
three copies of a task concurrently and voting on the results
from these copies. In the PB approach, two copies of a task
are executed serially on two different processors, and an
acceptance test is performed to check the result. The backup
copy is executed only if the output of the primary version
fails the acceptance test. Checkpointing in conjunction with
backward error recovery is a fault-tolerant strategy that
allows a processor to rollback to its previously known valid
state to resume normal execution by exploiting the available
slack time. Though the checkpointing strategy incurs over-
head even in the absence of faults, it has the advantages of
small fault detection latency and recovery costs.

With the proliferation of battery-operated embedded
real-time systems, the need for an energy-efficient design is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008 1511

. T. Wei is with the Department of Electrical and Computer Engineering,
Michigan Technological University, EERC 827, 1400 Townsend Drive,
Houghton, MI 49931. E-mail: twei@mtu.edu.

. P. Mishra is with the Electronics and Energy Conversion Group, GE Global
Research, Niskayuna, NY 12309. E-mail: mishrapi@ge.com.

. K. Wu and H. Liang are with the Department of Electrical and Computer
Engineering, University of Illinois, 1020 SEO, 851 South Morgan St.,
Chicago, IL 60607. E-mail: {kaijie, hliang}@ece.uic.edu.

Manuscript received 8 Oct. 2007; revised 1 Apr. 2008; accepted 10 June 2008;
published online 7 July 2008.
Recommended for acceptance by I. Ahmad, K.W. Cameron, and R. Melhem.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2007-10-0360.
Digital Object Identifier no. 10.1109/TPDS.2008.127.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

increasing to reduce power density and enhance the
operational lifetime of battery-powered systems. Numerous
techniques have been proposed for energy minimization at
the hardware level [3], software level [4], and system level
[5]. At the hardware level, energy saving is achieved via
various circuit design optimization strategies, while at the
software level, energy-efficient modes are selected using a
software controller. At the system level, energy efficiency is
achieved by dynamically reconfiguring active components
of a processor and selectively turning off idle components.
One such promising power management technique is
Dynamic Voltage Scaling (DVS) that exploits technological
advances in power supply circuits to reduce energy
consumption. DVS has attracted considerable attention
due to its effectiveness and ease of use [6], [7]. It reduces
the energy consumption of a processor by dynamically
scaling down the processor voltage at the cost of increased
execution time. Therefore, in reliable real-time multipro-
cessor systems, task allocation and scheduling schemes can
have a significant impact on system energy consumption,
performance, and fault-tolerant capabilities.

This paper focuses on energy-efficient allocation and
scheduling schemes that jointly optimize DVS policies and
feasibility performance to tolerate transient faults using the
checkpointing strategy in hard real-time SMP systems. It is
assumed that tasks are periodic, independent, and pre-
emptive. Simulation results show that the proposed
technique achieves significant energy savings under vary-
ing workloads and fault conditions when compared to
state-of-art schemes while maintaining comparable feasi-
bility performance.

1.1 Related Work

Energy-efficient reliability is an active area of research, and
recently, much attention has been paid to adapt the
techniques for real-time systems. One such scheme
proposed by Melhem et al. exploited slacks in task
schedules to reduce energy consumption while tolerating
faults based on DVS [8]. It made a simplifying assumption
that processor frequency can be scaled in a continuous
range. Zhang and Chakrabarty proposed energy-efficient
techniques based on the offline scheduling algorithm Rate
Monotonic (RMA) to tolerate faults in hard real-time
systems under the simplifying assumptions that the over-
head for checkpointing, rollback recovery, and DVS is
negligible [9]. This scheme was improved in [10] to
overcome simplistic assumptions but at the cost of
increased complexity in the algorithm. Wei et al. proposed
low-cost offline algorithms that combine feasibility analysis
and voltage scaling for hard real-time systems based on the
exact characterization of RMA (ECRMA) [11]. However,
most of it focuses on uniprocessor systems.

On the other hand, an increasing number of emerging
applications are adopting multiprocessor and multicore
real-time embedded systems due to the distributed nature
of applications, demands for higher performance and
reliability, low power, and overall greater flexibility of
operation. Fault tolerance in a real-time multiprocessor
system is typically achieved through the PB approach where
two copies of a task run on different processors [12]. Oh and
Son proposed a scheduling scheme for periodic tasks in a
multiprocessor system [14]. In this scheme, a backup
schedule is created for each task in a primary schedule
such that the two schedules are on different processors, and

they do not overlap. Mosse et al. described a fault-tolerant
scheduling algorithm based on primary-backup, backup
overloading, and backup deallocation to tolerate at most one
single transient or permanent fault at any instant of time in
the entire system [13]. It schedules more than one backup for
a task in the same time slot on the same processor and
reclaims the resources reserved for the backup task when
the corresponding primary copy completes successfully. In
[15], multiple copies of dynamic, aperiodic, and non-
preemptive tasks are scheduled on processors, and over-
loading and deallocation strategies are used to achieve high
feasibility performance and resource utilization by adapting
to runtime fault occurrences.

Energy-efficient multiprocessor allocation and schedul-
ing under hard real-time constraints has also been an active
research topic in the past decade. In [16], energy-efficient
offline task allocation and scheduling schemes were
proposed to minimize the energy consumption of an
aperiodic task set. The tasks in a given task set are assigned
to processors using a round-robin-based approach and the
allocated tasks are optimally scheduled on individual
processors. Zhu et al. proposed energy-efficient heuristics
for scheduling periodic task sets sharing a common dead-
line [17]. Energy saving is achieved for dependent and
independent tasks by using the shared slack reclamation on
DVS-capable processors. In [19] and [20], energy-efficient
approximation algorithms were proposed for scheduling a
set of independent periodic tasks sharing a common
deadline on multiprocessor systems. It was assumed that
processors are homogeneous and support continuous
voltage levels. The authors of [18], [21], and [22] proposed
Earliest Deadline First (EDF)-based online energy-efficient
scheduling policies to schedule independent periodic tasks
on multiprocessor systems. Although the online EDF
algorithm dominates over fixed-priority offline scheduling
algorithms such as RMA, in feasibility performance, fixed-
priority algorithms are of great practical importance, and
most real-time scheduling algorithms, especially hard real-
time systems, use fixed-priority assignments due to their
low overhead and predictability [23]. Therefore, the work in
[22] was extended in [24] to systems using RMA to schedule
independent tasks on processors. However, the proposed
scheme suffers from significant degradation in feasibility
performance under a light system workload.

1.2 Outline

A novel task allocation heuristic combined with an RMA-
based scheduling scheme is proposed to jointly optimize
energy consumption and fault tolerance in hard real-time
multiprocessor systems while preserving the feasibility of
tasks. The proposed offline scheme achieves energy
efficiency based on the observation that in real life, faults
seldom occur, and the traditional approach of designing for
corner cases is highly inefficient. To the best of our
knowledge, this is the first work that addresses energy
efficiency and fault tolerance in hard real-time multi-
processor systems.

The rest of the paper is organized as follows: Section 2
describes the system architecture, the application model, the
fault model, and the energy model. Section 3 discusses the
state-of-art in energy management strategies for hard real-
time multiprocessor systems. Section 4 proposes an energy-
efficient fault-tolerant allocation scheme that achieves opti-
mum energy savings in the absence of faults and sacrifices

1512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

energy efficiency to meet application timing requirements in
the presence of faults. Section 5 presents the experimental
results and discusses the key observations. Section 6 con-
cludes this paper with future research direction.

2 SYSTEM DEFINITIONS

The focus of the study is on SMP systems that are found in
homogeneous multicore embedded processor systems and
tightly coupled multiple-processor systems. In such sys-
tems, processing units have identical capabilities and
characteristics, and interunit communication is often
achieved via shared memories such that the communication
cost can be assumed to be negligible. Each processor unit is
DVS-capable and is equipped with an individual cache.
Tasks are assumed to be preemptive, such that a processor
may selectively suspend or reassign the current task and
switch context to a new task according to some heuristic. It
is assumed that a central scheduler, implemented on an
independent processor, runs the proposed allocation and
scheduling algorithms. It accepts as input the task set to be
executed, processor voltage settings, and fault character-
istics to produce an energy-efficient voltage schedule as
output. This strategy to deploy a scheduler achieves high
system performance but introduces low overhead. An
example of such a system is the Spring Kernel system [25].

2.1 Architecture and Application Model

Consider a multiprocessor system consisting of n homo-
geneous processors P ¼ fP1; P2; . . . ; Png and a task set �
consisting of m independent periodic tasks f�1; �2; . . . ; �mg
with hard real-time constraints. The timing characteristics
of task �i are defined as a tuple �i ¼ fTi;Di; Cig, where Ti is
the period, Di is the deadline, and Ci is the worst case
execution time in cycles. The hyperperiod of the task set,
denoted by T , is the lowest common multiple of all task
periods fT1; T2; . . . ; Tmg. It is assumed that the voltage, and
hence speed, of each processor can be scaled independently,
and all tasks on a processor are executed at the same speed.
Denoting the minimum and maximum speed supported by
a processor as Smin and Smax, respectively, speed Si of
processor Pi normalized with respect to Smax satisfies 0 �
Smin � Si � ðSmax ¼ 1:0Þ. The worst-case execution time and
utilization of task �i executing on Pi is given by Ci=Si and
ui ¼ Ci=ðTiSiÞ, respectively. It is assumed that in the
absence of faults, the task set scheduled on each processing
unit is schedulable at Smax.

2.2 Fault Model

Transient faults can be modeled using a Poisson distribution
such that the probability ofk faults in a time intervalT is given
by e��T ð�T Þk=k!, where � is the fault arrival rate. In general, �
increases as supply voltages and frequency decrease [26].
However, for the current fault rates, fault occurrences are
expected to remain highly infrequent in the foreseeable
future, and the fault-free operation will continue to dominate
[2], [27]. Therefore, it is a common practice to design a system
to tolerate up to L faults in each task instance with an upper
bound of up to K ðK > LÞ faults in the system during the
hyperperiod T , where L is often set to one [1].

Fault tolerance comprises fault detection followed by
fault recovery. In general, fault detection mechanisms are
classified into four categories:

1. a fail-signal processor to notify other processors of
an immediate fault occurrence,

2. watchdog processors for concurrent control flow
checking,

3. signatures that can be used for detection of hard-
ware and software faults, and

4. an acceptance test that checks the test results for
hardware or software faults [15].

It is assumed that faults are detected as soon as they occur.

Upon detecting faults, the system can recover via TMR, the

reexecution of the affected task such as PB or backward

recovery. Of these, TMR is energy intensive, with more than

100 percent energy overhead, while PB leads to an energy-

inefficient offline schedule and requires complex and

efficient online schemes for slack reclamation. In a backward

recovery system, each task has a set of checkpoints at which

computation correctness is verified. If no fault is detected, the

system state is saved, and the computation continues

onward; if one or more faults are detected, the task rolls back

to the previously saved states to resume computation. In

order to simplify the analysis, it is often assumed that the time

overhead to save the system state,Cs, and the time overhead

to retrieve the stored system state, Cr, are constant, and

checkpointing intervals for a given task are equal. Zhang and

Chakrabarty showed that under these assumptions, the

optimal number of checkpoints for task �i that minimizes its

worst-case response time is given byXi ¼ Maxðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi=Cs

p
�

1k; 0Þ [10]. The term k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi=Cs

p
� 1k denotes the value from

the pair fd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi=Cs

p
� 1e; b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCi=Cs

p
� 1cg that minimizes

the worst-case response time of task �i. Therefore, the total

fault-free execution time of an instance of task �i is the sum of

its execution time and its checkpointing overhead, that is,

Ci þXiCs, and the total worst case cost of an instance of task

�i including L fault overhead is given by Ci þXiCsþ
LCi=ðXi þ 1Þ þ LðCsþ CrÞ.

2.3 Energy Model

DVS-capable processors support discrete voltage levels, and
power-aware memories deploy power management strate-
gies to support one or more low-power operation modes. It
has been shown that the energy consumption of aggressive
power-aware memories is much lower than the energy
consumption of processors and, therefore, the DVS char-
acteristics of systems closely follow the DVS characteristics of
processors. In other words, the energy consumption char-
acteristics of overall systems can be modeled based on the
energy consumption characteristics of processors [28].

The power consumption of a processor running at the
normalized speed S is given by a strictly increasing and
convex function gðSÞ ¼ S3 [22], [36], [37]. Therefore, the
energy consumed by a task �i during time interval ½t1; t2� is
given by Ei ¼

R t2
t1
gðSÞdt. For a periodic task �i executing at

speed S, the total energy consumption during a hyperper-
iod T is given by gðSÞðCi=SÞ ðT=TiÞ. Let uk ¼ Ck=ðSmax �
TkÞ ¼ Ck=Tk denote the utilization of task �k at the highest
processor speed and let Uj denote the total utilization of
processor Pj with mj tasks running at speed Smax. The
energy consumption of processor Pj is given by

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1513

Ej ¼
X

ð1�k�mjÞ
gðSjÞ � ðCk=SjÞ � ðT=TkÞ

¼ gðSjÞ=Sj
� �

� T �
X

ð1�k�mjÞ
uk

¼ gðSjÞ=Sj
� �

� T � Uj:

ð2:1Þ

Therefore, the total energy consumption Etot of an
n-processor system is given by

Etot ¼
X
ð1�j�nÞ

Ej ¼
X
ð1�j�nÞ

gðSjÞ=Sj
� �

� T � Uj

¼ T �
X
ð1�j�nÞ

gðSjÞ=Sj
� �

� Uj:
ð2:2Þ

3 ENERGY CHARACTERIZATION OF

FAULT-TOLERANT MULTIPROCESSOR SYSTEMS

The energy consumption of a multiprocessor system
depends significantly on the task-to-processor allocation
strategies. These strategies can be broadly classified into two
categories: global allocation and partitioning allocation [29].
Under global allocation, a task instance can execute on any
processor, and when required, tasks can migrate to other
processors. On the other hand, partitioning allocation
assigns tasks to processors permanently, and migration
among processors is prohibited. The global allocation
strategy suffers from its large overhead due to task
migration among processors and has an adverse impact
on the feasibility performance of optimal uniprocessor
scheduling algorithms such as RMA and EDF [29]. There-
fore, RMA-based hard real-time systems usually use
partitioning allocation due to its simplicity, ease of
implementation, and good synergy with energy-efficient
scheduling schemes for uniprocessor systems.

Besides allocation, task scheduling also has a significant
impact on the energy and feasibility characteristics of a
multiprocessor system. A task schedule is guaranteed to be
feasible if the total utilization of tasks assigned to each
processor is less than or equal to its utilization bound,
Ub � 1, and the total utilization of the system, Utot, is less
than or equal to the system utilization bound, n� Ub. It has
been shown that under the assumption that all tasks on
processor Pj run at a common speed, setting the normalized
speed of processor Pj equal to its utilization normalized
with respect to Ubj, that is, Sj ¼ Uj=Ubj, achieves an energy-
optimum schedule [22], [24]. Therefore, setting Sj ¼ Uj=Ubj
and gðSÞ ¼ S3, (2.2) becomes

Etot ¼ T�
X
ð1�j�nÞ

gðSjÞ=Sj
� �

�Uj ¼ T�
X
ð1�j�nÞ

U3
j =Ub

2
j : ð3:1Þ

Since T is constant for a given task set, the energy
optimization problem is equivalent to minimizing the
objective function Etot=T ¼

P
ð1�j�nÞ U

3
j =Ub

2
j given by (3.1)

subject to

X
ð1�j�nÞ

Uj ¼ Utot; ð3:2Þ

Uj � Ubj � 1: ð3:3Þ

The utilization bound of fixed-priority offline scheduling
algorithms, commonly used in hard real-time systems due

to their low overhead and predictability, is variable and
depends upon task characteristics. For example, the
conservative utilization bound of RMA is given by
Ubj ¼ mj ð21=mj � 1Þ � 0:69, where mj is the number of
tasks assigned to processor Pj [30]. Substituting it in (3.1)
gives the energy optimization problem:

Minimize Etot=T ¼
X
ð1�j�nÞ

U3
j =m

2
j ð21=mj � 1Þ2 subject to

X
ð1�j�nÞ

Uj ¼ Utot; ð3:4Þ

Uj � mjð21=mj � 1Þ; ð3:5ÞX
ð1�j�nÞ

mj ¼ m: ð3:6Þ

For a given task set, the problem of finding an energy-
optimum feasible schedule is essentially a constrained
optimization problem. This problem is well known to be
NP-hard, and an optimal solution can only be found via
exhaustive search, which is computationally intractable.
Further, in a fault-prone system, the workload of a
processor changes every time a fault occurs. Therefore,
the current optimal solution may become suboptimal, and a
new task allocation and scheduling needs to be performed
during runtime based on fault characteristics.

On other hand, a more elegant solution exists for the
energy-optimization problem given by the objective func-
tion in (3.1) for scheduling schemes with constant utiliza-
tion bounds. Note that for some constants a1; a2; . . . ; an > 0
and s < t, the power mean inequality

as1 þ as2 þ . . .þ asn
� �

=n
� �1=s� at1 þ at2 þ . . .þ atn

� �
=n

� �1=t

ð3:7Þ

holds, where the equality holds iff a1 ¼ a2 ¼ . . . ¼ an [31].
Setting aj ¼ Uj, s ¼ 1, and t ¼ 3, (3.7) becomes

ðU1 þ U2 þ . . .þ UnÞ3 � n�2 � U3
1 þ U3

2 þ . . .þ U3
n: ð3:8Þ

Since
P
ð1�j�nÞ Uj¼Utot and n is constant, the right-hand side

of (3.8) is minimized when U1 ¼ U2 ¼ . . . ¼ Un ¼ Utot=n and
the equality holds. Therefore, the energy consumption of
such a multiprocessor system is minimized to ðT � U3

totÞ=
ðn2 � Ub2Þ when

Ubi ¼ Ubj ¼ Ub
Ui ¼ Utot=n

�
1 � i 6¼ j � n ð3:9Þ

is satisfied. In other words, for a given hard real-time
system with known T , Utot, n and a scheduling strategy
with fixed utilization bound Ub, the energy consumption of
the system is optimized when the workload is balanced
uniformly among all processors. A similar conclusion was
reached by Aydin and Yang in [22] for the EDF scheduling
algorithm. The EDF algorithm is based on dynamic task
priorities and has a constant utilization bound of Ub ¼ 1:0.

Due to the lack of fixed-priority scheduling schemes
with constant utilization bound for hard real-time systems,
an alternate approach is proposed, which operates in two
phases. It is based on two critical observations from the
design of practical fault-tolerant real-time systems. In
phase 1, the asymptotic bound of the RMA scheduling
strategy, given by mjð21=mj � 1Þ ! 0:69 as mj !1, is used

1514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

as the utilization bound for allocating tasks to processors.
Since the asymptotic bound is a constant value, a novel
partitioning scheme is proposed to uniformly distribute the
system workload among all processors in order to achieve
energy efficiency. In this phase, the task workload does not
include the associated fault overhead, since according to
the current fault rates, a fault-free execution is expected to
be dominant in the foreseeable future. In phase 2, the tasks
on individual processors are scheduled using RMA after
accounting for the fault overhead, and an efficient exact
characterization of the RMA-based scheme is proposed to
test the feasibility of the schedule. In practice, RMA
performs much better than the conservative estimate of
the asymptotic bound, with processor utilization often
reaching as high as 0.90 [23]. This allows for task set
schedules to tolerate the fault overhead in spite of the use
of the asymptotic bound in phase 1.

4 JOINT OPTIMIZATION OF ENERGY, RELIABILITY,
AND FEASIBILITY IN MULTIPROCESSOR SYSTEMS

The main contribution of this work is a novel task
partitioning heuristics with proven load-balancing proper-
ties under varying workload conditions and its integration
with an optimistic fault-tolerant scheme to achieve energy
efficiency in a reliable hard real-time multiprocessor
system. Since a fault-free operation is expected to remain
dominant in the near future and the probability of the worst
case faults is low, the proposed task allocation scheme does
not account for the cost of fault tolerance. Combining it with
an efficient scheduling scheme, which jointly optimizes
feasibility performance and DVS policies and dynamically
adapts to fault characteristics, significantly reduces the
energy consumption without compromising the feasibility
or reliability of the system. The proposed scheduling
scheme assumes the worst case fault overhead and
improves its feasibility performance using ECRMA.

4.1 Energy-Efficient Task Allocation Based on
Optimistic Fault Tolerance

Task allocation heuristics can be classified into two
categories based on their objectives: 1) minimizing the
number of processors used to feasibly schedule a given task
set and 2) minimizing the finish time of a task set on a
given number of processors via workload balancing.
Resource-constrained task allocation in multiprocessor
systems falls in the same class as the well-known bin
packing problems. Several classic heuristics, including Next
Fit (NF), First Fit (FF), Best Fit (BF), and Worst Fit (WF),
have been adapted for task-to-processor allocation [33].
Typically, these allocation heuristics suffer from poor
feasibility performance due to their unaccounted workload
properties such as individual deadlines of tasks and
various task dependencies (data, resource, temporal, etc.).
It has been shown that the performance of these heuristics
could be improved by sorting tasks in nonincreasing order
of utilization before assigning them to processors [34], [35].
NF Decreasing (NFD), FF Decreasing (FFD), BF Decreasing
(BFD), and WF Decreasing (WFD) belong to this new class
of heuristics and are counterparts of NF, FF, BF, and WF,
respectively [33], [34]. The goal of FFD, NFD, and BFD is to

minimize the number of processors, and they often result in
a highly unbalanced workload distribution. On other hand,
the goal of WFD is to balance the workload in order to
minimize the system response time [22], [24], [34]. How-
ever, the load-balancing property of WFD starts to degrade
under a light-workload condition since 1) it is assumed that
not all processors are open for task assignment at the
beginning of allocation process and 2) processors are
selected in the order of maximum remaining capacity. For
example, for a task set whose workload can be accom-
modated on a single processor, WFD will yield a highly
unbalanced task partition in which all tasks are assigned to
the first processor and all other processors are idling.

Therefore, a new task partitioning scheme based on the
modified WFD heuristic, referred to as MWFD, is
proposed for designing energy-efficient multiprocessor
systems. MWFD features a proven load-balancing property
and hence achieves energy efficiency under varying
workload conditions. The feasibility performance of
MWFD is comparable to FFD, as shown by the simulation
results in Section 5. MWFD has two fundamental differ-
ences from WFD: 1) all n processors are open at the
beginning, and 2) instead of allocating the next task to the
processor with maximum remaining capacity, MWFD
selects the processor with minimum workload and breaks
ties in favor of the processor with a smaller index. As
shown next, MWFD achieves optimal load balancing
independent of the system workload.

Proposition. For a given periodic task set � ¼ f�1; �2; . . . ; �mg
with corresponding nonincreasing utilizations u1 � u2 �
. . . � um and an n-processor system, the MWFD allocation
algorithm produces an optimally balanced workload partition
among the n processors.

Proof. For an aperiodic independent task set
�0 ¼ f� 01; � 02; . . . ; � 0mg, sorting tasks according to their
workload, defined as the number of processor cycles
required for task execution, and sequentially assigning
them to n processors, produces an optimally balanced
partition [32]. Denoting the minimum possible finish
time (that is, response time) of all possible partitions
by !00 and the finish time of a specific partition by !0, a
task allocation scheme that yields !0=!00 relatively
closest to one balances the workload and minimizes
the finish time of the task set �0. It was shown that by
ordering the first ðh � mÞ longest tasks in the task set
from the largest to the smallest task length (task length
is equivalent to workload for aperiodic tasks) with no
order constraints on the remaining ðm� hÞ tasks, the
bound for !0=!00 is given by

!0=!00 � 1þ ð1� 1=nÞ
1þ bh=ncð Þ : ð4:1Þ

This bound is optimal for h � 0ðmod nÞ. Since the right-
hand-side expression in (4.1) is a strictly decreasing
function ofh, the bound on!0=!00 approaches its minimum
value 1þ ð1� 1=nÞ=ð1þ bm=ncÞ when all m tasks in the
task set are sorted according to their workloads. In other
words, allocating aperiodic tasks sequentially in the order

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1515

of workload results in an optimally balanced partition
such that the bound 1þ ð1� 1=nÞ=ð1þ bm=ncÞ cannot be
replaced by any smaller function of the same variables.

This conclusion can be extended to periodic tasks as
follows: Consider a periodic task set � ¼ f�1; �2; . . . ; �mg
with timing parameter fTi;Di; Cig for 1 � i � m. The
total workload contributed by a task �i during hyperper-
iod T is given by Ci � ðT=TiÞ ¼ T � ðCi=TiÞ ¼ T � ui. In
other words, for a periodic task set, sorting tasks in the
order of utilization is equivalent to sorting them
according to their workloads. Since MWFD assigns tasks
to processors in the order of nonincreasing utilization,
the bound given by (4.1) holds and !=!0 � 1þ ð1�
1=nÞ=ð1þ bm=ncÞ when all m tasks in the periodic task
set are sorted according to their utilizations. This
completes the proof for the optimal load-balancing
property of the proposed MWFD heuristic. tu

4.2 Runtime Adaptive Fixed-Priority Scheduling
Based on the Exact Characterization of RMA

After allocating all tasks to processors using MWFD, an
optimal fixed-priority offline scheduling scheme for uni-
processor systems, RMA, is used to independently schedule
the task subset on each processor by assigning higher
priorities to tasks with shorter periods [30]. The worst case
behavior of RMA occurs when all tasks in a task set are
instantiated simultaneously and are ready for execution
immediately after their initiation. This time instant is called
the critical instant, and it has been shown that a schedule of
independent periodic tasks at the critical instant is feasible if
the first instance of each task is schedulable [23]. The
asymptotic bound of RMA is given by mjð21=mj � 1Þ ! 0:69
as mj !1, where mi denotes the number of tasks allocated
to processor Pi.

It is well known that the asymptotic bound of RMA is a
conservative estimate, and in practice, RMA can achieve a
utilization as high as 0.90. Lehoczky et al. proposed an
efficient systematic scheme based on ECRMA to derive both
necessary and sufficient conditions for the feasibility
analysis of a task schedule [23]. It was proven that a set of
periodic tasks is schedulable if and only if the cumulative
demand of each task on a processor is equal to or less than
the current available processor time. Specifically, let WiðtÞ ¼P
ð1�j�iÞ Cjdt=Tje denote the cumulative demand of task �i

on a processor over ½0; t�, assuming 0 as the critical instant.
The necessary and sufficient condition for a set of periodic
tasks to be schedulable is given as

Maxð1�i�nÞ Minð0<t�TiÞ WiðtÞ=t½ �
� �

� 1: ð4:2Þ

It was shown that only a finite number of time instants,

called scheduling points, need to be checked for feasibility

analysis since the normalized demand of task �i on a

processor, WiðtÞ=t, is strictly decreasing except at schedul-

ing points. Scheduling points SPi associated with task �i are

defined as multiples of Tg for Tg � Ti, that is

SPi ¼ hTgjg ¼ 1; 2; . . . ; i;h ¼ 1; 2; . . . ; bTi=Tgc
� �

: ð4:3Þ

Therefore, (4.2) can be rewritten as

Maxð1�i�nÞ Minðt2SPiÞ WiðtÞ=t½ �
� �

� 1: ð4:4Þ

This technique offers two significant advantages over the
asymptotic feasibility analysis technique: 1) since ECRMA is
based on time-demand analysis, it provides a much higher
utilization bound for a given task set, and 2) it needs to be
evaluated only at a finite and often small number of
scheduling points and hence is more conducive to efficient
runtime extensions for online fault tolerance and DVS
policy reevaluations. Since tasks allocated using MWFD
and feasibly scheduled based on the asymptotic bound of
RMA may become infeasible in the presence of faults and
voltage scaling, ECRMA could be used to efficiently verify
the feasibility of an offline schedule in the presence of faults
and voltage scaling and to adapt DVS policies online to
variations in task execution time and fault occurrences.

Two offline techniques, application-level voltage scaling
(A-DVS) and task-level voltage scaling (T-DVS), are
proposed for scheduling the task subset allocated to a
processor. A-DVS selects the lowest common processor
frequency for all tasks in the subset at which each task
meets its deadline, while T-DVS selects individual frequen-
cies for each task in the task subset in order to further
reduce the energy consumption at the cost of increased
complexity in the scheduler. Both techniques systematically
integrate fault tolerance and DVS policy evaluations to
produce an energy-efficient schedule as the first feasible
solution and are less complex when compared to the
previous techniques [10].

A-DVS is suitable for systems in which frequent scaling
of processor voltage, and hence frequency, is inefficient,
such as the systems where 1) processor voltage scaling is
slow and/or consumes significant energy, 2) task sets are
updated frequently, and hence, the overhead due to
scheduler complexity is significant, and 3) system utiliza-
tion is very low, and hence, the extra cost of T-DVS to
compute individual task frequencies is unjustified. Without
loss of generality, it is assumed that in the absence of faults,
the task subset allocated to a processor is schedulable at the
lowest frequency level. The assumption can be easily
modified to accommodate other frequency levels. A-DVS
starts by calculating the scheduling points for each task and
then iteratively performs feasibility analysis using ECRMA
to select the optimal DVS strategy while tolerating L faults
in each task instance. Every time a task fails to meet its
deadline, the common frequency is increased by one level,
and the feasibility test is repeated. This process continues
until all tasks are scheduled successfully or the highest
frequency level is reached and the task set is found to be
infeasible. The T-DVS algorithm is similar to A-DVS except
that whenever a task is found to be unschedulable, the
scheme iteratively increases the frequencies of equal and
higher priority tasks with the lowest frequency level until
the current task becomes schedulable or the highest
frequency level for all tasks is reached and the task set is
found to be infeasible.

The offline scheduling schemes assume that tasks exhibit
the worst case execution times and the worst case fault
occurrences. However, the runtime behavior of the task
execution time and occurrences of faults can vary signifi-
cantly [36], and the slack generated in the runtime due to less
than expected number of faults and due to better than
expected task execution time could be used to dynamically

1516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

scale down the processor speed. Hence, the online reevalua-
tion of DVS policies that adapt to the runtime characteristics
of tasks and faults can save significant energy. The proposed
algorithms, A-DVS and T-DVS, provide efficient mechanisms
to exploit the slack time generated during the runtime to
further slow down the processor speed and save energy
without compromising the feasibility of the offline schedules.
The runtime reevaluation of DVS policies is performed at the
end of execution of each task. At the application level, online
DVS policies determine whether the generated slack time is
sufficient to scale down the processor speed by comparing the
amount of time needed for the schedule of the remaining
tasks to be feasible at the next lower frequency level. The time
overflow at each successive frequency level can be precom-
puted during the offline feasibility analysis and stored in the
system memory. The dynamic reevaluation of DVS strategies
at the task level is more straightforward since offline T-DVS
derives the optimum combination of frequency allocation to
tasks, and during runtime, the frequencies of individual tasks
can be scaled independently. The detailed description and
pseudocode of the A-DVS and T-DVS schemes can be found
in [11].

4.3 Optimistic and Adaptive Fault-Tolerant
Algorithm for Hard Real-Time Systems

The proposed MWFD-A/TDVS scheme operates in two
phases. In phase 1, MWFD determines the task-to-processor
allocation and binding under the assumption that all
processors run at their highest speed and a fault does not
occur. The goal of allocation is to achieve a uniformly
balanced workload in order to minimize energy consump-
tion under the optimistic assumption of no or a small
number of faults. In phase 2, ECRMA-based A/T-DVS
jointly optimizes the fault tolerance and DVS policies. The
goal of the scheduling scheme is to derive an energy-
efficient offline schedule and dynamically adapt to the
runtime behavior in order to maximize energy savings.
Overall, the proposed scheme optimistically aims to
minimize system energy consumption under no or less
than expected fault occurrences while meeting application
timing requirements under the worst case behavior.

Figs. 1 and 2 show the operation of the optimistic fault-
tolerant MWFD (OFT_MWFD) algorithm and the schedul-
ability checking algorithm (SCA), respectively. The notations
used in the two algorithms are defined as follows:

. min: index of the processor with minimum
workload.

. mmin: the number of tasks on the processor with
index min.

. Wmin: workload (utilization) without fault recovery
overhead on the processor with index min.

. Umin: total utilization including the fault recovery
overhead on the processor with index min.

. Schedulable: flag to indicate if a task to be allocated is
schedulable on the target processor.

. Demand: accumulative time demand of a task on
processor.

. ui: the updated utilization of task �i with checkpoint-
ing overhead but without fault recovery overhead.

. ufaulti: the updated utilization of task �i including
the checkpointing and fault recovery overhead.

. ufault: the array of ufaulti.

. SPi: the set of scheduling points of task �i.

The inputs to OFT_MWFD are the task set ð�Þ, the
number of tasks in the task set ðmÞ, the number of processors
in the system ðnÞ, the maximum number of faults each task
instance should tolerate ðLÞ, the checkpoint saving cost ðCsÞ,
and the checkpoint recovery cost ðCrÞ. Lines 2-5 of the
OFT_MWFD algorithm update task utilizations to include
the checkpoint saving overhead, that is, ui ¼ ðCi þXiCsÞ=Ti
for 1 � i � m. Line 6 sorts the updated tasks in the order of
nonincreasing utilization. Lines 7-9 update task utilizations
to include the fault recovery overhead. All processors are
considered open during task allocation. Lines 10-22 opti-
mistically allocate m tasks to n processors to achieve energy
efficiency. The processor Pmin with minimum workload
Wmin is identified and selected for task assignment, and the
asymptotic utilization bound of RMA is used to check if the

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1517

Fig. 1. OFT_MWFD.

current task is schedulable on the processor. If schedulable,
it is assigned to processor Pmin, and workload Wmin and
utilization Umin are updated by adding ui and ufaulti,
respectively, as shown in lines 11-14. Otherwise, the
algorithm performs ECRMA-based feasibility analysis by
calling the SCA subroutine in line 16 and updates Wmin and
Umin in lines 18 and 19, respectively. Lines 10-22 repeat until
a feasible partition is found for the task set or the flag
Schedulable is set to zero by the SCA subroutine and the task
set cannot be feasibly partitioned using the algorithm. Note
that ui, the utilization of task �i without fault recovery
overhead, is used to update Wmin for the identification of the
processor with minimum workload, while ufaulti, the
utilization with fault recovery overhead, is used to update
Umin for feasibility analysis.

OFT_MWFD first uses the asymptotic utilization bound
of RMA to check the schedulability of a task to be allocated.
If the task cannot be feasibly scheduled on the processor
Pmin, the ECRMA-based approach is launched for enhanced
feasibility analysis. This two-step strategy reduces the
average (practical) time complexity of the algorithm,
especially when the system workload is light, since the
ECRMA-based approach is much more complex than the
asymptotic-utilization-bound-based feasibility analysis.

The SCA shown in Fig. 2 accepts as inputs the index of
the processor with minimum workload ðminÞ and the array
of ufaulti ðufaultÞ. SCA iteratively checks the schedulabil-
ity of the tasks on the processor Pmin. The algorithm starts
by initializing both the flag Schedulable and the flag Demand
to zero in line 1. Line 3 derives scheduling points of the
ith task on the processor Pmin, which is denoted by SPi.
The qth scheduling point of the task �i is denoted by spiq.

Lines 4-12 calculate the accumulative time demand of the
task on processor, denoted by the flag Demand, check the
schedulability of the task at its scheduling points, and set
the flag Schedulable accordingly. If the current task cannot
be feasibly scheduled at any of its scheduling points, the
flag Schedulable is set to zero and returned, as shown in
line 13. Else, SCA moves on to the next task for feasibility
analysis. This process iterates for all tasks on the processor
Pmin to verify their schedulability.

DVS policy evaluation is applied to task subsets that are
feasibly assigned to processors, as is shown in lines 23-26
in Fig. 1. The voltage scaling algorithm, A-DVS or T-DVS,
is called depending upon system characteristics such
as context switching overhead and task utilizations. For
A-DVS, where all tasks in a task subset run at the same
processor speed, the A-DVS algorithm examines various
processor voltage levels from low to high to determine the
lowest voltage level that satisfies the timing constraints of
tasks subject to L faults in each task instance. For T-DVS,
where each task in a task subset is assigned an individual
voltage level, the T-DVS algorithm derives the greedily
optimum combination of speed assignments for each task
such that all timing constraints are satisfied subject to
L faults in each task instance. The T-DVS algorithm is
similar to the A-DVS algorithm except that whenever a
task is found to be unschedulable, T-DVS repeatedly
selects one task from among tasks of equal and higher
priorities and scales its voltage level up by one level until
the current task becomes schedulable or the highest
voltage level for all tasks is reached and the task set is
found to be infeasible. A detailed description of A-DVS
and T-DVS can be found in [11]. The next section presents
the results of MWFD simulation studies.

5 EXPERIMENTAL RESULTS

Extensive experiments were carried out over a simulated
SMP system to validate the proposed schemes for energy
efficiency and feasibility performance. It is assumed that
the system consists of processors with identical character-
istics, all processors support continuous voltage scaling,
and the normalized speed of each processor ranges from
zero to one. Interprocessor and intraprocessor communica-
tion is zero since task sets are assumed to comprise
independent tasks, and the time and energy overhead of
memory accesses is accounted for in task execution times
and the processor energy model, respectively. The number
of processors in a system was varied from two processors
to eight processors. Simulation experiments were per-
formed over task sets with widely varying temporal
characteristics. Tasks within a task set were generated
randomly by following the approaches suggested in [34],
[39], and [40], and a total of 10,000 different configurations
were used to account for the statistical anomalies. Task
periods were generated with uniform probability such that
each task has the same probability of being short (1-10 ms),
medium (10-100 ms), and long (100-1,000 ms). Task
utilizations were generated randomly based on the Beta
distribution of probability and were limited to less than
ln2, the asymptotic bound of RMA. The standard deviation
of utilizations, �, was limited to a maximum value �max,
which is a function of the mean of task utilizations. The
total number of faults tolerated by a system during a

1518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 2. SCA.

hyperperiod T is limited to K, and faults are randomly
distributed among processors under the assumption that
each task instance can tolerate at most L ¼ 1 fault. Note
that the number of faults each task instance is designed to
tolerate is independent of the proposed task allocation and
scheduling schemes and hence can be any number for
L < K. Results are reported for exponentially distributed
fault occurrences and were obtained by averaging over all
10,000 simulation runs.

5.1 Feasibility Performance of MWFD

To validate the claim that the proposed allocation scheme,
MWFD, does not degrade the schedulability of a task set, its
feasibility performance was compared with that of other
state-of-art schemes. Feasibility performance is defined as the
percentage of task sets, with varying workloads, that can be
successfully scheduled on a given multiprocessor system.
Since, to the best of our knowledge, this is the first work on
energy-efficient fault-tolerant real-time multiprocessor sys-
tems [13], [14], [38], classic FFD, WFD, and the theoretical
lower utilization bound for multiprocessor systems derived
by Lopez et al. [34] were used for comparison. This lower
utilization bound, hereafter called LPZ, is given by
ðn� þ 1Þð21=ð�þ1Þ � 1Þ, where n is the number of processors
in a system, � ¼ b1= log2ð�þ 1Þc, and � is the maximum
utilization among all tasks in a task set. The classic FFD has
been chosen for comparison because it is one of the simplest
heuristics and exhibits identical or better feasibility perfor-
mance compared to BFD, NFD, and WFD when RMA is used
for task scheduling [24], [34], [41]. The classic WFD has been
chosen for comparison because it tends to outperform other
heuristics in energy consumption due to its load-balancing
property [24], [34]. Since the feasibility performance of WFD
was found to be very similar to that of FFD, it has been omitted
from the presented results on feasibility performance in favor
of space and reduced cluttering of graphs. As a result, FFD
has been chosen for comparison in feasibility performance, as

shown in this section, and FFD and WFD have been chosen for
comparison in energy, as shown in the next section.

Postallocation RMA was used for scheduling tasks on
individual processors, and feasibility performance results
were compiled for both the asymptotic and exact character-
ization of RMA-based bounds. Fig. 3 shows that under
fault-free conditions and asymptotic-bound-based schedul-
ing, the feasibility performance of MWFD and FFD is
comparable and, as expected, better than the theoretical
lower bound of the LPZ scheme. LPZ assumes that the
utilization of all tasks equals �, the maximum utilization of
all task utilizations in a task set. This renders the theoretical
bound extremely conservative, especially if � is large. For
example, for task sets with �=�max ¼ 0:2 and with average
processor utilizations of 0.69 and 0.72 in a dual-processor
system, 100 percent and 0 percent of task sets, respectively,
were found to be feasible according to both FFD and MWFD
schemes, while no task sets were found to be feasible
according to the LPZ scheme. The impact of allocation
schemes on the schedulability of task sets can also be
represented in terms of the distances between their graphs.
For example, 70 percent of task sets with �=�max ¼ 0:2 and
with average processor utilizations of 0.7 and 0.71 were
found to be feasible using FFD and MWFD schemes,
respectively.

Fig. 3 also shows that the performance of MWFD

degrades as the ratio �=�max decreases. Lines in solid

represent the feasible task sets with a lower standard

variation ð�=�max ¼ 0:2Þ in task utilizations, while the

lines in dots represent the feasible task sets with a higher

ð�=�max ¼ 0:8Þ standard variation in task utilizations. The

asymptotic RMA scheduling capacity of an n-processor

system depends on the number of tasks allocated on each

processor. Let ci > 0 denotes the scheduling capacity of

processor Pi ð1 � i � nÞ. Therefore, the total scheduling

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1519

Fig. 3. Performance of the LPZ, FFD, and MWFD allocation schemes when used in conjunction with RMA-asymptotic-bound-based scheduling

scheme.

capacity of an n-processor system is given by

C ¼
P
ð1�i�nÞ ci. According to power mean inequality

(3.7), C=n ¼
P
ð1�i�nÞ ci=n ¼ ðc1 þ c2 þ . . .þ cnÞ=n � ððct1 þ

ct2 þ . . .þ ctnÞ=nÞ
1=t, where n is the number of processors,

and t > 1. The left-hand-side expression is minimized for

c1 ¼ c2 ¼ . . . ¼ cn, that is, the system capacity decreases

with the decreasing variation in numbers of tasks

assigned to individual processors. For a smaller �=�max,

that is, a smaller � since �max is a constant, balancing the

workload leads to balancing the number of tasks among

processors, which in turn leads to reduced scheduling

capacity. On other hand, for a large �=�max, FFD

consistently outperforms MWFD since the goal of FFD

is to maximize the number of feasibly scheduled tasks at

the cost of an unbalanced (skewed) schedule [22], [24],

[34], [36], while the goal of MWFD is to balance the

workload among processors. In other words, for the

asymptotic-bound-based approach, the scheduling capa-

city of FFD improves with the increasing variation in task

utilizations.
Similar trends were observed for scheduling based on

ECRMA, as shown in Fig. 4. The scheduling capacity of
ECRMA depends on the number and characteristics of tasks
and can be as high as 0.90. The feasibility performance of
FFD and MWFD was found to be almost identical, such that
the intergraph distance (that is, the difference in average
processor load of feasible task sets) was often less than
0.5 percent. Finally, from Figs. 3 and 4, it can be deduced
that MWFD is more tolerant to variations in task utiliza-
tions, that is, its performance does not significantly change
with the variations in �=�max. This can be particularly useful
in hard real-time systems where deterministic performance
often trumps the other performance metrics.

5.2 Energy Consumption Characteristics of MWFD

The energy consumption of a feasible task set is calculated
according to (3.1), which computes the energy consumed by
a processor as a function of the processor speed normalized
with respect to its maximum speed. Equation (3.9) shows
that the energy consumption of an n-processor system
depends on the load distribution and scheduling capacity of
the allocation and scheduling schemes applied to the
system. It is shown that the system energy consumption is
minimized when the workload is balanced among proces-
sors and each processor has a large scheduling capacity.
Fig. 5 shows the energy consumption of the FFD, WFD, and
MWFD allocation schemes when used in conjunction with
the RMA-asymptotic-bound-based scheduling scheme. It is
assumed that all executions are fault free and �=�max ¼ 0:2.
Fig. 5a shows that FFD and WFD incur comparable energy
consumption except that WFD performs slightly better
under medium-workload conditions. For example, in a
dual-processor system WFD consistently outdoes FFD
when the average processor utilization of task sets is in
the range of 0.35-0.55. MWFD incurs up to 70 percent less
energy consumption under a light or medium system
workload and is comparable to FFD and WFD under a
heavy workload ðUtot=n > 0:6Þ. For example, for task sets
with average processor utilizations of 0.3 and 0.5, FFD,
WFD, and MWFD consume (580, 580, 150) and (830, 810,
690) energy units, respectively.

Fig. 6a shows that replacing the asymptotic RMA with
ECRMA demonstrates similar trends in energy consump-
tion, but a more careful analysis reveals several other
important facts. As shown in Figs. 5 and 6, the operation of
a multiprocessor system can be categorized into three
distinct workload regions—light, medium, and saturation—
according to the average processor utilization. Under a
light-workload condition, FFD and WFD incur similar
energy consumption, while MWFD incurs significantly less
energy consumption. Under a medium-workload condition,
MWFD performs better than WFD, which in turn performs

1520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 4. Performance of the FFD and MWFD allocation schemes when used in conjunction with the ECRMA-based scheduling scheme.

better than FFD, in energy consumption. In the saturation
region, FFD, WFD, and MWFD incur comparable energy
consumption regardless of the scheduling schemes applied
to the system.

Further investigation reveals that although similar in
trend, the actual energy consumed by FFD, WFD, and
MWFD varies significantly from the asymptotic RMA to
ECRMA. According to (3.1), the energy consumption of a
processor is given by Ej ¼ U3

j =Ub
2
j , where Uj denotes the

total utilization of all tasks assigned to processor Pj and
depends upon the allocation schemes, and Ubj represents

the upper utilization bound of processor Pj, which
depends on the scheduling schemes and associated feasi-
bility criteria. Therefore, under light-workload ðU3

j � U2
bjÞ

conditions, the ECRMA with higher scheduling capacity
compared to the asymptotic utilization bound consumes
significantly less energy for all the three allocation
schemes. For example, for task sets with an average
processor utilization of 0.30, the energy consumption of
(FFD, WFD, MWFD) with the asymptotic utilization bound
is (569, 569, 150) units, while the energy consumption of
(FFD, WFD, MWFD) with ECRMA is (400, 400, 100) units,

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1521

Fig. 5. Energy consumption of the FFD, WFD, and MWFD allocation schemes when used in conjunction with RMA-asymptotic-bound-based

scheduling and the A-DVS algorithm ð�=�max ¼ 0:2Þ.

Fig. 6. Energy consumption of the FFD, WFD, and MWFD allocation schemes when used in conjunction with ECRMA-based scheduling

and the A-DVS algorithm ð�=�max ¼ 0:2Þ.

as is shown in Figs. 5a and 6a. As the system workload
increases, the processor utilization ðUjÞ becomes less
significant compared to the utilization bound ðUbjÞ, and
the ECRMA-based scheme results in a more skewed
schedule (unbalanced workload) due to the increased
scheduling capacity of each processor. As a result, the
energy consumption of FFD and WFD with ECRMA
increases compared to the energy consumption of FFD
and WFD with the asymptotic RAM in the medium region.
For example, the energy consumption of (FFD, WFD) for
task sets with an average processor utilization of 0.45 is
(731, 706) units with the asymptotic RMA and (1,049, 997)
units with ECRMA, as shown in Figs. 5a and 6a. In the
saturation region, the energy performance of all the
schemes is similar since a high processor utilization leaves
lesser opportunities for voltage scaling for saving energy.

Fig. 7 shows the energy consumption of the FFD, WFD,
and MWFD allocation schemes when used in conjunction
with the ECRMA-based scheduling scheme and the A-DVS
and T-DVS algorithms for �=�max ¼ 0:8. It is shown that the
energy consumption for the T-DVS algorithm follows the
same trend as the energy consumption for the A-DVS
algorithm except that T-DVS consumes up to 10 percent less
energy compared to A-DVS. For example, in a dual-
processor system, the energy consumption of (FFD, WFD,
MWFD) for A-DVS and T-DVS is (1,198.0, 1,019.4, 563.1)
and (1,114.1, 958.2, 523.7) units, respectively, when the
average processor utilization is 0.54.

Overall, in a multiprocessor system using ECRMA for
task scheduling, the energy consumption of a feasible task
set allocated using MWFD is consistently lower than the
energy consumption of the task set allocated using FFD or
WFD due to the better load-balancing property of MWFD
regardless of the number of processors in the system, as
shown in Figs. 5b and 6b, and task set workload
characteristics and voltage scaling algorithms, as shown

in Fig. 7 for tasks with a utilization variation of �=�max ¼
0:8 and the A/T-DVS algorithm.

5.3 Fault-Tolerant Characteristics of MWFD

In the presence of faults, the goal of the proposed
OFT_MWFD scheme is to minimize energy consumption
by dynamically adapting to runtime fault characteristics,
such as the number of faults and the time instances of
occurrences, and meet the timing requirements for all tasks
in case of the worst case faults. Fig. 8 shows the energy
consumed by task sets under varying fault occurrences. The
system is designed to tolerate up to 10 randomly distributed
faults among processors and assumes ECRMA-based
scheduling and A-DVS. As is to be expected, the perfor-
mance of MWFD degrades at a slightly faster rate, albeit
very gradually, compared to FFD and WFD. This is because
MWFD starts with an energy-optimum solution based on
fault-free execution, and each fault occurrence invalidates
the optimistic assumption. Nonetheless, even in the
presence of all 10 faults, the energy consumption of the
MWFD scheme is considerably less than the energy
consumption of FFD and WFD, and the trend is indepen-
dent of the number of processors in the system and the task
set workload characteristics, as shown in Figs. 8a and 8b.

Since the probability of transient faults occurring in
bursts is increasing, especially in embedded systems
deployed in harsh operating environments, fault occurrence
in a system may exceed the specified upper bound the
system is designed to tolerate. The proposed MWFD-
ECRMA scheme further enhances the fault-tolerant cap-
ability of such systems because the load-balancing property
of MWFD combined with ECRMA leads to improved and
balanced scheduling capacity of processors in a system.
Fig. 9 shows that in a dual-processor system designed to
tolerate up to K ¼ 5 faults, a relatively higher number of
task sets scheduled using MWFD-ECRMA were found to be
feasible when more than the specified number of faults

1522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 7. Energy consumption of the FFD, WFD, and MWFD allocation schemes when used in conjunction with ECRMA-based scheduling and the

A/T-DVS algorithm ð�=�max ¼ 0:8Þ.

occur in the system. In other words, MWFD is more resilient

to transient system overloading than FFD.
Finally, a number of additional simulations were carried

out to validate the energy savings due to the dynamic

adaptation of the MWFD-DVS scheme to runtime fault

characteristics. It is assumed that the number of faults in a

system ranges from 0 to K, where K is the upper bound on

faults the system is designed to tolerate, and faults are

distributed uniformly among all the processors.
Figs. 10 and 11 show typical simulation runs of the

OFT_MWFD algorithm combined with A-DVS and T-DVS,

respectively. On the average, the dynamic OFT_MWFD
achieves up to 30 percent energy savings compared to the
offline OFT_MWFD regardless of the voltage scaling
algorithm. For example, in a dual-processor system with
nine specified fault occurrences, the average offline energy
consumed by a task set scheduled using the offline MWFD-
ADVS is (957.1, 645.1) units for �=�max ¼ ð0:2; 0:8Þ, while the
average energy consumed by the task set in the runtime is
(854.6, 548.5) units for �=�max ¼ ð0:2; 0:8Þ. The energy
consumption of task sets allocated and scheduled using
the MWFD-TDVS algorithm follows the same trend as the
energy consumption of task sets allocated and scheduled
using the MWFD-ADVS algorithm except that MWFD-
TDVS achieves up to 10 percent energy savings.

6 CONCLUSIONS

This paper presents a low-energy task allocation and
scheduling scheme for hard real-time SMP systems. The
proposed task allocation scheme, MWFD, is proven to
achieve an optimally balanced task partition by opening all
processors and sequentially selecting processors in the
order of current workload. An optimistic fault-tolerant
algorithm, OFT_MWFD, is then proposed to achieve
optimum energy savings in the absence of faults while
meeting all application timing requirements in the worst
case of fault occurrences. The optimistic approach is based
on the observation that a fault-free operation is expected to
remain dominant in the near future, and designing for
corner cases is extremely energy inefficient. Combining
OFT_MWFD with an efficient scheduling scheme, which
jointly optimizes feasibility performance and DVS policies
and dynamically adapts to fault characteristics, significantly
reduces the energy consumption without compromising the
feasibility or reliability of the system.

Simulation results show that the feasibility performance
of MWFD is comparable to other state-of-art schemes, and it

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1523

Fig. 8. Energy consumption of the FFD, WFD, and MWFD allocation schemes when used in conjunction with ECRMA-based scheduling and the

A-DVS algorithm in the presence of faults.

Fig. 9. Performance of FFD and MWFD allocation schemes when faults

occur in bursts.

can achieve up to 70 percent energy savings in the absence
of faults and up to 50 percent energy savings in the
presence of faults with no degradation of its feasibility
performance. The performance of MWFD is consistently
independent of the task characteristics, the number of
processors in a system, and the voltage scaling algorithms
applied on each processor. Further, the MWFD algorithm
combined with ECRMA is highly resilient to transient
system overloading.

As part of future work, the proposed schemes are
being implemented on a multicore motherboard for real-
time application development [42]. Considering the
increasing application of heterogeneous processors in

real-time embedded systems and that in practice, a
system function is often provided by a set of related
tasks, the proposed schemes will be extended to account
for a heterogeneous embedded processor architecture and
periodic end-to-end task sets.

ACKNOWLEDGMENTS

This work was in part supported by the Center for
Integrated Systems in Sensing, Imaging, and Communica-
tion (CISSIC) at MTU. A preliminary version of this paper
was presented at the IEEE Workshop on Silicon Errors in
Logic-System Effects (SELSE) in 2007.

1524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 10. Runtime energy consumption of OFT_MWFD when used in conjunction with ECRMA-based scheduling and the A-DVS algorithm in the

presence of faults.

Fig. 11. Runtime energy consumption of OFT_MWFD when used in conjunction with ECRMA-based scheduling and the T-DVS algorithm in the

presence of faults.

REFERENCES

[1] S. Reinhardt and S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. 27th Ann. Int’l Symp. Com-
puter Architecture (ISCA ’00), pp. 25-36, 2000.

[2] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate
of Combinational Logic,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN ’02), pp. 389-398, 2002.

[3] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-Power
CMOS Digital Design,” IEEE J. Solid-State Circuits, vol. 27, no. 4,
pp. 473-484, Apr. 1992.

[4] J. Lorch and A.J. Smith, “Software Strategies for Portable
Computer Energy Management,” IEEE Personal Comm., vol. 5,
no. 3, pp. 60-73, June 1998.

[5] L. Benini, A. Bogliolo, and G. Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 8,
no. 3, pp. 299-316, June 2000.

[6] V. Gutnik and A. Chandrakasan, “An Efficient Controller for
Variable Supply-Voltage Low Power Processing,” Proc. Symp.
VLSI Circuits, pp. 158-159, June 1996.

[7] W. Namgoong, M. Yu, and T. Meng, “A High-Efficiency Variable-
Voltage CMOS Dynamic DC-DC Switching Regulator,” Proc. IEEE
Int’l Solid-State Circuits Conf. (ISSCC ’97), pp. 380-381, Feb. 1997.

[8] R. Melhem, D. Mossé, and E. Elnozahy, “The Interplay of Power
Management and Fault Recovery in Real-Time Systems,” IEEE
Trans. Computers, vol. 53, no. 2, pp. 217-231, Feb. 2004.

[9] Y. Zhang and K. Chakrabarty, “Energy-Aware Fault Tolerance in
Fixed-Priority Real-Time Embedded Systems,” Proc. Int’l Conf.
Computer-Aided Design (ICCAD ’03), pp. 209-213, Nov. 2003.

[10] Y. Zhang and K. Chakrabarty, “Task Feasibility Analysis and
Dynamic Voltage Scaling in Fault-Tolerant Real-Time Embedded
Systems,” Proc. Design, Automation and Test in Europe Conf.
(DATE ’04), vol. 2, pp. 1170-1175, Feb. 2004.

[11] T. Wei, P. Mishra, K. Wu, and H. Liang, “Online Task-Scheduling
for Fault-Tolerant Low-Energy Real-Time Systems,” Proc. Int’l
Conf. Computer-Aided Design (ICCAD ’06), pp. 522-527, Nov. 2006.

[12] D. Pradhan, Fault Tolerance Computing: Theory and Techniques.
Prentice Hall, 1986.

[13] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of a Fault-
Tolerant Multiprocessor Scheduling Algorithm,” Proc. 24th
Int’l Symp. Fault-Tolerant Computing (FTCS ’94), pp. 16-25,
June 1994.

[14] Y. Oh and S. Son, “Multiprocessor Support for Real-Time Fault-
Tolerant Scheduling,” Proc. IEEE Workshop Architectural Aspect of
Real-Time Systems, Dec. 1991.

[15] S. Ghosh, R. Melhem, and D. Mosse, “Fault-Tolerance through
Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor
Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 3,
pp. 272-284, Mar. 1997.

[16] S. Albers, F. Müller, and S. Schmelzer, “Speed Scaling on Parallel
Processors,” Proc. 19th Ann. ACM Symp. Parallelism in Algorithms
and Architectures (SPAA ’07), pp. 289-298, 2007.

[17] D. Zhu, R. Melhem, and B. Chiders, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
processor Real-Time Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 7, pp. 686-700, July 2003.

[18] J. Anderson and S. Baruah, “Energy-Efficient Synthesis of Periodic
Task Systems upon Identical Multiprocessor Platforms,” Proc. 24th
Int’l Conf. Distributed Computing Systems (ICDCS ’04), pp. 428-435,
2004.

[19] J. Chen, H. Hsu, K. Chuang, C. Yang, A. Pang, and T. Kuo,
“Multiprocessor Energy-Efficient Scheduling with Task Migration
Consideration,” Proc. 16th Euromicro Conf. Real-Time Systems
(ECRTS ’04), pp. 101-108, June-July 2004.

[20] C. Yang, J. Chen, and T. Kuo, “An Approximation Algorithm for
Energy-Efficient Scheduling on a Chip Multiprocessor,” Proc.
Design, Automation and Test in Europe Conf. (DATE ’05), vol. 1,
pp. 468-473, Mar. 2005.

[21] Y. Yu and V. Prasanna, “Power-Aware Resource Allocation for
Independent Tasks in Heterogeneous Real-Time Systems,” Proc.
Ninth Int’l Conf. Parallel and Distributed Systems (ICPADS ’02),
pp. 341-348, Dec. 2002.

[22] H. Aydin and Q. Yang, “Energy-Aware Partitioning for Multi-
processor Real-Time Systems,” Proc. 17th Int’l Parallel and
Distributed Processing Symp. (IPDPS ’03), p. 9, Apr. 2003.

[23] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,”
Proc. Real-Time Systems Symp. (RTSS ’89), pp. 166-171, Dec. 1989.

[24] T. AlEnawy and K. Aydin, “Energy-Aware Task Allocation
for Rate Monotonic Scheduling,” Proc. 11th IEEE Real-Time
and Embedded Technology and Applications Symp. (RTAS ’05),
pp. 213-223, Mar. 2005.

[25] J. Stankovic and K. Ramamritham, “The Spring Kernel: A New
Paradigm for Real-Time Operating Systems,” ACM SIGOPS
Operating Systems Rev., vol. 23, no. 3, pp. 54-71, July 1989.

[26] D. Zhu, R. Melhem, and D. Mossé, “The Effects of Energy
Management on Reliability in Real-Time Embedded Systems,”
Proc. Int’l Conf. Computer-Aided Design (ICCAD ’04), pp. 35-40,
Nov. 2004.

[27] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans.
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

[28] X. Fan, C. Ellis, and A. Lebeck, “The Synergy between Power-
Aware Memory Systems and Processor Voltage Scaling,” Techni-
cal Report CS-2002-12, Dept. Computer Science, Duke Univ., 2002.

[29] S. Dhall and C. Liu, “On a Real-Time Scheduling Problem,”
Operations Research, vol. 26, no. 1, pp. 127-140, Jan.-Feb. 1978.

[30] C. Liu and J. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J. ACM, vol. 20, no. 1,
pp. 46-61, Jan. 1973.

[31] Power Mean Inequality, http://en.wikipedia.org/wiki/General
ized_mean, 2008.

[32] R. Graham, “Bounds on Multiprocessing Timing Anomalies,”
SIAM J. Applied Math., vol. 17, no. 2, pp. 416-429, 1969.

[33] E. Coffman, M. Garey, and D. Johnson, “Approximation Algo-
rithms for Bin Packing: A Survey,” Approximation Algorithms for
NP-Hard Problems. PWS Publishing, pp. 46-93, 1996.

[34] J. Lopez, J. Diaz, and D. Garcia, “Minimum and Maximum
Utilization Bounds for Multiprocessor Rate Monotonic Schedul-
ing,” IEEE Trans. Parallel and Distributed Systems, vol. 15, no. 7,
pp. 642-657, July 2004.

[35] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[36] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling
for Hard Real-Time Systems,” Proc. 36th Design Automation Conf.
(DAC ’99), pp. 134-139, 1999.

[37] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava, “Synthesis
Techniques for Low-Power Hard Real-Time Systems on Variable
Voltage Processors,” Proc. 19th IEEE Real-Time Systems Symp.
(RTSS ’98), pp. 178-187, Dec. 1998.

[38] H. Beitollahi and S. Miremadi, “Performance Evaluation of Fault-
Tolerant Scheduling Algorithms in Real-Time Multiprocessor
Systems,” Proc. IASTED Int’l Conf. Parallel and Distributed Comput-
ing and Networks (PDCN ’05), Feb. 2005.

[39] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low Power Embedded Operating Systems,” Proc. 18th ACM Symp.
Operating System Principles (SOSP ’01), pp. 89-102, 2001.

[40] S. Saewong and R. Rajkumar, “Practical Voltage-Scaling for
Fixed-Priority Real-Time Systems,” Proc. Ninth IEEE Real-Time
and Embedded Technology and Applications Symp. (RTAS ’03),
pp. 106-114, May 2003.

[41] J. Lopez, M. Garcia, J. Diaz, and D. Garcia, “Utilization Bounds for
Multiprocessor Rate-Monotonic Scheduling,” Real-Time Systems,
vol. 24, no. 1, pp. 5-28, Jan. 2003.

[42] Multi-Core Board, http://www.radisys.com/products/datasheet_
page.cfm?productdatasheetsid=1406, 2008.

WEI ET AL.: FIXED-PRIORITY ALLOCATION AND SCHEDULING FOR ENERGY-EFFICIENT FAULT TOLERANCE IN HARD REAL-TIME... 1525

Tongquan Wei received the BE degree in
electronics engineering from the Dalian Univer-
sity of Technology, China, and the MS degree in
computer engineering from the University of
Missouri, Rolla. He is a PhD student in the
Department of Electrical and Computer Engi-
neering, Michigan Technological University,
Houghton. His research focuses on power and
fault-tolerant management in real-time em-
bedded systems.

Piyush Mishra received BE degree in electrical
and electronics engineering from Birla Institute,
India, and the PhD degree in electrical engineer-
ing from Polytechnic University, Brooklyn, New
York in 1997 and 2004, respectively. He was an
assistant professor of computer engineering in
the Department of Electrical and Computer
Engineering, Michigan Technological University,
Houghton. He is currently with the Electronics
and Energy Conversion Group, GE Global

Research, Niskayuna, New York. His research interests include reliable
real-time systems, resource-optimum security and reliability in em-
bedded computing, and high-performance hardware-software integra-
tion. He is the recipient of an IEEE DAC graduate scholarship and a
CISCO Information Assurance scholarship and serves on several
conference program committees and review boards. He is a member
of the IEEE, the Sigma Xi, and the ACM SIGDA.

Kaijie Wu received the BE degree from Xidian
University, Xi’an, China, in 1996, the MS
degree from the University of Science and
Technology of China, Hefei, China, in 1999,
and the PhD degree in electrical engineering
from Polytechnic University, Brooklyn, New
York in 2004. He is currently an assistant
professor in the Department of Electrical and
Computer Engineering, University of Illinois,
Chicago. His research interests include compu-

ter-aided design (CAD) of radiation-hardened VLSI systems, counter-
measures for side-channel cryptanalysis for cryptodevices, and robust
and fault-tolerant nanotechnology designs. He is the recipient of the
2004 EDAA Outstanding Dissertation Award in the “new directions in
circuit and system test.” He is a member of the IEEE.

Han Liang received the BE and MS degrees
from Xi’an Jiaotong University (XJTU), Xi’an,
China, in 1999 and 2002, respectively. He is
a PhD candidate in the Department of
Electrical and Computer Engineering, Univer-
sity of Illinois, Chicago. He has been working
with Prof. Kaijie Wu since September 2004.
His research interests include computer-aided
design, high-performance power-efficient fault-
tolerant VLSI systems, and high-speed hard-

ware architectures of cryptographic protocols and algorithms.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

