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Abstract: Due to their extremely small feature sizes and ultra 
low power consumption, Quantum-dot Cellular Automata 
(QCA) technology is projected to be a promising 
nanotechnology. However, in nanotechnologies, manufacture 
time defect levels and operational time fault rates are expected 
to be quite high. Straightforward Triple Modular Redundancy 
(TMR) based fault tolerance is inappropriate for QCA 
nanotechnology since wire delays dominate the logic delays and 
faults in wires dominate the faults in a QCA based design. 
Furthermore, long wires are necessary in TMR based designs. 
In this paper we show that fault-tolerance can be obtained by 
using TMR with Shifted Operands (TMRSO). TMRSO uses 
shorter wires of QCA cells and exploits the self-latching 
property of clocked QCA arrays to provide the same level of 
fault tolerance capability as straightforward TMR while being 
significantly faster and smaller. This technique can be applied 
to a variety of operations; we have validated TMRSO on adders. 
Implementation results obtained using QCADesigner [6] show 
that an 8-bit adder using TMRSO has more than 50% area 
reduction and more than 100% throughput improvement when 
compared to a TMR implementation.  
 
I. INTRODUCTION 

Scaling of CMOS devices is being aggressively pursued by 
shrinking transistor dimensions, reducing power supply voltages 
and increasing operating frequencies. Such aggressive scaling 
adversely results in non-ideal behaviors such as high leakage 
current and high power density levels. These issues will eventually 
become road blocks and slow down the scaling trend that has been 
operative for years. Quantum-dot Cellular Automata (QCA) 
proposed in the 1990s [1] are attracting a lot of attention due to 
their extremely small feature sizes and ultra low power 
consumption. However, at nanometer scales, it is extremely hard to 
achieve the required manufacturing tolerances. Hence, fault-
tolerance assumes the role of an enabling design technology for 
QCA and other nanotechnologies. Straightforward application of 
Triple Modular Redundancy (TMR) based fault tolerance is 
inappropriate for QCA nanotechnology because, unlike CMOS 
technology, both the wires and the logic gates are built from 
quantum cells and wire delays end up dominating the logic delays 
in QCA. Furthermore, a TMR based design will result in long wires 
of QCA cells and more associated faults. 
This paper presents a novel QCA fault tolerance technique for 
arithmetic circuits. This method, Triple Modular Redundancy with 
Shifted Operands (TMRSO), illustrated on an adder, is compared 
with a TMR adder with respect to fault tolerance capability, 
throughput and complexity. In contrast to a TMR adder, a TMRSO 
adder is shown to be able to provide at least the same level of fault 
tolerance capability while being much faster and smaller. The rest 
of this paper is organized as follows. In Section II, the clocking 

scheme of QCA and defects in QCA elements are presented. In 
Section III, the TMRSO technique is investigated. In Section IV, 
the TMRSO technique is compared to the TMR technique using 
QCADesigner [6], a state-of-the-art QCA design tool. Finally, 
Section V concludes the paper. 
 
II. CLOCKED QCA SYSTEM AND DEFECTS IN QCA ELEMENTS 
The clock scheme of QCA makes a QCA system inherently suitable 
for pipeline computations. Figure 1 (a) shows a popular clock 
scheme. Each clock has a 90 degree phase shift from its previous 
clock. Figure 1 (b) shows an array of QCA cells that uses such a 
clock scheme. The input cell and cell 1 are controlled by clock 1, 
cell 2 is controlled by clock 2, cell 3 is controlled by clock 3, and 
output cell is controlled by clock 4. Each row in Figure 1 (b) 
denotes one phase of a clock. At the beginning, all cells are in the 
relaxed phase, that is, in an unpolarized neutral state. When clock 1 
is in the switch phase, cell 1 is polarized by the input cell. When 
clock 1 is in the hold phase and clock 2 is in the switch phase, cell 
1 serves as an input to cell 2. When clock 2 is in the hold phase and 
clock 1 is in the release phase, cell 2 transmits its value to cell 3 
and clock 3 is in the switch phase. When clock 3, clock 2 and clock 
1 are in the hold phase, release phase, and relax phase, respectively, 
cell 3 passes its value to output cell and clock 4 is in the switch 
phase. Finally clock 4 switches to the hold phase and the cycle 
repeats itself as a new input is clocked into the cell 1 in the switch 
phase of clock 1. The whole array shown in Figure 1 (b) works like 
a D-latch, where the input is sampled at the rising edge of clock 1 
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Figure 2 (a) One cell has a displacement from the desired location 
(b) One cell is misaligned (c) QCA array with missing cells (d) 
QCA array with misaligned cells  

appears at the output at the rising edge of clock 4. In fact, any array 
of cells with a clock sequence(clock 1→clock 2→clock 3→clock 4) 
functions as a D-latch since the cells in one clock get latched and 
stay latched until the cells of the next clock switch to the hold 
phase. This is referred to as the self latching and adiabatic 
pipelining property of QCA devices [12].  
Recently clocked designs using QCA nanotechnology have been 
proposed. Tougaw and Lent designed a QCA-based one-bit full 
adder [2]. W. Wang et al. presented a QCA full adder with fewer 
cells in [4]. A bit-serial adder proposed in [8] modifies the full 
adder implementation of [4] to include a feedback connection 
between carry-out and carry-in. A QCA-based carry-look-ahead 
adder is obtained by connecting the carry out of a full adder to the 
carry in of the next full adder [3]. 
All of these logic implementations focus on designing area efficient 
operators by assuming the proper operation of QCA cells and 
arrays. However, the proper operation of cells and arrays depends 
on precise manufacturing. Current semiconductor technologies that 
are being considered for the QCA implementation would operate 
correctly only at cryogenic temperatures. To be able to operate 
correctly at room temperature, the diameter of quantum dots in 
QCA cells has to be reduced to approximately 2 nm. At these 
dimensions, it is hard to maintain acceptable process variations. 
QCA cells could be misplaced or misaligned with respect to their 
neighbors [5]. Figure 2 shows some of these defects where the cell 
size is 20nm × 20nm and the distance between adjacent QCA cells 
is 5nm. In Figure 2 (a) output F will not be polarized when the 
distance between cell B and cell D is larger than 45 nm. In Figure 2 
(b) cell A is misaligned with cell D. The value of output cell F 
solely depends on input cell B when the displacement between cell 
A and cell D is larger than 10 nm. Similar defects could exist in 
QCA interconnect arrays as is shown in Figure 2 (c) and Figure 2 
(d). In Figure 2 (c) cell 2 is missing while in Figure 2 (d) cell 3 is 
misaligned with its neighbors.  
There is little work on testing and detecting defects in QCA designs. 
Baradaran et al. proposed a testing scheme for QCA based designs 
[9]. Fijany and Toomarian proposed a fault tolerant implementation 
of a majority gate called block majority gates [10]. A block 
majority gate shows fault tolerance to some of the defects but it 
does not address the faults in interconnections. Furthermore, its 
large size may eliminate the advantage of small feature sizes of 
QCA logic.  
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Figure 3 A one-bit TMR adder  
 
III. FAULT TOLERANT QCA  

1. Fault tolerance using Triple Module Redundancy 
In this paper we investigate fault tolerant QCA building block 
design using a fault tolerant adder as an example. Triple Modular 
Redundancy (TMR) [11] is a straightforward way to provide fault 
tolerance capability. A one-bit TMR adder designed using 
QCADesigner [6] is shown in Figure 3. In a one-bit TMR adder, 
there are three adders operating in parallel and a two-out-of three 
majority voting ensures that no single fault in a one-bit adder will 
yield an incorrect result. The one-bit TMR adder displays a minor 
degradation in performance due to the additional majority voter.  
However, TMR is inefficient for multiple-bit addition in QCA. 
Consider an 8-bit carry-look-ahead QCA adder proposed in [3]. 
This adder uses eight full adders in parallel, with the carry out of 
the preceding full adder supplying the carry in of the successive full 
adder, forming a long carry propagation chain. In a CMOS 
implementation only the logic delays are considered and hence the 
carry chain delay is proportional to the sum of the delays through 
the carry generation logic. In contrast, in QCA the wire delay 
dominates the logic delay and hence determines the critical path 
and the clock duration of the QCA adder with TMR. This is 
because in QCA nanotechnology, both wires and gates are 
constructed from QCA cells. While a majority gate uses only 5 
QCA cells, the carry chain used in such TMR adders can have more 
than 100 cells.  Overall, the length of the carry chain is proportional 
to the number of full adders it spans.  

2. Triple Modular Redundancy using shifted operands 
(TMRSO) 

TMR is not a good choice for designing fault tolerant QCA designs 
since wires, faults in wires, and wire delays dominate in this 
nanotechnology. We propose TMR using Shifted Operands 
(TMRSO) as a new approach to designing fault tolerant QCA 
designs with lower area overhead and better performance than 
straightforward TMR. This new method exploits the self-latching 
and adiabatic pipelining properties of QCA devices to maximize 
throughput of a system since more than one calculation can be in 
the pipeline at a given time [12]. TMRSO technique can be applied 
to data path operations including additions, subtractions, 
multiplications etc. Since additions are the building blocks of most 
of the data path operations, we will illustrate the TMRSO concept 
using a 2-bit adder. 
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Figure 4 A 2-bit adder using TMRSO 

2.1. Design of a 2-bit TMRSO Adder  

A 2-bit adder that uses Triple Module Redundancy with Shifted 
Operands (TMRSO) designed using QCADesigner [6] is shown in 
Figure 4.  This is an adaptation of Patel and Fung’s [7] logic level 
time redundancy-based Concurrent Error Detection (CED) 
technique for permanent faults, called RE-computing with Shifted 
Operands (RESO). If an ALU performs a function f, and x is an 
input to the function, then an error in the ALU can be detected by 
comparing f(x) with the output of right_shift (f (left_shift (x)). For 
a given data input, the result of function f is stored in a register. 
This is then compared with the result obtained using shifted 
operands. Though this technique is a time redundancy based 
technique, it requires a shift-register to buffer the input and a 
register to buffer the output. As we have outlined in Section II, an 
array of QCA cells with proper clocking works as a D-latch. 
Similarly, a series of D-latches implements a shift-register and can 
be used to shift the operands and results.  

2.2. Step by step operation of the adder 

The TMRSO adder shown in Figure 4 operates on two inputs A 
(A1A0) and B (B1B0) as follows: 
Clock cycle 1: Input bits A0, B0 and Cin are pumped down the 
input wire and are latched in D0, D1 and D16 respectively. SEL is 
reset to feed the carry bit Cin into FA0. At the end of this cycle 
Cout0 and Sum0 are latched at D19 and D22, respectively.  
Clock cycle 2: A0, B0 and Cin are shifted down to D2, D3 and D17 
while A1 and B1 are fed in and latched at D0 and D1. The Sum0 and 
Cout0 will be calculated once more on FA1. Cout0 will be latched 
at D20 and Sum0 is ready at FA1’s output.  Meanwhile, Sum1 and 
Cout1 can be calculated on FA0 using bits A1, B1 and Cout0. At the 
end of this cycle, the first set of results (Sum1 Sum0 Cout) are 
available at D22, D23 and D19, respectively. 
Clock cycle 3: A1, B1, A0, B0 and Cin are shifted down the wire 
and are available at the inputs of FA1 and FA2. SEL is kept at ‘1’ 
in this cycle so that feedback carry bits are fed to FA1 and FA0. 
A0+B0+Cin and A1+B1+Cout0 are computed at the same time on 
FA2 and FA1, respectively. At the end of this cycle, the second set 
of results (Sum1 Sum0 Cout) are available at D23, D24, and D20 
respectively, while the first set of results are shifted to D7, D9 and 
D12 accordingly. 

Clock cycle 4: SEL retains its value of ‘1’. The operands A0, B0, 
A1 and B1 continue their propagation and flow into FA3 and FA2, 
respectively. At the end of this clock cycle the third set of results is 
available at D24, D25, and D21 respectively. Three sets of results 
will vote through majority gates and the final result will be sent out.  
 
IV. TMRSO VS TMR 

1. Fault tolerance capability 

1.1. Defects in the input lines 

The input lines of TMR and the proposed TMRSO technique are 
shared by all the copies. A failure in the lines may simultaneously 
affect two or all copies of computations and results in a faulty 
output. Since QCA arrays constructed by 90-degree cells show 
strong tolerance to missing cell and cell misalignment, we suggest 
that the input lines should be constructed by 90-degree cells. 
However, such defects introduce additional delay. If multiple 
defects exist in a wire where all the cells must be traversed by 
information flow in one clock cycle, which is the case for basic 
TMR, the delays caused by these defects will pile up and adversely 
impact performance. If multiple defects are interlaced by D-latches, 
which is the case for TMRSO, the delays will be isolated and 
distributed among copies of one-bit full adders. As a result, the 
effect on performance is minimized. 

1.2. Defects in individual full adders 

The basic idea behind the fault tolerance using TMR and TMRSO 
is that every bit addition will be performed on three different full 
adders. If one fails, the final results will still be correct due to the 
remaining two copies. If two or all of them fail, the final result will 
be incorrect. Therefore, both techniques can tolerate a single 
defective full adder. However, in the presence of multiple defective 
full adders neither of the techniques can guarantee correct results. 
In this case, additional redundancy is needed. While the basic N-
Module Redundancy technique needs N times the area overhead 
and incurs an N-fold performance degradation, the proposed 
technique can support N-Modular Redundancy with only little 
increase in area overhead and minor degradation in throughput. For 
example, 5-Modular redundancy using shifted operands needs {n+4} 
full adders and {n+5} clock cycles for the computation of n bit 
width while the clock period remains the same.  
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1.3. Defects in the output majority gate 

Both techniques use majority gates to vote the three results. If the 
majority gate fails, the result will be incorrect no matter how much 
redundancy is used. Therefore, both techniques require fault 
tolerant majority gates one of which can be found in [10]. 

2. Throughput 

TMRSO successfully overcomes the shortcomings of a multiple-bit 
TMR adder. For an n-bit TMR adder, the maximum number of 
cells that the information needs to flow in one clock cycle equals 
3×n×18 while for the adder using TMRSO, it is only 19 – the width 
of a full adder used in the design. Assuming the period of the clock 
is proportional to the cell delay, the clock period is 3×n×18 cell 
delays for TMR and 19 cell delays for TMRSO. On the other hand, 
an n-bit TMR adder can process an n-bit addition in one clock cycle 
while TMRSO needs n+3 clock cycles (n cycles for loading n-bit 
inputs, + 3 for computations). A detailed summary is given in Table 
1. The final throughput is calculated as the number of bits divided 
by the product of the number of clock cycles and clock period in 
terms of cell delay. According to the table, the throughput of the 
proposed technique exceeds the throughput of TMR when the bit 
width of operands exceeds 2. For an 8-bit adder, the throughput 
improvement is more than 100%. 

Table 1 Throughput comparison of TMRSO and TMR 

 TMR TMRSO 
Clock period in terms of the length 
of the longest wire (cell delay) 

3×n×18 19 

Number of cycles for n-bit addition 1 n+3 
Throughput (bits/cell delay) 1/54 n/(19×n+57) 

3. Area overhead 
TMRSO uses significantly less area when compared to the basic 
TMR. An n-bit adder using TMR has 3×n one-bit full adders while 
an n-bit TMRSO adder consists of (n+2) one-bit full adders with 
feedback and a multiplexer. Using the QCAdesigner [6], we have 
created a one-bit full adder and a one-bit full adder with feedback 
and a multiplexer. The dimensions of the one-bit full adder are 
18×22 and those of the one-bit full adder with feedback and a 
multiplexer are 19×38 in terms of QCA cells. The full adder with 
feedback and a multiplexer is 1.8 times larger than a one-bit full 
adder. However, for an n-bit adder using TMR, each copy will have 
a feedback to its input, hence necessitating a multiplexer. In other 
words, the bounding block of the TMR adder will increase in height 
by the length of a multiplexer. 
The relative area overhead of a TMRSO adder and a TMR adder 
depends on the ratio of the width of two designs. Table 2 shows a 
detailed comparison between TMRSO and TMR using n-bit adders. 
The width of an n-bit adder using TMR is 3×n×18 cells while the 
width of an n-bit adder using TMRSO is (n+2)×19 cells. The height 
of the TMRSO adder is slightly larger than the height of the TMR 
adder. Therefore, the overall size of the bounding box is 3618×n for 
the basic TMR and 1482×n + 2964 for TMRSO. As long as n >1, 
the area overhead of the TMRSO adder will be less than that of the 
TMR adder. For an 8-bit adder, the area of TMRSO is less than half 
of that of TMR. 

Table 2 Area overhead comparison of TMRSO and TMR 

n-bit addition TMR TMRSO 
Full-adder in cells  18 19 
Number of full adders 3×n n+2 
overall design width 3×n×18 (n+2)×19 
overall design height 67 78 
overall bounding box size 3618×n 1482×n + 2964 

 
V. CONCLUSIONS 

In this paper we report a novel fault tolerance technique for QCA 
arithmetic circuits called Triple Modular Redundancy with Shifted 
Operands (TMRSO). In QCA nanotechnology wire delays 
dominate logic delays and faults in wires dominate the faults in a 
design. Based on this observation, TMRSO uses shorter wires and 
exploits the self-latching property of QCA wires by considering 
delays and faults in QCA wires as well. TMRSO is applicable to 
arithmetic building blocks such as adders, subtractors, shifters, 
multipliers etc. We have validated TMRSO using an adder. The 
implementation results show that TMRSO exhibits superior 
throughput and area overhead characteristics while still maintaining 
the identical level of fault tolerance capability as a straightforward 
TMR technique. 
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