

 Fault Tolerant Quantum Cellular Array (QCA) Design using
Triple Modular Redundancy with Shifted Operands

Tongquan Wei Kaijie Wu Ramesh Karri Alex Orailoglu
ECE Department ECE Department ECE Department CSE Department

Polytechnic University at
Brooklyn NY USA 11201

University of Illinois at
Chicago IL USA 60607

Polytechnic University at
Brooklyn NY USA 11201

University of California at
San Diego CA USA 92093

tongquan@photon.poly.edu kaijie@ece.uic.edu ramesh@india.poly.edu alex@cs.ucsd.edu

Abstract: Due to their extremely small feature sizes and ultra
low power consumption, Quantum-dot Cellular Automata
(QCA) technology is projected to be a promising
nanotechnology. However, in nanotechnologies, manufacture
time defect levels and operational time fault rates are expected
to be quite high. Straightforward Triple Modular Redundancy
(TMR) based fault tolerance is inappropriate for QCA
nanotechnology since wire delays dominate the logic delays and
faults in wires dominate the faults in a QCA based design.
Furthermore, long wires are necessary in TMR based designs.
In this paper we show that fault-tolerance can be obtained by
using TMR with Shifted Operands (TMRSO). TMRSO uses
shorter wires of QCA cells and exploits the self-latching
property of clocked QCA arrays to provide the same level of
fault tolerance capability as straightforward TMR while being
significantly faster and smaller. This technique can be applied
to a variety of operations; we have validated TMRSO on adders.
Implementation results obtained using QCADesigner [6] show
that an 8-bit adder using TMRSO has more than 50% area
reduction and more than 100% throughput improvement when
compared to a TMR implementation.

I. INTRODUCTION

Scaling of CMOS devices is being aggressively pursued by
shrinking transistor dimensions, reducing power supply voltages
and increasing operating frequencies. Such aggressive scaling
adversely results in non-ideal behaviors such as high leakage
current and high power density levels. These issues will eventually
become road blocks and slow down the scaling trend that has been
operative for years. Quantum-dot Cellular Automata (QCA)
proposed in the 1990s [1] are attracting a lot of attention due to
their extremely small feature sizes and ultra low power
consumption. However, at nanometer scales, it is extremely hard to
achieve the required manufacturing tolerances. Hence, fault-
tolerance assumes the role of an enabling design technology for
QCA and other nanotechnologies. Straightforward application of
Triple Modular Redundancy (TMR) based fault tolerance is
inappropriate for QCA nanotechnology because, unlike CMOS
technology, both the wires and the logic gates are built from
quantum cells and wire delays end up dominating the logic delays
in QCA. Furthermore, a TMR based design will result in long wires
of QCA cells and more associated faults.
This paper presents a novel QCA fault tolerance technique for
arithmetic circuits. This method, Triple Modular Redundancy with
Shifted Operands (TMRSO), illustrated on an adder, is compared
with a TMR adder with respect to fault tolerance capability,
throughput and complexity. In contrast to a TMR adder, a TMRSO
adder is shown to be able to provide at least the same level of fault
tolerance capability while being much faster and smaller. The rest
of this paper is organized as follows. In Section II, the clocking

scheme of QCA and defects in QCA elements are presented. In
Section III, the TMRSO technique is investigated. In Section IV,
the TMRSO technique is compared to the TMR technique using
QCADesigner [6], a state-of-the-art QCA design tool. Finally,
Section V concludes the paper.

II. CLOCKED QCA SYSTEM AND DEFECTS IN QCA ELEMENTS
The clock scheme of QCA makes a QCA system inherently suitable
for pipeline computations. Figure 1 (a) shows a popular clock
scheme. Each clock has a 90 degree phase shift from its previous
clock. Figure 1 (b) shows an array of QCA cells that uses such a
clock scheme. The input cell and cell 1 are controlled by clock 1,
cell 2 is controlled by clock 2, cell 3 is controlled by clock 3, and
output cell is controlled by clock 4. Each row in Figure 1 (b)
denotes one phase of a clock. At the beginning, all cells are in the
relaxed phase, that is, in an unpolarized neutral state. When clock 1
is in the switch phase, cell 1 is polarized by the input cell. When
clock 1 is in the hold phase and clock 2 is in the switch phase, cell
1 serves as an input to cell 2. When clock 2 is in the hold phase and
clock 1 is in the release phase, cell 2 transmits its value to cell 3
and clock 3 is in the switch phase. When clock 3, clock 2 and clock
1 are in the hold phase, release phase, and relax phase, respectively,
cell 3 passes its value to output cell and clock 4 is in the switch
phase. Finally clock 4 switches to the hold phase and the cycle
repeats itself as a new input is clocked into the cell 1 in the switch
phase of clock 1. The whole array shown in Figure 1 (b) works like
a D-latch, where the input is sampled at the rising edge of clock 1

and (a)

Clock 1

Clock 2

Clock 3

Clock 4

Sw
itc

h Hold Release
Relax

Relax

ReleaseSw
itc

h Hold

Relax
Sw

itc
hRelease

Hold

Sw
itc

h

Relax

Release

Hold

(b)

Input Cell 1 Cell 2 Cell 3 Output Cell

Switch phase of
clock 1

Hold phase of
clock 1;
Switch phase of
clock 2

Hold phase of
clock 2;
Switch phase of
clock 3

Hold phase of
clock 3;
Switch phase of
clock 4

Clock 1 Clock 2 Clock 3 Clock 4
Figure 1 (a) 4 clocks with each one lagging by 90 degrees the
previous (b) A QCA array using 4 clocks works like a D-latch

 1192

PIII-14

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

F

(a)
5nm

A

C

5 nm

5 nm

> 45nm

B

D B

C

F

(b)

dA

D

(c)

In 1 2 3 4 5

clk1 clk2 clk3

(d)

Figure 2 (a) One cell has a displacement from the desired location
(b) One cell is misaligned (c) QCA array with missing cells (d)
QCA array with misaligned cells

appears at the output at the rising edge of clock 4. In fact, any array
of cells with a clock sequence(clock 1→clock 2→clock 3→clock 4)
functions as a D-latch since the cells in one clock get latched and
stay latched until the cells of the next clock switch to the hold
phase. This is referred to as the self latching and adiabatic
pipelining property of QCA devices [12].
Recently clocked designs using QCA nanotechnology have been
proposed. Tougaw and Lent designed a QCA-based one-bit full
adder [2]. W. Wang et al. presented a QCA full adder with fewer
cells in [4]. A bit-serial adder proposed in [8] modifies the full
adder implementation of [4] to include a feedback connection
between carry-out and carry-in. A QCA-based carry-look-ahead
adder is obtained by connecting the carry out of a full adder to the
carry in of the next full adder [3].
All of these logic implementations focus on designing area efficient
operators by assuming the proper operation of QCA cells and
arrays. However, the proper operation of cells and arrays depends
on precise manufacturing. Current semiconductor technologies that
are being considered for the QCA implementation would operate
correctly only at cryogenic temperatures. To be able to operate
correctly at room temperature, the diameter of quantum dots in
QCA cells has to be reduced to approximately 2 nm. At these
dimensions, it is hard to maintain acceptable process variations.
QCA cells could be misplaced or misaligned with respect to their
neighbors [5]. Figure 2 shows some of these defects where the cell
size is 20nm × 20nm and the distance between adjacent QCA cells
is 5nm. In Figure 2 (a) output F will not be polarized when the
distance between cell B and cell D is larger than 45 nm. In Figure 2
(b) cell A is misaligned with cell D. The value of output cell F
solely depends on input cell B when the displacement between cell
A and cell D is larger than 10 nm. Similar defects could exist in
QCA interconnect arrays as is shown in Figure 2 (c) and Figure 2
(d). In Figure 2 (c) cell 2 is missing while in Figure 2 (d) cell 3 is
misaligned with its neighbors.
There is little work on testing and detecting defects in QCA designs.
Baradaran et al. proposed a testing scheme for QCA based designs
[9]. Fijany and Toomarian proposed a fault tolerant implementation
of a majority gate called block majority gates [10]. A block
majority gate shows fault tolerance to some of the defects but it
does not address the faults in interconnections. Furthermore, its
large size may eliminate the advantage of small feature sizes of
QCA logic.

MUX

Couti

Couti-1

Cin

a

b

Sum

FA1 FA1 FA2

M0

M1

Figure 3 A one-bit TMR adder

III. FAULT TOLERANT QCA

1. Fault tolerance using Triple Module Redundancy
In this paper we investigate fault tolerant QCA building block
design using a fault tolerant adder as an example. Triple Modular
Redundancy (TMR) [11] is a straightforward way to provide fault
tolerance capability. A one-bit TMR adder designed using
QCADesigner [6] is shown in Figure 3. In a one-bit TMR adder,
there are three adders operating in parallel and a two-out-of three
majority voting ensures that no single fault in a one-bit adder will
yield an incorrect result. The one-bit TMR adder displays a minor
degradation in performance due to the additional majority voter.
However, TMR is inefficient for multiple-bit addition in QCA.
Consider an 8-bit carry-look-ahead QCA adder proposed in [3].
This adder uses eight full adders in parallel, with the carry out of
the preceding full adder supplying the carry in of the successive full
adder, forming a long carry propagation chain. In a CMOS
implementation only the logic delays are considered and hence the
carry chain delay is proportional to the sum of the delays through
the carry generation logic. In contrast, in QCA the wire delay
dominates the logic delay and hence determines the critical path
and the clock duration of the QCA adder with TMR. This is
because in QCA nanotechnology, both wires and gates are
constructed from QCA cells. While a majority gate uses only 5
QCA cells, the carry chain used in such TMR adders can have more
than 100 cells. Overall, the length of the carry chain is proportional
to the number of full adders it spans.

2. Triple Modular Redundancy using shifted operands
(TMRSO)

TMR is not a good choice for designing fault tolerant QCA designs
since wires, faults in wires, and wire delays dominate in this
nanotechnology. We propose TMR using Shifted Operands
(TMRSO) as a new approach to designing fault tolerant QCA
designs with lower area overhead and better performance than
straightforward TMR. This new method exploits the self-latching
and adiabatic pipelining properties of QCA devices to maximize
throughput of a system since more than one calculation can be in
the pipeline at a given time [12]. TMRSO technique can be applied
to data path operations including additions, subtractions,
multiplications etc. Since additions are the building blocks of most
of the data path operations, we will illustrate the TMRSO concept
using a 2-bit adder.

 1193

FA1FA0 FA2 FA3M0 M1 M2

D1 D3 D5

D2D0 D4

D14 D15

D17 D18D16

D22 D23 D24
D25D19 D20 D21

D6

D7

D11

D12

D13

D8

D9
D10

B

A
SEL

Cin

M0

M1

M2

S0

S1

Cout

Figure 4 A 2-bit adder using TMRSO

2.1. Design of a 2-bit TMRSO Adder

A 2-bit adder that uses Triple Module Redundancy with Shifted
Operands (TMRSO) designed using QCADesigner [6] is shown in
Figure 4. This is an adaptation of Patel and Fung’s [7] logic level
time redundancy-based Concurrent Error Detection (CED)
technique for permanent faults, called RE-computing with Shifted
Operands (RESO). If an ALU performs a function f, and x is an
input to the function, then an error in the ALU can be detected by
comparing f(x) with the output of right_shift (f (left_shift (x)). For
a given data input, the result of function f is stored in a register.
This is then compared with the result obtained using shifted
operands. Though this technique is a time redundancy based
technique, it requires a shift-register to buffer the input and a
register to buffer the output. As we have outlined in Section II, an
array of QCA cells with proper clocking works as a D-latch.
Similarly, a series of D-latches implements a shift-register and can
be used to shift the operands and results.

2.2. Step by step operation of the adder

The TMRSO adder shown in Figure 4 operates on two inputs A
(A1A0) and B (B1B0) as follows:
Clock cycle 1: Input bits A0, B0 and Cin are pumped down the
input wire and are latched in D0, D1 and D16 respectively. SEL is
reset to feed the carry bit Cin into FA0. At the end of this cycle
Cout0 and Sum0 are latched at D19 and D22, respectively.
Clock cycle 2: A0, B0 and Cin are shifted down to D2, D3 and D17
while A1 and B1 are fed in and latched at D0 and D1. The Sum0 and
Cout0 will be calculated once more on FA1. Cout0 will be latched
at D20 and Sum0 is ready at FA1’s output. Meanwhile, Sum1 and
Cout1 can be calculated on FA0 using bits A1, B1 and Cout0. At the
end of this cycle, the first set of results (Sum1 Sum0 Cout) are
available at D22, D23 and D19, respectively.
Clock cycle 3: A1, B1, A0, B0 and Cin are shifted down the wire
and are available at the inputs of FA1 and FA2. SEL is kept at ‘1’
in this cycle so that feedback carry bits are fed to FA1 and FA0.
A0+B0+Cin and A1+B1+Cout0 are computed at the same time on
FA2 and FA1, respectively. At the end of this cycle, the second set
of results (Sum1 Sum0 Cout) are available at D23, D24, and D20
respectively, while the first set of results are shifted to D7, D9 and
D12 accordingly.

Clock cycle 4: SEL retains its value of ‘1’. The operands A0, B0,
A1 and B1 continue their propagation and flow into FA3 and FA2,
respectively. At the end of this clock cycle the third set of results is
available at D24, D25, and D21 respectively. Three sets of results
will vote through majority gates and the final result will be sent out.

IV. TMRSO VS TMR

1. Fault tolerance capability

1.1. Defects in the input lines

The input lines of TMR and the proposed TMRSO technique are
shared by all the copies. A failure in the lines may simultaneously
affect two or all copies of computations and results in a faulty
output. Since QCA arrays constructed by 90-degree cells show
strong tolerance to missing cell and cell misalignment, we suggest
that the input lines should be constructed by 90-degree cells.
However, such defects introduce additional delay. If multiple
defects exist in a wire where all the cells must be traversed by
information flow in one clock cycle, which is the case for basic
TMR, the delays caused by these defects will pile up and adversely
impact performance. If multiple defects are interlaced by D-latches,
which is the case for TMRSO, the delays will be isolated and
distributed among copies of one-bit full adders. As a result, the
effect on performance is minimized.

1.2. Defects in individual full adders

The basic idea behind the fault tolerance using TMR and TMRSO
is that every bit addition will be performed on three different full
adders. If one fails, the final results will still be correct due to the
remaining two copies. If two or all of them fail, the final result will
be incorrect. Therefore, both techniques can tolerate a single
defective full adder. However, in the presence of multiple defective
full adders neither of the techniques can guarantee correct results.
In this case, additional redundancy is needed. While the basic N-
Module Redundancy technique needs N times the area overhead
and incurs an N-fold performance degradation, the proposed
technique can support N-Modular Redundancy with only little
increase in area overhead and minor degradation in throughput. For
example, 5-Modular redundancy using shifted operands needs {n+4}
full adders and {n+5} clock cycles for the computation of n bit
width while the clock period remains the same.

 1194

1.3. Defects in the output majority gate

Both techniques use majority gates to vote the three results. If the
majority gate fails, the result will be incorrect no matter how much
redundancy is used. Therefore, both techniques require fault
tolerant majority gates one of which can be found in [10].

2. Throughput

TMRSO successfully overcomes the shortcomings of a multiple-bit
TMR adder. For an n-bit TMR adder, the maximum number of
cells that the information needs to flow in one clock cycle equals
3×n×18 while for the adder using TMRSO, it is only 19 – the width
of a full adder used in the design. Assuming the period of the clock
is proportional to the cell delay, the clock period is 3×n×18 cell
delays for TMR and 19 cell delays for TMRSO. On the other hand,
an n-bit TMR adder can process an n-bit addition in one clock cycle
while TMRSO needs n+3 clock cycles (n cycles for loading n-bit
inputs, + 3 for computations). A detailed summary is given in Table
1. The final throughput is calculated as the number of bits divided
by the product of the number of clock cycles and clock period in
terms of cell delay. According to the table, the throughput of the
proposed technique exceeds the throughput of TMR when the bit
width of operands exceeds 2. For an 8-bit adder, the throughput
improvement is more than 100%.

Table 1 Throughput comparison of TMRSO and TMR

 TMR TMRSO
Clock period in terms of the length
of the longest wire (cell delay)

3×n×18 19

Number of cycles for n-bit addition 1 n+3
Throughput (bits/cell delay) 1/54 n/(19×n+57)

3. Area overhead
TMRSO uses significantly less area when compared to the basic
TMR. An n-bit adder using TMR has 3×n one-bit full adders while
an n-bit TMRSO adder consists of (n+2) one-bit full adders with
feedback and a multiplexer. Using the QCAdesigner [6], we have
created a one-bit full adder and a one-bit full adder with feedback
and a multiplexer. The dimensions of the one-bit full adder are
18×22 and those of the one-bit full adder with feedback and a
multiplexer are 19×38 in terms of QCA cells. The full adder with
feedback and a multiplexer is 1.8 times larger than a one-bit full
adder. However, for an n-bit adder using TMR, each copy will have
a feedback to its input, hence necessitating a multiplexer. In other
words, the bounding block of the TMR adder will increase in height
by the length of a multiplexer.
The relative area overhead of a TMRSO adder and a TMR adder
depends on the ratio of the width of two designs. Table 2 shows a
detailed comparison between TMRSO and TMR using n-bit adders.
The width of an n-bit adder using TMR is 3×n×18 cells while the
width of an n-bit adder using TMRSO is (n+2)×19 cells. The height
of the TMRSO adder is slightly larger than the height of the TMR
adder. Therefore, the overall size of the bounding box is 3618×n for
the basic TMR and 1482×n + 2964 for TMRSO. As long as n >1,
the area overhead of the TMRSO adder will be less than that of the
TMR adder. For an 8-bit adder, the area of TMRSO is less than half
of that of TMR.

Table 2 Area overhead comparison of TMRSO and TMR

n-bit addition TMR TMRSO
Full-adder in cells 18 19
Number of full adders 3×n n+2
overall design width 3×n×18 (n+2)×19
overall design height 67 78
overall bounding box size 3618×n 1482×n + 2964

V. CONCLUSIONS

In this paper we report a novel fault tolerance technique for QCA
arithmetic circuits called Triple Modular Redundancy with Shifted
Operands (TMRSO). In QCA nanotechnology wire delays
dominate logic delays and faults in wires dominate the faults in a
design. Based on this observation, TMRSO uses shorter wires and
exploits the self-latching property of QCA wires by considering
delays and faults in QCA wires as well. TMRSO is applicable to
arithmetic building blocks such as adders, subtractors, shifters,
multipliers etc. We have validated TMRSO using an adder. The
implementation results show that TMRSO exhibits superior
throughput and area overhead characteristics while still maintaining
the identical level of fault tolerance capability as a straightforward
TMR technique.

VI. REFERENCES

[1] C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, “Quantum cellular
automata,” Nanotechnology, vol. 4, pp. 49-57, 1993.
[2] P.D. Tougaw, C.S. Lent, “Logical devices implemented using quantum
cellular automata”, Journal of Applied Physics, vol. 75(3), pp. 1818-1825,
February 1,1994.
[3] A. Vetteth, K. Walus, V.S. Dimitrov, G.A. Jullien, “Quantum-dot
cellular automata carry-look-ahead adder and barrel shifter”, IEEE Emerging
Telecommunications Technologies Conference, 2-I-4 (5 pages), Dallas, TX,
Sept. 2002.
[4] W. Wang, K. Walus, G.A. Jullien, “Quantum-Dot Cellular Automata
Adders”, IEEE Nano 2003 Conference, pp. 461-464,San Francisco, CA 2003.
[5] M.B. Tahoori, M. Momenzadeh, J. Huang, F. Lombardi, “Defects and
Faults in Quantum Cellular Automata at Nano Scale”, VLSI Test Symposium,
p.291, 2004.
[6] QCADesigner, http://www.atips.ca/projects/qcadesigner/
[7] J.H. Patel, L.Y. Fung, "Concurrent Error Detection in ALUs by
Recomputing with Shifted Operands," IEEE Transactions on Computer, Vol.
C.31, No.7, pp. 589 - 595, Jul. 1982.
[8] A. Fijany, N. Toomarian, K. Modarress, M. Spotnitz, "Bit-serial Adder
Based on Quantum Dots", NASA technical report, NPO-20869, Jan. 2003.
[9] M.B. Tahoori, F. Lombardi, “Testing of Quantum Dot Cellular
Automata Based Designs”, Design Automation and Test in Europe
Conference, pp.1408-1409, 2004.
[10] A. Fijany, B.N. Toomarian, “New Design for Quantum Dots Cellular
Automata to Obtain Fault Tolerant Logic Gates”, Journal of Nanoparticle
Research, vol. 3, pp. 27-37, Feb. 2001.
[11] B.W. Johnson, Design and Analysis of Fault-Tolerant Digital
Systems, Addison-Wesley Publishing Company, 1989.
[12] Craig S. Lent, P. Douglas Tougaw, “A Device Architecture for
Computing with Quantum Dots”, Proceedings of The IEEE, Vol. 85, NO.4,
pp541-557, April 1997

 1195

