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A B S T R A C T

With the exponential increase in power density and the relentless scaling of transistors in VLSI circuits over the
past decades, modern high-performance processors fall into a predicament of high energy consumption and
elevated chip temperature. Such increased energy consumption and chip temperature could induce significant
economic, ecological, and technical problems. Thus, energy-efficient task scheduling with thermal consideration
has become a pressing research issue in sustainable computing systems, especially for battery-powered real-time
embedded systems with limited cooling techniques.

This paper tackles the above challenge through scheduling tasks leveraging correlated optimizations at two
different scales. Precisely, a two-level thermal-aware energy-efficient scheduling algorithm for real-time tasks on
DVFS-enabled heterogeneous MPSoC systems is developed considering the constraints of task deadlines, task
precedences, and chip peak temperature limit. At the processor level, a multi-processor model supporting dy-
namic voltage/frequency scaling is transformed to a virtual multi-processor model supporting only one fixed
frequency level. At the core level, real-time tasks are assigned to individual cores of the virtual processor under
the constraints of task precedence and peak temperature limit. Through nicely interleaving optimizations at both
levels, high quality task scheduling solutions can be computed efficiently. Extensive simulations of synthetic
real-time tasks and real-life benchmarks are performed to validate the proposed algorithm. Experimental results
demonstrate the effectiveness of the proposed algorithm as compared to the benchmarking schemes.

1. Introduction

As needs for high performance computing in sustainable systems
continue to increase, the energy consumption of VLSI systems explodes,
which poses adverse impact on the lifespan of portable devices with
limited battery capacity. Meanwhile, the soaring integration level of
transistors in VLSI circuits strikingly increases chip power density and
thus elevates chip temperature. Such high temperature degrades system
reliability by accelerating the device wearout mechanisms through
electro-migration, dielectric breakdown, thermal cycling, or stress mi-
gration [1–3]. It also results in high leakage power due to strong tem-
perature/leakage dependency, which in turn increases the chip tem-
perature and consequently incurs significant packaging and cooling
costs. Hence, temperature-aware energy minimization is a pressing

research issue in the design of battery-powered sustainable computing
systems.

Heterogeneous multiprocessors have been extensively adopted in
various real-time embedded applications due to their relatively better
performance and lower energy consumption when compared to
homogeneous processors [4,5]. A multiprocessor system on chip
(MPSoC) is naturally heterogeneous in the sense that its processing
units such as customized hardware modules, programmable micro-
processors, and embedded FPGAs have distinctive functionalities and
demonstrate varying computing capability [6]. In this paper, we focus
on temperature-aware energy-efficient task scheduling issues for het-
erogeneous real-time MPSoC systems.

Specifically, we proposed a task allocation and frequency selection
method that minimizes the energy consumed by MPSoC systems
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supporting discrete voltage/frequency levels. The algorithm takes as
input a given set of precedence constrained real-time tasks and peak
temperature limit. It generates an energy-efficient schedule that meets
the design requirements by wisely determining the tasks assigned to
processors and the operating frequency of assigned tasks. Energy sav-
ings are achieved by utilizing heterogeneities of both MPSoC systems
and precedence-constrained real-time tasks. As shown in Fig. 1, the
proposed two-level scheme is specifically tailored for heterogeneous
multi-scale computing system. The scheme operates as follows. Given
an input application that consists of a set of precedence constrained
tasks, it first transforms the real multiprocessor system MPSoC to a
virtual multicore system at the processor level, then conducts task to
core mapping to generate an output task assignment at the core level.
The generated task assignment can minimize the system energy con-
sumption under all the constraints. High quality task scheduling solu-
tions can be computed efficiently via optimization at both levels. This
paper makes the following major contributions:

• We presented a transformation method for the MPSoC system that
converts the processor model with multiple voltage and frequency
levels to multiple virtual cores each of which has a fixed supply
voltage and frequency level. This method can effectively decrease
one dimension for optimization of system energy consumption by
reducing task-to-(real) processor assignment and frequency selec-
tion problem to task-to-(virtual) core assignment problem.

• We analyzed the energy optimality of assigning tasks to multiple
virtual cores of an MPSoC system, and proposed a theorem on op-
timum task assignment. Based on the theorem, we developed a task-
to-(virtual) core assignment heuristic algorithm to reduce the energy
consumption.

• We conducted extensive simulation experiments to validate the ef-
fectiveness of the proposed algorithm in energy efficiency.
Simulation results have demonstrated that the proposed algorithm
achieves better performance when compared to the benchmarking
schemes.

In this paper, we explore the energy minimization of precedence
constrained real-time tasks on DVFS-enabled MPSoCs by utilizing het-
erogeneities of both MPSoCs and real-time tasks. The remainder of this
paper is organized as follows. Section 2 discusses the related works,
Section 3 presents the system models, Section 4 defines and analyzes
the concerned energy minimization problem, and Section 5 describes
the proposed energy-efficient task assignment and frequency selection
scheme. The effectiveness of the proposed scheme is verified in
Section 6 and concluding remarks are given in Section 7. For the sake of
easy presentation and better comprehension, we summarize the defi-
nition of main notations used in the whole paper in Tables 1–3.

Fig. 1. Design flow of the proposed two-level scheduling.

Table 1
Definition of main notations in Section 3 and 4.

Notation Definition

P The MPSoC containing M processors P1, P2, ⋅⋅⋅, PM
Pm The mth processor in system P
vm, k, fm, k The kth voltage and frequency level of processor Pm
xm The number of voltage/frequency levels of processor Pm

=G ( , )V E The directed acyclic graph (DAG)
V The set of V tasks
E The set of edges representing task precedency
τi, τj The ith and jth task in setV
μi The active factor of task τi
ci The worst case execution cycles of task τi
D The common deadline (frame size) of tasks in setV
ETi, m, k The execution time of τi on processor Pm at frequency fm, k

Powm k
leak

,
The leakage power consumption of processor Pm at fm, k

αm, γm, δm Non-negative architecture-dependent constants of processor Pm
T(t), T0, Te The processor operating temperature at time instance t, t0, te
Tm(t) The instantaneous temperature of processor Pm at time instance t

Powi m k
dyn
, ,

The dynamic power consumed by executing τi on Pm at fm, k

Pow(t) The processor power consumption at time instance t

Tm
amb The ambient temperature of processor Pm

Tamb The processor ambient temperature
R, C The processor thermal resistance and capacitance
Rm, Cm The thermal resistance and capacitance of processor Pm
ECD

tot The total energy consumed by system P during frame D

ECD
leak The leakage energy consumed by system P during frame D

ECD
dyn The dynamic energy consumed by system P during frame D

m k,V The subset of tasks allocated to Pm and executed at fm, k

TD
peak The peak temperature of system P during frame D

ts(τi) The start execution time of task τi
tf(τj) The finish execution time of task τj
Λi, j The binary variable used to represent if task τj precedes task τi

Table 2
Definition of main notations used in Section 5.

Notation Definition

a The vector that captures (real) processor dependent parameters
b The vector that captures task related parameters

∈a am k, The power dissipation factor of processor Pm at frequency fm, k

∈b bm k, The power dissipation factor of subset m k,V

μici The power dissipation factor of task τi
Y The sum of power dissipation factor of tasks in the applicationV

X The total number of virtual cores
Θ The set of virtual cores ⋯Θ , Θ , , Θ1 2 X

Θℓ The ℓth virtual core in set Θ
ℓV The subset of tasks assigned to virtual core Θℓ

η The vector that captures virtual core dependent parameters
ζ The vector that captures task related parameters
ηℓ, ηκ∈ η The power dissipation factor of virtual core Θℓ, Θκ

ζℓ, ζκ∈ ζ The power dissipation factor of subset assigned to core Θℓ, Θκ

ζ* The vector that characterizes the optimum task assignment solution
∈ζ ζ ζ*, * *κℓ The ℓth and κth elements in vector ζ*

Table 3
Definition of some notations used in Algorithm 1.

Notation Definition

U(τi, Θℓ) The utilization of task τi when assigned to virtual core Θℓ

U(Θℓ) The utilization of virtual core Θℓ

Θℓ Virtual cores transformed from the same real processor as Θℓ is

U (Θ )ℓ The utilization of virtual cores denoted by Θℓ

tempV A temporary task subset tempV prepared for ℓV

ETi, ℓ The execution time of task τi on virtual core Θℓ

ET ( )ℓV The execution time of tasks assigned to virtual core Θℓ

ET ( )tempV The execution time of tasks in temporary subset tempV
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2. Related work

The study on energy efficiency of a heterogeneous MPSoC platform
aims to maximize energy savings by allocating limited computational
resources of the platform to individual real-time tasks under various
design constraints. Colin et al. showed in the literature [7] that neither
balancing the load nor assigning all load to a particular processor is the
best strategy for energy optimization. Hence, researchers often start
from an analytically justified target task-to-processor assignment for
energy optimization and then derive an energy-efficient task assign-
ment heuristic that approximates it. For example, Li and Wu [8] for-
mulated the energy optimization problems as binary integer program-
ming problems, relaxed them as convex optimization problems, and
proposed a relaxation-based iterative rounding algorithm to approx-
imate the optimal solution of the relaxed problems. Similarly, Wang
et al. [9] first presented an integer linear programming-based method
to solve the problem of task and data allocation for energy minimiza-
tion. Then two heuristic algorithms were designed to generate near-
optimal solutions for real-time applications in polynomial time. Zhang
et al. [10] proposed a novel genetic algorithm based approach to im-
prove energy savings and system reliability for scheduling workflow
with precedence constraints in heterogeneous multicore systems. Zahaf
et al. [11] presented a general methodology to model the energy con-
sumption of sporadic tasks on heterogeneous multicore architectures
such as ARM big/LITTLE. They also developed a heuristic for paralle-
lizing and allocating threads on the multicore, and setting the frequency
and power state of the cores to reduce the total energy consumption
without missing deadlines. Although the above work can effectively
reduce the energy consumption of MPSoC systems, the temperature
design constraint is not taken into account, which may result in de-
graded system performance.

Energy and temperature are two design constraints that interplay.
Energy-aware schemes alone have insufficient impact on chip tem-
perature and may lead to unnecessarily high temperature such that
system temperature constraint is violated [12]. As a result, extensive
investigation has been conducted on temperature-constrained task
scheduling for energy minimization. Liu et al. [13] first introduced
dynamic voltage/frequency scaling (DVFS) in design-time thermal op-
timization for uniprocessor systems. They compared the energy and
thermal-optimal solutions, and proposed a thermal-constrained energy
optimization procedure to minimize system energy consumption under
a constraint on peak temperature. Motivated by this work, Deogun et al.
[14,15] investigated thermal-constrained partitioning of periodic real-
time tasks for energy minimization in heterogeneous multiprocessor
systems. They designed genetic algorithm and branch-and-bound based
methods to assign real-time tasks to individual processors, adopted a
power model that captures the impact of temperature and voltage on
the leakage current, and utilized heterogeneities of MPSoCs to save
energy and improve system performance.

In addition to heterogeneities of MPSoCs, the heterogeneous char-
acteristics of real-time tasks also can be utilized for temperature-con-
strained energy minimization. Tasks are deemed to be heterogeneous
when different tasks exhibit distinctive power consumptions on the
same processor with exactly the same configuration [13]. We exploited
heterogeneities of both MPSoCs and real-time tasks for the first time in
the literature [16] to minimize energy consumption of a system under
the temperature constraint. Heterogenous real-time tasks are initially
allocated to individual processors to minimize dynamic energy con-
sumption, then slack time is distributed among allocated tasks to
minimize the chip temperature, which in turn reduces the leakage
power. However, this work assumes a heterogenous MPSoC which
supports fixed voltage levels and operating frequencies. Moreover, real-
time tasks are assumed to be independent, which limits the application
of the presented schemes in scenarios like streams where real-time tasks
have precedence or data dependencies.

Unlike the above works that concentrate on independent real-time

tasks, He et al. [17] developed a graph-based scheduling algorithm to
find the optimal co-scheduling solution for serial and parallel jobs on
multicores. However, energy and timing are not considered as a design
constraint. Energy and timing are taken into account in the literature
[18–20] when scheduling precedence-constrained real-time tasks on
multiprocessor computers using DVFS. However, heterogeneities of
neither multiprocessors nor real-time tasks are employed for energy
savings. In addition, temperature is not considered as a design con-
straint in the above works.

3. System models

In this section, we briefly introduce our system models, including
the processor and application model, power model, and temperature
model.

3.1. Processor and application model

The MPSoC system considered in this paper consists ofM processors,
denoted by = ⋯P P P P{ , , , }M1 2 . Each processor Pm (1≤m≤M) is a
typical DVFS-enabled processor that can operate with a set of discrete
supply voltage and frequency pairs (vm, k, fm, k) (1≤ k≤ xm), where

< < ⋯< < ⋯<v v v v ,m m m k m x,1 ,2 , , m < < ⋯< < ⋯<f f f f ,m m m k m x,1 ,2 , , m and
xm is the voltage/frequency level of processor Pm. Real-time applica-
tions are supposed to execute on the MPSoC system. Such an applica-
tion is a set of precedence constrained tasks and can be represented by a
directed acyclic graph (DAG) =G ( , )V E . The set of vertices V re-
presents the set of tasks τi ≤ ≤i(1 ),V and the set of edges represents a
partial order corresponding to the precedence constraints among tasks.
For example, edge ∈τ τ( , )i j E ≤ ≤i j(1 , )V indicates the task τi cannot
start to execute until task τj has been completed. A task without any
parent is called an entry task and a task without any child is called an
end task. Same as the literature [21], we assume that a DAG G has only
one entry node and one end node. Fig. 2 presents an example appli-
cation with six tasks and precedence constraints. As described in the
figure, τ1 is the entry task since it has no parent and τ6 is the end task
since it has no child. The execution of tasks needs to meet the

Fig. 2. An example application with precedence constraints.
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precedence constraints that tasks −τ τ2 4 cannot start to execute until
task τ1 is finished, task τ5 cannot start to execute until tasks −τ τ2 3 are
finished, and task τ6 cannot start to execute until tasks −τ τ4 5 are fin-
ished. Since tasks −τ τ2 4 are independent, they could be either executed
serially in an arbitrary order or executed in parallel. An execution order
of tasks −τ τ1 6 that meets the precedence constraints can be obtained
through topological sorting algorithm [22].

Each task τi in an application is characterized using a triplet τi: {μi,
ci, D}, where μi is the task active factor, ci is the worst case execution
cycles, and D is the common deadline that is also the frame size of tasks
in the application. Besides the operating frequency of the MPSoC
system, the power consumption of a task highly depends upon the
circuit activity and the usage frequency of different functional units
when executing the task [23]. Hence, the task activity factor μ (ranging
in (0,1]) that defines how intensively functional units are being utilized
by the task is adopted to capture the different switching factors of
different tasks [24]. Let ETi, m, k denote the execution time of task τi on
processor Pm at the frequency fm, k, then it is calculated by

=ET c
f

.i m k
i

m k
, ,

, (1)

3.2. Power model

The power consumption of an CMOS device can be modeled as the
sum of leakage power dissipation and dynamic power dissipation. The
leakage power is temperature dependent and consumed by the leakage
current required to maintain basic state of circuits [25]. As leakage
current changes super linearly with temperature, the leakage power
consumption of processor Pm at the kth supply voltage and frequency
can be effectively estimated as [26]

= +Pow α v γ v T t· · · ( ),m k
leak

m m k m m k m, , , (2)

where αm and γm are both non-negative architecture-dependent con-
stants of processor Pm, and Tm(t) is the operating temperature of pro-
cessor Pm at time instance t. Clearly, the leakage power varies with the
instantaneous temperature.

The dynamic power consumption of a processor is independent of
the temperature and can be estimated by a strictly increasing and
convex function of the supply voltage and operating frequency, that is,
Powdyn∝v2f [27], where v is the supply voltage and f is the operating
frequency. The dynamic power is only consumed when executing tasks.
Thus the dynamic power consumption of executing task τi on processor
Pm at the kth supply voltage and frequency is

=Pow μ δ v f· · · ,i m k
dyn

i m m k m k, , ,
2

, (3)

where μi is the active factor of task τi and δm is a non-negative constant
depending on the architecture of processor Pm.

3.3. Temperature model

An accurate and practical dynamic model of temperature is needed
to accurately characterize the thermal behavior of an application. In
this paper, it is assumed that there is negligible or no heat transfer
among processor units and among other different units [26,28,29].
Hence, a heat-independent thermal model proposed by Skadron et al.
[30] that is widely used in the literature is adopted to predict the
temperature of the core. Let T(t) be the temperature at time instance t,
then the temperature model is given by

+ − =R C dT t
dt

T t R Pow t T· · ( ) ( ) · ( ) ,amb
(4)

=
+ + +

−

dT t
dt

T α R v γ R v T t μ δ R v f
R C

T t
R C

( ) · · · · · ( ) · · · ·
·

( )
·

m m
amb

m m m k m m m k m i m m m k m k

m m

m

m m

, , ,
2

,

(5)

∫ ∫=
−

+ + −( )
dt dT t

T t

( )

· ( )
t

t

T

T m
T α R v μ δ R v f

R C
γ R v
R C m

· · · · · ·

·
1 · ·

·

e e

m
amb m m m k i m m m k m k

m m
m m m k

m m

0 0 , ,
2 , ,

(6)

= ⎛

⎝
⎜ −

+ +
−

⎞

⎠
⎟

+
+ +

−

⎜ ⎟−⎛
⎝

− ⎞
⎠

−
T T

T α R v μ δ R v f
γ R v

e

T α R v μ δ R v f
γ R v

· · · · · ·
1 · ·

·

· · · · · ·
1 · ·

e
m
amb

m m m k i m m m k m k

m m m k

γ R v
R C t t

m
amb

m m m k i m m m k m k

m m m k

0
, ,

2
,

,

1 · ·
· ( )

, ,
2

,

,

m m m k
m m e

,
0

(7)

where Pow(t) is the power consumption at time instance t, and it can be
obtained using Eqs. (8) and (9). R and C are thermal resistance and
capacitance, and are hardware dependent constants. Tamb is the ambient
temperature.

Let T ,m
amb Tm(t), Rm, and Cm be the ambient temperature, in-

stantaneous temperature, thermal resistance, and capacitance of pro-
cessor Pm, respectively. Then, for a given time interval [t0, te], if the
initial temperature is T0, the ending temperature of executing task τi on
processor Pm at the supply voltage and frequency (vm, k, fm, k), denoted
as Te, can be derived by solving Eq. (4). The derivation of ending
temperature Te is described in Eqs. (2)-(7). (See the top of this page).

4. Energy minimization problem definition and analysis

The focus of this work is to minimize the energy consumption of
precedence-dependent real-time tasks on the target MPSoC system
under the constraints of task deadline and maximum temperature limit.
We solve the energy minimization problem by designing thermal-aware
energy-efficient task assignment and frequency selection algorithm that
determines the tasks assigned to every processor and the operating
frequency of every assigned task. Before presenting our algorithm, we
first give the formulation and the analysis of our energy minimization
problem below.

The energy consumption is calculated as the product of power
consumption and execution time. Unlike the traditional works
[18,22,31] that ignore the temperature dependency in leakage power
when calculating energy consumption, this paper adopts a more precise
power model that takes into account the dependency. Specifically,
based on the power model given in Section 3.2 and the temperature
model given in Section 3.3, the total energy consumption of executing
the tasks in applicationV on the MPSoC system P during the frame D is
formulated as

= +EC EC EC .D
tot

D
leak

D
dyn (8)

ECD
leak is the energy consumption due to leakage power, which is always

consumed unless the processor is turned off. Thus the leakage energy
consumption is expressed as

∫

∑ ∑

∑

= =

+

= =

=

EC Pow D α v D

γ v T t dt

· · ·

· · ( ) .

D
leak

m

M

m
leak

m

M

m m

m

M D
m m m

1 1
,1

1
0 ,1

(9)

ECD
dyn is the energy consumption due to dynamic power, which is only

consumed when executing tasks. Thus the dynamic energy consumption
is calculated as
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⎜ ⎟

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ⎛
⎝

∑ ⎞
⎠

=

=

=

= = ∈

= = ∈

= = ∈

EC Pow ET

μ δ v f c
f

δ v μ c

·

· · · ·

· · · ,

D
dyn

m

M

k

x

τ
i m k
dyn

i m k

m

M

k

x

τ
i m m k m k

i

m k

m

M

k

x

m m k
τ

i i

1 1
, , , ,

1 1
,

2
,

,

1 1
,

2

m

i m k

m

i m k

m

i m k

,

,

,

V

V

V (10)

where m k,V denotes the subset of tasks allocated to processor Pm and
executed at frequency fm, k.

To avoid temperature-induced failures and hence enable the system
in a safe and reliable mode, the processor temperature should be below
a temperature limit (threshold) Tmax . The threshold Tmax is typically
specified based on the system design requirements. The peak tem-
perature of the MPSoC system P when executing the application V

during the frame D is given by

= ∀ ∈T T t t Dmax{ ( ) [0, ]},D
peak (11)

where T(t) is the instantaneous temperature of processors in P at time
instance t and can be calculated using Eq. (7).

Considering the above design constraints, the task assignment and
frequency selection problem for energy minimization can be formulated
as follows. Given an applicationV of precedence constrained real-time
tasks, and an MPSoC system P of heterogeneous processors, it is ex-
pected to derive a task assignment and frequency selection strategy to
minimize the system energy consumption while satisfying the con-
straint of peak temperature, task deadlines, and task precedence. In
other words, the problem can be formulated into the below form.

≤
EC
T T

Minimize:
Subject to:

D
tot

D
peak max (12)

∑ ∑∀ = ⋯ ≤
= ∈

m M c
f

D1, 2, , ,
k

x

τ

i

m k1 ,

m

i m k,V (13)

∀ ∈ ≥τ τ t τ t τ, , ( ) ( )·Λi j s i f j i j,V (14)

where ECD
tot and TD

peak are given in Eqs. (8) and (11), respectively.
Eq. (12) indicates that the processor peak temperature cannot exceed
the threshold, and Eq. (13) indicates that the execution of tasks on
processors should be finished before the common deadline. ts(τi) is the
start time of execution of task τi, and tf(τj) is the finish time of execution
of task τj. Λi, j is a binary variable that takes the value of 1 if task τj
precedes task τi, otherwise takes the value of 0. Eq. (14) indicates the
precedence constraint among tasks.

It has been shown in Eqs. (8)-(10) that the system energy con-
sumption is the sum of leakage and dynamic part, and the leakage
energy is dependent on temperature while the dynamic energy is not.
Since the leakage power varies with temperature and temperature is
changing with time, it is challenging to rapidly and accurately estimate
the leakage energy consumption. To be specific, either using Eq. (7) to
compute the temperature at every time instance is computationally
expensive or using thermal modeling tool (e.g., HotSpot [32]) to obtain
the temperature profiles is time consuming. Some early literatures such
as [18,22,31,33,34] either simply assume a constant leakage power or
totally ignore it since leakage energy consumption used to be a small
part of overall energy consumption. However, the portion of leakage
part in overall power dissipation is ever-increasing with the continuous
scaling of integrated circuits, thus, these energy models are not prac-
tical any more.

Temperature-aware leakage energy consumption can be reduced by
using a task splitting method proposed in the literature Zhou et al. [16].
In this method, task scheduling horizon is divided into sufficiently short
intervals of equal length such that the peak temperature in the interval
is constant. The leakage dominated static energy consumption during

the interval is calculated under the assumption of a fixed peak tem-
perature [13], and the static energy consumed in the whole scheduling
horizon is derived by summing up the static energy consumed in all
intervals [16]. Since the leakage power positively depends upon chip
peak temperature [13], the leakage energy consumption is then mini-
mized by deriving the lowest peak temperature for all intervals of the
scheduling horizon.

It can be deduced from the above description that the total energy
consumption of the system is mainly determined by the dynamic energy
for the scenario where peak temperature reaches temperature limit of
the system. This is because the peak temperature dependent leakage
energy consumption can not be further reduced in this case. In this
work, we concentrate on energy minimization for this case.

5. The proposed processor model transformation and task
scheduling heuristics

As introduced above, the target of this work is to design a two-level
correlated optimization process for energy minimization. At the first
level of the optimization, a real processor model supporting multiple
voltage and frequency levels is transformed to a virtual processor
consisting of multiple cores of fixed voltage and frequency levels. At the
second level of the optimization, real-time tasks are assigned to in-
dividual virtual cores in such a way that the system energy consump-
tion is minimized.

We first design a Real_Processor_to_Virtual_Core (RPVC) transfor-
mation for the MPSoC system. This transformation maps a real pro-
cessor with multiple voltage and frequency levels to a virtual processor
with multiple virtual cores. Each virtual core has a fixed voltage and
frequency level corresponding to one level of the real processor model.
Through the transformation, task-to-(real) processor assignment and
frequency selection can be translated into task-to-(virtual) core as-
signment, which reduces one dimension for optimization and hence
simplifies our problem. We then analyze the energy optimality of as-
signing tasks to virtual cores and present a theorem on optimum task
assignment. We finally develop a task-to-(virtual) core assignment
heuristic algorithm based on the theorem.

5.1. Real_processor_to_virtual_core transformation

The dynamic energy consumption given in Eq. (10) can be written
as a product of two vectors, that is,

⎜ ⎟∑ ∑ ⎛
⎝

∑ ⎞
⎠

∑ ∑

=

= =

= = ∈

= =

EC δ v μ c

a b a b

· · ·

· · ,

D
dyn

m

M

k

x

m m k
τ

i i

m

M

k

x

m k m k

1 1
,

2

1 1
, ,

m

i m k

m

,V

(15)

where =a δ v·m k m m k, ,
2 and = ∑ ∈b μ c·m k τ i i, i m k,V . Vector

= ⋯ ⋯⋯ ⋯a a a a a aa [ , , , , , , , , ]x M M M x
T

1,1 1,2 1, ,1 ,2 , M1 captures processor de-
pendent parameters and vector = ⋯b bb [ , , ,1,1 1,2

⋯⋯ ⋯b b b b, , , , , ]x M M M x1, ,1 ,2 , M1 captures task related parameters. Here,
am, k∈ a is referred to as the power dissipation factor of processor Pm,
bm, k∈ b is referred to as the power dissipation factor of subset ,m k,V and
μici is referred to as the power dissipation factor of task τi. It is clear that
a is constant since δm and vm, k are known for the given MPSoC system P
while b is not since it depends on the task assignment and frequency
selection (e.g., m k,V ). In addition, for a given application of V tasks,
the sum of power dissipation factor of tasks in the application is a
constant (e.g., denoted by Y ) and can be calculated as
∑ ∑ = ∑ ∑ ∑ = ∑ == = = = ∈ =b μ c μ c· ·m

M
k
x

m k m
M

k
x

τ i i i i i1 1 , 1 1 1
m m

i m k,
Y

V

V .
The power dissipation of the concerned MPSoC system

can be characterized by using the vector =a
⋯ ⋯⋯ ⋯a a a a a a[ , , , , , , , , ]x M M M x

T
1,1 1,2 1, ,1 ,2 , M1 defined in Eq. (15). How-

ever, the current form of a doesnot support a one-to-one
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correspondence between the number of processors (i.e. M) and the
number of power dissipation factors (i.e. ∑ = xm

M
m1 ) sine every processor

could have multiple supply voltage levels. Thereby, for the sake of easy
presentation and to simplify the optimization, we perform an RPVC
transformation that takes as input the MPSoC system and outputs a
sorted virtual core system. In the transformation, a one-to-one corre-
lation between cores and core power dissipation factors is created and
the virtual cores are arranged in the increasing order of their power
dissipation factors. This can be realized by transforming a real pro-
cessor model supporting multiple supply voltage and frequency levels
into a virtual processor of multiple virtual cores each of which supports
a fixed voltage and frequency pair, and sorting the virtual cores in the
increasing order of their power dissipation factors. The obtained virtual
cores are assumed to share the same characteristics as the real processor
except for the supply voltage and frequency.

An illustration of the RPVC transformation is shown in Fig. 3. As
demonstrated in the figure, the real MPSoC system P is transformed into
a virtual processor = ⋯ ⋯ −Θ {Θ , Θ , ,Θ , ,Θ , Θ },1 2 ℓ 1X X where

= ∑ = xm
M

m1X and every core Θℓ∈Θ ( ≤ ≤1 ℓ X ) is supplied with a
fixed voltage and frequency pair (vℓ, fℓ). The virtual core system Θ is
then characterized by vector = ⋯ ⋯ −η η η η η η[ , , , , , , ]T

1 2 ℓ 1X X and
≤ ≤ ⋯≤ ≤ ⋯≤ ≤−η η η η η1 2 ℓ 1X X holds, where =η δ v·ℓ ℓ ℓ

2 is referred to
as the power dissipation factor of virtual core Θℓ. Accordingly, the
power dissipation of subsets assigned to virtual cores can be re-
presented by vector = ⋯ ⋯ −ζ ζ ζ ζ ζ ζ[ , , , , , , ],1 2 ℓ 1X X where

= ∑ ∈ζ μ c·τ i iℓ i ℓV is referred to as the power dissipation factor of subset
assigned to core Θℓ and + + ⋯+ + ⋯+ =ζ ζ ζ ζ1 2 ℓ YX holds. Thus the
dynamic energy consumption given in Eq. (15) can be expressed as the
product of η and ζ, that is,

=EC η ζ· .D
dyn (16)

Through the RPVC transformation, our problem of assigning tasks to
real processors and determining operating frequency of assigned tasks
for energy minimization can be converted into the problem of designing
an energy-optimum task-to-(virtual) core assignment.

5.2. Optimality analysis of task-to-(virtual) core assignment

As we have pointed out earlier, the dynamic energy consumption
can be minimized by optimally assigning V tasks to X virtual cores.
Let = ⋯ ⋯ −ζ ζ ζ ζ ζ ζ* [ *, *, , *, , * , *]1 2 ℓ 1X X denote the power dissipation factor
of the optimum task assignment solution, where ζ *ℓ is the power dis-
sipation factor of task subset assigned to processor ℓ. The power dis-
sipation factor vector = ⋯ ⋯ −η η η η η η[ , , , , , , ]T

1 2 ℓ 1X X of the virtual core
system Θ is also given. We then present a theorem below which shows

that the dynamic energy consumption is minimized when the virtual
core with smaller power dissipation factor ends up with the subset of its
allocated tasks having a larger power dissipation factor.

Theorem 1. If the virtual core power dissipation
factor ≤ ≤ ⋯≤ ≤ ⋯≤η η η η1 2 ℓ X holds for = ⋯ ⋯η η η η η[ , , , , , ] ,T

1 2 ℓ X and
the sum of the corresponding task subset power dissipation
factor + +⋯+ +⋯+ζ ζ ζ ζ* * * *1 2 ℓ X is fixed for = ⋯ ⋯ζ ζ ζ ζ ζ* [ *, *, , *, , * ],1 2 ℓ X then
the dynamic energy consumptionECD

dyn is minimized toEC *D
dyn

,
if ≥ ≥ ⋯≥ ≥ ⋯≥ζ ζ ζ ζ* * * *1 2 ℓ X holds.

Proof. Let ′ECD
dyn denote the dynamic energy consumption where

positions of exactly two elements in the energy optimal assignment ζ*
are exchanged. Assume that the position of ζ *κ and ζ *ℓ ≤ < ≤κ(1 ℓ )X in
ζ* is exchanged for ′EC ,D

dyn then ζ* becomes
⋯ ⋯ ⋯− + − +ζ ζ ζ ζ ζ ζ ζ ζ ζ[ *, *, , * , *, * , , * , *, * , , * ]κ κ κ1 2 ℓ 1 ℓ 1 1 ℓ 1 X in this case. According

to the definition of dynamic energy consumption given in Eq. (16),
we have = + +⋯+ +⋯+ +⋯+EC η ζ η ζ η ζ η ζ η ζ* * * * * *D

dyn
κ κ, 1 1 2 2 ℓ ℓ X X and

′ = + +⋯+ +⋯+ +⋯+EC η ζ η ζ η ζ η ζ η ζ* * * * *D
dyn

κ κ1 1 2 2 ℓ ℓ X X . Since EC *D
dyn

, is
optimum, we have ′ − = − − ≥EC EC η η ζ ζ* ( )( * *) 0D

dyn
D
dyn

κ κ, ℓ ℓ . It is
known that ηℓ≤ ηκ holds for ℓ< κ, then ≥ζ ζ* *κℓ is derived. It can be
observed from the above proof that for any two virtual cores of an
optimum task assignment solution, the virtual core with smaller core
power dissipation factor has a subset of tasks with larger task power
dissipation.

Given the optimum task assignment solution
= ⋯ ⋯ ⋯− + − +ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ* [ *, *, , * , *, * , , * , *, * , , * ]κ κ κ1 2 ℓ 1 ℓ ℓ 1 1 1 X that minimizes the

dynamic energy consumption, any feasible solution in the solution
space1 can be obtained by exchanging elements in ζ* multiple times. In
each iteration of the exchange, it can be deduced that ≥ζ ζ* *κℓ holds for
ℓ< κ. In other words, the dynamic energy consumption is minimized
when the virtual core with smaller power dissipation factor ends up
with the subset of its assigned tasks having a larger power dissipation
factor. The theorem is proved. □

5.3. Task-to-(virtual) core assignment heuristic

Assigning multiple tasks to individual cores is well known as an NP-
hard problem, which necessitates the designing of a sub-optimal task
assignment heuristics. In this work, we propose a sub-optimal task as-
signment heuristics which is motivated by the theorem presented in
Section 5.2, that is, assigning the subset having a larger power dis-
sipation factor to the virtual core having a smaller power dissipation
factor can minimize the dynamic energy consumption. The heuristics
operates as follows. Tasks in the subset with the maximum power dis-
sipation factor is assigned to the virtual core with the minimum power
dissipation factor, and tasks in the subset with the next maximum
power dissipation factor is assigned to the virtual core with the next
minimum power dissipation factor. This process repeats until all subsets
of tasks are assigned to individual cores. In addition, the constraints of
task deadline and precedence, and system peak temperature limit are
examined during the task assignment.

The details of the task assignment heuristics are described in
Algorithm 1. It partitions the tasks in task set (i.e., applicationV ) into
subsets, then assigns subsets of selected tasks to individual virtual cores.
Since theX virtual cores in set Θ are sorted in the non-decreasing order
of core power dissipation factors, the focus of the algorithm becomes to
derive a task-to-(virtual) core assignment that partitions tasks into X

subsets, arranged in the non-increasing order of subset power dissipa-
tion factors, then assigns them to corresponding virtual cores. This can
be achieved by assigning tasks with larger task power dissipation

Fig. 3. An illustration of the RPVC transformation.

1 The feasible solution space includes all task assignments that meet system timing and
temperature constraints. The optimum task assignment consumes minimum energy in the
solution space.
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factors to virtual cores with smaller core power dissipation factors.
For the sake of better understanding of Algorithm 1, the definition

of some notations used in the algorithm are listed in Table 3. As shown
in the table, U(τi, Θℓ) denotes the utilization of task τi if it is assigned to
virtual core Θℓ, which is calculated as the quotient of task execution
time and frame size. U(Θℓ) denotes the utilization of virtual core Θℓ,
which is calculated as the sum of utilization of tasks assigned to the
core. Let Θℓ represent the virtual cores that are transformed from the
same real processor as Θℓ is, then the utilization of such cores is re-
presented by U (Θ )ℓ . Due to the processor capacity constraint, the sum
of utilization of all the virtual cores transformed from the same real
processor cannot be greater than 1, which is expressed as

+ + ≤U U τ U(Θ ) ( , Θ ) (Θ ) 1iℓ ℓ ℓ . The algorithm needs to take into

account this constraint when assigning tasks to virtual cores. Let ETi, ℓ,
ET ( ),ℓV and ET ( )tempV denote the execution time of task τi on virtual
core Θℓ, tasks assigned to virtual core Θℓ, and temporary task subset

,tempV respectively. All of ETi, ℓ, ET ( ),ℓV and ET ( )tempV can be calcu-
lated based on Eq. (1).

Inputs to Algorithm 1 are the application =G ( , ),V E MPSoC
system P, and peak temperature limit Tmax . In addition to these inputs,
the algorithm maintains a task queue Qtask, in which tasks are classified
into two categories. That is, tasks without precedence constraints are
regarded as independent tasks while tasks with precedence constraints
are regarded as dependent tasks. The independent tasks are sorted in
the non-increasing order of power dissipation factors for following the
idea of our heuristics, in order to construct the energy-optimum task

Input: Application represented by G = (V,E), MPSoC system represented by P, and peak temperature limit T max

Require: Maintain a task queue Qtask where independent tasks are in the non-increasing order of their power dissipation factors
and dependent tasks are in sequence to satisfy their precedence constraints in E

Output: Task-to-(virtual) core assignment represented by subsetsV1,V2, · · · ,V�, · · · ,VX
1: transform the real processor system P to the virtual core system Θ by Θ = RPVC(P), where the X cores of Θ are in the

non-decreasing order of power dissipation factors;
2: for � = 1 to X do
3: initialize the utilization and subset of virtual core Θ� by U(Θ�) = 0 andV� = ∅, respectively;
4: end for
5: move all tasks in applicationV to the queue Qtask;
6: � = 1;
7: for i = 1 to len(Qtask) do
8: f lag[i] = true;
9: end for

10: create the queue Qassign to copy the assigned tasks and initialize the queue to ∅;
11: while Qtask � NULL && � ≤ X do
12: create a temporary subsetVtemp;
13: ET (V�) = 0;
14: for i = 1 to len(Qtask) do
15: Vtemp = V� + τi;
16: ET (Vtemp) = ET (V�) + ETi,�;
17: if ET (Vtemp) ≤ D && U(Θ�) + U(τi,Θ�) + U(Θ�) ≤ 1 && T peak

D (Vtemp) ≤ T max then
18: for j = 1 to len(Qassign) do
19: if ts(τi) < t f (τ j) · Λi, j then
20: f lag[i] = false; // Precedence is violated
21: break;
22: end if
23: end for
24: if f lag[i] == true then
25: V� = V� + τi;
26: U(Θ�) = U(Θ�) + U(τi,Θ�);
27: ET (V�) = ET (V�) + ETi,�;
28: Qtask = Qtask − τi;
29: Qassign = Qassign + τi;
30: end if
31: end if
32: end for // Use first-fit to group tasks into subsets
33: � = � + 1;
34: end while
35: if Qtask � NULL && � > X then
36: exit(1); // Exit when infeasible
37: end if
38: return the subsetsV1,V2, · · · ,V�, · · · ,VX;

Algorithm 1. Energy-efficient task-to-(virtual) core assignment under system constraints.
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assignment. The dependent tasks are sorted to satisfy task precedence
constraints in ,E which can be achieved by topological sorting algo-
rithm [22]. The head and tail of task queue Qtask are the entry task and
end task, respectively.

The algorithm first transforms the MPSoC system to a virtual core
system using = PRPVCΘ ( ) where the cores are arranged in the non-
decreasing order of power dissipation factors, and initializes the utili-
zation and subset of virtual cores using =U (Θ ) 0ℓ and = ⌀ℓV (lines
1–4). All the tasks in applicationV are moved to queue Qtask and the
core index ℓ is set to 1 (lines 5–6). Lines 7–9 initialize the value of flag[i]
for every task in the queue Qtask, which is utilized to judge if the pre-
cedence constraint of task τi is satisfied. The queue Qassign is created to
copy the assigned tasks and is initialized to empty (line 10). The al-
gorithm then iteratively implements the process of task-to-(virtual) core
assignment if the queue Qtask is not empty and not all the cores in Θ
have been considered (lines 11–34).

In each round of iteration, lines 12–13 create a temporary subset
tempV for feasibility test of assigning tasks to virtual core Θℓ and in-

itialize the execution time ET ( )ℓV of tasks in subset ,ℓV and lines 14–32
iteratively assign tasks in queue Qtask to core Θℓ and construct subset ℓV

of tasks in a first-fit manner according to the schedulability require-
ment. During the assignment of task in queue Qtask to core Θℓ, a tem-
porary subset tempV is constructed by copying the subset ℓV and task τi
(line 15) and used to facilitate the feasibility analysis of assigning task τi
to core Θℓ under the constraints of task deadline (i.e., ≤ET D( )tempV ),
processor capacity (i.e., + + ≤U U τ U(Θ ) ( , Θ ) (Θ ) 1iℓ ℓ ℓ ), and peak
temperature (i.e., ≤T T( )D

peak
temp

maxV ) (lines 16–17). Lines 18–23
check whether the task precedence constraint (i.e., ts(τi)< tf(τj) ·Λi, j) is
satisfied or not. If the assignment can satisfy these constraints, the task
is assigned to the core, then task τi is added to subset ℓV (line 25), the
utilization U(Θℓ) of core Θℓ is increased by = +U U U τ(Θ ) (Θ ) ( , Θ )iℓ ℓ ℓ
(line 26), the execution time ET ( )ℓV of subset ℓV is updated to

+ET ET( ) iℓ ,ℓV (line 27). Since task τi is assigned to core Θℓ, the queue
Qtask of unassigned tasks and the queue Qassign of assigned tasks both
need to be updated by = −Q Q τtask task i (line 28) and = +Q Q τassign assign i
(line 29), respectively. The procedure then moves to the next iteration
and considers the allocation of the next task in queue Qtask. Otherwise,
the task is not assigned and the procedure directly moves to the next
iteration. If there is no feasible schedule for the system under the
constraints, the algorithm exits (lines 35–37). The target task-to-(vir-
tual) core assignment, represented by subsets ⋯ ⋯, , , , , ,1 2 ℓV V V VX

are returned in line 38.
Algorithm 1 is developed to generate an energy-efficient task-to-

(virtual) core assignment under system requirements. Once the task-to-
(virtual) core assignment is generated, the task-to-(real) processor as-
signment can be obtained accordingly. The execution of tasks on each
real processor follows the order that they are assigned to the virtual
cores of the processor. Since tasks in the frame-based application are
executed consecutively [2,22,33], the schedule of tasks on processors
can be readily derived when the assignment and execution order of
tasks are determined. The time complexity of Algorithm 1 is O ( · ),2V X

where V is the number of tasks in set V and X is the number of
virtual cores.

6. Experimental results

Two sets of simulation experiments have been carried out to vali-
date our task assignment heuristics in energy efficiency under the de-
sign constraints. In the first set of simulations, synthetic real-time tasks
were generated to verify our heuristics while in the second set of si-
mulations, real-life benchmarks were utilized to validate our heuristics.
In the two sets of simulations, we compare the energy consumption of
our task assignment heuristics with that of hybrid worst-fit genetic al-
gorithm (HWGA) [28] and A*-search [35]. HWGA integrates a worst-fit
based partition heuristics with the genetic algorithm to generate a task
assignment that reduces the energy consumption while satisfying all the

design constraints [28]. The worst-fit based partition heuristics assigns
the task with the highest priority to the core with maximum remaining
capacity. A*-search [35] is an optimum path finding algorithm that
combines heuristic approaches like greedy best-first-search and formal
approaches like Dijsktras algorithm. It is widely used in pathfinding and
graph traversal. In this experiment, we take the A*-search algorithm as
a benchmarking method to find the optimal solution of task assignment
in terms of energy efficiency by treating the assignment of a task to a
core as a path and the energy consumption of the task on its assigned
core as the weight of the path. Finding the optimal task assignment is
then equivalent to finding the path with minimal overall weight from
the entry task to the end task.

All the algorithms were implemented in C++, and the simulations
were performed on a machine with Intel Dual-Core 3.0 GHz processor
and 8GB memory. For the sake of fair comparison, the same simulation
settings are adopted for our heuristic algorithm and benchmarking al-
gorithms HWGA [28] and A*-search [35].

6.1. Simulation for synthetic real-time tasks

The simulated MPSoC system P is assumed to consist of 8 inter-
connected heterogeneous processing units (i.e., =M 8), and each pro-
cessing unit is assumed to support multiple discrete supply voltage and
frequency pairs. The parameters of the simulated platform [28], in-
cluding the maximal frequency f ,m

max hardware-dependent constants
αm, γm, δm, thermal resistance Rm, and thermal capacitance Cm of pro-
cessor Pm, are given in Table 4. The number of frequency levels sup-
ported by processor Pm, denoted by xm, is assumed to be varied from 3
to 5 for 1≤m≤M. In other words, each processor could have three
levels of frequency at least and five levels of frequency at most. Given
the maximal frequency fm

max of processor Pm, the other −x 1m fre-
quency levels are derived by the decrement of fm

max with a step size of
0.2. The corresponding parameters such as hardware-dependent con-
stants of the −x 1m frequency levels can be obtained using curve fitting
techniques [26]. 30 synthetic real-time applications are utilized in the
simulation, where the number of real-time tasks in an application is set
to 100. The real-time tasks in an application are generated by assuming
a common deadline D and the worst case execution cycles of tasks in the
application are assumed to be in the range of [4× 107, 6×108].
Precedence constraint is applied to randomly selected tasks in the ap-
plication. The task activity factors μ are uniformly distributed in the
interval [0.4, 1], which demonstrates the heterogeneous nature of
tasks [24].

Table 5 shows the energy consumed by the system when executing
30 synthetic real-time applications under four thermal constraints using
our proposed algorithm and two benchmarking algorithms HWGA [28]
and A*-search [35]. In addition to the energy consumption, the sche-
dule feasibility of these applications using the three algorithms under
the four thermal constraints are also given in the table. The thermal
constraint takes the values of = ∘T 65 ,max 70°, 75°, and 80°. NF indicates
that tasks in an application cannot be feasibly scheduled under the
constraints of task deadline, task precedence, and peak temperature
limit. The schedule feasibility, denoted by Feasibility, is calculated as the

Table 4
Parameters of the simulated platform [28].

P fm
max αm γm δm Rm Cm

P1 3.3 20.5060 0.1666 3.656 0.282 340
P2 3.4 5.0187 0.1942 2.138 0.487 295
P3 3.3 12.7880 0.2043 3.645 0.288 320
P4 3.0 15.6262 0.1942 4.556 0.238 320
P5 3.2 20.6393 0.1574 3.204 0.278 295
P6 3.1 11.9759 0.1586 2.719 0.480 255
P7 3.0 10.3490 0.1124 2.074 0.661 335
P8 2.6 13.1568 0.1754 2.332 0.680 380
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ratio of the number of applications that can be successfully scheduled to
the total number of applications adopted in the test.

As can be seen in the table, our proposed algorithm consumes less
energy for a given thermal constraint when compared to HWGA [28],
but more energy for a given thermal constraint when compared to A*-
search [35]. For example, the average energy consumption Eavg of 30
applications using our proposed algorithm, HWGA [28], and A*-search
[35] under the thermal constraint of = ∘T 80max are 395.464, 408.568,
and 388.960, respectively. The results in the table demonstrate that our
algorithm is more efficient in saving energy than HWGA [28], which is
due to the energy-optimality of our task assignment method, as ana-
lyzed in Section 5.2.

A*-search [35] consumes the least energy among the three algo-
rithms, but incurs the lowest schedule feasibility. This is because it
attempts to find an energy-optimal solution without considering the
design constraints. Unlike A*-search [35], the constraints of task
deadline, task precedence and peak temperature limit are all examined

in our task assignments. As a result, a higher schedule feasibility can be
achieved by using our algorithm, as is shown in Table 5.

6.2. Simulation for real-Life benchmarks

A heterogeneous MPSoC system [31] that consists of an AMD Athlon
processor with three supply voltage/frequency levels and an TI DSP
processor with two supply voltage/frequency levels is adopted in this
simulation. The three supply voltage and frequency pairs of AMD
Athlon are (0.89V,1.8GHz), (1.12V,2.4GHz), (1.34V,3GHz), and the
two supply voltage and frequency pairs of TI DSP are (0.98V,2.0GHz),
(1.42V,3.0GHz) [31], respectively. Four real-life multimedia applica-
tions, that is, mpegplay, madplay, tmndec, and toast, are adopted for
evaluations. The parameters of tasks in the four practical applications,
including the expected value and standard deviation of task execution
time, and the number of tasks in each application, are listed in Table 6.

Table 7 shows the energy consumption, schedule feasibility, and
peak temperature of four benchmarks using our proposed algorithm
and two benchmarking algorithms under four system thermal con-
straints (i.e., = ∘T 65 ,max 70°, 75°, and 80°). From the simulation results
of real-life benchmarks, we can draw the same conclusion as in Table 5
that our algorithm consumes less energy when compared to HWGA [28]
but higher energy when compared to A*-search [35] for a given thermal
constraint. For instance, the average energy consumption Eavg of four
benchmarks using our algorithm, HWGA [28], and A*-search [35]
under the thermal constraint of = ∘T 75max are 122.975, 129.001, and
113.020, respectively.

In this set of simulations, all the four benchmarks can be feasibly
scheduled under the design constraints, thus we further compare the
peak temperature of the four benchmarks using our algorithm, HWGA
[28], and A*-search [35]. As demonstrated in Table 6, the peak

Table 5
Energy consumption of 30 applications and schedule feasibility using our proposed algorithm and two benchmarking algorithms under four system thermal constraints.

= ∘T 65 Cmax = ∘T 70 Cmax = ∘T 75 Cmax = ∘T 80 Cmax

Application Proposed HWGA A*-search Proposed HWGA A*-search Proposed HWGA A*-search Proposed HWGA A*-search

1 482.228 506.427 476.568 452.089 467.988 446.725 421.950 429.491 415.918 391.811 406.044 385.826
2 490.698 497.805 485.312 460.029 472.000 453.982 429.361 436.778 424.346 398.692 413.229 393.632
3 507.584 512.605 498.251 475.860 481.568 470.584 444.136 451.924 436.904 412.412 419.549 406.288
4 453.556 460.159 444.299 425.208 446.328 419.479 396.861 412.671 390.915 368.514 388.233 363.365
5 457.452 470.486 449.825 428.862 441.862 423.350 400.271 413.017 394.670 371.680 390.136 366.284
6 477.664 489.138 NF 447.810 466.089 440.326 417.956 424.602 411.798 388.102 400.758 382.957
7 531.941 NF 526.061 498.695 512.196 491.594 465.448 471.996 458.844 432.202 444.893 425.498
8 446.369 452.795 432.817 418.471 431.285 412.138 390.573 402.029 382.654 362.675 383.410 355.570
9 505.489 NF NF 473.896 NF NF 442.303 453.935 436.803 410.710 418.109 405.396
10 485.435 494.051 478.776 455.095 461.686 449.022 424.755 439.897 418.345 394.416 409.431 389.357
11 488.123 498.365 481.883 457.615 481.264 450.403 427.107 443.397 419.262 396.600 405.428 391.330
12 500.842 513.972 494.739 469.539 479.676 462.303 438.237 445.092 429.675 406.934 427.327 401.831
13 487.772 506.865 480.653 457.286 471.735 451.516 426.800 442.913 421.195 396.315 410.895 389.049
14 480.649 495.976 473.142 450.609 479.333 444.715 420.568 432.750 408.831 390.528 404.564 385.509
15 504.477 516.137 492.976 472.947 481.738 466.518 441.417 451.412 428.322 409.888 416.215 404.142
16 476.658 488.782 467.039 446.867 458.826 437.785 417.076 428.075 412.060 387.285 402.364 377.406
17 469.505 474.798 464.176 440.161 446.242 432.030 410.817 422.121 405.650 381.472 390.985 373.809
18 498.723 507.706 NF 467.553 476.240 NF 436.383 455.402 NF 405.213 416.184 398.115
19 427.506 439.832 421.298 400.787 426.220 392.632 374.068 395.864 366.580 347.349 365.681 342.165
20 519.028 533.134 513.742 486.589 498.886 479.880 454.149 464.580 446.207 421.710 430.893 413.132
21 503.147 512.793 495.077 471.700 483.977 464.183 440.253 445.522 432.895 408.807 425.162 402.179
22 486.329 501.361 477.218 455.933 463.495 450.749 425.538 440.754 419.941 395.142 407.663 389.943
23 502.422 518.660 496.205 471.021 478.478 461.182 439.619 450.448 428.530 408.218 423.009 400.609
24 508.554 520.061 502.602 476.769 484.221 471.418 444.985 450.425 439.078 413.200 418.294 405.728
25 483.440 490.729 NF 453.225 464.227 NF 423.010 436.123 NF 392.795 400.772 384.852
26 492.310 498.886 485.066 461.540 479.612 456.422 430.771 441.679 422.911 400.002 417.019 392.488
27 514.671 520.028 508.552 482.504 496.335 476.282 450.337 460.938 442.237 418.170 423.311 412.986
28 487.877 500.144 480.047 457.385 465.145 452.210 426.893 435.066 416.592 396.400 411.564 390.579
29 455.779 485.258 NF 427.293 461.245 419.694 398.807 417.818 392.252 370.320 393.833 360.958
30 475.506 485.741 468.291 445.787 465.433 437.745 416.068 434.566 408.832 386.349 392.088 377.816
Eavg 486.724 496.168 479.985 456.304 469.77 448.699 425.884 437.710 418.295 395.464 408.568 388.960
Feasibility 100% 93.3% 83.3% 100% 96.7% 90% 100% 100% 93.3% 100% 100% 100%

Table 6
Parameters of the real-life benchmarks [31].

Application Description Expected task
execution time

Standard
deviation

Number of tasks
in the application

mpegplay MPEG video
decoder

113.4 38.9 30

madplay MP3 audio
decoder

43.1 34.8 40

tmndec H.263 video
decoder

89.5 34.7 20

toast GSM speech
encoder

5.6 4.7 30
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temperature Tavg
peak achieved by our algorithm is lower than that of

benchmarking algorithms HWGA [28] and A*-search [35] on average.
Taking the case of = ∘T 65max as an example, the average peak tem-
perature of four benchmarks achieved by our algorithm, HWGA [28],
and A*-search [35] are 61.051°, 61.752°, and 64.130°, respectively.

7. Conclusion

In this paper, we propose a two-level scheduling approach to reduce
energy consumption of DVFS-enabled heterogeneous MPSoCs under
constraints of task deadline, task precedence, and peak temperature
limit. The proposed algorithm computes high quality scheduling solu-
tions in two correlated optimization steps of different scales. At the
processor level, a multi-processor model supporting DVFS is trans-
formed to a virtual multi-processor model supporting only one fixed
frequency level. At the core level, real-time tasks are assigned to in-
dividual cores of the virtual processor under the constraints of task
precedence and peak temperature limit. Two sets of simulation ex-
periments have been conducted to validate the effectiveness of the
proposed algorithm in saving energy and improving schedule feasi-
bility. Simulation results have demonstrated that the proposed algo-
rithm achieves better performance when compared to the bench-
marking schemes.

Acknowledgements

This work was partially supported by Natural Science Foundation of
Shanghai under the grant 16ZR1409000, and National Natural Science
Foundation of China under the grant 61672230.

References

[1] J. Srinivasan, S. Adve, P. Bose, J. Rivers, Exploiting structural duplication for life-
time reliability enhancement, The Proceedings of the International Symposium on
Computer Architecture (ISCA), (2005), pp. 520–531.

[2] J. Zhou, X. Hu, Y. Ma, T. Wei, Balancing lifetime and soft-error reliability to im-
prove system availability, The Proceedings of Asia and South Pacific Design
Automation Conference (ASPDAC), (2016), pp. 685–690.

[3] J. Zhou, J. Yan, J. Chen, T. Wei, Peak temperature minimization via task allocation
and splitting for heterogeneous MPSoC real-time systems, J. Signal Process. Syst. 84
(1) (2016) 111–121.

[4] R. Kumar, D.M. Tullsen, Core architecture optimization for heterogeneous chip
multiprocessors, The Proceedings of International Conference on Parallel
Architectures and Compilation Techniques (PACT), (2006), pp. 23–32.

[5] J. Zhou, J. Yan, T. Wei, M. Chen, X. Hu, Energy-adaptive scheduling of imprecise
computation tasks for QoS optimization in real-time MPSoC systems, The
Proceedings of Design, Automation & Test in Europe (DATE), (2017), pp.
1402–1407.

[6] F. Wang, C. Nicopoulos, X. Wu, X. Xie, N. Vijaykrishnan, Variation-aware task al-
location and scheduling for MPSoC, The Proceedings of the International
Conference on Computer-Aided Design (ICCAD), (2007), pp. 598–603.

[7] A. Colin, A. Kandhalu, R. Rajkumar, Energy-efficient allocation of real-time appli-
cations onto heterogeneous processors, The Proceedings of the International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), (2014), pp. 1–10.

[8] D. Li, J. Wu, Minimizing energy consumption for frame-based tasks on hetero-
geneous multiprocessor platforms, IEEE Trans. Parallel Distrib. Syst. 26 (3) (2015)

810–823.
[9] Y. Wang, K. Li, H. Chen, L. He, K. Li, Energy-aware data allocation and task sche-

duling on heterogeneous multiprocessor systems with time constraints, IEEE Trans.
Emerg. Top. Comput. 2 (2) (2014) 134–148.

[10] L. Zhang, K. Li, C. Li, K. Li, Bi-objective workflow scheduling of the energy con-
sumption and reliability in heterogeneous computing systems, Inf. Sci. 379 (2017)
241–256.

[11] H. Zahaf, A. Benyaminab, R. Olejnika, G. Lipari, Energy-efficient scheduling for
moldable real-time tasks on heterogeneous computing platforms, J. Syst. Archit. 74
(2017) 46–60.

[12] W. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, Thermal-aware task allocation and
scheduling for embedded systems, The Proceedings of Design, Automation, & Test
in Europe (DATE), (2005), pp. 898–899.

[13] Y. Liu, R. Dick, L. Shang, H. Yang, Thermal vs energy optimization for DVFS-en-
abled processors in embedded systems, The Proceedings of the International
Symposium on Quality Electronic Design (ISQED), (2007), pp. 204–209.

[14] S. Saha, Y. Lu, J. Deogun, Thermal-constrained energy-aware partitioning for het-
erogeneous multi-core multiprocessor real-time systems, The Proceedings of the
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), (2012), pp. 41–50.

[15] B. Barrefors, Y. Lu, S. Saha, J. Deogun, A novel thermal-constrained energy-aware
partitioning algorithm for heterogeneous multiprocessor real-time systems, The
Proceedings of the International Conference on Performance Computing and
Communications (IPCCC), (2014), pp. 1–8.

[16] J. Zhou, T. Wei, M. Chen, Y. Ma, X. Hu, Thermal-aware task scheduling for energy
minimization in heterogeneous real-time MPSoc systems, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 35 (8) (2016) 1269–1282.

[17] L. He, H. Zhu, S. Jarvis, Developing graph-based co-scheduling algorithms on
multicore computers, IEEE Trans. Parallel Distrib. Syst. 27 (6) (2016) 1617–1632.

[18] K. Li, Scheduling precedence constrained tasks with reduced processor energy on
multiprocessor computers, IEEE Trans. Comput. 61 (12) (2012) 1668–1681.

[19] M. Gerards, J. Hurink, J. Kuper, On the interplay between global DVFS and sche-
duling tasks with precedence constraints, IEEE Trans. Comput. 64 (6) (2015)
1742–1754.

[20] Y. Lee, A. Zomaya, Minimizing energy consumption for precedence-constrained
applications using dynamic voltage scaling, The Proceedings of the International
Symposium on Cluster Computing and the Grid (CCGRID), (2009), pp. 92–99.

[21] J. Liu, K. Li, D. Zhu, J. Han, K. Li, Minimizing cost of scheduling tasks on hetero-
geneous multicore embedded systems, ACM Trans. Embedded Comput. Syst. 16 (2)
(2016) 1–25.

[22] B. Zhao, H. Aydin, D. Zhu, On maximizing reliability of real-time embedded ap-
plications under hard energy constraint, IEEE Trans. Ind. Inf. 6 (3) (2010) 316–328.

[23] Y. Liu, R. Dick, L. Shang, H. Yang, Thermal vs energy optimization for DVFS-en-
abled processors in embedded systems, The Proceedings of the International
Symposium on Quality Electronic Design (ISQED), (2007), pp. 204–209.

[24] H. Huang, V. Chaturvedi, G. Quan, J. Fan, M. Qiu, Throughput maximization for
periodic real-time systems under the maximal temperature constraint, ACM Trans.
Embedded Comput. Syst. 13 (2014). 2s.

[25] W. Liao, L. He, K. Lepak, Temperature and supply voltage aware performance and
power modeling at microarchitecture level, IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 24 (7) (2006) 1042–1053.

[26] G. Quan, V. Chaturvedi, Feasibility analysis for temperature constraint hard real-
time periodic tasks, IEEE Trans. Ind. Inf. 6 (3) (2010) 329–339.

[27] N. Weste, K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective,
Addison-Wesley Publishing Company, 1992.

[28] S. Saha, Y. Lu, J. Deogun, Thermal-constrained energy-aware partitioning for het-
erogeneous multi-core multiprocessor real-time systems, The Proceedings of the
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), (2012), pp. 41–50.

[29] J. Zhou, T. Wei, Stochastic thermal-aware real-time task scheduling with con-
siderations of soft errors, 102 (2015), pp. 123–133.

[30] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, D. Tarjan,
Temperature-aware microarchitecture: modeling and implementation, ACM Trans.
Archit. Code Optim. 1 (1) (2004) 94–125.

[31] K. Li, X. Tang, K. Li, Energy-efficient stochastic task scheduling on heterogeneous
computing systems, IEEE Trans. Parallel Distrib. Syst. 25 (11) (2014) 2867–2876.

[32] Hotspot. University of Virginia, [Online]. Available: http://lava.cs.virginia.edu/

Table 7
Energy consumption, schedule feasibility, and peak temperature of four benchmarks using our proposed algorithm and two benchmarking algorithms under four system thermal
constraints.

= ∘T 65 Cmax = ∘T 70 Cmax = ∘T 75 Cmax = ∘T 80 Cmax

Application Proposed HWGA A*-search Proposed HWGA A*-search Proposed HWGA A*-search Proposed HWGA A*-search

mpegplay 275.932 284.663 266.606 258.686 264.093 231.949 241.441 251.042 230.639 224.195 234.021 213.645
madplay 153.966 159.139 138.501 144.343 151.029 128.777 134.720 142.019 122.580 125.098 131.144 116.070
tmndec 119.256 125.494 106.916 111.802 124.371 104.443 104.349 109.790 88.681 96.895 101.948 91.080
toast 13.017 14.303 11.716 12.204 13.363 10.630 11.390 13.152 10.179 10.577 11.723 9.463
Eavg 140.543 145.900 130.935 131.759 138.214 118.950 122.975 129.001 113.020 114.191 119.709 107.565
Feasibility 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Tavg
peak 61.051 61.752 64.130 66.328 67.494 69.822 71.682 72.363 74.643 75.154 77.602 79.349

J. Zhou et al. Journal of Systems Architecture 82 (2018) 1–11

10

http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0001
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0001
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0001
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0002
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0002
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0002
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0003
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0003
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0003
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0004
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0004
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0004
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0005
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0005
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0005
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0005
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0006
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0006
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0006
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0007
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0007
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0007
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0007
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0008
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0008
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0008
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0009
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0009
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0009
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0010
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0010
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0010
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0011
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0011
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0011
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0012
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0012
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0012
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0013
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0013
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0013
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0014
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0014
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0014
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0014
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0015
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0015
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0015
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0015
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0016
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0016
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0016
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0017
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0017
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0018
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0018
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0019
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0019
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0019
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0020
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0020
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0020
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0021
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0021
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0021
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0022
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0022
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0023
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0023
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0023
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0024
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0024
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0024
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0025
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0025
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0025
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0026
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0026
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0027
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0027
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0028
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0028
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0028
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0028
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0029
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0029
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0030
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0030
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0030
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0031
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0031
http://lava.cs.virginia.edu/HotSpot


HotSpot.
[33] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed adjustment

using slack reclamation in multiprocessor real-time systems, The Proceedings of the
International Symposium on Real-Time Systems (RTSS), (2001), pp. 84–94.

[34] J. Chen, H. Hsu, T. Kuo, Leakage-aware energy-efficient scheduling of real-time
tasks in multiprocessor systems, The Proceedings of the International Symposium
on Real-Time and Embedded Technology and Applications (RTAS), (2006), pp.
408–417.

[35] S. Russell, P. Norvig, Artificial intelligence: a modern approach, third ed., Prentice
Hall, 2009.

Junlong Zhou received the Ph.D. degree in computer sci-
ence from East China Normal University, Shanghai, China,
in 2017. He was a research visitor with the University of
Notre Dame, Notre Dame, IN, USA, during 2014–2015. He
is currently an assistant professor with the School of
Computer Science and Engineering, Nanjing University of
Science and Technology, Nanjing, China. His research in-
terests include real-time embedded systems, cyber physical
systems, and cloud computing. Dr. Zhou has been an
Associate Editor for the Journal of Circuits, Systems, and
Computers since 2017. He is a member of the IEEE.

Jianming Yan received the masterí¯s degree from the
Department of Computer Science and Technology, East
China Normal University, Shanghai, China, in 2016. He is
currently a senior software engineer with Meituan.com
Corporation, Beijing, China. His research interests include
task allocation and scheduling techniques in heterogeneous
real-time MPSoC systems.

Kun Cao is currently pursuing the Ph.D. degree with the
Department of Computer Science and Technology, East
China Normal University, Shanghai, China. His current re-
search interests are in the areas of high performance com-
puting, multiprocessor systems-on-chip and cyber physical
systems.

Yanchao Tan received the B.S. degree from the
Department of Computer Science and Technology, East
China Normal University, Shanghai, China, in 2017. She is
currently pursuing the Ph.D. degree in the College of
Computer Science, Zhejiang University, Hangzhou, China.
Her current research interests include the resource man-
agement and recommendation system.

Tongquan Wei received his Ph.D. degree in electrical en-
gineering from Michigan Technological University in 2009.
He is currently an associate professor in the Department of
Computer Science and Technology at the East China
Normal University. His research interests are in the areas of
Internet of Things, real-time embedded systems, green and
reliable computing, parallel and distributed systems, and
cloud computing. He serves as a Regional Editor for Journal
of Circuits, Systems, and Computers since 2012. He is a
member of the IEEE.

Mingsong Chen (S’08–M’11) received the B.S. and M.E.
degrees from Department of Computer Science and
Technology, Nanjing University, Nanjing, China, in 2003
and 2006 respectively, and the Ph.D. degree in computer
engineering from the University of Florida, Gainesville, in
2010. He is currently a full Professor with the Department
of Embedded Software and Systems of East China Normal
University. His research interests are in the area of design
automation of cyber-physical systems, formal verification
techniques and mobile cloud computing. He is a member of
the IEEE.

Gongxuan Zhang received the BEng degree in computing
from Tianjin University and the MEng and Ph.D. degrees in
computer application from the Nanjing University of
Science and Technology. Also, he was a Senior Visiting
Scholar in Royal Melbourne Institute of Technology from
2001.9 to 2002.3. Since 1991, he has been with the Nanjing
University of Science and Technology, where he is currently
a professor in the School of Computer Science and
Engineering. He is a senior member of the IEEE.

Xiaodao Chen received the B.Eng. degree in tele-
communication from the Wuhan University of Technology,
Wuhan, China, in 2006, the M.Sc. degree in electrical en-
gineering from Michigan Technological University,
Houghton, USA, in 2009, and the Ph.D. in computer en-
gineering from Michigan Technological University,
Houghton, USA, in 2012. He is currently an associate pro-
fessor with School of Computer Science, China University of
Geosciences, Wuhan, China. His research interests include
Design Automation for petroleum system, High
Performance Computing and Optimization.

Shiyan Hu received his Ph.D. in computer engineering
from Texas A&M University in 2008. He is an associate
professor at Michigan Tech, and he was a visiting associate
professor at Stanford University from 2015 to 2016. His
research interests include Cyber-Physical Systems (CPS),
CPS Security, Data Analytics, and Computer-Aided Design
of VLSI Circuits, where he has published more than 100
refereed papers. He is an ACM Distinguished Speaker, an
IEEE Systems Council Distinguished Lecturer, an IEEE
Computer Society Distinguished Visitor, and a recipient of
National Science Foundation (NSF) CAREER Award. Prof.
Hu is the Chair for IEEE Technical Committee on Cyber-
Physical Systems. He is the Editor-In-Chief of IET Cyber-

Physical Systems: Theory & Applications. He is an Associate Editor for IEEE Transactions
on Computer-Aided Design, IEEE Transactions on Industrial Informatics, and IEEE
Transactions on Circuits and Systems. He is also a Guest Editor for a number of IEEE/ACM
Journals such as Proceedings of the IEEE and IEEE Transactions on Computers. He has
held chair positions in numerous IEEE/ACM conferences. He is a Fellow of IET.

J. Zhou et al. Journal of Systems Architecture 82 (2018) 1–11

11

http://lava.cs.virginia.edu/HotSpot
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0032
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0032
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0032
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0033
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0033
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0033
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0033
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0034
http://refhub.elsevier.com/S1383-7621(17)30120-0/sbref0034

	Thermal-aware correlated two-level scheduling of real-time tasks with reduced processor energy on heterogeneous MPSoCs
	Introduction
	Related work
	System models
	Processor and application model
	Power model
	Temperature model

	Energy minimization problem definition and analysis
	The proposed processor model transformation and task scheduling heuristics
	Real_processor_to_virtual_core transformation
	Optimality analysis of task-to-(virtual) core assignment
	Task-to-(virtual) core assignment heuristic

	Experimental results
	Simulation for synthetic real-time tasks
	Simulation for real-Life benchmarks

	Conclusion
	Acknowledgements
	References




