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Abstract—With the rapid deployment of cloud computing
infrastructures, understanding the economics of cloud computing
has becoming a pressing issue for cloud service providers.
However, existing pricing models rarely consider the dynamic
interaction between user requests and the cloud service provider,
thus can not accurately reflect the law of supply and demand in
marketing. In this paper, we propose a pricing model based on
the concept of user perceived value in the domain of economics
that accurately capture the real supply and demand situation in
the cloud service market. We then design a profit maximization
scheme based on the presented dynamic pricing model that
optimizes profit of the cloud service provider without violating
user service-level agreement. Extensive experiments using data
extracted from real-world applications validate the effectiveness
of the proposed user perceived value-based pricing model. The
proposed profit maximization scheme achieves 24.44% more
profit as compared to the state of the art benchmarking methods.

Index Terms—Cloud computing, dynamic pricing model, user
perceived value, profit maximization.

I. INTRODUCTION

Cloud computing has become an effective commercial
computing model that distributes user requests on a pool
of servers and delivers hosted services over Internet. As a
business model, it turns resources of computing, storage, and
communication into ordinary commodities and utilities in a
pay-as-you-go manner [1]–[4]. It is natural for cloud service
providers to pursue the goal of profit maximization, thus, the
cloud service pricing strategy is of particular importance to
cloud service providers.

The pricing model of a cloud service provider in cloud
computing consists of two parts, that is, the revenue and the
cost [5]. From the perspective of a cloud service provider,
the revenue is the income that the cloud service provider has
from the sale of cloud services to users, and the cost is the
expenditure of renting and electricity bill of the server systems.
To pursue profit maximization, cloud service providers attempt
to increase revenue by setting a high price for cloud services
and attracting a great amount of service purchase. However,
service price and purchase amount interplay and cannot be
optimized simultaneously [6]. On the other hand, the cost
needs to be reduced for profit maximization, thus, aspects such
as multiserver configurations and electricity price should be
considered in pricing modeling.
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Numerous investigations have been made into pricing mech-
anisms for profit maximization in cloud computing. Fixed
pricing strategies such as pay-per-use, subscription based pric-
ing, and tiered pricing are the most common pricing methods
used by major cloud service providers [5], [7], [8]. However,
these pricing methods cannot meet the dynamic needs of
users and cannot reflect the market situation of supply and
demand, which necessitates dynamic pricing strategies that
adjust price of cloud services according to market situation
and user requirements for service quality. Macias et al. [9]
proposed a genetic model based pricing strategy that obtains
optimal pricing in an iterative way. Amazon [10], [11] utilizes
a spot pricing strategy that dynamically adjusts prices for a
virtual service instance to accommodate changes in supply
and demand. Cao et al. [5] presented a pricing model that
takes such factors into considerations as the configuration of
a multiserver system, the service-level agreement, the satis-
faction of a consumer, and a cloud service provider’s margin
and profit. Though these works investigate dynamic pricing
strategies from different perspectives, the interaction between
users and cloud service providers with respect to supply and
demand relationship is not discussed.

In this paper, we propose a user perceived value-based
pricing mechanism that conforms to the law of supply and
demand in economics. The novel contributions of this paper
are summarized as follows:

• We propose a dynamic pricing model that considers
the interplay between cloud users and cloud service
providers. The model built upon the concept of user
perceived value in the domain of economics accurately
captures the dynamics of supply and demand in cloud
pricing strategies.

• We propose a profit maximization scheme based on the
presented dynamic pricing model. The proposed scheme
optimizes the profit of cloud service providers by config-
uring multiservers systems under the constraint of user
service-level agreement.

• Extensive simulation experiments show that the proposed
scheme is superior to two benchmarking pricing models.
The proposed scheme can obtain up to 10.748 cents per
second more as compared to benchmarking methods.

The remainder of the paper is organized as follows. Sec-
tion II presents the system architecture and models, Section III
describes the proposed user perceived value-based pricing
mechanism. The effectiveness of the proposed scheme is
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validated in Section IV and concluding remarks are given in
Section V.

II. SYSTEM ARCHITECTURE AND MODELS

We consider a common three-tier cloud service provision
structure that consists of cloud users, cloud service providers,
and cloud infrastructure vendors [5], [8], [12]. Among the
three entities that form a market in the cloud computing,
the infrastructure vendor charges the cloud service provider
for renting infrastructures to deploy service capacity, and the
cloud service provider charges cloud users for processing their
requests. In this paper, cloud user and cloud service provider
are of our particular interest. We will introduce our cloud
user model and cloud service provider model in the following
sections.

A. Cloud User Model

To maximize the profit of a cloud service provider, the cloud
service provider needs to know the aggregate demands of all
users in the market. When a cloud service provider sets up
the price of a service, different users have different responses
to this price. As with conventional market commodities, the
cloud computing service can be seen as a special commod-
ity which follows market rules. That is, the price of cloud
computing service is also dictated by the supply and demand
in the market. In this paper, we propose a perceived value
oriented pricing strategy for cloud computing services. In this
subsection, we introduce the concepts of user perceived value
and user request (or demand) distribution.

User Perceived Value: In conventional markets, the arrival
rate of customers to a store is often a response to their regular
purchasing patterns rather than a reaction to individual prices
[6]. Thus, it is reasonable to assume that the change of the list
price has no effects on the total number of customers who are
visiting the store. Typically, not all of the customers have the
willing to buy a specific commodity, that is, the total number
of customers who buy commodities are no larger than the total
number of people that visit the store.

Customer perceived value is defined as the worth that a
product or service has in the mind of a consumer. In general,
customers are unaware of the true cost of production for the
products they buy, instead, they simply have an internal feeling
for how much certain products are worth to them. In the
conventional market environment, only the customer whose
perceived value is higher than the real price of the product is
willing to pay for the product.

In this paper, we adopt the terminology of customer per-
ceived value used in traditional market environment. We take
the cloud computing environment as a store and the cloud
computing service is deemed as a special commodity provided
in the store. In the following sections, the terminology of
customer perceived value and user perceived value are used
interchangeably.

User Demand Distribution: Unlike traditional methods
that use the expected demand to model user behavior [13],
[14], we use the probability distribution of the total demands
in this work to model user requests.

We consider a slotted time model that deals with the pricing
decision and constraints for discrete time intervals (also called
sales periods) of equal length τ . Specifically, a cloud service
provider sets list price for the service at the beginning of
regular sales periods. The list price during each sales period
is assumed to be constant, but varies from period to period.

Suppose that the cloud service provider will charge ω per
user for a specific cloud service S during a sales period τ .
Let n denote the total number of users that have interest
in the service at the price of ω during the sales period τ ,
and λu denote the number of users arriving per unit time,
respectively. The n is assumed to be independent of all other
parameters of the system, and is a discrete Poisson random
variable distributed as

P (n|λu) =
(λuτ)

n
e−λuτ

n!
, n = 0, 1, 2, · · · ,∞. (1)

However, the user arrival rate λu may not be constant in many
situations. Taking into account the heterogeneity of arrival rate,
a Gamma distribution characterized by parameters (α, β) is
utilized to represent the arrival rate λu, the probability density
function of which is given by

g(λu) =
1

Γ(α)βα
λ(α−1)
u e−λu/β , 0 ≤ λu ≤ ∞, (2)

where the expectation and variance of λu is given by E[λu] =
αβ and V ar[λu] = αβ2, respectively, and Γ(α) is a complete
gamma function.

Among the n users, any one whose perceived value of the
service is no less than the list price ω is considered as a poten-
tial buyer of the service. Let m denote the number of potential
buyers. It is a non-negative discrete random variable taking
the value of 0, 1, 2, · · · ,∞ and m ≤ n holds. Let Xi denote
the perceived value that user i has for the service S. Xi is a
continuous random variable and 0 ≤ Xi <∞ holds. As with
other benchmarking pricing models [14], X1, X2, · · · , Xn are
assumed to be independent and identical random variables.
The probability density function of the random variables,
denoted by f(x), is known or can be estimated a priori.
Let F (ω) represent the cumulative distribution function of
x evaluated at ω. The F (ω) is a non-decreasing function of
ω, and 0 6 F (ω) 6 1 and lim

ω→∞
F (ω) = 1 hold [15]. Let

Pω(m|n) indicate the probability that m out of n users are
inclined to buy in the sales period when the service price is
set equal to ω. It follows a binomial distribution of probability,
which is given by

Pω(m|n) =
�n
m

�
[1− F (ω)]m[F (ω)](n−m). (3)

Combining (1)-(3), we can derive the probability of having
m potential buyers during the sales period τ when the service
price is set equal to ω. The probability is denoted by Pω(m)
and given by

Pω(m) =

Z ∞
λu=0

∞X
n=0

Pω(m|n)P (n|λu)g(λu)dλu

=
�m+α−1

m

�
[
βτ [1− F (ω)]

1 + βτ [1− F (ω)]
]m[

1

1 + βτ [1− F (ω)]
]α.

(4)
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Clearly, it is a negative binomial distribution. As a result, the
expected number of actual buyers of the service at price ω
during sales period τ , which is denoted by Eω(m), can be
calculated as

Eω(m) = αβτ(1− F (ω)), (5)

where α and β are parameters of the Gamma distribution of
user arrival rate λu, and F (ω) is the cumulative distribution
function of x evaluated at ω. The revenue of the cloud service
provider in a sales period τ is thus given by

Revenue = ω × Eω(m) = ωαβτ(1− F (ω)). (6)

B. Cloud Service Provider Model

The cloud service provider rents a multiserver system that
is constructed and maintained by an infrastructure vendor to
serve user requests. The architecture details of the multiserver
system are quite flexible [5], [16]. They can be blade cen-
ters where each server is a server blade [17], clusters of
traditional servers where each server is an ordinary processor
[18], and multicore server processors where each server is
a single core [19]. For the sake of easy presentation, these
blades/processors/cores are simply called servers. Cloud users
of a cloud service provider submit their requests to the cloud
service provider, and the cloud service provider serves these
requests (i.e., run these tasks) on the multiserver system.

Multi-Server Model: We consider a multiserver system that
consists of M homogeneous servers operating at a common
speed of s. The multiserver system can be modeled as an
M/M/M queuing system where arrivals of user requests gov-
erned by a Poisson process form a single queue and M servers
can process these requests in parallel. Let µ be the service rate
of user requests that arrive at the rate of λu. It is clear that µ
user requests can be processed by servers if the number of user
requests in the system is not greater than M. The service time
of a user request on a server is an exponential random variable
denoted by x1 = r/s with mean x1 = r/s, where r is the
number of instructions to be executed for the service request.
A first-come-first-served (FCFS) queue of infinite capacity is
maintained by the multiserver system for waiting tasks when
all the servers are busy. Let ρ be server utilization, which is
defined as the average percentage of time that a server is busy.
It can be expressed as

ρ =
λu
Mµ

=
λu
M s

r̄

=
λur̄

Ms
. (7)

Let Pk be the probability of k service requests being
waiting or processing in the M/M/M queuing system. Based
on queuing theory [5], [20], Pk is given by

Pk =

(
P0

(Mρ)k

k! , k ≤M
P0

MMρk

M ! , k ≥M
, (8)

where P0 is the probability that there are no tasks in the queue,
and is formulated into [20]

P0 = (
M−1X
k=0

(Mρ)k

k!
+

(Mρ)M

M !
· 1

1− ρ
)−1.

The probability that there are exact M service requests in
the system is thus given by PM = P0

(Mρ)M

M ! . By using the
Taylor series expansions of

PM−1
k=0 (Mρ)

k
/k! ≈ eMρ and

M ! ≈
√

2πM(Me )M , it could be transformed into

PM =
1− ρ√

2πM(1− ρ)( e
ρ−1

ρ )M + 1
. (9)

This form of PM is necessary to derive multiserver configu-
rations in Section III.

When all the servers in the system are busy, a newly
submitted service request must wait and will be inserted into
the FCFS queue. Let Pq denote the probability of queuing a
newly arrived task when no servers are idle at the time of
arrival. Pq can be formulated as

Pq =
∞X

k=M

Pk =
PM

1− ρ
. (10)

Let N denote the average number of service requests being
waiting or executing in the multiserver system, then N is
calculated as

N =
∞X
k=0

kPk = Mρ+
ρ

1− ρ
Pq. (11)

The average service response time R which is defined as the
time elapsed between the time when a request is submitted to
the time when the request is finished, is adopted to evaluate
the service quality. It is in fact the sum of task execution time
and waiting time, and can be derived by applying Little’s Law
[21] as

R =
N

λu
= x1(1 +

Pq
M(1− ρ)

) = x1(1 +
PM

M(1− ρ)2
).

(12)

The average service response time R is utilized in this paper
as a metric for service-level agreement. If the response time
of a service exceeds the predefined deadline, the service-level
agreement is deemed to be violated.

Gross Profit: The gross profit a cloud service provider earns
is the total revenue subtracted by the cost of generating that
revenue. In other words, gross profit is sales minus cost of
the cloud service sold. Assuming the price of cloud service
is constant in a sales period, the revenue earned is given by
ω ·Eω(m), where ω denotes the service price per user and
Eω(m) indicates the expected number of actual buyers at price
ω during the sales period.

The cost of cloud service sold mainly consists of the cost
paid to rent cloud computing infrastructure, and the electricity
expense incurred by the cloud service provider to maintain
the operation of the computing infrastructure. Let δ be the fee
a cloud service provider pays to rent a server during a sales
period, the rent the cloud service provider needs to pay for a
system of M servers during the sales period is

Rent = Mδ. (13)

As a portion of the cloud service cost, electricity fee has
become a significant expense for today’s data centers. It can
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be derived by multiplying energy consumed by a server with
electricity price. The energy consumed by a server can be
modeled at different levels of abstraction. At the abstraction
level of digital CMOS circuit, the power consumption, which
is denoted by Ptot, can be modeled as

Ptot = Psta + Pdyn, (14)

where Psta is the static power dissipation while Pdyn is the
dynamic power dissipation. Psta is independent of switch-
ing activity and maintains the basic circuit state, thus can
be deemed as a constant [5]. Pdyn is related to processor
switching activity and dominates the total power consumption,
which can be formulated as a function of supply voltage v and
processing speed s. In addition, the supply voltage is usually
linearly proportional to the processing speed, that is, v ∝ s.
The dynamic power consumption Pdyn is then expressed as
ξsγ , where ξ is a processor dependent coefficient and γ is a
constant that equals to 2φ + 1 (φ > 0). Based on the static
and dynamic power consumption described above, we use the
following Equation (15) to denote the total power consumption
of a multiserver system, that is,

Ptot = M((Pdyn − Psta)ρ+ Psta), (15)

where M is the number of servers and ρ is the server
utilization.

Let Eτ denote the energy consumed by all M servers in
the system during the sales period τ . Then it is given by

Eτ = M((Pdyn − Psta)ρ+ Psta)× τ. (16)

Let Cτ (Eτ ) denote the price of the energy consumed by all
servers in the sales period τ , then Cτ (Eτ ) can be formulated
as

Cτ (Eτ ) =

¨
kτ1 , 0 ≤ Eτ ≤ lτth
kτ2 , Eτ > lτth

(17)

where kτ1 , k
τ
2 > 0 are differentiated price and lτth is the energy

consumption threshold in the sales period τ . The electricity
bill of the multiserver system in the sales period τ is hence
formulated as

Bill = Eτ × Cτ (Eτ )

= M((Pdyn − Psta)ρ+ Psta)× τ × Cτ (Eτ ). (18)

We define the profit of the cloud service provider in a sales
period τ as the revenue minus the various expenses including
the electricity cost and rental cost incurred in the sales period,
that is,

Profit = Revenue−Bill −Rent, (19)

where Revenue, Bill, and Rent are given in Equations (6),
(18), and (13), respectively.

III. USER PERCEIVED VALUE-AWARE PROFIT
OPTIMIZATION SCHEME

A. Problem Definition

The price of a cloud service interplays with the number
of users who purchase the service, which in turn affects the
revenue of the cloud service provider. This paper aims to

maximize the profit of the cloud service provider by deriving
the optimal number of servers, operating speed of servers,
and price of services provided without violating the user
service-level agreement. In addition to the user service-level
agreement, the power consumed by the multiserver system can
not exceed a threshold value.

We assume that the cloud service provider optimizes its
decisions at the beginning of each sales period τ . Let b1 denote
the upper bound on the power consumption of the M servers,
and b2 be the upper bound on the expected response time of
user requests. The optimization problem we will solve is thus
formulated into

Maximize: Profit (20)
subject to: Ptot ≤ b1

R ≤ b2

where Profit of the cloud service provider, power con-
sumption Ptot of the multiserver system, and service-level
agreement metric R are given in Equations (19), (15), and
(12), respectively. The optimization problem tries to maximize
the Profit of the cloud service provider under constraints of
power budget of the multiserver system and expected delay of
user requests.

B. Create Augmented Lagrangian Function

The problem given in (20) is convex since the objective
function Profit and the constraints Ptot and R are all convex.
Numerous techniques on constrained optimization have been
investigated in the literature [22]–[24]. Of these techniques,
the method of augmented Lagrange multipliers is a powerful
tool for solving this class of problems, thus, is adopted in
this work to solve the profit maximization problem given in
Equation (20).

The Bill given in Equation (18) is a function of power
consumption of the multiserver system, the length of the sales
period τ , and real-time price of electricity. Since real-time
price is flat within each sales period τ and τ itself is constant,
the Bill for τ is fixed and can be expressed as Bill = b3Ptot,
where Ptot given in Equation (15) is the total power consumed
by the multiserver system and b3 is a constant coefficient. The
optimization problem given in Equation (20) can then be re-
written as8<
:

O(ω,M, s) = ωEω[m]− b3Ptot − δM
g1(M, s) = b2 − x1(1 + PM

M(1−ρ)2 ) ≥ 0

g2(M, s) = b1 −M((ξsγ − Psta)ρ+ Psta) ≥ 0

(21)

where O(ω,M, s) denotes the objective function of Profit
given in Equation (19), and g1(M, s) and g2(M, s) are con-
straint equations of M and s, respectively.

Next, we transform the optimization problem given in
Equation (21) with inequality constraints into an augmented
Lagrangian function. Let y be the vector that converts the op-
timization problem with inequality constraints to an optimiza-
tion problem with equality constraints, and v be the Lagrange
multiplier vector, the augmented Lagrangian function is thus
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given by

φ(ω,M, s, y, v, σ) = O(ω,M, s)−
2X
j=1

vj(gj(M, s)− y2
j )

+
σ

2

2X
j=1

(gj(M, s)− y2
j )2, (22)

where the constant parameter σ denotes the penalty factor and
σ > 0 holds. The augmented Lagrangian function given in
Equation (22) can be converted into the form of

φ(ω,M, s, y, v, σ)

= O(ω,M, s)

+
2X
j=1

[
σ

2
[y2
j −

1

σ
(σgj(M, s)− vj)]2 −

v2
j

2σ
] (23)

by using the method of completing the square, a technique to
derive the quadratic formula [25], and the function given in
(23) can be easily maximized when

y2
j =

1

σ
max(0, σgj(M, s)− vj), j = 1, 2. (24)

Plugging y2
j given in Equation (24) back into the original

Formula (22), we have the desired augmented Lagrangian
function

φ(ω,M, s, v, σ)

= O(ω,M, s)

+
1

2σ

2X
j=1

[[max(0, vj − σgj(M, s))]2 − v2
j ]. (25)

In other words, we convert the optimization problem given in
Equation (21) with inequality constraints into the optimization
problem given in Equation (25) without constraints. We seek
to solve the augmented Lagrangian function given in Equation
(25) by first computing the partial derivatives of ω, M , and s.
The process is omitted here due to space limitation.

C. Solve Augmented Lagrangian Function

We present in this section an augmented Lagrangian method
based algorithm that iteratively solves the optimization prob-
lem given in (22) and derives the optimum solution to service
pricing and multiserver configurations. The proposed algo-
rithm first computes an optimum Lagrangian multiplier, after
which the optimal service pricing and multiserver configura-
tions are determined.

Let M (k), s(k), and v(k) indicate the kth iteration of M ,
s, and v in the algorithm. Let ε, η, and Ψ be three positive
numbers, l be the number of iterations, and L be the maximum
number of iterations. Algorithm 1 describes the proposed
augmented Lagrangian algorithm. Inputs to the algorithm are
electricity price Cτ during sales period τ , the rent δ, and
user requests arrival rate λu. The algorithm iteratively derives
the optimal service pricing ω and multiserver configurations
including the optimal number of servers M , the server speed
s, and the Profit of the cloud service provider.

Algorithm 1: Iteratively solve the augmented Lagrangian
function

Input:
Electricity price Cτ during sales period τ , rent δ, user requests
arrival rate λu;

Output:

The optimal service price ω, number of servers M , server
speed s, and Profit;

1 Formulate optimization problem into the form in Equation (25);
2 Set parameters α, β, γ, ε, η, Ψ, and L;
3 Initialize M (0), s(0), v(1), and l = 1;
4 while l < L do
5 [ω(l),M (l), s(l)] =

ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ));
// Exit when {v(l)} converges;

6 if ‖Q(M (l), s(l))‖ < ε then
7 break;
8 end

// Otherwise, increase penalty factor σ;
9 else if ‖Q(M (l), s(l))‖/‖Q(M (l−1), s(l−1))‖ ≥ Ψ then

10 σ = ησ;
11 end

// Update the multiplier vector v;
12 vl+1

j = max(0, vlj − σgj(M (l), s(l)))(j = 1, 2);
13 l = l + 1;
14 end
15 Calculate the Profit using the Equation (19);
16 return [ω(l),M (l), s(l), P rofit];
17 ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ))
18 Compute partial derivatives of φ w.r.t. ω,M , and s as
∂φ(ω,M (l−1), s(l−1), v(l), σ)/∂(ω,M, s);

19 Calculate ω, M , and s based on a system of equations of ∂φ
∂ω

,
∂φ
∂M

, and ∂φ
∂s

;
20 return [ω,M, s];

The algorithm works as follows. It first formulates the
optimization problem in the form as given in Equation (25),
then sets parameters of ε, η, Ψ, and L, and initializes variables
of M (0), s(0), v1, and l (lines 1-3). In each round of itera-
tion, the algorithm calls the augmented Lagrangian function
solver, denoted by ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ)),
to obtain a local optimum of the ω, M , and s (line 5). The
ALF-Solver(φ(ω,M (l−1), s(l−1), v(l), σ)) derives the local
optimum by computing partial derivatives of φ(ω,M, s, v, σ)
with regard to ω, M and s, and solving a system of equations
of ω, M , and s (lines 17-20).

The algorithm exits if the Lagrangian multiplier vector
v converges and approximates the optimum by an error of
ε. Let Qj(M (l), s(l)) = gj(M

(l), s(l)) − y2
j for j = 1, 2

be the penalty item of the augmented Lagrangian function
given in Equation (22), then the Lagrangian multiplier vec-
tor v converges if ‖Q(M (l), s(l))‖ < ε holds (lines 6-
8). If it does not converge or converges too slowly, that
is, ‖Q(M (l), s(l))‖/‖Q(M (l−1), s(l−1))‖ ≥ Ψ holds for a
positive number Ψ, the penalty factor σ is updated to ησ
for η > 1 to speed up the convergence process (lines 9-11).
Accordingly, the Lagrangian multiplier for the next iteration
is updated to vl+1

j = max(0, v
(l)
j − σgj(M (l), s(l)))(j = 1, 2)

(lines 12-13), and the procedure moves to the next iteration.
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Once the algorithm converges, the optimum of the ω, M ,
and s are derived, and the optimum of Profit of the cloud
service provider can be calculated by using Equation (19) (line
15). Line 16 returns the optimal service pricing, multiserver
configurations, and Profit of the cloud service provider.

IV. NUMERICAL RESULTS

Extensive simulation experiments have been conducted to
validate the effectiveness of the proposed scheme. We first
describe simulation settings in details, then verify the effec-
tiveness of the proposed user perceived value-based pricing
model, followed by the validation of the optimal pricing
and multiserver configurations and a comparison study with
benchmarking schemes in terms of the profit of the cloud
service provider.

A. Simulation Settings

The simulation experiments are conducted on a machine
equipped with 2.56GHz Intel i7 quad-core processor and
8GB DDR4 memory, and running a Windows version of
Matlab x64. For the sake of a fair comparison, three types of
user requests used in [26] are also adopted in the experiment.
The requests of type 1 are delay-sensitive while the requests of
type 2 and 3 are elastic. The data of type 1 were extracted from
Youtube U.S. traffic from January 1, 2014 to January 31, 2014
[27]. The data of type 2 and 3 were extracted from GMaps and
GMail U.S. traffic from January 1, 2014 to January 31, 2014
[27]. The one day ahead real-time pricing data released by
Ameren Illinois Power Corporation at January 2014 are taken
as the price input in the experiment [28]. We also assume a
normally distributed user perceived value X with mean of 0
and variance of 0.22, that is, X ∼ N(0, 0.22) [6], [29].

B. Verify Perceived Value-Based Pricing Model

This subsection verifies the proposed perceived value-based
service pricing model from the perspective of the law of supply
and demand.

Profit Vs. Service Requirement: We first analyze the
relationship between the service requirement in terms of the
number of instructions, which is denoted by r, and the profit
of the cloud service provider. In addition to parameters given
in Subsection IV-A, we set the average service requirement
denoted by r to 1 billion instructions. The number of severs
M is initialized to 7, the speed of servers s is initialized to 1
billion instructions per second, and the static power consump-
tion Psta is set to 2W. The parameters of dynamic power
consumption are assumed to be γ = 2.0 and ξ = 9.4192, and
parameters of Gamma distribution are assumed to be α = 2.0
and β = 1.5 [5].

Fig. 1(a) shows the relationship between the profit of
the cloud service provider and user’s service requirements
(0 ≤ r ≤ 3) in billion instructions when service requirement
arrival rate λu is 16.15, 16.35, 16.55, 16.75, and 16.95 billions
instructions per second, respectively.

As shown in Fig. 1(a), profit decreases as λu increases. This
is because with the increase of λu, servers can not process

user requests in time, leading to a higher response time and
lower quality of service. As a result, user perceived value of
the service decreases, and the profit decreases as well. It also
can be seen from Fig. 1(a) that the profit increases as service
requirements increase. This indicates that the cloud service
usage is proportional to the profit obtained under the perceived
value-based pricing model.

Purchase Amount and Profit Vs. Service Price: Fig. 1(b)
and Fig. 1(c) demonstrate that how the relationship among
the cloud service purchase amount, profit, and the price of
cloud service changes when λu is 16.75 and 16.95 billion
instructions per second, respectively.

As we can see from Fig. 1(b) and Fig. 1(c), before the
cloud service price reaches the perceived value of the service,
the purchase amount of the cloud service increases with the
increases of the price. Once the price exceeds the perceived
value of the service, the purchase amount declines sharply.
This observation is consistent with real market situation, that
is, users are willing to accept a price and purchase when
the price is lower than their perceived value. However, the
user purchase intention will decline sharply when the price
is beyond the user perceived value. It also can be seen from
Fig. 1(b) and Fig. 1(c) that the point where purchase amount
is maximum is not necessarily the point where the profit is
maximum. That is, the profit for the scenario of the low price
and high purchase amount is not necessarily higher than the
profit for the scenario of the high price and low purchase
amount.

C. Validate Multiserver Configurations for Profit Maximiza-
tion

We set the response time constraint for user requests,
denoted by b1, to 0.33 seconds and the power consumption
of the multiserver system, denoted by b2, to 106W. The rental
cost denoted by δ is set to 1.5 cents per second [6].

Fig. 2(a) shows the relationship between profit and the
number of working servers. It can be seen from the figure
that when user request arrival rate λu = 12.9, 13.9, 14.9, 15.9,
and 16.9 billion instructions per second, the optimal number of
servers denoted by M is 16, 17, 19, 18, and 17 respectively.
It is clear that when M is small, the utilization of working
servers is approaching 1, leading to a long response time for
user requests, and in turn a low profit under the perceived
value-based pricing model. As M increases, the number of
user requests in the waiting queue decreases quickly, the
user requests do not have to wait too long, and thus the
profit increases under the perceived value-based pricing model.
However, as M continues increasing, the profit does not
increase. This is because the increase in the number of servers
leads to an increase in the maintenance cost of working servers
including electricity and rental cost.

Fig.2(b) shows the relationship between profit and the
optimal server speed s. We notice from the figure that in
order to maximize the profit, the optimal speed s is set to
0.7642, 0.9435, 1.1044, 1.1293, and 1.2838 billion instructions
per second when the service request arrival rate λu = 12.9,
13.9, 14.9, 15.9, and 16.9 billion instructions per second,
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(a) Service requirements vs. profit. (b) λu = 16.75. (c) λu = 16.95.

Figure 1: Verify perceived value-based pricing model.

(a) Profit vs. number of severs (M ). (b) Profit vs. server speed (s). (c) Optimal server configuration (M , s).

Figure 2: Validate server configurations for profit maximization.

respectively. It is clear that when the server speed s is low,
the utilization of working servers is approaching 1, leading
to a long response time for user requests, and in turn a low
profit under the perceived value-based pricing model. When
the server speed s is high, service requirements are more
likely to be met on time, leading to an increase in the profit
under the perceived value-based pricing model. However, with
the continued increase in s, the profit does not increase as
expected. This is because increasing the server speed leads to
an increase in the cost of operating a multiserver system.

From Fig. 2(a) and Fig. 2(b), we notice that profit reaches its
maximum when λu is 16.9 billion instructions per second and
the number and speed of servers take the appropriate value.
Fig. 2(c) gives the optimal M and s of working servers that
maximize the profit when λu = 16.9 billion instructions per
unit time. It can be seen from Fig. 2(c) that the maximal profit
is obtained when s and M is set to 1.4351 billion instructions
per second and 17, respectively. That is to say, 687.9 cents of
profit is obtained when 17 servers are open and each server
runs at 1.4351 billion instructions per second.

D. Compare with Benchmarking Pricing Strategies

We compare the proposed perceived value-based profit max-
imization scheme with two benchmarking methods OMCPM
[5] and UPMR [26]. OMCPM [5] is an efficient pricing model
that takes such factors into considerations as the service-level
agreement and customer satisfaction. It derives an optimal

server configuration and service price for profit maiximzaiton.
UPMR [26] is a usage-based pricing model used by today’s
major cloud operators. The UPMR model rewards users pro-
portionally based on the time length that users set as deadlines
for completing their workloads.

Two comparison experiments are conducted. In the first
experiment, user request arrival rate λu is set to 16.9 billion
instructions per second and the number of working servers M
is set to 17. In the second experiment, λu is set to 12.55 billion
instructions per second and M is set to 18.

We compare the maximal profit generated by proposed
pricing model with that generated by the two benchmarking
pricing model under the same experimental settings. It is clear
from Fig. 3 that the proposed pricing model is superior to
the two benchmarking models. For instance, the proposed
pricing model can obtain up to 11.55 cents per second more
(24.44%) as compared to OMCPM method, and 8.66 cents
per second more (17.27%) as compared to UPMR when λu
= 16.9 billion instructions per second, M = 17 and s = 0.93
billion instructions per second.

V. CONCLUSIONS

In this paper, we propose a user perceived value-based
dynamic pricing model that takes into account the inter-
play between cloud users and cloud service providers. The
profit maximization problem based on the proposed model
is formulated into an augmented Lagrangian function and



8

(a) λu=16.9, M=17. (b) λu=12.55, M=18.

Figure 3: Compare with two benchmarking pricing models.

is iteratively solved using convex optimization techniques.
Extensive experiments have been conducted to validate the
effectiveness of the proposed scheme. The proposed profit
maximization scheme can obtain more profit of up to 24.44%
and 17.27% as compared to the state of the art benchmarking
methods OMCPM [5] and UPMR [26], respectively.
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