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ABSTRACT
Due to the increasing complexity of System-on-Chip (SoC) design,
how to ensure that silicon implementations conform to their high-level
specifications is becoming a major challenge. To address this prob-
lem, we propose a novel specification-driven conformance checking
approach that can automatically identify inconsistencies between dif-
ferent levels of designs. By extending SystemRDL specifications, our
approach enables the generation of high-level Formal Device Models
(FDMs) that specify access behaviors of interface registers triggered
by driver requests. Based on the symbolic execution of the generated
FDMs with the same driver requests to virtual/silicon devices, our
approach can efficiently check whether the designs of an SoC at dif-
ferent levels exhibit unexpected behaviors that are not modeled in the
given specification. Experiments on two industrial network adapters
demonstrate the effectiveness of our approach in troubleshooting bugs
caused by inconsistencies in both virtual and post-silicon prototypes.

1 INTRODUCTION
System-on-Chips (SoCs) are increasingly designed at higher level of
abstraction in order to handle their growing complexity. Typically, a
top-down SoC design flow starts from high-level specifications. After
design space exploration based on these specifications, the optimized
design goes through virtual prototyping. Since virtual prototyping
enables the co-development of system hardware/software components
in parallel, it has been increasingly used in driver development when
host devices are not ready [1]. As a notable case, Intel developed its
40 Gigabit Ethernet adapter on top of virtual devices before the FPGA
prototype is available [2].

The goal of virtual prototyping is to reduce the product time-to-
market. However, to achieve this benefit, there are two key challenges
that need to be addressed. The first one is the lack of formal specifica-
tions that can be consistently used across the different stages of product
lifecycle (from design, to pre-silicon, to post-silicon). Since virtual
prototyping involves lots of human efforts, the implemented virtual
devices are inevitably error-prone. If there is no consistent view for
the interactions between hardware and software components, it is hard
to ensure the correctness of virtual prototypes. The second one is the
lack of effective conformance checking tools to identify inconsistent
implementations in virtual and silicon devices. As silicon devices do
not always conform to their virtual counterparts, drivers developed for
virtual prototypes often cannot readily work on silicon devices, causing
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serious problems (e.g., system crashes [3]). Especially when the con-
trollability and observability of silicon designs are limited, the errors
caused by inconsistent implementations cannot be easily detected by
existing ad-hoc validation approaches at the post-silicon stage [4].

As a semi-formal register description language, SystemRDL [5] has
become the de-facto standard for describing and managing registers
in SoC design. Besides register metadata modeling for high-level de-
signs, SystemRDL defines registers in downstream hardware/software
implementations. Therefore, SystemRDL provides a systematic and
consistent view into registers along the whole SoC design flow. Al-
though SystemRDL can be used to conduct conformance checking, its
current version only supports the structural definition of registers. In
other words, it only enables the conformance checking of syntactical
usages of registers rather than system behaviors exhibited at different
design levels.

To enable bug-free SoC implementations, we propose a novel ap-
proach that can automatically conduct conformance checking between
high-level specifications (i.e., SystemRDL) and low-level implementa-
tions (i.e., virtual and silicon devices). This work makes the following
three major contributions: i) We invent novel extensions which sig-
nificantly increase the expressive capacity of SystemRDL. ii) We pro-
pose an automatic approach for bridging the gaps between high-level
specifications to golden reference models. iii) Based on the symbolic
execution, we present a comprehensive framework for validating im-
plementation prototypes across different phases of product lifecycle.
Experimental results show that our approach can effectively identify
real bugs from both virtual devices excerpted from the QEMU vir-
tual machine [6] and corresponding industrial silicon devices, some of
which cannot be discovered by state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 introduces
the relevant background. Section 3 proposes the details of our confor-
mance checking approach. Section 4 reports the performance evaluation
results. Finally, Section 5 concludes this paper.

2 RELATED WORKS
Specification-driven approaches have been increasingly used in con-
formance checking between different abstraction layers of SoC design.
For example, an event-based approach that supports the equivalence
checking between Transaction Level Modeling (TLM) and Register
Transfer Level (RTL) designs is presented in [8]. In [9], an effective
Property Specification Language (PSL)-based assertion refinement ap-
proach is proposed to enable the consistency checking between TLM
and RTL designs. Based on timed automata, a conformance test gener-
ation method to check the consistency between highly abstract models
and detailed implementations in SystemC is introduced in [10]. How-
ever, few of existing approaches enable the consistency checking for
both virtual and silicon devices.

Symbolic execution has been successfully used in testing software
and hardware components. For example, the tools SAGE [11] and
S2E [12] adopted symbolic execution to test software systems, which
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intensively interact with external environments. Based on symbolic
execution and constraint solvers, the tools KLEE [13], CUTE [14]
and the one developed in [15] can generate high-quality test cases for
hardware/software designs. However, most of these techniques focus
on testing rather than conformance checking.

Our approach is inspired by the conformance checking method pre-
sented in [7], which symbolically executes virtual devices with the
same driver request sequences to silicon devices. Although the ap-
proach can identify inconsistencies between virtual and silicon devices,
due to the lack of formal models, the correctness of silicon devices
cannot be clearly judged. As far as we know, our approach is the first
attempt to establish a golden reference model which can effectively
guide the correctness and consistency checking for both virtual and
silicon devices.

3 CONFORMANCE CHECKING
Figure 1 presents the workflow of our specification-driven conformance
checking approach. It has three major components: a trace recorder, a
Formal Device Model (FDM) generator and a conformance checker.
By registering our developed callback functions to the kernel API
interceptor, our trace recorder can be used to capture both the driver
requests and device states from silicon devices or virtual prototypes.
We implemented the FDM generator using the tool ANTLR, which can
parse our extended SystemRDL specifications and transform them into
executable FDM models. Our conformance checker is implemented on
top of a symbolic virtual machine named KLEE [13]. It can replay a
sequence of driver requests on the derived executable FDMs to enable
the conformance checking. The following subsections will introduce
our approach in detail.
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Figure 1: Workflow of our conformance checking method

3.1 Syntax Extensions for SystemRDL
The original version of SystemRDL is designed to describe the struc-
tural information of various registers. To model the dynamic behaviors
of register accesses, we propose both syntax and semantics extensions
for SystemRDL specifications. Since our extended SystemRDL speci-
fication has a consistent view of register usages across different design
layers, it is very suitable for conformance checking.

To present the syntax extension of SystemRDL, we explain all the
notations of extensions using the Extended Backus-Naur Form, where
keywords and terminal symbols are printed in bold; alternatives are
separated by “|”; groupings are enclosed with parentheses “( )”; square
braces “[ ]” delimit optional elements; and “{ }+” and “{ }∗” are used
to denote one-or-more, and zero-or-more of the enclosed elements,
respectively. The following rules show the component skeleton for the
extended SystemRDL. To enable the global replacement of variables
with specific values, we adopt the macro construct that is similar to
the macro in the C++ programming language. To allow designers to

specify the access behaviors of interface registers in SystemRDL, we
introduce the function construct, which has the similar syntax as the
functions in C++. In a SystemRDL function, we can update the value
of an interface register by using a C++ like assignment statement.

component_de f ::= new_comp_body | component_type

component_name {{[component_de f ;] [property;][. . . ;]}∗ };
component_type ::= field | reg | regfile | addrmap

| signal | enum | macro | function
property ::= property_name = value;

new_comp_body ::= comp_body | macro_body | f unction_body

We incorporate these two new notations as two new components
in SystemRDL by adding the key words macro and function in rule
component, and defining their syntax details in the following two
new rules i.e., macro_body and function_body. As an extension, the
components of type macro and function can be embedded into original
SystemRDL specifications to specify the operations on registers (see
Figure 2(a) for more details). Due to space limitation, we do not present
the details of the rule for statements, which has the same definition as
the C++ programming language.

macro_body ::= {macro_name = value;}∗
f unction_body ::= f un_type f un_name ( argument_list ) {

statements }

3.2 Automated Generation of FDMs
Although extended SystemRDL can be used as a semi-formal specifi-
cation to model both the structural relations and access behaviors of
interface registers, it cannot be directly used for conformance check-
ing since the specification itself is not executable. In this subsection,
we present a set of transformation rules that can translate extended
SystemRDL specifications to executable FDMs automatically. As an
executable model, an FDM mainly consists of two parts: a harness mod-
ule that acts like the main function of an FDM, and a register operation
module that consists of all the necessary operations on interface regis-
ters. Note that both the harness module and register operation module
can be automatically generated by our FDM generator. This subsection
only presents the transformation from extended SystemRDL designs
to FDMs. The FDM execution details will be presented in Section 3.4.

3.2.1 Generation of Harness Module. Unlike software which
is executed sequentially, the hardware components of a system are
executed in parallel. To reflect the real hardware behaviors using soft-
ware, we resort to symbolic execution that can model non-deterministic
software behaviors [13] by enumerating all the possible execution inter-
leavings. The harness module plays an important role in symbolically
executing FDMs. Acting like a scheduler, the harness module abstracts
the choice of operations on interface registers, which enables the in-
terleaved executions of register operations. Note that our approach
separates the non-deterministic execution process and the concrete reg-
ister update operations into two disjoint parts. In other words, different
FDMs have the same harness modules.

Due to the space limitation, Listing 1 only presents a skeleton of
our harness module. Note that to enable the non-deterministic execu-
tion, we create a queue data structure in the harness module, which
can temporarily hold the incoming driver requests without executing
it. The main body of the harness module is a while loop. Within a
loop iteration, one of the following three kinds of operations will be
invoked: i) the transaction runInterfaceFunction that reads/writes the



given registers as in driver requests; ii) the asynchronous transaction
runDevice that responds to the driver request at the queue head; iii)
a void operation doing nothing. To enumerate all possible interleav-
ings of both synchronous and asynchronous transactions, we use the
symbolic value returned by the inline function fdm_choice to guide the
symbolic execution of the while loop.

1 ...
2 while(fdm_choice()){
3 switch(fdm_choice()){
4 case 0 : //synchronous transaction
5 runInterfaceFunction(fdm_State, deviceEntry,
6 val, offset_addr);
7 break;
8 case 1: //asynchronous transaction
9 runDevice(fdm_State);

10 break;
11 default: //Do nothing
12 break;
13 }
14 }
15 ...
16 static inline int fdm_choice(){
17 ...
18 fdm_make_symbolic(&i,sizeof(i), "choice");
19 return i;
20 }
21 ...

Listing 1: Excerpts of our FDM harness module

3.2.2 Generation of Register Operation Module. While Sec-
tion 3.2.1 presents a non-deterministic operation invocation framework
for interface registers, this subsection introduces the construction pro-
cess of a register operation module that comprises of a set of register
operations generated from a given SystemRDL specification. Note that
different FDMs have different register operation modules.

addrmap adm{
…

regfile General_regf {
macro general_macro{

//a macro definition
E1000_TCTL_EN=0x00000002; 
...  

}; //end of macro
reg Reg_TCTL_type { 

regwidth = 32;
...
field { ... } EN[1:1]=0;
...
function syn_tctl_func{

void write_tctl(DevState* ps, 
uint32_t val, uint64_t offset) {

ps->this.value = val;
...
}

};//end of function
function asyn_tctl_func{

void run_tctl(DevState* ps) {
ps->this.value &= 0xffff;
if(!(ps->this.value

& E1000_TCTL_EN))
...

}
};//end of function

};//end of reg
...

Reg_TCTL_type inst1  @0x00400;
...

};//end of regfile
General_regf General_regfile_Inst;
...

};//end of addrmap

#define E1000_TCTL_EN 0x00000002
typedef union _Reg_TCTL_type {

uint32_t value;
struct {

uint32_t EN  :1;
...

};
} Reg_TCTL_type;
void write_tctl_inst1(DevState* ps, 

uint32_t val, uint64_t offset){
ps->inst1.value = val;

}
void devRegWrite(DevState* ps, 

uint32_t val, uint64_t offset) {
switch (offset) {

case 0x00400 :
write_tctl_inst1(ps, value, offset);
...

}
}
void devRegRead (DeviceState* ps, uint32_t 
offset){

switch(offset){
case 0x00400:
… }

}
void run_tctl_inst1(DevState* ps) {

ps->inst1.value &= 0xffff;
...

}
...
void runDeviceTransactions(DevState* ps){

...
switch (offset) {

case 0x00400 : //TCTL
run_tctl_inst1(ps);
break;
...

}
}

(a) Excerpts of SystemRDL specification for e1000 (b) Excerpts of FDM for e1000
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Figure 2: Transformation from extended SystemRDL to FDM

By parsing the syntax of an extended SystemRDL specification, our
FDM generator can figure out its component organization. Based on
the meaning of each component, our tool can automatically generate
the register operation module. Figure 2 shows an example that converts
the extended SystemRDL specification of Intel e1000 network adaptor
to its corresponding FDM. We use this example to introduce our trans-
formation rules, since it covers majority of the FDM constructs that
need to be converted. As illustrated in Figure 2, the register file regfile
contains two components: i) one macro named general_macro; and ii)
a register definition named Reg_TCTL_type where reg_TCTL_inst is an
instance of this register type with an offset address 0x00400. Note that
the register operation module of each FDM specification contains four
reserved functions, i.e., devRegWrite and devRegRead that can only be
called by runInterfaceFunction function in the harness module, and
runDeviceTransactions and runEnvironment that can only be called by
runDevice function in the harness module.

As defined in Section 3.1, macro is an extended component for sys-
tems. It is used to facilitate the programming of the following function
components. Within a macro component, we can define multiple macro
assignments. During the transformation, all macro assignments will
be converted to the corresponding macros in C++. For example, the
mapping 1 in Figure 2 shows an example of the conversion from a
SystemRDL macro assignment to a C++ macro.

The register definition Reg_TCTL_type in the e1000 SystemRDL
specification provides both the property and operation details for the
specific register type, which will be converted into the register oper-
ation module. For each register type in the specification, we create
one corresponding union type in FDM. The properties of the register
type should also be converted accordingly. For example, mapping 2
converts a register with a width of 32 bits. In the union construct, we
create a variable named value to hold the register value with a size
of uint32_t. Mapping 3 deals with the filed component of a register.
In the mapped FDM implementation, we use the member variable
of a struct within the union type to name the specific bits of some
register. Mappings 4-5 conduct the transformation of a synchronous
function (indicated by syn_tctl_func) defined in a nested function
components. The conversion involves two steps, where mapping 4
is to create one corresponding operation function in FDM with the
name write_tctl_inst1, and mapping 5 incorporates this function in the
function devRegWrite. Since the offset address of the register inst1
is 0x00400, this information should be reflected in all the reserved
functions as shown by mappings 6-8. Mappings 9-10 deal with the
transformation of an asynchronous function named run_tctl defined in
a nested function components. Mapping 9 constructs a new function
named run_tctl_inst1 and mapping 10 integrates this function to the
reserved function runDeviceTransactions. Based on the above 10 map-
ping rules, we can automatically transform the extended SystemRDL
specifications to corresponding executable FDMs.

3.3 Device Trace Collection
In our approach, the conformance checking between FDMs and devices
is based on the symbolic execution of device traces on the executable
FDMs. Since virtual prototypes and silicon devices can dump their
states in terms of interface registers triggered by the drive requests, our
approach supports the conformance checking for both design layers.
In our approach, all the traces of virtual/silicon devices are dumped
by the same hook functions instrumented in operating system kernels.
Therefore, the trace format of both virtual and silicon devices are same.



DEFINITION 3.1. Let RI and RN be the set of interface registers
and internal registers, respectively. A state of the device is represented
as S = {SI ,SN} where SI indicates the assignments to the set RI and
SN indicates the assignments to the set RN .

DEFINITION 3.2. Let<SIk ,Ak> (0 ≤ k ≤ n) be a 2-tuple for device-
states and driver requests, where SIk denotes the current device inter-
face state and Ak denotes the forthcoming driver request. A device
trace can be represented by a sequence of such 2-tuples in the form of
T = <SI0 ,A0>,<SI1 ,A1>,...,<SIn ,An>.

Definition 3.1 presents the formal definition of devices states, which
denote the assignments to both interface and internal registers. Def-
inition 3.2 formally presents the structure of device traces. In this
definition, a trace consists of a sequence of <state,action> pairs, where
state denotes the current assignments to all the registers (i.e., RI and
RN ) and action indicates a register update operation triggered by the
forthcoming driver request. For example, when sending a ping com-
mand to the virtual/silicon device of Intel e1000 network adapter, the
command will be converted into a sequence of driver requests, where
each request tries to read or write a specific device interface register.

To manipulate hardware devices, drivers need to invoke operating
system kernel functions to access their interface registers. Therefore,
the driver request sequence and the device states (i.e., values of inter-
face registers) can be recorded by proper function hooking mechanisms
using user-defined callback functions. In our experiment, we collected
the traces for both virtual and silicon devices on a Linux machine. By
using the Linux kernel analysis framework Kprobes, we implemented
a trace recorder as a Linux kernel module, which can break into the
kernel functions (e.g., iowrite32, ioread32) revoked by the specified de-
vice driver. Our trace recorder can dump the state SIk of a given device
right before issuing the driver request Ak. Since complex SoC designs
usually consist of a large number of the interface registers, dumping
all their values will be time- and memory-consuming. Meanwhile, the
performance of the host machine can be significantly degraded. There-
fore, conformance checking methods adopt the selective recording of
interface registers. To enable the selective recording, our trace recorder
allows the users to dump device traces based on their specified interface
register ranges.

3.4 Conformance Checking with FDM
Since FDMs are executable models that are automatically generated
from the semi-formal SystemRDL specifications, they can be used
as the golden reference models to guide the implementation of low-
level designs. By symbolically executing the device traces collected
in Section 3.3 on the corresponding FDMs, our approach enables the
consistency and correctness checking between different levels of SoC
designs (i.e., virtual prototyping, post-silicon design).

3.4.1 Formal Definitions. In both FDMs and silicon devices we
consider two kinds of registers, i.e., interface registers that explicitly
reflect the interaction between hardware and software components,
and internal registers that are not observable. Based on these registers,
Definition 3.3 presents the formal definition of an FDM state.

DEFINITION 3.3. An FDM state is denoted as F = {FI ,FN}, where
FI and FN indicate the assignments to its interface register set RI and
internal register set RN , respectively.

When employing symbolic execution, a concrete FDM/device state
is a state whose register values are all concrete, and a symbolic FD-
M/device state is a state whose registers are assigned with symbolic

values and there can be constraints on these symbolic values. As an
abstraction, a symbolic FDM/device state can be considered as a set
of concrete symbolic FDM/device states. In our approach, the state of
an FDM F and the state of a virtual/silicon device S are all treated as
symbolic states. We use symb(F ) and symb(S) to denote the two sets
of concrete states for F and S, respectively. Definition 3.4 defines the
conformance between them.

DEFINITION 3.4. An FDM state F and a virtual/silicon device state
S conform to each other if symb(F )∩ symb(S) , /0.

Let v1, v2, . . ., vn denote the state variables that correspond to the
registers used in F and S. We construct the expression AS as (v1 ==

V1_S)∧ (v2 ==V2_S)∧ . . .∧ (vn ==Vn_S) to indicate the state S, where
(vi == Vi_S) means that the value of the ith register in S is Vali_S.
Similarly, we construct the expression AF as (v1 == V1_F ) ∧ (v2 ==

V2_F )∧ . . .∧ (vn ==Vn_F ) to indicate the state F . Since some registers
in F may have symbolic values, we use CF to denote the constraint of
F . Given AS, AF and CF , symb(F )∩ symb(V ) , /0 holds if and only if
AS ∧AF ∧CF is satisfiable.

3.4.2 Implementations. Our approach checks conformance be-
tween high-level FDMs and low-level virtual/silicon devices based on
the comparison of corresponding states of their traces triggered by the
same driver requests. However, due to the hardware concurrency of an
SoC design, it is hard to check all its possible behaviors. To simplify the
consistency checking, we symbolically execute the device traces using
the harness module (see Listing 1) on FDMs in a non-deterministic
manner. For each driver request, we check the device state with all the
possible FDM states using the condition presented in Definition 3.4.
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Figure 3: Procedure of Conformance Checking

Figure 3 presents a detailed procedure of our conformance checking
approach between FDMs and virtual/silicon devices. In this procedure,
we use i to denote the index of driver requests. Firstly, the conformance
checker fetches the state-action pair <Si,Ai> from the beginning of
the device trace file, and assigns the device state Si to the current
state of FDM, i.e., Fi. Triggered by the driver request Ai, the FDM is
symbolically executed from the state Fi. Upon the completion of the
symbolic execution of Ai on FDM, we collect all the possible resultant
states and save them in a set G. Then we check the consistency between
the FDM and the device using the condition defined in Definition 3.5.
If it is not satisfied, the identified inconsistency will be saved. For
each inconsistency, our conformance checker will record the following
three information: i) inconsistent state (i.e., Si+1), ii) triggering driver
request (i.e., Ai), and iii) an FDM execution path under this driver
request. Note that the inconsistency does not abort the whole procedure.
Even if an inconsistency is detected, the procedure will continue the
symbolic execution based on the latest device state in the trace until all



the device states are traversed. When the procedure finishes, if there
exists any inconsistency in the buffer, all the saved inconsistencies
will be reported. Note that the original version of KLEE does not
accept the hardware traces as inputs. Moreover, it does not support
the conformance checking between different SoC design layers. To
enable the conformance checking procedure as shown in Figure 3,
we modified the KLEE code and included our trace execution and
conformance checking methods.

DEFINITION 3.5. Let G = {gk | 0 ≤ k ≤ m} be the set of FDM
states. Let Fi+1 be the next device state triggered by Ai. The FDM
and the virtual/silicon device conform to each other at Ai if ∃g j ∈
G where 0 ≤ j ≤ m, symb(Fi+1)∩ symb(gi) , /0.

4 PERFORMANCE EVALUATION
To evaluate the effectiveness of our approach, we applied our approach
to two industrial network adapters (i.e., Intel e1000 and Intel eepro100),
which have both virtual and silicon versions. The virtual devices used
in this experiment are all available from QEMU (version 0.15.1). All
the experimental results were obtained on a Ubuntu desktop with AMD
3.2GHz processors and 16GB RAM.

Table 1: Experimental Settings for Network Adapters

Devices Spec. FDM VP Select. Captured
(LoC) (LoC) (LoC) Size (Bytes)

Intel e1000 Gigabit NIC 546 1805 2099 1224
Intel eepro100 Megabit NIC 587 903 2178 74

We developed the extended SystemRDL specifications for the both
network adapters according to their software developer’s manuals.
Since our extended SystemRDL specifications are considered as high-
level abstractions, they only take partial interface registers of the inves-
tigated network adapters into account. By using our FDM generator,
we can obtain corresponding executable FDMs in less than 0.1 seconds.
Table 1 presents the experimental setting information. The first col-
umn gives basic descriptions of the devices. For each network adapter,
columns 2-4 present the Lines of Code (LoC) information of the ex-
tended SystemRDL, executable FDM, and virtual prototype (from
QEMU), respectively. The last column gives the address scope size
of selected registers, which are captured by our trace recorder. Note
that under the stringent time-to-market requirement our FDM-based
approach is more suitable for conformance checking than virtual proto-
typing. This is because our specification-driven approach needs much
smaller manual efforts than the ones devoted to virtual prototyping.

4.1 Identified Inconsistencies and Bugs
To check whether the behaviors of virtual prototypes and silicon devices
are consistent to the generated FDM, we applied the test cases shown
in Table 2 on both virtual and silicon devices, and collected their traces.
Each trace consists of a sequence of driver requests triggered by some
command. We considered four types of network commands which are
frequently used daily. For example, when investigating “Transfer files”
at virtual prototype and silicon layers, we ran the command scp to copy
a 2.5GB file from some server via internet on both QEMU and the
desktop with virtual/silicon network adapters, respectively.

Table 2: Test Cases for Evaluation
Types Test Cases Descriptions

Reset Network ifdown Bring down the network interface
Interface ifup Bring up the network interface

Ping ping Send ICMP ECHO_REQUEST
Transfer files scp Copy a 2.5GB file from some network server

NIC ifconfig Configure a network interface
test-suite hping3 Manipulate network packets

For each network adaptor design, we symbolically executed its FDM
using the traces collected from virtual prototypes and silicon devices,
respectively. During the symbolic execution of a trace our approach
executes the FDM driver requests one by one. One inconsistency here
means that the resultant interface register state of a virtual or silicon
device triggered by some driver request is not consistent with the
interface register state of the given FDM. Note that instead of aborting
the symbolic execution when encountering one inconsistency, our
approach continues to execute the remaining traces starting from the
inconsistent register state. Table 3 presents the 12 bugs caused by
inconsistencies for both virtual and silicon devices by using the test
cases shown in Table 2. We classified these bugs into six types, where
each type may have multiple bugs. The indices and type descriptions of
the bugs are presented in the columns 1-2 of Table 3. Note that each bug
type may have different kinds of bugs. For example, since for the bug
type E1 there are three different reserved registers of silicon devices
that are updated by mistake, we consider them as three different bugs.
We use column 3 to denote the number of bugs of specific bug types.
The last column shows the types of devices where the bugs are located.
All the above bugs may disrupt the driver executions on virtual/silicon
devices, resulting in serious problems such as system crash.

Table 3: Bugs Identified from Virtual and Silicon Devices
Indices Bug Types Num. Bug Sources

E1 Update the bits of reserved SD register 3 SD
E2 Generate unnecessary interrupts 1 VP
E3 Fail to update register when necessary 2 VP
E4 Write incorrect values to registers 3 VP

E5 Update the bits of reserved VP register 1 VP

E6 Driver issues a write to reserved registers 2 Driver

* VP and SD stand for Virtual Prototype and Silicon Device, respectively.

We compared our approach with the virtual prototype based confor-
mance checking approach proposed in [7]. For a fair comparison, we
use the same test cases as shown in Table 2. Table 4 shows the compar-
ison result. In the last three columns, we present the number of bugs
identified using different conformance checking methods. We use X-Y
to denote the conformance checking between the two layers of X and
Y , where X is symbolically executed using the traces collected from Y .
Since FDM is the golden reference model, here we only consider two
kinds of bugs, i.e., virtual device bugs and silicon device bugs.

Table 4: Comparison of Different Methods
Bug Source Bug Type FDM-VP FDM-SD VP-SD [7]

Silicon Devices E1 - 3 2

Virtual Devices

E2 1 - 1
E3 2 - 2
E4 3 - 3
E5 1 - -

Driver E6 1 1 -

From Table 4, we can find that our FDM-SD approach can identify
one more SD bugs that cannot be found by the VP-SD method presented
in [7]. We find that our FDM-VP approach can cover all the bugs
identified by the VP-SD method. In addition, our approach can find
two new types of bugs, i.e., E5 and E6. For the bug of type E5, we
found an incorrect implementation of the virtual device, which can
update some reserved registers. For the bugs of type E6, we found
two inconsistencies from both virtual and silicon device traces. Based
on the reported results, we find that bugs are not located in virtual
or silicon devices. Instead, the bugs come from the device drivers,
which can write reserved device registers by mistake. Note that the
reason why the bugs of types E5 and E6 cannot be identified by the
VP-SD method is mainly due to the lack of golden reference models



(i.e., FDMs). Without a formal specification, the improper usage of
reserved VP registers is hard to be discovered by the VP-SD approach.
By detecting inconsistencies using our FDM-based approach, we can
easily identify design bugs and figure out why the drivers cannot work
properly with virtual/silicon devices.

4.2 Efficiency of Conformance Checking
We evaluated the efficiency of our approach in terms of time usage,
memory usage and false positive/negative ratios. All the results are
obtained using the test cases shown in Table 2.
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Figure 4: Comparison of Time and Memory Usages

Figure 4 shows the comparison of time and memory usages for
e1000 NIC design between our FDM-based approaches and the VP-SD
method proposed by [7]. Note that since the amount of driver requests
is hard to control, to facilitate the evaluation we only present the aver-
age time usages for one driver request in Figure 4(a). We can find that
our FDM-VP and FDM-SD methods can achieve up to 67 times im-
provement on time compared with VP-SD. This is mainly because our
FDM model is more abstract than its corresponding virtual prototype.
Figure 4(b) shows the maximum memory usage when running different
test cases. It can be observed that our approaches need much less mem-
ory for the conformance checking compared with the VP-SD method.
The reason for these benefits is that our FDM-based approaches ab-
stract all the internal operations of a design which are irrelevant to
interface registers, while the virtual prototype-based method [7] needs
to consider all the internal operation details. For example, upon receiv-
ing a packet, the FDM of some network adapter only updates the value
of interface registers without dealing with internal states (e.g., sorting
packets in buffers). However, virtual prototypes need to take all these
internal operations into consideration.

Table 5: Number of Discovered/Verified Inconsistencies

Devices Test Cases Discovered/Verified
VP-SD [7] FDM-VP FDM-SD

Intel e1000
Reset NIC 8/8 14/14 5/3

Gigabit NIC
Ping 8/8 8/8 2/2

Transfer files 12/9 14/14 4/2
Test-suite 11/11 6/6 3/3

Intel eepro100
Reset NIC 4/4 11/11 0/0

Megabit NIC
Ping 2/2 8/8 0/0

Transfer files 2/2 6/6 0/0
Test-suite 4/4 8/8 0/0

The false positive/negative ratios can be used to judge the capabili-
ties of different conformance checking methods. From Table 4, we can
observe that our approach outperforms the VP-SD method [7] from the
perspective of false negatives. Since our approach can detect more bugs
than VP-SD, it can achieve better false negative ratio accordingly. To
investigate the false positive ratio, Table 5 presents the statistics of both
discovered and verified “inconsistencies” when executing various test
cases with different approaches. Note that the numbers in columns 3-5
denote the inconsistencies identified during the testing, where some
inconsistencies may be caused by the same bug. We marked the false

positives as bold in the table. When the FDM-VP approach is used,
we can find that there is no false positives. In other words, FDM-VP
can accurately identify the inconsistencies for the virtual prototypes
of network adapters. When using FDM-SD for conformance checking,
we can identify fewer inconsistencies during the execution of silicon
devices. However, for the e1000 NIC design there are two test cases
resulting in false positives. Based on trace analysis, we found that the
false positives are caused by the incomplete modeling of registers. Note
that interface registers defined in the extended SystemRDL specifica-
tions only cover the registers that interest driver designers. However,
during the silicon execution the values of some modeled registers can
be modified by other registers that are not defined in SystemRDL.
When some driver request triggers this scenario, the new silicon state
reflects the modification, but the new FDM state does not. Although an
inconsistency is reported in this case, it does not mean that the FDM
is incorrect. By adding some register access behaviors in the extended
SystemRDL specification, all the four false positives can be eliminated.

5 CONCLUSION
Although there exist various validation approaches for virtual prototype
and post-silicon designs in the top-down SoC design flow, it is still
difficult to ensure that post-silicon designs are correctly implemented
as required. The main reason is due to the lack of high-level formal
models that can accurately describe the device behaviors and be used
as the golden reference model for the subsequent design refinement.
In this paper, we presented a novel specification-driven approach that
can automatically conduct the conformance checking for both virtual
prototype and post-silicon designs. Experimental results show that our
approach can effectively identify real bugs from both virtual devices
excerpted from QEMU [6] and corresponding industrial silicon devices,
some of which cannot be discovered by state-of-the-art approaches.
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