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Abstract
We experimentally investigate symmetric dissociative double ionization of acetylene in
femtosecond laser pulses of various ellipticities. Two dissociative ionization pathways with
kinetic energy release of 4.8 and 6.0 eV, denoted as the low- and high-EN pathways, are observed
in the spectrum of the ejected fragment ions. The relative yield of the high-EN gradually
increases as compared to the low-EN when the polarization of the driving laser field is adjusted
from linear to circular with increasing ellipticity. The low and high-EN fragment ions exhibit
distinct angular distributions for various field ellipticities. It is attributed to the releasing of
electrons from orbitals of different symmetries in producing the low- and high-EN pathways.

Keywords: strong field laser physics, ultrafast phenomena, hydrocarbon molecule, double
ionization
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Tracking and controlling the electronic and nuclear motions
of molecules using intense ultrashort laser pulses has attracted
much attention in past decades. One of the key ingredients is
to coherently control the location and direction of molecular
bond breaking. For instance, by tuning the carrier-envelope
phase of a few-cycle or the relative phase of a two-color
ultrashort laser pulses, the breaking of molecular bonds can
be finely steered to desired direction [1], ranging from the
simplest H2 molecule to polyatomic hydrocarbon molecules
[2–6]. The directional bond breaking control was recently
achieved in two-dimensional space using phase-controlled
orthogonally or circularly polarized two-color laser fields
[7, 8]. For multielectron molecules, in addition to the direc-
tional bond breaking, different channels can be formed when
electrons from various orbitals are released [9–12]. It allows

us to steer the formation of different channels by selectively
freeing electrons from various orbitals using waveform con-
trolled ultrashort laser pulses [13].

Here, we experimentally investigate the symmetric dis-
sociative double ionization of acetylene, i.e.
C2H2+nħω→CH++CH++2e denoted as (CH+, CH+)
channel, in intense femtosecond laser pulses of various
ellipticities. Two dissociation pathways of the (CH+, CH+)
channel are observed with kinetic energy releases (KER) of
the ejected fragment ions around 4.8 and 6.0 eV, denoted as
the low- and high-EN pathways, respectively. The low- and
high-EN ion fragments exhibit distinct angular distributions
and their relative yields is altered when the field polarization
is adjusted from linear to circular. The low-EN pathway which
dissociates on the 3P state by removing one highest occupied
molecular orbital (HOMO, 1 up ) and one HOMO-1 3 gs( )
electrons; while the high-EN pathway is mostly formed by
removing two HOMO 1 up( ) electrons and dissociates on the

g
1S+ state via a trans-bent mode [14]. By changing the ellip-
ticity of the laser field, we can selectively free electrons from
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various orbitals and hence steer the breaking of the molecules
along a favorable pathway.

We performed the experimental measurements in a
standard ‘cold-target recoil-ion momentum spectroscopy’
setup [15–17]. As schematically illustrated in figure 1(a),
femtosecond laser pulses (25 fs, 790 nm, 10 kHz) of various
ellipticities are focused onto a supersonic gas jet with a
mixture of C2H2 (5%) and He (95%) by a concave reflection
mirror (ƒ=7.5 cm) inside the apparatus. The peak intensity
of the linearly polarized laser pulse in the reaction region is
estimated to be I0∼2×1014W cm−2 [18]. The photo-
ionization created fragment ions were accelerated and guided
by a weak homogeneous static electric field to be detected by
a time- and position-sensitive microchannel plate detector at
the end of the spectrometer, where the 3D momenta of the
ejected ions are reconstructed from the measured time-of-
flights and positions of the impacts during the offline analysis.

The electronic configuration of the ground state X g
1S+ of

the neutral acetylene is 1 1 2 2 3 1 .g u g u g u
2 2 2 2 2 4s s s s s p As the

molecule irradiated by an intense ultrashort laser pulse, the
double ionization mainly frees two HOMO 1 up( ) electrons
and may populate three lowest metastable dication states, i.e.
the triplet state of g

3S- and the singlet states of g
1D and .g

1S+

However, removing one electron from the HOMO-1 3 gs( ) or
HOMO-2 2 us( ) will populate the high excited singlet or triplet
repulsive states [14, 19–25]. For example, the double ioniz-
ation involving the removal of one electron from the HOMO-
1 (or HOMO-2) by strong field ionization may initiate the
deprotonation channel C2H2+nħω→H++C2H

+ and
isomerization breakup channel C2H2+nħω→C++CH2

+

[10, 13, 22, 23], which are denoted as (H+, C2H
+) and (C+,

CH2
+), respectively. Here, we focus on the (CH+, CH+)

channel accompanied by the symmetric breakup of C–
C bond.

The photoion–photoion coincidence spectrum of the ion
fragments allows us to clearly identify different channels. As
shown in figure 2(a), the symmetric breakup channel can be
well distinguished from the other channels. The left panel of
figure 2(b) presents the KER of the fragment ions, EN, of the
(CH+, CH+) channel in linearly polarized laser fields. It can
be identified into the low- and high-EN regions with EN

peaked around EN=4.8 and 6.0 eV as labeled by the yellow
and green patterns, respectively. As shown in the right panel
of figure 2(b), the angular distribution of the (CH+, CH+)
channel CH ,CHf + +( ) changes as the increasing of EN. The low
and high-EN regions exhibit two different angular distribu-
tions as plotted in figure 2(c), indicating two different routes
for the C–C bond symmetric breakup. The angular distribu-
tion of the high-EN pathway shows maxima around ±30° with
respect to the polarization direction of the ionizing field,
indicating the participation of the πu electron (HOMO) of the
C2H2 [23, 25–29] with a nodal plane of the electron density
cutting along the molecular axis as illustrated in figure 1(b).
The angular distribution of the low-EN pathway maximizes
along the field direction, indicating the important role of the
3 gs electron (HOMO-1).

Figure 1(b) presents the relevant potential energy curves
of C2H2 cutting along the C–C bond (RCC) with a frozen C–H
bond at the equilibrium internuclear distance of
RCH∼1.15 Å [13, 14, 19, 21]. The low-EN pathway could be
accessed as the following: by removing one HOMO 1 up( ) and
one HOMO-1 3 gs( ) electrons, the lowest triplet states u

3P and

singlet state u
1P may be populated via an intermediate

cationic state of A .g
2S+ Stretching along the C–C bond, the

barrier of u
3P state is 1.5 eV lower than the u

1P state.

Figure 1. (a) Schematic diagrams of the experiment setup. (b) Potential energy curves of C2H2, C H ,2 2
+ and C H2 2

2+ with a frozen C–H
internuclear distance at RCH=1.15 Å. Two pathways in producing the (CH+, CH+) channel are illustrated by the black arrows. The insets
schematically illustrate the profiles of the HOMO and HOMO-1 of the C2H2 [13, 14, 19, 21].
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Meanwhile, the asymmetric C–H elongation can induce an
avoided crossing between the triplet state g

3P and ,u
3P which

makes the distorted 3P state to be dissociative along the C–C
bond. The P states can also interact with the dissociative
excited state of ,u

3S+ ,u
1S- or u

3D via conical intersections to
promote the C–C bond breaking. The high-EN pathway may
originate from the metastable dication states of ,g

3S- ,g
1D and

g
1S+ by removing two 1 up electrons [14, 19]. In general, the
bond breaking probability of the low-lying metastable states
is much lower than the excited dissociative states. However, a
molecular bent transition process [30] can lead to a conical
intersection between the states of g

1S+ and g
1D [14], which is

governed by the vibronic couplings. It promotes dissociation
of the doubly ionized acetylene to produce the (CH+, CH+) in
the high-EN region. As compared to the single-photon exci-
tation by the synchrotron radiation, the ionization and dis-
sociation of molecules are complicated in strong laser fields
where the molecular orientation, electron recollision, and
distorted potential curves will alter the dynamics.

Interestingly, the KER spectrum and angular distribu-
tions of the low- and high-EN pathways change when the
polarization of the ionizing field is changed from linear to
circular. The right panels of figures 3(a)–(c) show the angular
distribution of CH ,CHf + +( ) versus EN for various field ellipti-
cities of ε=0.23, 0.65, and 0.94, respectively. The double
peak structure of the KER spectrum is very sensitive to the
polarization of the ionizing field. The low- and high-EN

pathways become well separated in the KER spectrum of the
(CH+, CH+) channel as the increasing of the field ellipticity.
However, the peak position is independent on the change of
the ellipticity of the ionizing laser field. As shown in figure 3,
the angular distribution of the fragment ions of the high-EN

pathway changes dramatically as compared to the low-EN

pathway when the ellipticity of the driving laser field
increases. The angular distribution of the low-EN pathway is
much narrow and concentrates around the major axis of the

elliptically polarized ionizing field. It indicates the important
role of the 3 gs electron which is favored to be freed along the
maximum of the laser field, i.e. the molecule orientating along
the major axis of the elliptical field is preferred to be ionized.
However, the angular distribution of high-EN pathway
becomes much broad when the ellipticity of the driving laser
field increases. As shown in figure 3(c), for the high-EN

pathway, a homogenous angular distribution is observed in a
nearly circularly polarized laser pulse (ε=0.94). For the
high-EN pathway by breaking the C–C bond via the distorted
metastable dication states of ,g

1S+ the generated CH+/CH+

fragment pair may undergo a spatial rotation during the dis-
sociation process [14], which slightly broadens the angular
distributions of the fragment ions. Owing to the releasing of
two 1 up electrons, the angular distribution of the high-EN

pathway is much broader than the low-EN pathway, as already
demonstrated in linearly polarized field as shown in
figure 1(c).

The accessibility of the high-EN pathway increases as the
polarization of the laser field changes from linear to circular.
To quantify it, as presented in figure 4, the yield ratio of the
high- to low-EN pathway increases gradually when the
ellipticity of the laser field increases from 0 to 1. The yield
ratio of the high- to low-EN pathway in linear polarization is
about 0.8, i.e. the probability of the C–C bond breaking via
the metastable dication state of g

1S+ almost equals to the

pathway upon 3P state. As we change the ellipticity of the
ionizing laser field to be close to circular polarization
(ε=0.94), the relative yield ratio increases to 3.0, i.e. the
high-EN pathway is favored to be accessed than the low-EN

pathway. To understand this ellipticity dependence of the
accessibility of different pathways, we track back to the
population mechanism of different dication states. The
low-EN pathway originates from the dissociative 3P state
which is about 3.0 eV above the g

1S+ state. The electron
recollision excitation plays an important role in populating the
excited state from the ground state, which is suppressed in

Figure 2. (a) Photoion–photoion coincidence spectrum of the dissociative double ionization channels of C2H2, including (H+, C2H
+), (C+,

CH2
+) and (CH+, CH+), where the C–C bond breaking channels are enlarged as the inset. The ‘tof1’ and ‘tof2’ are the TOFs of the first and

second hits measured by the ion detector. (b) Kinetic-energy (EN) distribution of (CH
+, CH+) versus the angular distribution CH ,CHf + +( ) in y–z

plane. The left panel shows the KER spectrum of the (CH+, CH+) channel. (c) Angular distributions of the fragments ions of the (CH+,
CH+) channel for the low-EN (4.2 eV<EN<5.5 eV, labeled by red circles) and high-EN (5.8 eV<EN<9.0 eV, labeled by solid blue
boxes) pathways, respectively.
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circular polarization [13, 22, 31, 32] and thus may reduce the
yield of low-EN pathway. On the contrary, the high-EN dis-
sociation pathway originates from the distorted metastable
states g

1S+ induced by conical intersection and a bent trans-
ition mode during the C–C bond breaking. The bent geometry
of the conical intersection distorted g

1S+ state is not closed by
the elliptically polarized laser field owning to the polyatomic

molecular orientation dependence [33, 34]. The rotational–
vibrational coupling of the metastable state g

1S+ may also
induce a slight rotation of the molecule prior to dissociation.
Meanwhile the elliptically polarized laser field may enhance
the rotation of the molecule during its dissociation, which will
increase the yield of the high-EN pathway when the laser field
is changed from linear to circular.

In summary, we experimentally investigated the sym-
metric dissociative double ionization of acetylene in ultrafast
strong laser pulses of various ellipticities. Our results
demonstrate that the low- and high-EN pathways of the
symmetric C–C bond breakup channel is governed by the
releasing of electrons from different orbitals with the σ-type
and π-type symmetries. Furthermore, the relative yield
between low- and high-EN pathways can be controlled by
changing the ellipticity of the ionizing laser field. Our
experiments give a new impetus to control the complex
fragmentation dynamics of polyatomic molecules in strong
laser field.
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