
Trustworthiness Derivation Tree: A Model of
Evidence-Based Software Trustworthiness

Yuxin Deng∗, Zezhong Chen∗, Wenjie Du†, Bifei Mao‡, Zhizhang Liang‡, Qiushi Lin‡, and Jinghui Li‡
∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

†Shanghai Normal University, Shanghai, China
‡Trustworthiness Theory Research Center, Huawei Technologies Co., Ltd., Shenzhen, China

Abstract—In order to analyze the trustworthiness of complex
software systems, we propose a model of evidence-based software
trustworthiness called trustworthiness derivation tree (TDT). The
basic idea of constructing a TDT is to refine main properties into
key ingredients and continue the refinement until basic facts such
as evidences are reached. The skeleton of a TDT can be specified
by a set of rules, which is convenient for automated reasoning
in Prolog. We develop a visualization tool that can construct the
skeleton of a TDT by taking the rules as input, and allow a user
to edit the TDT in a graphical user interface. In a software
development life cycle, TDTs can serve as a communication
means for different stakeholders to agree on the properties about
a system in the requirement analysis phase, and they can be
used for deductive reasoning so as to verify whether the system
achieves trustworthiness in the product validation phase. We have
piloted the approach of using TDTs in more than a dozen real
scenarios of software development. Indeed, using TDTs helped
us to discover and then resolve some subtle problems.

Index Terms—Trustworthiness, refinement, evidence, visualiza-
tion

I. INTRODUCTION

If we are given a complex software or a system that
combines both software and hardware, it is natural to ask if
the system is trustworthy. Especially with the development of
artificial intelligence technology and the widespread applica-
tions of unmanned vehicles, robots and other equipment, the
issue of system trustworthiness is attracting more and more
attention.

Trustworthiness is a very complicated property that involves
the whole life cycle of a system and depends on a great
number of factors. Firstly, the life cycle of a complex system
goes through several stages such as requirement analysis,
system development, delivery and maintenance, where every
stage accounts for the trustworthiness of the whole system.
Secondly, as a holistic property, system trustworthiness itself
is too abstract to be verified. We need to refine it into different
components or sub-properties. For example, it is identified
in [10] to predominantly consist of the following six sub-
properties: safety, reliability, availability, privacy, resilience
and security. When the refinement is reasonable and each
sub-property is validated, we can then derive that the main
property of system trustworthiness is validated. Lastly, there
are different ways of argumentations for the rationale of re-
finement and the validity of sub-properties. Some are informal
inferences by using natural languages, while others are formal
reasoning based on mathematical logics. Generally speaking,

reasoning with formal methods requires the users to be well
trained on mathematical logics. However, due to their rigidity
and the possibility of being supported by automated or semi-
automated tools, formal methods are playing an increasingly
important role in the area of software engineering.

In the current work, we propose an evidence-based model of
system trustworthiness, called trustworthiness derivation tree
(TDT), which will be useful for communication and knowl-
edge management of the analysis of system trustworthiness.
The basic idea of constructing a TDT is to refine main prop-
erties into key ingredients and continue the refinement until
basic facts such as evidences are reached. By following the
whole process of refinement, we obtain a finite tree. As long
as the refinement is sound, then the property corresponding
to a node is valid if the sub-properties associated with all its
child nodes are valid. In this way, if all the properties at the
leaves of the tree are verified, then the trustworthiness at the
root node holds. We will use formulas in first-order (predicate)
logic to specify properties, and use a rule to specify the
implication relation between a node and its children, which can
be accepted by Prolog [14]. Therefore, we can take advantage
of the inference capability of Prolog to check if the property
associated with a node in a TDT is sound.

As a general framework of argumentation, the model of
TDTs allows us to reason as formally as necessary about
all the properties we are interested in. In the requirement
analysis phase of software development, it can serve as a
communication means for different stakeholders to agree on
the properties about a system. It does not restrict the way of
argumentations for the soundness of each rule, which could be
formal or informal methods, and thus increase the flexibility
of the framework. For example, the model of assurance cases
(sometimes called safety cases) [4], [5], [8] can be embedded
in our framework. In the product validation phase, TDTs can
be used for deductive reasoning so as to verify whether the
system achieves trustworthiness.

If a TDT has a great many nodes, it is inconvenient to man-
ually construct, manipulate and maintain the tree. Motivated
by this observation, we design and develop a visualization tool
for TDTs. A user can specify the skeleton of a TDT in a text
file as a set of Prolog rules. By taking that file as input, the
tool is able to render a tree in a graphical user interface. A
user can interactively edit the tree such as adding and deleting
nodes, modifying the content of a node etc. One can also drag



nodes as in UML tools, hide or display the subtree under a
node, rotate the whole tree, zoom in or out etc. The skeleton
of the tree can be exported as Prolog rules. The whole tree
can also be saved in a CSV file, which is convenient if a team
collaborates to construct and maintain a large TDT.

The rest of the paper is structured as follows. In Section II
we discuss the issue of trustworthiness assurance. In Sec-
tion III we introduce the model of trustworthiness derivation
trees. In Section IV we introduce the visualization tool we
have developed for TDTs. In Section V we discuss the use
of TDTs in two phases of a software development life cycle.
Finally, we conclude in Section VI.

II. TRUSTWORTHINESS ASSURANCE

Closely related to trustworthiness is the concept of trust.
There are various definitions of trust in different disciplines,
and a careful analysis of them shows that [10]:

• Trust and trustworthiness form an asymmetric bidirec-
tional relation. Trust is the attitude of a trustor, e.g. a
customer, towards whether its trustee, e.g. a supplier, is
trustworthy in an uncertain situation, while trustworthi-
ness is the trustee’s attitude towards itself and its products
in an uncertain situation.

• Trust and trustworthiness are extensively context-
sensitive. Relevant impacting factors need to be identified
comprehensively via an analysis of the context.

When a system brings business value to its customers in
a defined context, it also needs to provide the capability to
handle adverse events and manage potential risks properly.
Therefore, the trustworthiness of a system depends on its
capability to manage potential risks, which involves three key
parts: the risks faced by the system, the mitigation measures
to address the risks, and the verification of the measures.
The assurance of trustworthiness is then the argumentation
about whether the mitigation measures for the risks are correct
and sufficient, whether the mitigation measures are correctly
implemented and whether the verification methods could tell
the differentiation degree.

In safety engineering, the model of assurance cases [8]
can be used for arguing for the safety of a product. It finds
application in energy, aviation, aerospace, railway, automobile,
medical and many other safety-critical areas [11], [12]. An
assurance case is a documented body of evidence that provides
a valid argument so that a specified set of claims regarding
a product’s properties are adequately justified for a given
application in a given environment. Assurance cases can be
presented graphically in Goal Structuring Notation (GSN) [9]
or Claims-Argument-Evidence (CAE) [6]. A simple example
of CAE fragment with side-warrant [7] is shown in Figure 1,
which includes the following ingredients:

• A claim is an assertion about a product or a system. The
top-level claim is the conclusion or final claim, and sub-
claims are used to support higher-level claims. A sub-
claim can either be further decomposed or be witnessed
by an evidence, which can be a fact, a collection of data,
or a physical object etc.

Fig. 1: An example of CAE fragment

• An argument is a reasoning method to prove that a claim
is true.

• A side-warrant is a justification to the argument. It gives
the reasons of deducing the top-level claim from the sub-
claims and under what circumstances the argument is
valid.

We can see that the sub-claims are used to support the claim
at the top. The argument and side-warrant are auxiliary ingre-
dients as they help to justify the refinement of the claim. In the
current work, we propose to simplify the model of assurance
cases by considering the auxiliary ingredients as a description
of the claim, while keeping the key part of claim refinement.
The resulting model is called trustworthiness derivation tree
(TDT). In other words, we focus on the skeletons of assurance
cases without loosing their expressiveness, as an assurance
case can be converted into a TDT by writing its arguments and
side-warrants as descriptions of claims. TDTs will be useful
for communication and knowledge management of the analysis
of system trustworthiness.

As a general framework of argumentation, the model of
TDTs allows us to reason as formally as necessary about all
the properties we are interested in. Since trustworthiness is
context-sensitive, the meaning of trustworthiness is not widely
agreed, and needs to be determined through dialogues between
different stakeholders. Syntactically, a TDT takes the shape
of a finite tree for property refinement. Semantically, the
relationship between each parent node and its child nodes in a
TDT represents an inference, a dependency, or an implication.
That is where the name of TDT comes from.

In terms of tool support, a number of tools [1] implement
the GSN notation, and Adelard ASCE tool implements the
CAE notation. They assist in reading and reviewing assurance
cases. However, none of them supports automated reasoning.
For the model of TDTs, on the contrary, it is easy to perform
rule-based reasoning, as we will see in the next section.

III. TRUSTWORTHINESS DERIVATION TREES

We first introduce the concept of trustworthiness derivation
tree, present a method of constructing those trees, and propose
a way of automated verification of the trees.



Fig. 2: A set of rules

Definition 1: A trustworthiness derivation tree (TDT) is a
finite tree with each node labelled by a pair 〈P,D〉, where
P is a formula in first-order logic representing a property of
trustworthiness and D is a description about the property.

If we only care about the verification of the properties of
trustworthiness, then the description of the properties can be
omitted. Such a simplified form of TDT is called the skeleton
of the TDT. Below we consider the problem of generating a
skeleton from a set of rules.

Definition 2: A rule is a tuple of formulas in the form
〈P1, ..., Pn, P 〉, where each Pi is a premise of the rule, and P
is the conclusion of the rule. If n = 0, that is, the rule has no
premise, then the special rule is called an axiom.
In the current work, we use the syntax of Prolog to write rules
and axioms. For example, we write “P : − P1, P2, ..., Pn.”
for a rule with conclusion P and premises P1, ..., Pn, and write
“P.” for the axiom P .

Let T be a TDT such that the refinement of each node into
its children is unambiguous. In other words, if two nodes are
associated with the same property, then their children must
be exactly the same. It follows that we have a set of rules
that can generate T . More specifically, since T is a finite
tree, each non-leaf node labelled by A has finitely many
children with properties, say A1, A2, ..., An. Then we form a
rule A : −A1, A2, ..., An. Take a union of all such rules gives
us the required set. Moreover, those rules are unambiguous.
Conversely, once we have that set of rules, we can reconstruct
T . The basic idea is to start with an empty tree and for each
rule A : −A1, A2, ..., An add the subtree with root node A and
child nodes A1, A2, ..., An to the partially constructed tree.
Repeat the above step until the partial tree does not grow any
more. In the end, we will generate T .

The above procedure of reconstructing T can be automated.
It is an important feature of our visualization tool: by import-
ing an appropriate set of rules, the tool can render the skeleton
of a TDT. By editing in the graphical interface, it is easy to
obtain a TDT with rich contents.

There are a few advantages to generate a TDT by a set of

user-defined rules:

1) According to the principle of rule induction [15], in
order to check the soundness of a derivation tree, it
suffices to verify that each rule is sound. In our setting,
soundness means that rules and TDTs are reasonable
and they conform to engineering practices.

2) A rule may be applied several times in a tree. Therefore,
it is more economical to store a set of rules instead of
storing the nodes and edges of a tree.

3) We use formulas in first-order logic to formalize proper-
ties of trustworthiness. In particular, if the rules can be
specified by Horn clauses, we can then resort to Prolog
for automated logical reasoning.

Let us take a concrete example to illustrate the construction
of a TDT from a set of rules and the logical reasoning based
on Prolog.

Example 1: By importing the set of rules given in Figure 2,
our tool (to be introduced in Section IV) can render the tree in
Figure 3. One could also add some axioms to those rules and
make use of Prolog to check if the root property holds or not.
For example, Figure 4 shows in a panel the verification result
using SWI-Prolog [2]. The target property ‘trustworthiness’
does not hold. The reason is that the property ‘existence of
negative cases list’ cannot be verified, so all the properties
along the following path do not hold.

‘existence of negative cases list’ −→
‘appropriate treatment for known negative cases’ −→
‘sufficient analysis and design’ −→
‘trustworthiness in processes’ −→
‘trustworthiness’

Notice that a TDT provides a verification framework. The
property at each node is a formula as in Example 1. The
validity of the root property can be inferred from that of each
leaf node. There are two important problems to be considered.

• How to ensure that the rules for constructing the whole
tree are sound?



Fig. 3: An example TDT

• How to verify the validity of the property at each leaf
node?

The model of TDT imposes no restriction for the above two
problems. In other words, we can take advantage of other
methods to verify the soundness of rules and the validity of
the properties at leaf nodes. Sometimes it is hard to argue
for the soundness of a rule coming from industrial practice
by using formal methods. Then we may resort to Toulmin
argumentation model [13] for that purpose. In summary, we
adopt first-order logic for reasoning about the property at the
root node, but for each rule and the property at each leaf node
other formal methods and even informal argumentation are
allowed.

IV. VISUALIZATION TOOL

We have developed in Python a visualization tool that
provides a graphical user interface to render TDTs in the form
of finite trees. The main functionalities of the tool include:

• adding nodes in the tree;
• deleting nodes;
• editing the content of a node;
• importing a Prolog file to render the skeleton of a tree;
• exporting the skeleton of the current tree as a Prolog file;
• saving all the contents of a TDT in a CSV file, which

can be reopened later to recover the TDT.
Figure 5(a) provides a bird’s eye view of a complete TDT

for checking the consistency of software constructions and one
subtree is given in Figure 5(b). In our tool the TDT can be
zoomed in or out. By clicking on a node, we can hide or
display the content in that node, or the subtree rooted at that
node. We use solid lines to stand for the full support provided

by child nodes to parent nodes, and dashed lines to mean
partial support, i.e., the development is not finished yet. When
refining the trustworthiness property of a node, we roughly
take one of the following two options:

• refining by attributes, which means to refine an attribute
mentioned by the property in the node into different
components;

• refining by processes, which means to follow a process
mentioned by the property in the node and refine it into
several steps, as well as its environmental and technical
requirements.

Other types of refinements are possible [5], though they are
used less often. In the leaves we store evidences, such as
regulatory documents, user manuals, log files etc.

V. USING TDTS IN SOFTWARE ENGINEERING LIFE CYCLE

Formal methods have been used in various aspects of
software engineering, such as requirement engineering, soft-
ware design, code verification, testing and so on [16]. They
play an important role in improving the quality of products.
However, existing formal techniques have limitations in ex-
pressing trustworthiness, which is a sociological concept. Our
argumentation for trustworthiness is still conducted in a semi-
formal way.

In our opinion, TDTs can play a prominent role in the
following two phases of a software development life cycle:

• Phase 1. Requirement analysis and definition. TDTs
serve as a communication means for different stakehold-
ers to agree on the properties about a system. Product
definers keep rationally discoursing with customers on
how to achieve risk mitigation until a consensus is



Fig. 4: Verification with SWI-Prolog

reached. This process is supported by Toulmin model of
argument.

• Phase 2. Product validation. Based on the relevant evi-
dences accumulated in the product development process
as well as the product itself, we can use TDTs for deduc-
tive reasoning so as to verify whether the product achives
trustworthiness. Since a TDT constitutes a structured set
of arguments for the property at the root node, and the
leaves stand for all the evidences, a TDT is a type of
evidence-based model of system trustworthiness. This
idea of organizing arguments shares some similarity with
Alexy’s theory of legal argumentation [3].

In Phase 1, in particular, TDTs can be used for communi-
cation between suppliers, customers and regulatory agencies.
They can show that a supplier has addressed the trustwor-
thiness concerns from the customers with sufficient and ef-
fective protective measures, and the protective measures are
implemented correctly according to the design, the related
risks have been treated and mitigated, and the relationship
between evidences and argumentation can support auditing,
communication, argumentation and proofs. More concretely,
TDTs are also used to expose the technical goals of a product
at the stage of system design, to demonstrate the integrity,
consistency, and confidentiality of the process artifacts in
managing the development process, to make improvements
based on the problems found in construsting the TDTs, and
to retain the evidences required for the argumentation. The
evidences can consist of presentable facts coming from various
abstraction levels or sources, e.g., verification and validation
results, configuration files for the development environment
and supporting tools, certifications etc.

Up to now, we have piloted the approach of using TDTs
in more than a dozen real scenarios such as checking the
consistency of software constructions and the trustworthiness

of software implementation. Indeed, using TDTs helped us
to discover and then resolve some problems. For example,
in checking the consistency of software constructions, tag
changes in code repositories need to be well managed and
file attributes need to be considered in comparing files. One
main challenge we have encountered is how to refine a
property rigorously. We have empirically identified two types
(refinement by attributes or processes). Due to the diversity of
scenarios more refinement strategies are yet to be discovered.

VI. CONCLUSION AND FUTURE WORK

We have presented trustworthiness derivation tree as a
model of evidence-based software trustworthiness. The key
idea is to gradually refine trustworthiness properties until
evidences are reached. Since TDTs can be specified by logical
rules, we are able to make use of Prolog to perform automated
reasoning. Furthermore, we have developed a visualization tool
that allows a user to interactively manipulate TDTs.

We have noticed that evidence-based analysis also appears
in legal argumentation [3]. Therefore, we believe our visual-
ization tool could be helpful in the logical reasoning of legal
cases.

Currently, TDTs are used for qualitative analysis of soft-
ware trustworthiness. It will be more informative to conduct
quantitative analysis if this is possible. In the future, we plan
to incorporate quantitative information into TDTs.

ACKNOWLEDGMENT

We thank the anonymous referees for the helpful comments.
Deng would like to acknowledge the support of the National
Natural Science Foundation of China (Grant Nos. 61832015
and 62072176) and the Inria-CAS joint project Quasar.



(a) Bird’s eye view of a complete TDT in the GUI

(b) A subtree of the TDT in (a)

Fig. 5: A complete TDT



REFERENCES

[1] http://www.goalstructuringnotation.info/archives
/category/resources/tools

[2] https://swish.swi-prolog.org
[3] Alexy, R., Adler, R., MacCormick, N.: A Theory of Legal Argumenta-

tion: The Theory of Rational Discourse as Theory of Legal Justification.
Oxford University Press (2010)

[4] Bishop, P.G., Bloomfield, R.E.: A methodology for safety case develop-
ment. In: Industrial perspectives of safety-critical systems. pp. 194–203.
Springer (1998)

[5] Bloomfield, R.E., Bishop, P.G.: Safety and assurance cases: Past, present
and possible future - an Adelard perspective. In: Proceedings of the 18th
Safety-Critical Systems Symposium. pp. 51–67. Springer (2010)

[6] Bloomfield, R.E., Bishop, P.G., Jones, C., Froome, P.: ASCAD – Adelard
safety case development manual (1998), Adelard

[7] Bloomfield, R.E., Netkachova, K.: Building blocks for assurance cases.
In: Proceedings of the 25th IEEE International Symposium on Software
Reliability Engineering Workshops. pp. 186–191. IEEE Computer So-
ciety (2014)

[8] International Organization for Standardization: Systems and software
engineering – systems and software assurance – Part 2: Assurance case
(2011), ISO/IEC 15026-2

[9] Kelly, T., Weaver, R.: The goal structuring notation - a safety
argument notation. In: Proceedings of the Dependable Systems
and Networks 2004 Workshop on Assurance Cases (2004),
https://www-users.cs.york.ac.uk/ tpk/dsn2004.pdf

[10] Li, J.H., Mao, B., Liang, Z., Zhang, Z., Lin, Q., Yao, X.: Trust and
trustworthiness: What they are and how to achieve them. In: Proceedings
of the 5th Workshop on Security, Privacy and Trust in the Internet of
Things. IEEE (2021)

[11] Rinehart, D.J., Knight, J.C., Rowanhill, J.: Current practices
in constructing and evaluating assurance cases with applica-
tions to aviation. Tech. Rep. CR-2015-218678, NASA (2015),
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/20150002819.pdf

[12] Rinehart, D.J., Knight, J.C., Rowanhill, J.: Un-
derstanding what it means for assurance cases to
“work”. Tech. Rep. CR-2017-219582, NASA (2017),
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/20170003806.pdf

[13] Toulmin, S.E.: The Uses of Argument (updated edition). Cambridge
University Press (2003)

[14] William F. Clocksin, C.S.M.: Programming in Prolog. Springer (2003)
[15] Winskel, G.: The Formal Semantics of Programming Languages – An

Introduction. MIT Press (1993)
[16] Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal

methods: Practice and experience. ACM Computing Surveys 41(4),
19:1–19:36 (2009)


