
Termination and Universal Termination Problems for
NondeterministicQuantum Programs

MING XU, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
JIANLING FU, School of Computer Science and Technology, East China Normal University, China
HUI JIANG, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
YUXIN DENG, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
ZHI-BIN LI, School of Computer Science and Technology, East China Normal University, China

Verifying quantum programs has attracted a lot of interest in recent years. In this paper, we consider the following two
categories of termination problems of quantum programs with nondeterminism, namely:

(1) (termination) Is an input of a program terminating with probability one under all schedulers? If not, how can a
scheduler be synthesized to evidence the nontermination?

(2) (universal termination) Are all inputs terminating with probability one under their respective schedulers? If yes,
a further question asks whether there is a scheduler that forces all inputs to be terminating with probability one
together with how to synthesize it; otherwise, how can an input be provided to refute the universal termination?

For the effective verification of the first category, we over-approximate the reachable set of quantum program states by the
reachable subspace, whose algebraic structure is a linear space. On the other hand, we study the set of divergent states from
which the program terminates with probability zero under some scheduler. The divergent set also has an explicit algebraic
structure. Exploiting these explicit algebraic structures, we address the decision problem by a necessary and sufficient
condition, i. e. the disjointness of the reachable subspace and the divergent set. Furthermore, the scheduler synthesis is
completed in exponential time, whose bottleneck lies in computing the divergent set, reported for the first time.

For the second category, we reduce the decision problem to the existence of invariant subspace, from which the program
terminates with probability zero under all schedulers. The invariant subspace is characterized by linear equations and thus
can be efficiently computed. The states on that invariant subspace are evidence of the nontermination. Furthermore, the
scheduler synthesis is completed by seeking a pattern of finite schedulers that forces all inputs to be terminating with positive
probability. The repetition of that pattern yields the desired universal scheduler that forces all inputs to be terminating with
probability one. All the problems in the second category are shown, also for the first time, to be solved in polynomial time.
Finally, we demonstrate the aforementioned methods via a running example — the quantum Bernoulli factory protocol.

CCS Concepts: •Theory of computation→ Verification by model checking; • Software and its engineering→ Formal
software verification; • Security and privacy→ Logic and verification.

Additional Key Words and Phrases: quantum program, Markov decision process, termination, controller synthesis, fixedpoint

Authors’ addresses: Ming Xu, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China, mxu@cs.
ecnu.edu.cn; Jianling Fu, School of Computer Science and Technology, East China Normal University, Shanghai, China, scsse_fjl2015@126.com;
Hui Jiang, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China, yhq_jh@126.com; Yuxin
Deng, Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China, yxdeng@sei.ecnu.edu.cn;
Zhi-Bin Li, School of Computer Science and Technology, East China Normal University, Shanghai, China, lizb@cs.ecnu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 1557-7392/2024/9-ART
https://doi.org/10.1145/3691632

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0002-9906-5677
https://orcid.org/0009-0000-2367-9958
https://orcid.org/0009-0001-4256-9508
https://orcid.org/0000-0003-0753-418x
https://orcid.org/0009-0009-2534-8496
https://orcid.org/0000-0002-9906-5677
https://orcid.org/0009-0000-2367-9958
https://orcid.org/0009-0001-4256-9508
https://orcid.org/0000-0003-0753-418x
https://orcid.org/0000-0003-0753-418x
https://orcid.org/0009-0009-2534-8496
https://doi.org/10.1145/3691632
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691632&domain=pdf&date_stamp=2024-09-02

2 • M. Xu, J. Fu, H. Jiang, et al.

1 INTRODUCTION
In the field of quantum computing, physical devices have been rapidly developed in the last decades, particularly
in very recent years. From the original experimental Deutsch’s problem on a working 2-qubit quantum computer
in 1998 [12], to in 2020 Chinese quantum computer JiuZhang’s implementing a type of Boson sampling on 76
photons [74], and in 2023 IBM’s releasing its latest 133-bit “Heron” processor [32], quantum computers have
showed the utility [29] of requiring less computing time, requiring less power, or yielding more accurate results,
against their classical counterparts.

To harness the power of quantum computers and exert quantum mechanics, a series of quantum programming
languages have emerged, including the first practical quantum procedural language QCL [57], quantum guarded
command language (qGCL) to program a “universal” quantum computer [58] with nondeterministic extension [75],
and functional programming languages QFC [59] and QML [3] with high-level features. Nowadays, several
quantum programming languages, e. g., Qiskit [31], Q# [60] and Cirq [26], have been proposed for real-world
applications. They enable researchers to develop quantum algorithms and software conveniently and efficiently,
and bring the new trend of quantum software engineering [2, 55].

However, the correctness of quantum programs as well as classical programs cannot be guaranteed without
formal verification [45], which can serve as a formal foundation for quality assurance in software engineering.
For classical programs, C. A. R. Hoare devised a formal logic, called Hoare Logic, where correctness formulas are
expressed as triples comprising precondition, program, and postcondition. Hoare logic can be used to analyze the
properties of a program, so that total correctness was decomposed into partial correctness plus termination [30].
A powerful approach to proving termination is to synthesize a ranking function [9] that maps program states
into a well-founded domain, thus no infinite execution implies termination. E.W. Dijkstra presented the weakest
precondition calculus [17] that is another approach to proving total correctness. P. Cousot and R. Cousot presented
the abstract interpretation [14] for static analysis, which is particularly favorable for quantum programs since
the dynamical execution suffers from noises in the NISQ era. All these methods lead to automatic verification of
program correctness, and are extended for probabilistic programs and quantum ones particularly in recent years
(to be commented in Subsection 1.1). Additionally, nondeterminism is a useful mechanics in software design,
providing a way to describe the framework of a program without specifying implementation details. So it should
been taken into consideration in the theory of programming [21, 40].

In the setting of nondeterministic quantum programs, the termination problem asks whether an input state of
a program terminating with probability one under all schedulers; the weak termination problem asks whether
an input state of a program terminating with probability one under some scheduler; the universal termination
problem asks whether all input states are terminating with probability one under their respective schedulers. In
this paper, we study the termination and the universal termination problems, aiming to give a series of positive
results toward solving them, and left the weak termination problem as future work.

Expressiveness on ProgramModels. First of all, as operational semantics, two models of quantumMarkov decision
processes are considered with states in finite-dimensional Hilbert spaces. One treats the program locations of
finitely many executable statements as the classical states, so that it is more straightforward as a high-level
language to model practical scenarios. The other embraces only one program location which can be omitted,
so that it provides a simpler structure as an assembly language for the ease of verification. Both are meant to
interpret the operational semantics of nondeterministic quantum programs. We show that they are of the same
expressiveness in terms of termination probability, and thus adopt the latter for ease in this work.

Deciding Termination with Complexity Analysis. To decide the termination, we investigate two critical concepts
involved in reachable states of a program, namely the reachable space and divergent set. In general, the set of
reachable states does not exhibit any explicit algebraic structure, which brings nontrivial hardness in verification.
To overcome it, we give two definitions of reachable space that over-approximate the set of reachable states.

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 3

• The I-reachable space has the type of a subspace of the Hilbert space spanned by those vector representa-
tions of reachable states, as proposed in [47].
• The II-reachable space is spanned by those matrix representations of reachable states.

Both are computable in polynomial time, specified in terms of the size of program model as usual, i. e. the
dimension of Hilbert space. But the latter is more precise, which is validated by the running example of quantum
Bernoulli factory protocol.The divergent set consists of states fromwhich the program terminates with probability
zero under some scheduler. By exploiting the algebraic structure of the divergent set, an effective approach is
developed to compute them in exponential time. Combining the reachable spaces and the divergent set, the
termination is decided by a necessary and sufficient condition, i. e., the reachable subspace and the divergent set
are disjoint. The complexity of the decision procedure is in exponential time, whose bottleneck lies in computing
divergent set, which is reported for the first time.
Scheduler Synthesis. If the termination is decided to be false, we know there are some schedulers that force

the program not to terminate with probability one. Scheduler synthesis plays an important role in resolving
the nondeterminism, remaindered in the early software design. To achieve this, we confine the nontermination
scheduler into finitely many l-regular ones as candidates. Conditioning on each candidate, we derive a system
of linear equations by Brouwer’s fixedpoint theorem, whose nonzero solutions help us to identify the candidate
as the nontermination scheduler.
Deciding Universal Termination. It is reduced to the existence of invariant subspace, from which the program

terminates with probability zero under any scheduler. The invariant subspace is also characterized by linear
equations and can be computed in polynomial time, thus deciding the universal termination. The states on that
invariant subspace are evidences of the nontermination. If the universal termination is decided to be true, the
scheduler synthesis is completed in polynomial time by seeking a pattern of finite schedulers that forces all
input states to be terminating with positive probability. The repetition of that pattern yields the desired universal
scheduler that forces all input states to be terminating with probability one.

1.1 Related Work
Verification on Probabilistic Programs. In contrast to deterministic programs, probabilistic programs have

several new syntactic constructors — probabilistic choice, nondeterministic choice and observation [40], whose
operational semantics are interpreted by Markov chains and Markov decision processes [5, Chapter 10] and
supported by the verification tools PRISM [44] and Storm [15] much well.

Due to the aforementioned new syntactic constructors in probabilistic programs, the termination problem of
probabilistic programs yields many variants to be studied, e. g.,
• almost-sure termination — Does a program terminate with probability one?
• positive almost-sure termination — Is the expected running time of a program finite?

Although the almost-sure termination of probabilistic programs was proved to be undecidable in general [37],
there are many approaches to attacking it. Fioriti and Hermanns [24] proposed a framework to prove almost-sure
termination by ranking super-martingales, which is analogous to ranking functions on deterministic programs.
Chakarov and Sankaranarayanan [10] applied constraint-based techniques to generate linear ranking super-
martingales. Chatterjee et al. [11] constructed polynomial ranking super-martingales extending linear ones. A
polynomial-time procedure was given in [1] to synthesize lexicographic ranking super-martingales for linear
probabilistic programs. Fu and Chatterjee [25] applied ranking super-martingales to study the positive almost-sure
termination of probabilistic programs with nondeterministic choices, namely angelic and demonic choices.

A key step toward the automatic verification of probabilistic programs is how to define predicates over program
states in a probabilistic distribution. There are two approaches to define probabilistic predicates. One [6] is
to characterize the predicates of program states against program assertions by the membership relation of

ACM Trans. Softw. Eng. Methodol.

4 • M. Xu, J. Fu, H. Jiang, et al.

multiple sets; the other [42, 43, 53] is to adopt the expectations of the satisfaction degree. McIver and Morgan [50]
generalized the weakest preconditions to the weakest pre-expectations for analyzing properties of probabilistic
guarded command language (pGCL) [28] and for establishing almost-sure termination [51]. Kaminski et al. [38, 39]
presented a calculus of weakest pre-expectation style for obtaining bounds on the expected running time of
probabilistic programs. Verification tools like Amber [52] have been released to automatically prove almost-sure
and positive almost-sure termination. The scheduler was synthesized to resolve nondeterminism in [8], such that
the determinized probabilistic program meets a given quantitative specification including termination. However,
in the setting of quantum computing, a program state is no longer simply a probabilistic distribution; it is instead
a density operator (positive semi-definite matrix with unit trace) on Hilbert space, which would be considered in
the following.

Verification on Quantum Programs. In 2004 Selinger [59] proposed the description of program states of a
quantum program by density operators; In 2006 D’Hondt and Panangaden [16] adopted Hermitian operators
(positive semi-definite matrices) as quantum predicates, which was further employed by [19] and [67] in reasoning
about the correctness of deterministic quantum programs. Recently, Fang and Ying [18] described quantum
states of quantum programs by stabilizers that are matrices stable/unchanged under the mapping of their
defining operators; Guan et al. [27] used subspaces of the whole Hilbert space as quantum predicate for checking
quantitative properties. Various formalism flourished the verification on quantum programs.

Ying and Feng [68] first studied the verification of quantum loop programs by giving some necessary and
sufficient conditions to ensure termination and almost-sure termination. Quantum Markov chains [23, 27, 62, 63]
could be a standard model to interpret the operational semantics of deterministic quantum programs. Yu and
Ying [73] considered concurrent quantum programs, and reduced the termination problem to the reachability
problem of quantum Markov chains. Extending quantum Markov chains with nondeterministic actions, quantum
Markov decision processes [71] are suitable to interpret the operational semantics of nondeterministic quantum
programs as in the present paper.

The work close to ours is [47] where Li et al. dealt with nondeterministic quantum programs. The nondeter-
minism in that program is used to model quantum processes, and the program execution relies on a scheduler to
be specified by the software designer. Given a nondeterministic quantum program, the set of reachable states
from an input state has no explicit algebraic structure in general, which yields nontrivial hardness in verification.
The authors of [47] proposed a polynomial-time method for computing a linear space named by the reachable
space, over-approximating the reachable set. They also presented an algorithm to compute the set of divergent
states but the time complexity of the algorithm was left unsettled. When the two sets are disjoint, the termination
of a program can be inferred. However, two remaining issues should be addressed, i. e., i) how to analyze the
complexity of computing the divergent set and ii) how to synthesize the scheduler for nontermination. Both will
be solved in the present work.

The classical Hoare logic was extended in the quantum setting to quantum Hoare logic [64] supporting both
classical and quantum variables [22], and the Sharir–Pnueli–Hart method was also extended from probabilistic
programs to quantum programs [70] toward automatic verification [66]. Ying [69] proposed the notions of
additive and multiplicative invariants that are predicates over program states at program locations for quantum
programs with angelic and demonic choices. Inspired by the aforementioned ranking super-martingale for
probabilistic programs [11, 25], linear ranking super-martingales were defined and further synthesized in [46]
w. r. t. an additive and/or multiplicative invariant by semi-definite programming and quantifier elimination over
real closed fields. It gave a sound approach to the termination problems, since the existence of linear ranking
super-martingales is a sufficient but not necessary condition to termination.

D’Hondt and Panangaden [16] proposed a quantum analogy of the weakest preconditions by using Hermitian
operators as quantum predicate. Quantum weakest precondition was designed for reasoning about the expected

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 5

runtime of quantum program [49] and the expected cost of various quantum resources [4]. The hardness of
synthesizing it lies in the fact that the precondition is no longer linear on the superposition of pure states,
which is admitted in quantum mechanics. To solve it, an approach [49] was presented based on quantum Hoare
logic [48, 64]. For the state space admitting a finite-dimensional Hilbert space, it was also revealed in [49]
that almost-sure termination of a deterministic quantum program with an input state is equivalent to positive
almost-sure termination. The finite dimension in state space could bring extra sugar in our analysis, breaking the
obstacle of undecidability for probabilistic programs [37].

Recently, Yu and Palsberg [72] presented a framework of quantum abstract interpretation to check assertions
for the properties of large-scale quantum programs. The relationship between abstract interpretation and Hoare
logic was also revealed in [20].

1.2 Contribution and Innovation
The contributions of the current paper are summarized as follows:

(1) We propose a precise over-approximation of the reachable set, which can be computed in polynomial
time.

(2) The complexity of computing the set of divergent states is given for the first time, thus settling an open
problem originally posed in [47].

(3) We decide the termination problem in exponential time and synthesize a nontermination scheduler
provided that it exists.

(4) We decide the universal termination problem in polynomial time together with the synthesis of a universal
scheduler for termination.

To achieve them, our technical innovations lie in: i) using a tree construction for demonstrating the derivation
of divergent states, whose explicit structure could analyze the complexity of deciding termination; ii) applying
Knaster–Tarski fixedpoint theorem on discrete lattice structures to ensure the efficiency of computing reachable
spaces while applying Brouwer’s fixedpoint theorem on continuous state spaces to ensure the effectivity of
scheduler synthesis.

Organization. The rest of this paper is organized as follows. Section 2 recalls basic notions and notations from
quantum computing.Themodels of nondeterministic quantum programs are introduced in Section 3 together with
their termination problems. We compute the reachable spaces and the divergent set respectively in Sections 4 & 5.
Combining them, we are able to decide the termination in Section 6. We further solve the universal termination
problem in Section 7. Section 8 is the conclusion. For clarity, the implementation details is moved to the appendix.

2 PRELIMINARIES
Let H be a finite Hilbert space that is a complete vector space over complex numbers C equipped with an inner
product operation, and 3 the dimension of H throughout this paper. We recall the standard Dirac notations from
quantum computing. Interested readers can refer to [56] for more details.
• |k 〉 stands for a unit column vector in H labelled withk ;
• 〈k | := |k 〉† is the Hermitian adjoint (transpose and complex conjugate entrywise) of |k 〉;
• 〈k1 |k2〉 := 〈k1 | |k2〉 is the inner product of |k1〉 and |k2〉;
• |k1〉〈k2 | := |k1〉 ⊗ 〈k2 | is the outer product where ⊗ denotes tensor product;
• |k,k ′〉 is a shorthand of the tensor product |k 〉 |k ′〉 = |k 〉 ⊗ |k ′〉.

Let {|8〉 : 8 = 1, 2, . . . , 3} be an orthonormal basis of H. Then any element |k 〉 of H, interpreted as a state, can
be entirely determined as |k 〉 = ∑3

8=1 28 |8〉, where 28 ∈ C (8 = 1, 2, . . . , 3) satisfy the normalization condition∑3
8=1 |28 |2 = 1. If |k 〉 is linearly expressed by two or more elements |8〉 with nonzero coefficients, it is said to be a

ACM Trans. Softw. Eng. Methodol.

6 • M. Xu, J. Fu, H. Jiang, et al.

super-position of those elements |8〉. For two spaces S and S′, the join S ∨ S′ is the space spanned by the elements
of S and S′, i. e. span(S ∪ S′). For two quantum systems H and H′, the state space of their composite system is
given by the tensor product H ⊗ H′ that is the Hilbert space spanned by the tensor products of elements in H and
H′, i. e. span({|k,k ′〉 : |k 〉 ∈ H ∧ |k ′〉 ∈ H′}), equipped with the inner product 〈k1,k

′
1 |k2,k

′
2〉 = 〈k1 |k2〉 〈k ′1 |k ′2〉

for any |k1〉 , |k2〉 ∈ H and |k ′1〉, |k ′2〉 ∈ H′.

Linear Operator. Let W be a linear operator on H. It is Hermitian if W = W†. A Hermitian operator W is entirely
determined by its3 diagonal elements 〈8 | W |8〉 ∈ R (8 = 1, 2, . . . , 3) and3 (3−1)/2 off-diagonal elements 〈8 | W | 9〉 ∈ C
with 1 ≤ 8 < 9 ≤ 3 for a total of 32 real numbers. LetH(H) be the set of Hermitian operators on H. For brevity,
such a parameterH inH(H) can be omitted if it is clear from the context. For a Hermitian operator W , we have the
spectral decomposition W =

∑3
8=1 _8 |_8〉〈_8 | where _8 ∈ R (8 = 1, 2, . . . , 3) are the eigenvalues of W and |_8〉 (taking

the meaningful labels _8) are the corresponding eigenvectors. The support of W is the subspace contained in H
spanned by all eigenvectors associated with nonzero eigenvalues, i. e. supp(W) := span({|_8〉 : 8 = 1, 2, . . . , 3 ∧_8 ≠
0}). Although the spectral decomposition of W may be not unique, the support of W must be unique, since it is the
orthocomplement of the null space span({|k 〉 ∈ H : W |k 〉 = 0}) of W . So the notion of support is well defined. A
Hermitian operator W is positive if 〈k | W |k 〉 ≥ 0 holds for any |k 〉 ∈ H. A projector P is a positive operator of the
form

∑<
8=1 |k8〉〈k8 | with< ≤ 3 , where |k8〉 (8 = 1, 2, . . . ,<) are orthonormal. It implies that all eigenvalues of P

are either 0 or 1.

Quantum State. The trace of a linear operator W is defined as tr(W) := ∑3
8=1 〈k8 | W |k8〉 for any orthonormal

basis {|k8〉 : 8 = 1, 2, . . . , 3}. It is unique as it equals the sum of all eigenvalues of W . A density operator d is a
positive operator with unit trace; a partial density operator d is a positive operator with trace not greater than
1. Let D be the set of density operators, and D≤1 the set of partial density operators. For a density operator d ,
we have the spectral decomposition d =

∑<
8=1 _8 |_8〉〈_8 | where _8 (8 = 1, 2, . . . ,<) are positive eigenvalues. We

call such eigenvectors |_8〉 eigenstates of d explained below. The density operators are usually used to describe
quantum states. Under that decomposition, it means that the quantum system is in state |_8〉 with probability _8 .
When< = 1, we know that the system is surely in state |_1〉 (with probability one), which is the so-called pure
state; otherwise the state is mixed. Both the vector notation |_8〉 and the outer product notation |_8〉〈_8 | could
be employed to denote pure states. An alternative way to describe quantum states is the probabilistic ensemble
{(|k:〉 , ?:) : : = 1, 2, . . .} with

∑
: ?: = 1. It means that the system is the mixture of being in state |k:〉 with

probability weight ?: . Here |k:〉 (: = 1, 2, . . .) are not necessarily orthogonal.

Quantum Operation. Super-operators E on H are linear operators on the (ground) linear operators on H.
Particularly, (completely-positive) super-operators are employed to describe quantum operations. It is usually
described by the Kraus representation E = {E8 : 8 = 1, 2, . . . ,<}, entailing that for a given density operator
d , we have E(d) = ∑<

8=1 E8dE
†
8
. Here the number < of Kraus operators E8 could be bounded by 32 without

loss of generality, since the (ground) linear operators d are Hermitian, i. e. a linear space of dimension 32,
and thereby there are at most 32 linearly independent linear operators on that space. We will use the bracket
notation {E8 : 8 = 1, 2, . . . ,<} to denote (the Kraus representation of) a super-operator E. For two super-
operators E = {E8 : 8 = 1, 2, . . . ,<} and E′ = {E′9 : 9 = 1, 2, . . . ,<′}, their sum E + E′ is given by {E8 : 8 =
1, 2, . . . ,<} ∪ {E′9 : 9 = 1, 2, . . . ,<′}; their composition E ◦ E′ with associative law E ◦ E′ (d) = E(E′ (d)) is
{E8E′9 : 8 = 1, 2, . . . ,< ∧ 9 = 1, 2, . . . ,<′}. Let I be the identity super-operator, and I the identity operator. A
super-operator E is trace-preserving, denoted E h I, if ∑<

8=1 E
†
8
E8 = I, due to

tr(E(d)) = tr

(
<∑
8=1

E8dE
†
8

)
= tr

(
<∑
8=1

E†
8
E8d

)
= tr(Id) = tr(d);

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 7

it is trace-nonincreasing, denoted E ® I, if I −∑<
8=1 E

†
8
E8 is positive, due to

tr(|k 〉〈k |) − tr(E(|k 〉〈k |)) = tr(I |k 〉〈k |) − tr
(
<∑
8=1

E†
8
E8 |k 〉〈k |

)
= tr

((
I −

<∑
8=1

E†
8
E8

)
|k 〉〈k |

)
= 〈k |

(
I −

<∑
8=1

E†
8
E8

)
|k 〉 ≥ 0.

Let S be the set of super-operators, ShI the set of trace-preserving ones, and S®I the set of trace-nonincreasing
ones. Clearly, E ∈ ShI means both E ∈ S®I and E ∈ S¦I .

Quantum Measurement. A finite set of projectors P8 with index 8 ranging over IDX forms a projective mea-
surement if

∑
8∈IDX P8 = I. The measurement aims to extract classical information from quantum states, but

it may destroy the quantum state. Specifically, given a quantum state d , after the above projective measure-
ment, we will get an outcome 8 ∈ IDX with probability ?8 = tr(P8d); when the outcome is 8 , the final state
would be collapsed to P8dP8/?8 . The measurement process is not reversible. For a projector P8 and a quan-
tum state d , tr(P8d) = 0 implies that the outcome 8 does not occur, which holds if and only if supp(P8) is
orthogonal to supp(d). For a super-operator E = {E8 : 8 = 1, 2, . . . ,<} and a pure state |k 〉〈k |, we have
supp(E(|k 〉〈k |)) = span({E8 |k 〉 : 8 = 1, 2, . . . ,<}). Finally we would mention a useful inclusion:

supp(E(|k 〉〈k |)) ⊆
 ∨
:=1

supp(E(|k:〉〈k: |)) (1)

holds for any |k 〉 ∈ span({|k:〉 : : = 1, 2, . . . , }). It follows from the fact: Assume the RHS of (1) is a proper
subspace contained in H; otherwise the inclusion follows trivially. Let |k⊥〉 be an element of H orthogonal to all
supp(E(|k:〉〈k: |)) with : = 1, 2, . . . , . It is also orthogonal to E8 |k:〉 for each 8 = 1, 2, . . . ,< and : = 1, 2, . . . , ,
i. e. 〈k⊥ |E8 |k:〉 = 0. It implies that 〈k⊥ |E8 |k 〉 = 0 holds for each 8 = 1, 2, . . . ,<, and thus |k⊥〉 is orthogonal to
supp(E(|k 〉〈k |)).

3 PROGRAM MODEL AND TERMINATION PROBLEMS
In this section, we introduce a nondeterministic extension of a quantum while-language, and interpret its
operational semantics by two models of quantum Markov decision processes (quantum MDPs). One model is
more complicated but easier to model practical scenarios while the other is simpler and easier to be verified.
They are shown to have the same expressiveness. For ease of verification, we will adopt the latter to represent
nondeterministic quantum programs. Finally, we propose the termination problems of nondeterministic quantum
programs considered in the paper.

3.1 Program Model
Definition 3.1 ([65, Chapter 6]). A nondeterministic quantum program is generated by the following syntax:

(¬ @ := |0〉 | @̄ := * [@̄] | (1; (2 | �<9=1 (9
| if M[@̄] = true then (1
|while M[@̄] = true do (1 .

We briefly explain the syntax as follows:
• The initialization “@ := |0〉” sets quantum variable @ to the basis state |0〉 on H@ , where the Hilbert space
H@ of @ is supposed to have basis states |0〉bool , |1〉bool for @ being Boolean and |0〉int , |1〉int , . . . , |: − 1〉int
for @ being integer. Such subscripts ‘bool’ and ‘int’ can be omitted if they are clear from the context. For

ACM Trans. Softw. Eng. Methodol.

8 • M. Xu, J. Fu, H. Jiang, et al.

any appointed pure state |k 〉 ∈ H, there is a unitary operation U such that the state |k 〉 = U |0〉 can be
prepared.
• The assignment “@̄ := * [@̄]” performs the unitary transformation * on the register @̄. For operations in

classical programs, we can implement the quantum analogue by constructing a corresponding unitary
operator. For example, we can take the unitary operation U+1 =

∑232−1
8=0 |8 + 1 mod 232〉〈8 | as the quantum

counterpart to implement the classical increment assignment G := G + 1 on a 32-bit integer G .
• The statement “(1; (2” represents the sequential composition.
• The nondeterministic choice “�<9=1 (9 ” means that a subprogram (9 (9 = 1, 2, . . . ,<) is nondeterministically

chosen to execute. Without loss of generality, the number of nondeterministic choices is set as a constant
<. Then the nondeterminism will be resolved by some action U 9 taken from the setACT = {U1, U2, . . . , U<},
indicating the subprogram (9 to be executed.
• The statement

if M[@̄] = true then (1

is a quantum analogue of the classical condition statement. As the guard condition, a quantum mea-
surement M = {Mtrue,Mfalse} is performed on the register @̄. If the outcome of the measurement is true
whose probability is ?true = tr(Mtrue [@̄]), the state in register @̄ is collapsed into @̄true := Mtrue [@̄]/?true,
and the subprogram (1 will be applied to @̄true, resulting in (1 [@̄true]; otherwise the state in register @̄
is collapsed into @̄false := Mfalse [@̄]/?false where ?false = tr(Mfalse [@̄]) and the subprogram (1 will not be
applied. It is easy to see ?true +?false = 1. Note that if ?true = 0 (resp. ?false = 0), meaning the outcome true
(resp. false) cannot be observed, this branch is not necessary to be further considered. In the viewpoint of
static analysis, the resulting state would be the mixture of (1 [@̄true] and @̄false with probability ?true and
?false, respectively.
• The loop statement

while M[@̄] = true do (1

admits a projective measurement M = {Mtrue,Mfalse} as the guard condition, so that exactly one of the
two outcome true and false would occur after performing that measurement. If the outcome false is
observed, the program ends in the collapsed state @̄false; if the outcome true occurs, the subprogram (1
will be applied to @̄true and repeat the above process. The resulting state would be a mixture of countably
many states in static analysis.

A nondeterministic quantum program is a finite statement generated by the syntax in Definition 3.1. For a
program P, we could assign each statement with a program location as specified in the left column of Table 1,
in which the nondeterministic choice, the condition and the loop statements are of appropriate wrapping. All
of such locations are collected into the finite set LOC = {ℓ8 : 8 = 1, 2, . . . , =}, in which ℓ= is the end location,
indicating no statement to be executed. Let VAR be the set of program variables of P, and ACT the set of actions
that resolve the nondeterministic choices. For a variable @ ∈ VAR, the state space is H@ . The state space HVAR of
all program variables is simply the tensor product of individual state spaces H@ , i. e. HVAR =

⊗
@∈VAR H@ .

Example 3.2. We here consider a quantum Bernoulli factory protocol [35, 41] constructed on two quantum
coins to serve as a running example of our method. Alice and Bob are meant to bet by applying the protocol,
which in detail is described as:

(1) Two quantum coins, named quoins, are referred to as the left and the right ones.
(2) It nondeterministically chooses one of the two quoins to toss, and the other one is flipped.
(3) If the left quoin is head and the right is tail, then Alice wins; if the right quoin is head and the left is tail,

then Bob wins; otherwise, they end in a draw.

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 9

Table 1. The operational semantics of nondeterministic quantum programs

statements operational semantics

ℓ8 : @ := |0〉
ℓ8+1 : (1

(ℓ8 , d)
g−→ (ℓ8+1,

∑:−1
9=0 |0〉@ 〈 9 | d | 9〉@ 〈0|)

where the subscript @ indicates which variable is involved,
and : = dim(H@)

ℓ8 : @̄ := * [@̄]
ℓ8+1 : (1

(ℓ8 , d)
g−→ (ℓ8+1,UdU†)

ℓ8 : �<9=1
ℓ8+9 : (9

ℓ8+<+1 : (<+1

(ℓ8 , d)
U 9−−→ (ℓ8+9 , d)

ℓ8 : if M[@̄] = true then

ℓ8+1 : (1

ℓ9 : (2

(ℓ8 , d)
g−→ (ℓ8+1,MtruedMtrue)

(ℓ8 , d)
g−→ (ℓ9 ,MfalsedMfalse)

ℓ8 : while M[@̄] = true do

ℓ8+1 : (1

ℓ9 : (2

(ℓ8 , d)
g−→ (ℓ8+1,MtruedMtrue)

(ℓ8 , d)
g−→ (ℓ9 ,MfalsedMfalse)

ℓ= : (ℓ=, d)
g−→ (ℓ=, d)

Intuitively, tossing a quoin would produce the result “head” or “tail” with equal probability, independent to the
initial status of the two quoins, so that it makes the bet fair. However, Alice and Bob want to know whether the
result is defective in the sense that neither Alice nor Bob eventually has a chance of winning. Let us take Alice’s
stand to check the defectiveness in quantum setting, which is similar from Bob’s stand.

In order to describe the process of checking the defectiveness, we design a nondeterministic quantum program
P1 with program variables VAR = {@1, @2} and locations LOC = {ℓ1, ℓ2, . . . , ℓ9} as follows.
ℓ1: @1 := |0〉
ℓ2: @2 := |0〉
ℓ3: @1 := *1 [@1]
ℓ4: @2 := *2 [@2]
ℓ5: while M[@1;@2] = true do
ℓ6: �2

9=1
ℓ7: (-2 ◦ �1) [@1;@2]
ℓ8: (-1 ◦ �2) [@1;@2]

ℓ9:
Both H@1 and H@2 are the one-qubit Hilbert space with orthonormal basis {|0〉 , |1〉} where |0〉 and |1〉 denote
“head” and “tail” respectively. The state space of the two program variables HVAR = H@1 ⊗ H@2 is a two-qubit
Hilbert space. The unitary transformations*8 (8 = 1, 2) transform the initial one-qubit state |0〉 in registers @8 into
any one-qubit state |k 〉 to be prepared. For instance, we choose*8 = {X} where X = |0〉〈1| + |1〉〈0| is the bit-flip,
so that X |0〉 = |1〉 is prepared in our setting. The status of two quoins prior to the while-loop can be viewed as
the composite quantum state @1;@2 := |1, 1〉 ∈ HVAR.

ACM Trans. Softw. Eng. Methodol.

10 • M. Xu, J. Fu, H. Jiang, et al.

For the while-loop, a projective measurement M = {Mtrue,Mfalse} is designed as the guard condition, where
Mtrue = |0, 1〉〈0, 1| and Mfalse = IVAR −Mtrue = |0, 0〉〈0, 0| + |1, 0〉〈1, 0| + |1, 1〉〈1, 1| are referred to the events “the
left quoin is head and the right is tail” and the complement, respectively. Whenever we enter the while loop,
i. e. being at location ℓ6, a nondeterministic choice corresponding to tossing the left or the right quoin should be
resolved by some action taken from the set ACT = {U1, U2}, which leads to location ℓ7 or ℓ8 and the program will
return to location ℓ5 after that. Finally the program would be expected to terminate at location ℓ9.

Tossing the quoin @8 is modelled by applying the Hadamard gate �8 = {H} where H = |+〉〈0| + |−〉〈1| =
|0〉〈+| + |1〉〈−| with |±〉 = (|0〉 ± |1〉)/

√
2 on the 8th qubit, which means that |0〉 is transformed into |+〉 and |1〉 is

transformed into |−〉, resulting in the super-positions of “head” and “tail” with equal probability. Flipping the
quoin @8 is modelled by applying the bit-flip gate -8 = {X} on the 8th qubit.

3.2 Operational Semantics
We have seen that during the execution of a program, the program states should take program locations into
consideration. To this end, we will interpret the operational semantics of a nondeterministic quantum program
P by a model of quantum MDP on the Hilbert space HVAR (quantum information) with program locations LOC
(classical information).

Let us review the model of quantum MDP first.

Definition 3.3. A quantum Markov decision process (quantum MDP for short) on Hilbert space H is a quadruple
((, Σ, E,M), in which
• (= {B8 : 8 = 1, 2, . . . , =} is a finite set of classical states;
• Σ = {U 9 : 9 = 1, 2, . . . ,<} is a finite set of actions;
• E : ((× Σ × () → S®I gives rise to the super-operators E8, 9,: on H that characterize the transitions from

state B8 to B: by taking action U 9 , satisfying that
∑
B: ∈(E8, 9,: h I holds for each B8 ∈ (and each U 9 ∈ Σ;

• M is a projective measurement on Hcq = C ⊗ H with C = span({|B〉 : B ∈ (}).
Note that in the classical model of MDP, there is a probability-allocation function attached to state transitions,

which is generalized to the density operator-allocation function by those super-operators E8, 9,: in Definition 3.3.
Additionally, to extract classical information from quantum states, the projective measurement M is adopted here.

Definition 3.4. For a nondeterministic quantum program P with program variables VAR, actions ACT and
locations LOC, the quantum MDP that interprets P is a quadruple (LOC,ACT,→, {Mt,Mnt}) on Hilbert space
HVAR, where

• the transition relation→, whose entries (ℓ8 , d)
U 9−−→ (ℓ: , d ′) characterize the nondeterministic transitions

from location ℓ8 to ℓ: by taking action U 9 with changing quantum states d to d ′ while (ℓ8 , d)
g−→ (ℓ: , d ′)

characterize the deterministic transitions with the wildcard g of actions in ACT, is given by the quantum
operations in the right column of Table 1, and
• {Mt,Mnt} is a projective measurement on span({|ℓ〉 : ℓ ∈ LOC}), in which Mt = |ℓ=〉〈ℓ= | refers to the end

location of P and Mnt =
∑
ℓ∈LOC\{ℓ= } |ℓ〉〈ℓ | refers to the complement.

Here, the projectorsMt andMnt on the space span({|ℓ〉 : ℓ ∈ LOC}) are short for the trivial extensionsMt⊗IVAR
and Mnt ⊗ IVAR on the product Hilbert space span({|ℓ〉 : ℓ ∈ LOC}) ⊗ HVAR. The transitional super-operator
function E in quantum MDP is defined on two parameters — the locations and the actions. When interpreting
the deterministic statements, the action U ∈ ACT could not be specified and the transition relations keep the
same whenever the wildcard g is thought of an arbitrary action.

When a nondeterministic program P executes, it has finitely many actions U1, U2, . . . , U< to choose at each
location ℓ8 of nondeterministic statements. Each action U 9 ∈ ACT is attached with a series of super-operators

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 11

E8, 9,: , where ℓ: ranges over LOC, satisfying
∑
ℓ: ∈ LOC E8, 9,: h I. The nondeterminism is resolved by a scheduler,

i. e., a sequence of actions. An infinite sequence f = f (1) f (2) · · · with f (8) ∈ ACT is called an infinite scheduler
(scheduler for short), and a finite sequence e = f (1) f (2) · · ·f (:) is a finite scheduler.

Example 3.5. Consider the nondeterministic quantum program P1 with actions ACT = {U1, U2} and locations
LOC = {ℓ1, ℓ2, . . . , ℓ9} in Example 3.2. Since the program terminates at the location ℓ9, we can obtain a projective
measurement {Mt,Mnt} with Mt = |ℓ9〉〈ℓ9 | and Mnt =

∑
ℓ∈LOC\{ℓ9 } |ℓ〉〈ℓ |. Thus we construct a quantum MDP

M1 interpreting P1, which is characterized by the quadruple (LOC,ACT,→, {Mt,Mnt}) with the transition
relation → given by the middle column of Table 2. Here d1 = (I ⊗ 〈0|)d (I ⊗ |0〉) + (I ⊗ 〈1|)d (I ⊗ |1〉) and
d2 = (〈0| ⊗ I)d (|0〉 ⊗ I) + (〈1| ⊗ I)d (|1〉 ⊗ I) are the reduced density operators of d that trace out the states on
H@2 and H@1 , respectively.

Table 2. Translating the nondeterministic quantum program to the quantum MDPs

original statements
in the quantum program P1

from Example 3.2

transition relation→
in the quantum MDPM1

as described in Definition 3.4

transition super-operator E
in the quantum MDPM′1

as described in Definition 3.6

ℓ1 : @1 := |0〉
ℓ2 : · · · (ℓ1, d)

g−→ (ℓ2, |0〉〈0| ⊗ d2)
add Kraus operators
|ℓ2〉〈ℓ1 | ⊗ |0〉〈0| ⊗ I and |ℓ2〉〈ℓ1 | ⊗ |0〉〈1| ⊗ I
to E(®U) for all ®U ∈ Σ

ℓ2 : @2 := |0〉
ℓ3 : · · · (ℓ2, d)

g−→ (ℓ3, d1 ⊗ |0〉〈0|)
add Kraus operators
|ℓ3〉〈ℓ2 | ⊗ I ⊗ |0〉〈0| and |ℓ3〉〈ℓ2 | ⊗ I ⊗ |0〉〈1|
to E(®U) for all ®U ∈ Σ

ℓ3 : @1 := *1 [@1]
ℓ4 : · · · (ℓ3, d)

g−→ (ℓ4,*1 (d))
add Kraus operator |ℓ4〉〈ℓ3 | ⊗ X ⊗ I
to E(®U) for all ®U ∈ Σ

ℓ4 : @2 := *2 [@2]
ℓ5 : · · · (ℓ4, d)

g−→ (ℓ5,*2 (d))
add Kraus operator |ℓ5〉〈ℓ4 | ⊗ I ⊗ X
to E(®U) for all ®U ∈ Σ

ℓ5 : while M[@1;@2] = true do

ℓ6 : · · ·
ℓ9 : · · ·

(ℓ5, d)
g−→ (ℓ6,MtruedMtrue)

(ℓ5, d)
g−→ (ℓ9,MfalsedMfalse)

add Kraus operators |ℓ6〉〈ℓ5 | ⊗ |0, 1〉〈0, 1| and
|ℓ9〉〈ℓ5 | ⊗ (|0, 0〉〈0, 0| + |1, 0〉〈1, 0| + |1, 1〉〈1, 1|)
to E(®U) for all ®U ∈ Σ

ℓ6 : �2
9=1

ℓ7 : · · ·
ℓ8 : · · ·

(ℓ6, d)
U1−−→ (ℓ7, d)

(ℓ6, d)
U2−−→ (ℓ8, d)

add Kraus operator |ℓ7〉〈ℓ6 | ⊗ IVAR
to E(®U) for all ®U ∈ Σ with ®U (6) = U1,
add Kraus operator |ℓ8〉〈ℓ6 | ⊗ IVAR
to E(®U) for all ®U ∈ Σ with ®U (6) = U2

ℓ5 : while · · · do
ℓ7 : (-2 ◦ �1) [@1;@2]

(ℓ7, d)
g−→ (ℓ5, (-2 ◦ �1) (d))

add Kraus operator |ℓ5〉〈ℓ7 | ⊗ H ⊗ X
to E(®U) for all ®U ∈ Σ

ℓ5 : while · · · do
ℓ8 : (-1 ◦ �2) [@1;@2]

(ℓ8, d)
g−→ (ℓ5, (-1 ◦ �2) (d))

add Kraus operator |ℓ5〉〈ℓ8 | ⊗ X ⊗ H
to E(®U) for all ®U ∈ Σ

ℓ9: (ℓ9, d)
g−→ (ℓ9, d)

add Kraus operator |ℓ9〉〈ℓ9 | ⊗ IVAR
to E(®U) for all ®U ∈ Σ

ACM Trans. Softw. Eng. Methodol.

12 • M. Xu, J. Fu, H. Jiang, et al.

Starting at the location ℓ1 and given a finite action sequence e = U1 U1 U1 U1 U1 U2 U1, the run of the quantum
MDPM1 generated by e is

(;1, d)
U1−−→ (ℓ2, |0〉〈0| ⊗ d2)

U1−−→ (ℓ3, |0, 0〉〈0, 0|)
U1−−→ (ℓ4, |1, 0〉〈1, 0|)

U1−−→ (ℓ5, |1, 1〉〈1, 1|)
U1−−→ (ℓ6, |1, 1〉〈1, 1|)

U2−−→ (ℓ8, |1, 1〉〈1, 1|)
U1−−→ (ℓ5, |0,−〉〈0,−|).

The quantum state would evolve into |0,−〉〈0,−| whileM1 runs into the location ℓ5. �

Sometimes, we would focus on the structure of while-loop that plays a central role in termination analysis. It is
a subclass of nondeterministic quantum programs, which terminates when refuting the guard condition instead
of entering the end location. Thus the location information can be omitted for brevity. We could interpret the
while-loop by the model of quantum MDP as follows:

Definition 3.6 ([47, Definition 1]). For a nondeterministic quantum while-loop P with program variables VAR
and actions ACT, the quantum MDP that interprets P is a triple (Σ, E, {Mtrue,Mfalse}) on Hilbert space HVAR,
where:

• Σ = ACT;
• E : Σ→ ShI gives rise to the super-operators E 9 on HVAR by taking action U 9 ;
• {Mtrue,Mfalse} is a projective measurement on HVAR with the outcomes true and false referring to the

nontermination and the termination, respectively.

It is worth noting that in this model, a measurement is performed on the current quantum state to determine
whether the program has already terminated before taking each action. In case the program does not terminate,
an action U 9 will be nondeterministically chosen and the corresponding super-operator E 9 will be applied to the
current quantum state. The program keeps running step by step like the above execution until it terminates, but
it is unnecessary to consider the change on the location after executing every step.

Example 3.7. Review the nondeterministic quantum program P1 in Example 3.2.There is an embedded quantum
while-loop P2 (from location ℓ5 to ℓ9) with guard condition {Mtrue,Mfalse}. We can interpret it simply by the
quantum MDPM2 = (Σ, E, {Mtrue,Mfalse}) with Σ = {U1, U2} and the input state d0 = |1, 1〉〈1, 1|, where

E(U1) = E1 = -2 ◦ �1 = {H ⊗ X}
E(U2) = E2 = -1 ◦ �2 = {X ⊗ H}.

We define the Kraus operators E1 = H ⊗ X and E2 = X ⊗ H on HVAR for use afterwards. �

Although the model in Definition 3.4 seems much easier to manipulate than that in Definition 3.6, they are
of the same expressiveness indicated by the following lemma. Here, the same expressiveness means that for
each scheduler f1 in the model in Definition 3.6, there exists a corresponding scheduler f2 in the model in
Definition 3.4 such that two models embrace the same termination probability, and vice versa. Hence, we can
freely choose one of the two definitions for convenience. By this result, we indicate that nondeterministic quantum
while-loops are generic to describe nondeterministic quantum programs, and thus we will mainly adopt the
model in Definition 3.6 for ease of verification.

Lemma 3.8. The model in Definition 3.4 has the same expressiveness as that in Definition 3.6.

Proof. Given a quantum MDP (Σ, E, {Mtrue,Mfalse}) on Hilbert space HVAR in Definition 3.6, we can obtain
another quantum MDP (LOC,ACT,→, {Mt,Mnt}) on Hilbert space HVAR, as described in Definition 3.4, by
introducing two locations ℓ1 and ℓ2. Then every transition of E makes a self-loop at ℓ1 if it is not terminating,
otherwise is led to ℓ2. Formally it is constructed as:
• setting the location set LOC = {ℓ1, ℓ2}, so that Mt = |ℓ2〉〈ℓ2 | and Mnt = |ℓ1〉〈ℓ1 |,

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 13

• setting the action set ACT = Σ,
• (ℓ1, d)

U 9−−→ (ℓ2,MfalsedMfalse) and (ℓ1, d)
U 9−−→ (ℓ1, d ′) follow from d ′ = E 9 (MtruedMtrue) where E 9 = E(U 9)

for U 9 ∈ Σ.
Conversely, given a quantum MDP (LOC,ACT,→, {Mt,Mnt}) with locations LOC = {ℓ1, ℓ2, . . . , ℓ=} on Hilbert

space HVAR in Definition 3.4, we can obtain another quantum MDP (Σ, E, {Mtrue,Mfalse}) on the product Hilbert
space C ⊗ HVAR with C = span({|ℓ〉 : ℓ ∈ LOC), as described in Definition 3.6, by quantitizing the location
information LOC into C. Formally it is constructed as:
• setting the action set Σ = ACT= that is the =-fold ofACT, whose elements are =-tuples with 8th component

specifying the action at location ℓ8 as in the original quantum MDP (LOC,ACT,→, {Mt,Mnt}),
• E(®U) (∑=

8=1 |ℓ8〉〈ℓ8 | ⊗ d8) =
∑=
8=1

∑
ℓ:8 ∈LOC |ℓ:8 〉〈ℓ:8 | ⊗ d:8 , where E(®U) is the super-operator of E by taking

an action ®U = (U 91 , U 92 , . . . , U 9=) ∈ Σ, follows from the series of (ℓ8 , d8)
U 98−−→ (ℓ:8 , d:8) with ℓ:8 ranging over

LOC,
• setting Mfalse = |ℓ=〉〈ℓ= | ⊗ IVAR and Mtrue =

∑
ℓ∈LOC\{ℓ= } |ℓ〉〈ℓ | ⊗ IVAR.

From the above mutual construction, either model can simulate the other, which derives the same expressiveness
of two models. �

Example 3.9. For the quantum MDPM1 = (LOC,ACT,→, {Mt,Mnt}) in Example 3.5, we can construct an
equally expressive quantum MDPM′1 = (Σ, E, {Mtrue,Mfalse}) with the following components:
• the input state |ℓ1〉〈ℓ1 | ⊗ d0 for the input state d0 ofM1,
• the action set Σ = ACT9 as |LOC| = 9,
• the transition super-operator E is constructed part by part in the right column of Table 2 and summarized

as

E(®U) =


|ℓ2〉〈ℓ1 | ⊗ |0〉〈0| ⊗ I, |ℓ2〉〈ℓ1 | ⊗ |0〉〈1| ⊗ I,
|ℓ3〉〈ℓ2 | ⊗ I ⊗ |0〉〈0| , |ℓ3〉〈ℓ2 | ⊗ I ⊗ |0〉〈1| ,
|ℓ4〉〈ℓ3 | ⊗ X ⊗ I, |ℓ5〉〈ℓ4 | ⊗ I ⊗ X,
|ℓ6〉〈ℓ5 | ⊗ |0, 1〉〈0, 1| , |ℓ9〉〈ℓ5 | ⊗ (|0, 0〉〈0, 0| + |1, 0〉〈1, 0| + |1, 1〉〈1, 1|),
|ℓ7〉〈ℓ6 | ⊗ IVAR, |ℓ5〉〈ℓ7 | ⊗ H ⊗ X, |ℓ5〉〈ℓ8 | ⊗ X ⊗ H, |ℓ9〉〈ℓ9 | ⊗ IVAR


if the 6th component ®U (6) of the 9-tuple ®U ∈ Σ is U1, while replacing the underlined Kraus operator
|ℓ7〉〈ℓ6 | ⊗ IVAR with |ℓ8〉〈ℓ6 | ⊗ IVAR if ®U (6) = U2, and

• the projectors Mfalse = |ℓ9〉〈ℓ9 | ⊗ IVAR and Mtrue =
∑
ℓ∈LOC\{ℓ9 } |ℓ〉〈ℓ | ⊗ IVAR. �

An execution scheduler of a program can be represented as a sequence of actions as in Definition 3.6. We define
the super-operator FU 9

= E 9 ◦ {Mtrue} (U 9 ∈ Σ) as the composite quantum operation upon the measure outcome
of nontermination; let e ↑ : be the finite prefix of e with length : for : ≤ |e |, and e ↓ : the suffix obtained by
removing the :-prefix from e . Then we have the inductive construction of the super-operator over a sequence of
actions

Fe =
{
I if |e | = 0

Fe↓1 ◦ Fe↑1 if |e | ≥ 1.

For example, for a finite schedule e = U1U2U3, we have e ↑ 1 = U1, e ↓ 1 = U2U3, and Fe = FU1U2U3 = FU2U3 ◦ FU1 =
Fe↓1◦Fe↑1.The construction of the super-operator over a sequence of actions can be extended to infinite schedulers
f .

From now on, we employ the model of quantum MDP (Σ, E, {Mtrue,Mfalse}) in Definition 3.6 to represent
nondeterministic quantum programs P. The size of P is dominated by O(< · 34) where< = |Σ| and 3 = dim(H),
since E has< super-operators E 9 for U 9 ∈ Σ and each super-operator E 9 has at most 32 Kraus operators that

ACM Trans. Softw. Eng. Methodol.

14 • M. Xu, J. Fu, H. Jiang, et al.

are 3-by-3 matrices. For brevity, we measure the size of P simply by the two parameters< and 3 . All the< · 34
numbers in E are supposed to be algebraic numbers that are roots of the polynomials with rational coefficients.
Algebraic numbers are widely used in quantum computing, such as 1/

√
2 appearing in the Hadamard gate and

the imaginary unit i appearing in the Pauli gate i |1〉〈0| − i |0〉〈1|. Arithmetic operations (addition, subtraction,
multiplication and division) on algebraic numbers are further supposed to be of unit cost as usual, i. e. O(1).
These basics will build up our complexity analysis on later.

3.3 Termination Problems
We are to deliver the termination probabilities of nondeterministic quantum programs and the termination
problems.

Definition 3.10 (Termination Probability). For a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse})
in Definition 3.6 and an input state d ∈ D,

(1) the (accumulative) termination probability under a finite scheduler e is

TPe (d) =
|e |∑
8=0

tr(MfalseFe↑8 (d));

(2) the termination probability under an infinite scheduler f is

TPf (d) =
∞∑
8=0

tr(MfalseFf↑8 (d));

(3) the termination probability (for conservation) of P is TP(d) = inff∈Σl TPf (d).

It is not hard to see TPe (d) = tr(d) − tr(MtrueFe (d)).

Problem 3.11 (Termination). Given a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) and an
input state d ∈ D, is d terminating with probability one under all schedulers f , i. e. ∀f ∈ Σl : TPf (d) = 1? If
not, how can a scheduler f be synthesized to evidence the nontermination?

Problem 3.12 (Weak Termination). Given a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) and
an input state d ∈ D, is d terminating with probability one under some scheduler f , i. e. ∃f ∈ Σl : TPf (d) = 1?

Problem 3.13 (Optimal Termination). Given a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse})
and an input state d ∈ D, what is the angelic (resp. demonic) scheduler f that maximizes (resp. minimizes) the
termination probability, i. e. argmaxf∈Σl TPf (d) (resp. argminf∈Σl TPf (d))?

Problem 3.14 (Universal Termination). Given a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}),
are all input states d terminating with probability one under their respective schedulers f , i. e.

∀ d ∈ D ∃f ∈ Σl : TPf (d) = 1? (2a)

If yes, a further question asks whether there is a scheduler f that forces all input states d to be terminating with
probability one, i. e.

∃f ∈ Σl ∀ d ∈ D : TPf (d) = 1, (2b)
together with how to synthesize such a universal scheduler f ; otherwise, how can an input d be provided to
refute the universal termination?

The first three problems are specified with an input state, while the last one is not, since it concerns the
termination on all input states that is a “universal” problem. Specifically, Problem 3.11 requires the (strong)
termination under all schedulers, Problem 3.12 requires the weak termination under some scheduler, both are

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 15

concerned with qualitative properties. Problem 3.13 is on quantitative property, which seems to be harder than
Problems 3.11 & 3.12, since for a given input state d , the program terminates with probability one under all
schedulers if TP(d) = inff∈Σl TPf (d) = 1 while it terminates under some scheduler if supf∈Σl TPf (d) = 1.
However, as shown in [71, Example 1], such an optimal scheduler does not exist, thus Problem 3.13 is not well-
posed sometimes. We will solve Problems 3.11 & 3.14 in the coming sections, and left the remaining Problem 3.12
as future work.

4 COMPUTING THE REACHABLE SPACES
In this section, we introduce the reachable spaces for a nondeterministic quantum program starting from an input
state. They over-approximate the set of reachable states in order to obtain an explicit algebraic structure, which is
crucial for an algorithmic analysis. We review the notion of reachable space together with the construction method
presented in [47]. Then we propose a more precise notion of reachable space. Two kinds of reachable spaces are
said to be of types I and II respectively, and both are computable in polynomial time w. r. t. the dimension of the
state space H and the number of actions in ACT as the existing literature [47].

Definition 4.1 (Reachable Set). Given a nondeterministic quantum program P and an input state d ∈ D, the set
of reachable states of P starting from d is Ψ(P, d) = {Fe (d) : e ∈ Σ∗}.

The elements W in the set Ψ(P, d) are certainly reachable states from d . Here, the reachability is specified in a
qualitative sense that requires a unit probability of reachability under some finite scheduler e . Can we specify
the reachability in a quantitative sense? To answer it, we investigate what states are in a given state d ∈ D.
Supposing that d is the uniform distribution I/3 , we know that:
• any pure state |k 〉 ∈ H is in d , which is with probability 1

3
,

• any state W ∈ D is also in d , which is with probability 1/(3 · _max) where _max is the maximal eigenvalue
of W .

Overall, a state is in d , provided that it has a positive probability in some probabilistic ensemble of d . Developing
this concept, a state is called reachable from d , provided that it has a positive probability of reachability under
some finite scheduler e . So the eigenstates |_〉 with positive eigenvalue _ of W ∈ Ψ(P, d) are (pure) reachable
states; and even the elements |k 〉 in the support of W are (pure) reachable states too, since, by [56, Exercise 2.73]
(refer to Appendix A for self-containedness), there is a minimal probabilistic ensemble of W containing |k 〉 with
positive probability ? , i. e. W = ? |k 〉〈k | + ∑

: ?: |k:〉〈k: | for some |k:〉 ∈ supp(W) with the probability sum
? +∑

: ?: = 1.
It is obvious to see that Ψ(P, d) is a countable set without explicit algebraic structure in general, which yields

nontrivial hardness in verification. To overcome it, we would like to introduce the notion of reachable space.

Definition 4.2 (I-Reachable Space [47, Definition 3]). Given a nondeterministic quantum program P and an
input state d ∈ D, the type I reachable space of P starting from d is

Φ(P, d) =
∨

W ∈Ψ(P,d)
supp(W).

From the above definition, we can see that for two elements W1 and W2 of Ψ(P, d) that are reachable under
finite schedulers e1 and e2 respectively and for |k8〉 ∈ supp(W8) (8 ∈ {1, 2}), all super-positions |k 〉 of |k1〉 and
|k2〉 are elements of Φ(P, d), but they are unnecessarily required to be reachable since the construction does not
guarantee the existence of a common finite scheduler e that generates |k 〉. In this sense, the I-reachable space is
known to be a superset of the reachable set. More precisely, we have:
• Ψ(P, d) ⊂ D(H) since Ψ(P, d) is countable while D(H) is a continuum that is uncountable,
• Φ(P, d) ⊆ H, and further

ACM Trans. Softw. Eng. Methodol.

16 • M. Xu, J. Fu, H. Jiang, et al.

• Ψ(P, d) ⊂ D(Φ(P, d)).
Thus, to show that a property holds on the reachable set Ψ(P, d), it is sufficient to show that the property holds
on all density operators D(Φ(P, d)) on the reachable space Φ(P, d). The latter has the nice algebraic structure
of a finite-dimensional linear space, which is promising to be effectively verified.

To get an explicit description of the reachable space, we resort to the following program model that has only
one action and thus resolves nondeterminism:

Definition 4.3 (Average Quantum Program [47, Definition 4]). Let P = (Σ, E, {Mtrue,Mfalse}) with Σ = {U 9 : 9 =
1, 2, . . . ,<} and E(U 9) = E 9 be a nondeterministic quantum program. Then the average quantum program P̄ of
P is the pair (Ē, {Mtrue,Mfalse}), where
• Ē is the arithmetic average of E, i. e., for any program state d ∈ D, the effect of the average super-operator
Ē performed on d is 1

<

∑<
9=1 E 9 (d).

Lemma 4.4 ([47, Lemma 1]). Given a nondeterministic quantum program P and an input state d ∈ D, the
I-reachable subspace of P starting from d is that of the quantum program P̄ averaging P starting from d , i. e.
Φ(P, d) = Φ(P̄, d).

This lemma reveals that P agrees with P̄ on the I-reachable subspace, despite P does not on the reachable
set. Using it, the I-reachable space of P can be obtained as the least fixedpoint of the ascending chain of linear
subspaces of H:

supp(r0) ⊆ supp(r0) ∨ supp(r1)
⊆ supp(r0) ∨ supp(r1) ∨ supp(r2)
⊆ · · · ,

(3)

where r8 = F̄ 8 (d) with F̄ = Ē ◦ {Mtrue}. Namely, we denote this chain by S0 ⊆ S1 ⊆ S2 ⊆ · · · , in which each
linear space S8 is computed upon the average quantum program P̄. The following lemma gives an upper bound
for the occurrence of the least fixedpoint in the ascending chain, thus establishing the computability. Actually, it
is embedded in the complexity analysis of [47, Algorithm 1]. To be self-contained, we deliver it as an independent
result with proof.

Lemma 4.5. Let S0 ⊆ S1 ⊆ S2 ⊆ · · · be the ascending chain of nonnull linear subspaces S8 ⊆ H, as defined in (3).
Then there is an integer ℓ ≤ dim(H) − 1 such that S: = Sℓ holds for all : > ℓ .

Proof. The function � mapping from S8 to S8+1 (8 ≥ 0) can be formulated as a monotonic function

� (X) = X ∨
∨
|k 〉∈X

supp(F̄ (|k 〉〈k |)) .

Meanwhile, all subspaces Sall of H form a complete lattice (Sall, ⊆, inf, sup) by taking ‘inf ’ as the meet
∧

=
⋂

and ‘sup’ as the join
∨
. By Knaster–Tarski fixedpoint theorem [14, 54], we have that the least fixedpoint occurs

upon Sℓ = Sℓ+1, which ℓ is bounded by dim(H) − 1 since S8 are nonnull subspaces of H. �

The procedure of computing the I-reachable space Φ(P, d) is stated in Algorithm 1 with complexity analysis
below.

Complexity. The Kraus representation of E 9 are known as the input information of P. For convenience, we
do not compute the simplest Kraus representation of F̄ whose number of Kraus operators can be bounded by
32 here, but just use the average Kraus operators of E 9 , since the simplest Kraus representation obtained by
quantum process tomography [56, Subsection 8.4.2] costs additionally O(312) operations. Note that there are less
than 3 times of entering the inner loop in Line 6. Each inner loop performs ; times of matrix-vector multiplication

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 17

Algorithm 1 Computing the I-Reachable Space [47, Algorithm 1]
Input: a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) with Σ = {U 9 : 9 = 1, 2, . . . ,<} and
E(U 9) = E 9 over H with dimension 3 , and an input state d ∈ D;

Output: an orthonormal basis � of Φ(P, d).
1: let F̄ = 1

<

∑<
9=1 E 9 ◦ {Mtrue} be the average super-operator;

2: let {F9 : 9 = 1, 2, . . . , ;} be a Kraus representation of F̄ ;
3: compute an orthonormal basis �0 of supp(d), and �−1 ← ∅;
4: for 8 ← 1 to 3 − 1 do
5: �8 ← �8−1;
6: for all |k 〉 ∈ �8−1 \ �8−2 do
7: + ← {F9 |k 〉 : 9 = 1, 2, . . . , ;};
8: compute an orthonormal basis �′ of + complement to �8 ;
9: �8 ← �8 ∪ �′;

10: if �8 = �8−1 or |�8 | = 3 then break;
11: return �8 .

and ; times of computing orthocomplement, where ; is bounded by< ·32, as the factor< comes from the number
of actions in P and the factor 32 comes from the number of Kraus operators of the super-operators E 9 . The
matrix-vector multiplication F9 |k 〉 is in O(32), and computing orthocomplement of F9 |k 〉 is also in O(32) by
normalizing the difference

F9 |k 〉 −
∑
|i 〉∈�8

〈i | F9 |k 〉 |i〉

(if it is nonzero) as the standard Gram–Schmit procedure. Hence Algorithm 1 is in time O(< · 35). �

Example 4.6. Continue to consider the nondeterministic quantum programP1 in Example 3.7, the average super-
operator is F̄ = 1

2 (FU1 + FU2). Since
1
2FU8 (d) =

1
2 (E8Mtrue)d (E8Mtrue)† for 8 ∈ {1, 2}, the Kraus representation of

F̄ can be {F1, F2}, where

F1 = 1√
2
E1Mtrue =

1√
2
(|+, 1〉〈0, 0| + |−, 1〉〈1, 0| + |−, 0〉〈1, 1|),

F2 = 1√
2
E2Mtrue =

1√
2
(|1, +〉〈0, 0| + |0, +〉〈1, 0| + |0,−〉〈1, 1|).

By Algorithm 1, for the given input state d0 = |@1, @2〉〈@1, @2 | = |1, 1〉〈1, 1|, the I-reachable space can be inductively
computed as follows.

(1) Initially, we have S0 = supp(d0) = span({|1, 1〉}).
(2) To get the next subspace S1 along the ascending chain, for the basis element |1, 1〉 in S0, we compute

F1 |1, 1〉 = 1√
2
|−, 0〉 ,

F2 |1, 1〉 = 1√
2
|0,−〉 .

The former operator F1 |1, 1〉 is already orthogonal to S0 and can be normalized to |−, 0〉; the latter operator
F2 |1, 1〉 is also orthogonal to S0 but gives another orthogonal element (|+, 0〉 −

√
2 |0, 1〉)/

√
3 by normal-

izing 1√
2
|0,−〉 − 1√

2
〈−, 0|0,−〉 |−, 0〉. Thus the orthonormal basis complement to S0 is {|−, 0〉 , (|+, 0〉 −

√
2 |0, 1〉)/

√
3}, and we get S1 = span({|1, 1〉 , |−, 0〉 , (|+, 0〉 −

√
2 |0, 1〉)/

√
3}).

ACM Trans. Softw. Eng. Methodol.

18 • M. Xu, J. Fu, H. Jiang, et al.

(3) To get the subspace S2, for the newly-produced basis elements |−, 0〉 and (|+, 0〉 −
√
2 |0, 1〉)/

√
3 in S1, we

have
F1 |−, 0〉 = 1√

2
|1, 1〉 ,

F2 |−, 0〉 = − 1
2 |−, +〉 ,

F1 1√
3
(|+, 0〉 −

√
2 |0, 1〉) = 1√

6
|0, 1〉 ,

F2 1√
3
(|+, 0〉 −

√
2 |0, 1〉) = 1√

6
|+, +〉 .

Thus an orthonormal basis complement to S1 is {(−
√
2 |+, 0〉−|0, 1〉)/

√
3}, andwe getS2 = span({|1, 1〉 , |−, 0〉 ,

(|+, 0〉 −
√
2 |0, 1〉)/

√
3, (−
√
2 |+, 0〉 − |0, 1〉)/

√
3}). By dim(HVAR) = 3 = 4 = dim(S2) we have S2 = HVAR.

Hence the least fixedpoint of the ascending chain occurs, which yields the I-reachable space Φ(P1, d0) = HVAR. �

In the following, we will have a deeper observation of the reachable set and the reachable space. Since the
former is a countable set and the latter is a continuum, the latter is possibly a much larger superset of the former.
We are to narrow the over-approximation of the reachable set using other algebraic structures, instead of the
I-reachable space. One promising way is to use the linearly independent basis of Hermitian operators on H, say

{|8〉〈8 | : 1 ≤ 8 ≤ 3} ∪ {(|8〉〈 9 | + | 9〉〈8 |)/
√
2 : 1 ≤ 8 < 9 ≤ 3}

∪ {(i |8〉〈 9 | − i | 9〉〈8 |)/
√
2 : 1 ≤ 8 < 9 ≤ 3}.

(4)

(When the Hilbert space H in consideration is exactly on the :-qubit system, i. e. 3 = 2: for some integer : ,
an alternative way is to use the 4: linearly independent elements

⊗:

8=1 W8 , where W8 is one of Pauli operators I,
X = |0〉〈1| + |1〉〈0|, Y = i |0〉〈1| − i |0〉〈1| and Z = |0〉〈0| − |1〉〈1|.) Although the general state is expressed by all
32 basis elements in (4), all reachable states might be expressed by only a part of these basis elements. So, using
as few as possible basis elements to express all pure reachable states yields a more precise notion of reachable
space. In the setting of reachability analysis, at most 32 pure reachable states could be served as the linearly
independent basis ofH(H) that we require. To this end, we resort to the following operator-level program that
characterizes the operations between pure reachable states.

Definition 4.7 (Operator-level Program). Let P = (Σ, E, {Mtrue,Mfalse}) be a nondeterministic quantum program
with E 9 = {E9,: : : = 1, 2, . . . , 9 }. Then the operator-level program P̂ of P is the triple (Σ̂, E, {Mtrue,Mfalse}),
where

• Σ̂ = {U 9,: : 9 = 1, 2, . . . ,< ∧ : = 1, 2, . . . , 9 } is a finite set of actions;
• E : Σ̂ → L gives rise to the linear operators E9,: taken action U 9,: , which are obtained from the Kraus

representation
⋃<
9=1{E9,: : : = 1, 2, . . . , 9 } of

∑<
9=1 E 9 .

Rigorously speaking, the operator-level program P̂ is not a nondeterministic quantum program described
in Definition 3.6, since the quantum operations do not meet the trace-preserving restriction generally, i. e.,
{E9,: } h I holds for all actions U 9,: ∈ Σ̂ where {E9,: } denotes the super-operator that has the unique Kraus
operator E9,: . However, dropping this restriction does not affect the qualitative termination TP(d) = 1 considered
in the paper, and we would study the qualitative termination of the operator-level program afterwards. For
convenience, the notation Fe is adapted to Fe , e. g. FU 9,:

= E9,:Mtrue and Fe = Fe↓1Fe↑1.

Definition 4.8 (II-Reachable Space). Given a nondeterministic quantum program P and an input pure state
d = |_〉〈_ | ∈ D, the type II reachable space of P starting from d is Υ(P, d) = span(Ψ(P̂, d)), where P̂ is the
operator-level program of P as in Definition 4.7.

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 19

It is not hard to see that the reachable setΨ(P, d) is over-approximated by the II-reachable space Υ(P, d), since i)
all elements W ∈ Ψ(P, d) can be linearly expressed by those elements in Ψ(P̂, d) and ii) Υ(P, d) = span(Ψ(P̂, d)).

For an input pure state d = |_〉〈_ |, we compute the II-reachable space as the least fixedpoint of the ascending
chain of linear subspaces ofH(H):

span({{Fe }(d) : e ∈ Σ̂∗ ∧ |e | = 0}) ⊆ span({{Fe }(d) : e ∈ Σ̂∗ ∧ |e | ≤ 1})
⊆ span({{Fe }(d) : e ∈ Σ̂∗ ∧ |e | ≤ 2})
⊆ · · · ,

(5)

where the notation {Fe } in bracket denotes a super-operator. The following lemma gives an upper bound for the
occurrence of the least fixedpoint in the ascending chain.

Lemma 4.9. Let Θ0 ⊆ Θ1 ⊆ Θ2 ⊆ · · · be the ascending chain of nonnull linear subspaces Θ8 ⊆ H(H), as defined
in (5). Then there is an integer ℓ ≤ dim(H)2 − 1 such that Θ: = Θℓ holds for all : > ℓ .

Proof. The proof is similar to that of Lemma 4.5. The function � from Θ8 to Θ8+1 (8 ≥ 0) can be formulated as
a monotonic function

� (Y) = span(Y ∪ {{FU }(W) : W ∈ Y ∧ U ∈ Σ̂}) .

Meanwhile, all subspacesΘall ofH(H) form a complete lattice (Θall, ⊆, inf, sup) by taking ‘inf ’ as the meet
∧

=
⋂

and ‘sup’ as the join
∨
. By Knaster–Tarski fixedpoint theorem [14, 54], we have that the least fixedpoint occurs

upon Θℓ = Θℓ+1, where ℓ is bounded by dim(H)2 − 1 since Θ8 are nonnull subspaces ofH(H). �

The procedure of computing the II-reachable space Υ(P, d0) is stated in Algorithm 2 with complexity analysis
below.

Algorithm 2 Computing the II-Reachable Space
Input: a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) with Σ = {U 9 : 9 = 1, 2, . . . ,<},
E(U 9) = E 9 and E 9 = {E9,: : : = 1, 2, . . . , 9 } overHwith dimension3 , and an input pure state d0 = |_〉〈_ | ∈ D;

Output: a linearly independent basis \ of Υ(P, d0) whose elements are pure states.
1: let Σ̂ = {U 9,: : 9 = 1, 2, . . . ,< ∧ : = 1, 2, . . . , 9 }, and E(U 9,:) = E9,: ;
2: let P̂ = (Σ̂, E, {Mtrue,Mfalse}) be the operator-level program of P;
3: FU 9,:

← E9,:Mtrue with 9 = 1, 2, . . . ,< and : = 1, 2, . . . , 9 ;
4: �0 ← {|_〉}, �−1 ← ∅, and \0 ← {d0};
5: for 8 ← 1 to 32 − 1 do
6: �8 ← �8−1 and \8 ← \8−1;
7: for all |k 〉 ∈ �8−1 \ �8−2 do
8: + ← {FU 9,:

|k 〉 /‖FU 9,:
|k 〉 ‖ : 9 = 1, 2, . . . ,< ∧ : = 1, 2, . . . , 9 };

9: find a maximal subset �′ of + , such that \ ′ = {|k ′〉〈k ′ | : |k ′〉 ∈ �′} is a linearly independent basis
complement to \8 ;

10: �8 ← �8 ∪ �′ and \8 ← \8 ∪ \ ′;
11: if �8 = �8−1 or |�8 | = 32 then break;
12: return \8 .

ACM Trans. Softw. Eng. Methodol.

20 • M. Xu, J. Fu, H. Jiang, et al.

Complexity. Note that there are less than 32 times of entering the inner loop in Line 7. Each inner loop performs
at most< · 32 times of matrix-vector multiplication together with normalization and at most< · 32 times of
checking the linear independence, as the factor< comes from the number of actions in P and the factor 32 comes
from the number of Kraus operators of E 9 . The matrix-vector multiplication is in O(32), the normalization is in
O(3), and checking the linear independence can be in O(34) with embedding into the orthonormalization of
the linearly independent basis. That is, \8 is a linearly independent basis if and only if there is an orthonormal
basis o8 such that span(\8) = span(o8), in which each element can be obtained in O(34) by the Gram–Schmit
procedure. Hence Algorithm 2 is in time O(< · 38). �

Example 4.10. Reconsider the programP2 in Example 3.7, the operator-level program P̂ = (Σ̂, E, {Mtrue,Mfalse})
of P2 provides
• the set of actions Σ̂ = {U1,1, U2,1};
• linear operators E(U1,1) = E1,1 = H ⊗ X and E(U2,1) = E2,1 = X ⊗ H.

We define FU1,1 = E1,1Mtrue and FU2,1 = E2,1Mtrue. By Algorithm 2, for the input pure state d = |1, 1〉〈1, 1|, the
II-reachable space can be computed as follows.

(1) Initially, we have �0 = {|1, 1〉} and \0 = {|1, 1〉〈1, 1|}.
(2) Then, we compute

FU1,1 |1, 1〉 /‖FU1,1 |1, 1〉 ‖ = |−, 0〉 ,
FU2,1 |1, 1〉 /‖FU2,1 |1, 1〉 ‖ = |0,−〉 .

So we have + = {|−, 0〉 , |0,−〉}. Since the two pure states in + have density operators that form a linearly
independent basis complement to \0, we obtain �1 = �0 ∪+ = {|1, 1〉 , |−, 0〉 , |0,−〉} and \1 = {|k 〉〈k | :
k ∈ �1} = {|1, 1〉〈1, 1| , |−, 0〉〈−, 0| , |0,−〉〈0,−|}.

(3) Repeating this process, we have

�2 = {|1, 1〉 , |−, 0〉 , |0,−〉 , |−, +〉 , |+, 1〉 , |1, +〉},

�3 = �2 ∪ {(|−, 0〉 −
√
2 |1, 1〉)/

√
3, (
√
2 |0, 0〉 − |1, +〉)/

√
3},

�4 = �3 .

In detail, we name the eight elements in �3 by |k1〉 = |1, 1〉, |k2〉 = |−, 0〉, |k3〉 = |0,−〉, |k4〉 = |−, +〉,
|k5〉 = |+, 1〉, |k6〉 = |1, +〉, |k7〉 = (|−, 0〉 −

√
2 |1, 1〉)/

√
3 and |k8〉 = (

√
2 |0, 0〉 − |1, +〉)/

√
3, whose outer

product form |k8〉〈k8 | are reachable states of the operator-level program P̂. The eight outer products
|k8〉〈k8 | make up the set \3, which is sufficient to linearly express any reachable pure state of P̂. For
instance, FU2,1 |1, +〉 = |0, 0〉 and its outer product form |0, 0〉〈0, 0| is a reachable state of P̂, which can be
linearly expressed as

|0, 0〉〈0, 0| = |k1〉〈k1 | − |k2〉〈k2 | + |k6〉〈k6 | − 3 |k7〉〈k7 | + 3 |k8〉〈k8 | .

So we do not necessarily put |0, 0〉 into �3, nor necessarily put |0, 0〉〈0, 0| into \3, since |0, 0〉〈0, 0| is in
span(\3). Overall, the closure of �3 under the operators FU1,1 and FU2,1 is shown as in Table 3, implying
that all linear combinations of the eight outer products |k8〉〈k8 | under the operators FU1,1 and FU2,1 are also
in span(\3).

Thus the least fixedpoint of the ascending chain occurs, which yields the II-reachable space Υ(P2, d0) =

span({|k 〉〈k | : |k 〉 ∈ �4}).
It is not hard to see that Φ(P2, d0) contains all pure states in HVAR while Υ(P2, d0) has dimension 8 that is less

than dim(H (HVAR)) = 16. Hence there are many pure states in Φ(P2, d0) whose density operators are not in
Υ(P2, d0), e. g., the pure state |i〉〈i | with |i〉 = 1

2 (|0, 0〉 + |0, 1〉 + |1, 0〉 + |1, 1〉) in Φ(P2, d0) cannot be linearly

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 21

Table 3. The closure of �3 under the operators FU1,1 and FU2,1

FU1,1 |k1〉 = |−, 0〉 = |k2〉 FU2,1 |k1〉 = |0,−〉 = |k3〉

FU1,1 |k2〉 = |1, 1〉 = |k1〉 FU2,1 |k2〉 = − |−, +〉 = − |k4〉

FU1,1 |k3〉 /‖FU1,1 |k3〉 ‖ = |+, 1〉 = |k5〉 FU2,1 |k3〉 /‖FU2,1 |k3〉 ‖ = |1, +〉 = |k6〉

FU1,1 |k4〉 /‖FU1,1 |k4 〉 ‖ =
√
2 |1,1〉− |−,0〉√

3
= − |k7〉 FU2,1 |k4〉 /‖FU2,1 |k4〉 ‖ = |1,+〉−

√
2 |0,0〉√
3

= − |k8〉

FU1,1 |k5〉 /‖FU1,1 |k5〉 ‖ = |−, 0〉 = |k2〉 FU2,1 |k5〉 /‖FU2,1 |k5〉 ‖ = |0,−〉 = |k3〉

FU1,1 |k6〉 = |−, +〉 = |k4〉 FU2,1 |k6〉 = |0, 0〉

FU1,1 |k7〉 /‖FU1,1 |k7〉 ‖ = |1,1〉−
√
2 |−,0〉√
3

=
��i7,1〉 ��i7,1〉〈i7,1�� = − 1

3 |k1〉〈k1 | + 1
3 |k2〉〈k2 | + |k7〉〈k7 |

FU2,1 |k7〉 /‖FU2,1 |k7〉 ‖ = −|−,+〉−
√
2 |0,−〉√

3
=

��i7,2〉 ��i7,2〉〈i7,2�� = 1
3 |k3〉〈k3 | − 1

3 |k4〉〈k4 | + |k8〉〈k8 |

FU1,1 |k8〉 /‖FU1,1 |k8〉 ‖ =
√
2 |+,1〉− |−,+〉√

3
=

��i8,1〉 ��i8,1〉〈i8,1�� = − 1
3 |k4〉〈k4 | + 1

3 |k5〉〈k5 | + |k7〉〈k7 |

FU2,1 |k8〉 /‖FU2,1 |k8〉 ‖ =
√
2 |1,+〉−|0,0〉√

3
=

��i8,2〉 ��i8,2〉〈i8,2�� = − 1
3 |k1〉〈k1 | + 1

3 |k2〉〈k2 | + |k7〉〈k7 |

expressed by the basis of Υ(P2, d0). The II-reachable space Υ(P2, d0) gives an over-approximation of Ψ(P2, d0)
more precise than Φ(P2, d0) in this example. �

Fineness in Reachable Spaces. The ascending chain Θ0 ⊆ Θ1 ⊆ Θ2 ⊆ · · · as defined in (5) is finer than the
ascending chain S0 ⊆ S1 ⊆ S2 ⊆ · · · as defined in (3) in such a sense:
• For each linear subspace Θ8 ⊆ H(H), there is a unique index 9 such that Θ8 ⊆ H(S9) and Θ8 * H(S9−1).
• For each linear subspace S9 ⊆ H, there is one index 8 or more such that Θ8 ⊆ H(S9) and Θ8 * H(S9−1).
• By the construction in Algorithm 2 that the basis elements in Θ8 are pure states, all ensembles of elements

in Θ8 are elements of D(S9).
In a nutshell, each increment in S9 corresponds to one or more increments in Θ8 . �

By Algorithms 1 and 2, we obtain the result:

Theorem 4.11. Both I-reachable space and II-reachable space are computable in polynomial time.

5 COMPUTING THE DIVERGENT SET
In this section, we show how the set of divergent states can be computed from which a given nondeterministic
quantum program terminates with probability zero under some scheduler, and synthesize the corresponding
divergence schedulers. The procedure turns out to be in exponential time, which as far as we know is reported
for the first time.

Definition 5.1. Given a nondeterministic quantum program P with the quantum state space H,
• the set � (P) of divergent states is {d ∈ D(H) : lim8→∞ tr(MtrueFf↑8 (d)) = 1 ∧ f ∈ Σl };
• the set %� (P) of pure divergent states is {|k 〉 ∈ H : lim8→∞ tr(MtrueFf↑8 (|k 〉〈k |)) = 1 ∧ f ∈ Σl }.

The parameters P in � (P) and %� (P) can be omitted if they are clear from the context.

The divergence requires that under some infinite scheduler f , all eigenstates |_〉 of d are terminating with
probability zero, i. e.

∧∞
8=0 tr(MfalseFf↑8 (|_〉〈_ |)) = 0. It is not hard to see that an element |k 〉 in %� is a pure state

|k 〉〈k | in � , i. e. %� = {|k 〉 ∈ H : |k 〉〈k | ∈ � (P)}. Once the divergent set � is determined, the pure divergent set
%� is also determined, which is essential. We will focus on how to compute the pure divergent set %� afterwards.

ACM Trans. Softw. Eng. Methodol.

22 • M. Xu, J. Fu, H. Jiang, et al.

For convenience, we introduce some auxiliary notions and notations:
• %�f denotes the set of all pure divergent states |k 〉 under the infinite scheduler f , i. e.

%�f =

{
|k 〉 ∈ H : lim

8→∞
tr(MtrueFf↑8 (|k 〉〈k |)) = 1

}
;

• %�f
8
denotes the set of all pure states |k 〉 that are terminating with probability zero under the 8-fragment

of the infinite scheduler f , i. e.

%�f8 = %�f↑8 = {|k 〉 ∈ H : tr(MtrueFf↑8 (|k 〉〈k |)) = 1};

• %�8 denotes the set of all pure states |k 〉 that are terminating with probability zero under the 8-fragment
of some infinite scheduler f , i. e. %�8 =

⋃
f∈Σl %�

f
8
=

⋃
e∈Σ8 %�

e .
It is not hard to see:
• for any infinite scheduler f and any integer 8 , %�f

8
⊇ %�f

8+1, as the latter requires to be terminating with
probability zero for one more step, i. e. tr(MfalseFf↑(8+1) (|k 〉〈k |)) = 0;
• for any infinite scheduler f , %�f =

⋂∞
8=0 %�

f
8
= lim8→∞ %�f8 ;

• for any integer 8 , %�8 =
⋃
f∈Σl %�

f
8
amounts to a finite union of %�f

8
, as there are only finitely many

distinct 8-fragments e ∈ Σ8 of all infinite schedulers f ∈ Σl ;
• %� =

⋂∞
8=0 %�8 = lim8→∞ %�8 .

From the definition %�8 =
⋃
e∈Σ8 %�

e , the derivation of those pure divergent sets %�8 can be described by an
infinite<-branching tree, named derivation tree (see Fig. 1). Its nodes are all pure divergent sets %�e , organized
by the prefix relationship on strings e ∈ Σ∗. Particularly,
• the root of the tree is %�n = %�0 that is the pure divergent set under the empty scheduler n ;
• each intermediate node %�e has< children %�e ·U that are the sets of pure divergent states derived by

one more step U ∈ Σ.
Thus, the union of %�e in the 8th layer is actually %�8 . By the nice property %�f↑8 ⊇ %�f↑(8+1) , we have that
an intermediate node %�e is a common superset of its< children %�e ·U with U ranging over Σ. The derivation
tree is called stabilized at the ℓth layers if %�: = %�ℓ holds for all : > ℓ . So the pure divergent set %� could be
collected at that layer.

Besides the definition of %�8 , there is an alternative approach to calculate %�8 . Before stating it, we need to
introduce the notion of pure divergent space %�(e that is the closure of %�e under scalar multiplication, i. e.
%�(e = {2 |k 〉 : |k 〉 ∈ %�e ∧ 2 ∈ C}. The notions %�(8 and %�(are defined similarly. For a finite scheduler e ,
%�(e is a subspace contained in H [47, Lemma 4]1, %�e is the unit sphere of %�(e , and they can be mutually
determined. Particularly, if %�(e is the null space {0}, there is no element |k 〉 ∈ %�e , i. e., %�e is the empty set;
vice versa. It entails

%�e = ∅ ⇐⇒ %�(e = {0} ⇐⇒ dim(%�(e) = 0.

Proposition 5.2. The pure divergent sets %�8 can be calculated inductively as

%�8 =

{
{|k 〉 ∈ H : Mfalse |k 〉 = 0} if 8 = 0,⋃
U∈Σ{|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(8−1} if 8 > 0.

1To see why it is the case, we note that: %�(e is equivalently defined as {2 |k 〉 : ∧|e |
8=0 tr(MfalseFe↑8 (|k 〉〈k |)) = 0∧ |k 〉 ∈ H∧2 ∈ C}, where

tr(MfalseFe↑8 (|k 〉〈k |)) = 0 holds if and only if supp(Mfalse) is orthogonal to supp(Fe↑8 (|k 〉〈k |)) . By the inclusion (1), if supp(Mfalse) is
orthogonal to each supp(Fe↑8 (|k: 〉〈k: |)) (: = 1, 2, . . . ,), it is also orthogonal to supp(Fe↑8 (|k 〉〈k |)) for any |k 〉 ∈ span({ |k: 〉 : : =

1, 2, . . . , }) , i. e. tr(MfalseFe↑8 (|k 〉〈k |)) = 0, yielding the linearity |k 〉 ∈ %�e ⊂ %�(e .

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 23

%�n

%�U1

%�U1U1

.

.

.
.
.
.

· · · %�U1U<

.

.

.
.
.
.

· · ·

· · ·

%�U<

%�U<U1

.

.

.
.
.
.

· · · %�U<U<

.

.

.
.
.
.

=

=

=

%�1

%�0

Stabilization
w
ithin

depth
3

%�2

.

.

.

∪ ∪

∪ ∪ ∪ ∪ ∪ ∪

· ·

⊇
⊇

⊇

Stabilization within width<3

Fig. 1. Derivation of %�8 by a tree construction

Proof. If 8 = 0, we have %�0 = %�
n = {|k 〉 ∈ H : Mfalse |k 〉 = 0} plainly. Otherwise, for a sphere %�e in the

union %�8−1 and an action U ∈ Σ, we compute:
%�U ·e = {|k 〉 ∈ %�0 : FU (|k 〉〈k |) ∈ D(%�(e)}

= {|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(e }.
(6)

We collect all spheres %�U ·e with U ranging over Σ and e ranging over Σ8−1 as %�8 , i. e.,

%�8 =
⋃
U∈Σ

⋃
e∈Σ8−1

{|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(e }

=
⋃
U∈Σ
{|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(8−1},

where the second equality comes from the fact that the linear subspace supp(FU (|k 〉〈k |)) is covered by %�(8−1
if and only if it is covered by some subspace %�(e in the union %�(8−1. �

As an immediate corollary, from any subtree rooted at %�e with e ∈ Σ∗, we can get

%�e ∩ %� |e |+8+1 =
⋃
U∈Σ
{|k 〉 ∈ %�e : supp(FU (|k 〉〈k |)) ⊆ (%�(e ∩ %�(|e |+8)},

where %�e ∩ %� |e |+8 denotes the union of %�e ·e ′ over e ′ ∈ Σ8 .
By the alternative approach, the set %�8 is calculated from the prior set %�8−1, which will be used to establish

the stabilization of derivation tree.That is, an upper bound is given below for the occurrence of the least fixedpoint
in the descending chain of finite unions %�8 , one-to-one corresponding to %�(8 .

Lemma 5.3. Let %�(0 ⊇ %�(1 ⊇ %�(2 ⊇ · · · be a descending chain of finite unions of nonempty subspaces
%�(8 ⊆ H, as calculated in Proposition 5.2. Then there is an integer ℓ ≤ 3 such that %�(: = %�(ℓ holds for all : > ℓ .

Proof. The proof improves that of [47, Lemma 6] by giving the explicit bound 3 . It is crucial in establishing
the complexity of computing the pure divergent set, which is left as an open problem in [47, Subsection 7.3]. We
complete the proof by an induction on the dimension 30 of %�(0.

ACM Trans. Softw. Eng. Methodol.

24 • M. Xu, J. Fu, H. Jiang, et al.

• Basically, when 30 = 0, we have %�(0 = {0}. It is plainly the fixedpoint of the chain, implying the pure
divergent set %� is empty then.
• Inductively, when 30 > 0, we first tackle the case %�(0 ⊃ %�(1. Let %�(1 =

⋃
U∈Σ %�(

U where %�(U
are subspaces in the union. Define /U,8 = %�(U ∩ %�(1+8 for 8 ≥ 0. We have %�(1+8 =

⋃
U∈Σ /U,8 and the

following< descending chains:

%�(U = /U,0 ⊇ /U,1 ⊇ /U,2 ⊇ · · · for U ∈ Σ.

Since %�(0 is a single subspace, it follows dim(%�(U) < 30 by %�(0 ⊃ %�(1. By induction hypothesis,
there is an ℓU ≤ dim(%�(U) in the respective descending chain, such that /U,: = /U,ℓU holds for all
: > ℓU . Thereby, we obtain that %�(ℓ = %�(ℓ+1 holds with ℓ = 1 + maxU∈Σ dim(%�(U) ≤ 30 ≤ 3 . We
then tackle the case %�(0 = %�(1, where there is an action U0 ∈ Σ such that %�(0 = %�(U0 . We have
%�(8 = %�(U

8
0 = %�(0 for 8 > 0, leading to ℓ = 0 < 30 ≤ 3 directly. We further claim that the least

fixedpoint of the original descending chain occurs upon %�(ℓ = %�(ℓ+1, since

%�ℓ+2 =
⋃
U∈Σ
{|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(ℓ+1}

=
⋃
U∈Σ
{|k 〉 ∈ %�0 : supp(FU (|k 〉〈k |)) ⊆ %�(ℓ }

= %�ℓ+1 = %�ℓ

and %�: = %�ℓ follows for all : > ℓ + 2 similarly. �

The above lemma indicates that the derivation tree can be stabilized within height 3 and width <3 . The
procedure of computing the pure divergent set %� is stated in Algorithm 3. In detail, Sch8−1 in Line 4 stores those
finite schedulers e corresponding to the nodes %�e to be derived. We attempt to derive the node %�e in Line 8,
provided that the condition

⋃
e ′∈Sch′ %�

e ′ = %�e in Line 7 is not met. Otherwise, the derivation is unnecessary
since the subtree rooted at %�e is stabilized then. The output is a union of various Sch8 consisting of schedulers
that generate %�e stabilized at the 8th layer. The complexity of Algorithm 3 is provided below.

Algorithm 3 Computing the Pure Divergent Set
Input: a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) over H with dimension 3 ;
Output: a set Sch of finite schedulers that generate the pure divergent set %� of P.

1: Sch0 ← {n}, and compute %�n ;
2: for 8 ← 1 to 3 − 1 do
3: Sch8 ← ∅ and Sch← ∅;
4: while Sch8−1 \ Sch ≠ ∅ do
5: let e be an element of Sch8−1 \ Sch;
6: Sch′ ← {e · U : U ∈ Σ}, and compute %�e ′ for each e ′ ∈ Sch′;
7: if

⋃
e ′∈Sch′ %�

e ′ = %�e then Sch← Sch ∪ {e};
8: else Sch8 ← Sch8 ∪ Sch′ and Sch8−1 ← Sch8−1 \ {e};
9: if Sch8 = ∅ then break;

10: return Sch = Sch0 ∪ Sch1 ∪ · · · ∪ Sch8−1.

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 25

Complexity. Note that there are at most 1 +< + · · · +<3−1 times of entering the inner loop in Line 4. Each
inner loop computes< spheres %�e ′ in Line 6, which is finished in such a way:

(1) Write e ′ ∈ Σ8 as the form U · e ′′ for some U ∈ Σ and e ′′ ∈ Σ8−1.
(2) By the last loop, we have determined the linear subspace %�(e ′′ as well as the orthonormal basis {|k⊥9 〉 :

9 = 1, 2, . . . , � } of its complement where � < 3 − 8 + 1.
(3) Let {F: : : = 1, 2, . . . , } be the Kraus representation of FU where ≤ 32.
(4) By Eq. (6), %�e ′ is obtained as the solution space of supp(FU (|k 〉〈k |)) ⊆ %�(e

′′ , i. e.,
�∧
9=1

 ∧
:=1

〈k⊥9 | F: |k 〉 = 0.

It performs � · times of matrix-vector multiplication 〈k⊥9 | F: , each of which is done in O(32), and
solves � · linear equations, w. r. t. 3 complex variables introduced to encode the pure state |k 〉, in
O(� · · 32) ⊆ O(35).

Hence Algorithm 3 is in exponential time O(<3 ·35), where the growth in the derivation tree is the bottleneck. �

Scheduler Synthesis. For each finite scheduler e in the output Sch of Algorithm 3, we know there is an action
U ∈ Σ satisfying %�e = %�e ·U . Hence the l-regular scheduler f = e · Ul is a divergence scheduler, under which
all states on %�(e are terminating with probability zero. �

Example 5.4. Here we will compute the set Sch of finite schedulers that generate the pure divergent set %� of
the program P2 in Example 3.7. Algorithm 3 delivers the inductive process.

(1) Initially, in the 0th layer of the derivation tree, we have Sch0 = {n} and
%�(0 = %�(

n = span({|0, 0〉 , |1, 0〉 , |1, 1〉})
to be derived.

(2) In the first layer, we derive %�(n for actions U1 and U2, and get
%�(U1 = span({|1, 1〉 , |−, 0〉}),
%�(U2 = span({|0, 0〉 , |1, +〉}),

which are both proper subspaces of %�(n . So we update Sch0 to ∅, and set Sch1 = {U1, U2} and %�(1 =
%�(U1 ∪ %�(U2 to be derived.

(3) In the second layer, we derive %�(U1 and %�(U2 for actions U1 and U2, and get
%�(U1U1 = span({|1, 1〉 , |−, 0〉}),

%�(U2U1 = span({ 1√
3
(−
√
2 |0, 0〉 + |1, +〉)}),

%�(U1U2 = span({ 1√
3
(
√
2 |1, 1〉 − |−, 0〉)}),

%�(U2U2 = span({|0, 0〉 , |1, +〉}) .
Since %�(U1 = %�(U1U1 and %�(U2 = %�(U2U2 , the derivation subtrees rooted at them are stabilized then,
as well as the whole derivation tree, i. e. %�(2 = %�(U1U1 ∪ %�(U2U1 ∪ %�(U1U2 ∪ %�(U2U2 = %�(1.

Hence, %� = %�1 is the least fixedpoint of the descending chain. We report it by the set of finite schedulers
Sch = Sch0 ∪ Sch1 = ∅ ∪ {U1, U2} = {U1, U2}. Additionally, we have the divergence schedulers Ul1 for those states
on %�(U1 and Ul2 for those states on %�(U2 . �

By Algorithm 3 and the transformation � =
⋃
%�e ∈%� D(%�(e), we obtain the result:

Theorem 5.5. Both pure divergent set and divergent set are computable in exponential time.

ACM Trans. Softw. Eng. Methodol.

26 • M. Xu, J. Fu, H. Jiang, et al.

6 DECIDING THE TERMINATION PROBLEM
Combining the (pure) divergent sets with the reachable spaces obtained in the previous sections, we are able to
decide the termination of the nondeterministic quantum programs. Although the reachable spaces are supersets
of the reachable set, they could still be utilized to yield a necessary and sufficient condition to the termination as
the following result.

Lemma 6.1. Given a nondeterministic quantum program P and an input state d0 ∈ D, P terminates with
probability less than one under some scheduler if and only if the I-reachable space Φ(P, d0) and the pure divergent
set %� (P) are not disjoint.

Proof. We first prove the “if” direction. Let |k 〉 be a pure divergent state in the I-reachable space Φ(P, d0),
which is terminating with probability zero under some scheduler f , i. e.,

lim
8→∞

tr(MtrueFf↑8 (|k 〉〈k |)) = 1.

Let f = e ·Ul be anl-regular scheduler as the output of Algorithm 3. Since Φ(P, d0) =
∨
W ∈Ψ(P,d0) supp(W) where

Ψ(P, d0) is the reachable set, there is a finite set of pure reachable states |k:〉 (: = 1, 2, . . . ,) respectively in the
supports of reachable statesW: ∈ Ψ(P, d0) reached from d0 under finite schedulers e: , such that |k 〉 = ∑

:=1 2: |k:〉
holds for some 2: ∈ C. We claim that at least one, e. g., |k:0〉, among these |k:〉 (: = 1, 2, . . . ,) is terminating
with probability less than one under the scheduler f . (Otherwise all |k:〉 are terminating with probability one
under f , as well as the mixture W = 1

∑
:=1 |k:〉〈k: |. Since |k 〉 is in the support span({|k:〉 : : = 1, 2, . . . , }) of

W , by [56, Exercise 2.73], there is a minimal probabilistic ensemble of W containing |k 〉 with positive probability.
Then we reaches the contradiction that |k 〉 is terminating with probability one under f .) Therefore P terminates
with probability less than one under the nontermination scheduler e:0 · f . The workflow is shown in Fig. 2.

Φ(P, d0) %� (P)|k 〉

f = e · Ul

divergence

|k 〉 ∈ span({|k1〉 , . . . , |k 〉}) |k1〉 |k 〉· · ·

d0

e1 e

f f

imply
nontermination nontermination· · ·or or

Fig. 2. The workflow of “if” direction

For the “only if” direction, we assume that f is the nontermination scheduler, under which P does not terminate
with probability one on d0. From the input state d0, P terminates with probability less than one. Then we will
construct a sequence of pure reachable states as:

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 27

• fixed a spectral decomposition of d0, there is an eigenstate |_0〉 among eigenstates in the decomposition
that maximizes the nontermination probability

?0 = lim
8→∞

tr(Mtrue · Ff↑8 (|_0〉〈_0 |));

• fixed a spectral decomposition of Ff↑1 (|_0〉〈_0 |), there is an eigenstate |_1〉 that maximizes the nontermi-
nation probability

?1 = lim
8→∞

tr(MtrueF(f↓1)↑8 (|_1〉〈_1 |));

• fixed a spectral decomposition of Ff↑1 (|_1〉〈_1 |), there is an eigenstate |_2〉 that maximizes the nontermi-
nation probability

?2 = lim
8→∞

tr(MtrueF(f↓2)↑8 (|_2〉〈_2 |));

• and so on.
The nontermination probabilities ?0, ?1, ?2, . . . are monotonously increasing and convergent to some limit value
?∗. We proceed to show ?∗ = 1. For any |_8〉 with nontermination probability ?8 < 1, we know the termination
probability of |_8〉 under the infinite scheduler f ↓ 8 is 1 − ?8 , and there is a finite fragment (f ↓ 8) ↑ 9 of f ↓ 8
under which the termination probability of |_8〉 is at least 1

2 (1 − ?8), i. e. TP(f↓8)↑ 9 (|_8〉〈_8 |) ≥
1
2 (1 − ?8). By

choosing the eigenstate |_8+9 〉 in that sequence, we know that the nontermination probability ?8+9 of |_8+9 〉 is
not less than the average nontermination probability of F(f↓8)↑ 9 (|_8〉〈_8 |), i. e. the nontermination probability
of the normalized F(f↓8)↑ 9 (|_8〉〈_8 |)/tr(F(f↓8)↑ 9 (|_8〉〈_8 |)). The nontermination probability of F(f↓8)↑ 9 (|_8〉〈_8 |) is
still ?8 , while the trace tr(F(f↓8)↑ 9 (|_8〉〈_8 |)) is 1 − TP(f↓8)↑ 9 (|_8〉〈_8 |) ≤ 1

2 (1 + ?8). The average nontermination
probability is at least 2?8/(1 + ?8), which is also a lower bound of the nontermination probability ?8+9 of |_8+9 〉.
So we have ?8+1 ≥ 2?8/(1 + ?8). Taking the limit, we get ?∗ ≥ 2?∗/(1 + ?∗), which entails ?∗ = 1.

Those eigenstates |_0〉 , |_1〉 , |_2〉 , . . . are unit vectors in the I-reachable subspace Φ(P, d) of H. We have that
there is a convergent subsequence |_′1〉, |_′2〉, |_′3〉, . . . also in the I-reachable subspace Φ(P, d). By the completeness
of finite-dimensional Hilbert space that the limit of a convergent sequence is contained in that space, the limit |_′〉
of the subsequence |_′1〉, |_′2〉, |_′3〉, . . . is in the finite-dimensional Hilbert space Φ(P, d), which is a pure divergent
state as |_′〉 has the nontermination probability ?∗ = 1. �

The above proof only tells us that at least one pure reachable state |k:0〉 among finitely many ones |k:〉
(: = 1, 2, . . . ,) is terminating with probability less than one, but does not identify it. In the following, we
will identify this |k:0〉 by exhaustively checking whether |k:〉 is terminating with probability less than one.
Conditioning on the nontermination under the l-regular scheduler f = e · Ul , we get the following equivalent
statements:

(1) |k:〉 is terminating with probability less than one.
(2) d = Fe (|k:〉〈k: |) is terminating with probability less than one.
(3) Let PUl be the program P under the scheduler Ul , and S the I-reachable space Φ(PUl , d). Then there is

a Hermitian operator W on S such that FU (W) = W .
The first two statements are equivalent since |k:〉〈k: | and d have the same nontermination probability. The
necessity of the last statement follows from Brouwer’s fixedpoint theorem [33, Chapter 4], since FU is a continuous
function from the divergent set on S to itself, where the divergent set on S is convex and compact in the viewpoint
of probabilistic ensemble. The sufficiency follows from the fact that for any pure state |k ′〉 in the support of W
satisfying FU (W) = W , supp(FU (|k ′〉〈k ′ |)) is contained in that supp(W), implying |k ′〉 is a pure divergent state;
|k ′〉 can be linearly expressed by finitely many pure states |k ′

:
〉 (: = 1, 2, . . . , ′) reachable from d , at least one

among which is terminating with probability less than one. The workflow is shown in Fig. 3.

ACM Trans. Softw. Eng. Methodol.

28 • M. Xu, J. Fu, H. Jiang, et al.

d|k:〉
e

nontermination

Ul

W ∈ H (Φ(PUl , d))
W

W

U

equivalent

Fig. 3. The workflow of checking the nontermination of |k: 〉

We summarize the procedure of synthesizing a nontermination scheduler as Algorithm 4, whose complexity
analysis is provided below.

Algorithm 4 Synthesizing a Scheduler for Nontermination
Input: a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) over H with dimension 3 , and an input

pure state d0 ∈ D(H);
Output: a scheduler under which P terminates with probability less than one on d0 if exists.

1: compute the I-reachable space Φ(P, d0) by Algorithm 1;
2: compute the pure divergent set %� (P) by Algorithm 3;
3: if Φ(P, d0) ∩ %� (P) ≠ ∅ then
4: let |k 〉 be an element in Φ(P, d0) ∩ %�e for some %�e ∈ %� (P);
5: let f = e · Ul be a divergence scheduler of |k 〉;
6: else return n ; ⊲ report no nontermination scheduler
7: let {|k:〉 : : = 1, 2, . . . , } be a minimal set of pure reachable states under schedulers e: that linearly

express |k 〉;
8: for : ← 1 to do ⊲ exhaustively checking |k:〉 for nontermination
9: d ← Fe (|k:〉〈k: |);

10: compute the I-reachable space S = Φ(PUl , d) by Algorithm 1;
11: if FU (W) = W has some nonzero solution W ∈ H (S) then return e: · f .

Complexity. Computing Φ(P, d0) is in O(< · 35), and computing %� (P) is in O(<3 · 35). The emptiness of
Φ(P, d) ∩ %� (P) in Line 3 can be checked by computing whether the intersection of Φ(P, d) and %�(e is null
for each individual sphere %�e in the union %� (P), which is in at most<3 × O(33). Once an element |k 〉 in
Φ(P, d) ∩ %� (P) is obtained, we can find finitely many pure states |k:〉 (: = 1, 2, . . . ,) to linearly express |k 〉,
which has been embedded into the computation of Φ(P, d0). There are at most ≤ 3 times of entering the loop
in Line 8. Each loop

(1) performs Fe (|k:〉〈k: |) in O(35), since it is |e | ≤ 3 times of performing quantum operations on density
operators;

(2) computes Φ(PUl , d) which is in O(35) since the action set of PUl is a singleton set {U};
(3) solves FU (W) = W which is in O(36) since it is a system of linear equations in 32 real variables for encoding

the Hermitian operator W ∈ H (S).
Hence Algorithm 4 is in exponential time O(<3 ·35 +37), whose bottleneck lies in the computation of %� (P). �

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 29

Example 6.2. For the while-loop P2 in Example 3.7 with input state d0 = |1, 1〉〈1, 1|, we have obtained the
I-reachable subspace Φ(P2, d0) = HVAR and the pure divergent set %� (P2) = %�U1 ∪ %�U2 with %�(U1 =

span({|1, 1〉 , |−, 0〉}) and %�(U2 = span({|0, 0〉 , |1, +〉}), on which the divergence schedulers are f8 = Ul8 respec-
tively, in the previous examples.

The intersection of Φ(P2, d0) and %� (P2) is not empty, as it has elements |1, 1〉, |−, 0〉, |0, 0〉 and |1, +〉. It is
clear that |1, 1〉 and |−, 0〉 are pure reachable states respectively in the supports of d0 and FU1 (d0) = 1

2 |−, 0〉〈−, 0|.
To demonstrate the generality of our method, we exemplify it with |0, 0〉 to find out a pure reachable state that is
terminating with probability less than one. Since |0, 0〉 = |1, 1〉 −

√
2 |−, 0〉 +

√
2 |0,−〉 +2 |−, +〉 is linearly expressed

by the pure reachable states |1, 1〉 under the finite scheduler e1 = n , |−, 0〉 under e2 = U1, |0,−〉 under e3 = U2
and |−, +〉 under e4 = U1U2, we know that at least one among |1, 1〉, |−, 0〉, |0,−〉 and |−, +〉 is terminating with
probability less than one.

The two pure states |1, 1〉 and |−, 0〉 are divergent, thus they are terminating with probability zero. Again, to
demonstrate our method, we will check whether |−, +〉 is terminating with probability less than one as follows.The
I-reachable subspace Φ(Pf22 , |−, +〉〈−, +|) is S = span({|−, +〉 , |0,−〉 , |1, +〉}). Solving FU2 (W) = W with W ∈ H (S),
we get a nonzero solution |q〉〈q | with |q〉 = |−, +〉 + |0,−〉 /

√
2 + (1 +

√
2) |1, +〉 /

√
2. Hence the nontermination

scheduler e4 · f2 is synthesized to force P2 to terminate with probability less than one on d0, which entails the
protocol is defective. �

By a similar analysis on the II-reachable space and the divergent set, we get:

Corollary 6.3. Given a nondeterministic quantum program P and an input state d0 = |_0〉〈_0 | ∈ D, P
terminates with probability less than one on d0 under some scheduler if and only if the II-reachable space Υ(P, d0)
and the divergent set � (P) are not disjoint.

Proof. We only prove the “if” direction, while the “only if” direction is the same as that of Lemma 6.1. Let
d be a divergent state in the II-reachable space Υ(P, d0), which has no probability of termination under some
scheduler, e. g., f , i. e., lim8→∞ tr(MntFf↑8 (d)) = 1. Since Υ(P, d0) =

∨
W ∈Ψ(P̂,d0) supp(W) where P̂ is the operator-

level program of P and Ψ(P̂, d0) is the reachable set of P̂, there is a finite set of pure reachable states |k:〉〈k: |
(: = 1, 2, . . . ,), respectively reached from d0 under the finite scheduler e: , such that d =

∑
:=1 2: |k:〉〈k: |

holds for some 2: ∈ R. We claim that at least one, e. g., |k:0〉〈k:0 |, among these |k:〉〈k: | (: = 1, 2, . . . ,) has a
positive probability of nontermination under the scheduler f , since otherwise all |k:〉〈k: | have no probability of
nontermination under f , as well as their linear combination d . Therefore P does not terminate with probability
one under the scheduler e:0 · f . �

Algorithm 4 could be amended to Lemma 6.3 by checking the emptiness of Υ(P, d0) ∩ � (P). To this end, for
each individual sphere %�e in %� (P), we have to

(1) introduce dim(%�(e) ≤ 3 complex variables to encode a pure state |k 〉 ∈ %�e ,
(2) introduce dim(Υ(P, d0)) ≤ 32 real variables to encode an element in Υ(P, d0),
(3) |k 〉〈k | ∈ Υ(P, d0) results in a polynomial formula in those variables, whose coefficients are algebraic

numbers. It can be solved in 2O(3
2) by the existential theory of the reals [7, Theorem 13.13].

Hence it would contribute an additional factor 2O(32) to the complexity of the procedure.

Example 6.4. For the while-loop P2 in Example 3.7 with input state d0 = |1, 1〉〈1, 1|, we have obtained the
II-reachable subspace

Υ(P2, d0) = span

({
|k 〉〈k | : |k 〉 ∈

{
|1, 1〉 , |−, 0〉 , |0,−〉 , |−, +〉 , |+, 1〉 , |1, +〉 ,
(
√
2 |0, 0〉 − |1, +〉)/

√
3, (|−, 0〉 −

√
2 |1, 1〉)/

√
3

}})
ACM Trans. Softw. Eng. Methodol.

30 • M. Xu, J. Fu, H. Jiang, et al.

and the divergent set � (P2) = D(%�(U1) ∪ D(%�(U2) with %�(U1 = span({|1, 1〉 , |−, 0〉}) and %�(U2 =

span({|0, 0〉 , |1, +〉}) in the previous examples. They have common elements such as |1, 1〉〈1, 1|, which also
refutes the termination. �

Theorem 6.5. The termination problem described in Problem 3.11 can be solved in exponential time.

7 SYNTHESIZING A UNIVERSAL SCHEDULER
In this section, we study the universal termination problem, which asks whether all input states of a program are
terminating with probability one under their respective schedulers. We first decide the universal termination
by detecting the existence of invariant subspace contained in H. If the answer is affirmative, we could further
synthesize a universal scheduler, which forces all input states to be terminating with probability one. The
procedure turns out to be in polynomial time, which is also reported for the first time.

For a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}), the states to be analyzed are those density
operators on the subspace Mtrue (H), the null space of Mfalse. Thus we propose:

Definition 7.1 (Invariant Space). Given a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) with
Σ = {U 9 : 9 = 1, 2, . . . ,<} and E(U 9) = E 9 , an invariant space of P is a nonnull subspace I of Mtrue (H), satisfying
that E 9 (d) ∈ D(I) holds for all input states d ∈ D(I) and all actions U 9 ∈ Σ.

From the above definition, we can see that the invariant subspaces I of Mtrue (H) have the joint semi-lattice
structure with ascending chain condition. That is, for two invariant subspaces I1 and I2 of H, the join I1

∨
I2

is also an invariant subspace; there is no infinite times of increment in the ascending chain due to the finite
dimension in H. Additionally, the invariant space I requires E 9 (D(I)) ⊆ D(I) holds for all U 9 ∈ Σ, entailing∨
d∈D(I)

∨<
9=1 supp(E 9 (d)) ⊆ I. Define a function � on linear subspaces S of H as:

� (S) :=
∨

d∈D(S)

<∨
9=1

supp(E 9 (d)). (7)

It is a monotonic function. For any invariant space I, thank to Knaster–Tarski fixedpoint theorem [14, 54], we
know there is a greatest fixedpoint I0 ⊆ I such that � (I0) = I0. So we would refer the invariant space I as the
greatest fixedpoint I0 of the function � afterwards.

The existence of invariant space I implies that P terminates on those states d ∈ D(I) with probability zero, no
matter which scheduler is taken. What is more important is the converse:

Lemma 7.2. If there is an input state on which the program P terminates with probability less than one under any
scheduler, P has an invariant space I.

Proof. Let S0 be the subspace Mfalse (H). We prove this lemma by contradiction. Assume that P has no
invariant subspace, meaning no invariant subspace is contained in Mtrue (H) = S⊥0 . By [71, Theorem 7], we have
that there is no invariant subspace contained in S⊥0 if and only if there is a scheduler such that the probability of
reaching S0 is 1 for all initial states d ∈ D(S⊥0). It entails that there is a scheduler under which P terminates with
probability 1 for all input states, which contradicts the premise. Hence, under the premise P has an invariant
subspace. �

To efficiently compute the invariant space I defined as the greatest fixedpoint of (7), we will derive a series of
necessary conditions to characterize I. Firstly, we notice there is a density operator d ′ ∈ D(I) such that

<∨
9=1

supp(E 9 (d ′)) =
∨

d∈D(I)

<∨
9=1

supp(E 9 (d)) = I, (8a)

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 31

since I is a linear space of finite dimension and d ′ can be chosen to be a mixture
∑
: ?: |k:〉〈k: | of finitely

many pure states |k:〉, each contributing at least one linearly independent element in I. We further mix d ′ to
d ′′ = 1

<+1 [d
′ +∑<

9=1 E 9 (d ′)], so that

supp(d ′′) =
<∨
9=1

supp(E 9 (d ′′)) . (8b)

On the other hand, we have

supp(Ē (d ′′)) =
<∨
9=1

supp(E 9 (d ′′)), (8c)

where Ē is the arithmetic average of E, i. e. Ē (d ′′) = 1
<

∑<
9=1 E 9 (d ′′). Combining (8b) and (8c), we get

supp(d ′′) = supp(Ē (d ′′)) = I. (8d)

It yields the nice property that the supports of d ′′ and Ē (d ′′) are both I. We collect those density operators
d ′′ ∈ D(I) satisfying that property into the set Γ, which is convex and compact in the viewpoint of probabilistic
ensemble. Since Ē is a continuous function from Γ to itself, it follows from Brouwer’s fixedpoint theorem [33,
Chapter 4] that there exists a fixedpoint W ∈ Γ of Ē characterized by the stationary equation

Ē (W) = W, (9)

where W is a Hermitian matrix of variables and Ē gives rise to coefficients. The stationary equation is a system of
linear equations that can be efficiently solved. Here we relax the restriction W ∈ Γ to W ∈ H (Mtrue (H)) for the
consideration of efficiency, since Hermitian operators are much easier to be encoded than positive ones. How to
recover from the restriction W ∈ Γ and even compute the invariant space I is ensured by the following lemma.

Lemma 7.3 ([61, Lemma 5.4 & Algorithm 1]). Let W0 be a nonzero solution of the stationary equation (9). Then
supp(W0) is an invariant space I of P, which can be computed in time O(360) with 30 = dim(Mtrue (H)).

Example 7.4. Consider the while-loop P2 attached with two nondeterministic super-operators E(U1) = E1 =
{H ⊗ X} and E(U2) = E2 = {X ⊗ H} in Example 3.7, the average super-operator F̄ = {F1, F2} is given by the
Kraus operators

F1 = 1√
2
(|+, 1〉〈0, 0| + |−, 1〉〈1, 0| + |−, 0〉〈1, 1|),

F2 = 1√
2
(|1, +〉〈0, 0| + |0, +〉〈1, 0| + |0,−〉〈1, 1|).

Since the stationary equation F̄ (W) = W with W ∈ H (Mtrue (HVAR)) has no nonzero solution, P2 has no invariant
space and thus is universally terminating.

To explicitly illustrate the method, we reset E(U1) = E′1 = {X ⊗ X} and E(U2) = E′2 = {H ⊗ H} as the super-
operators for the modified while-loop P′2. We can compute the average super-operator of P′2 as F̄ ′ = {F′1, F′2}
with Kraus operators

F′1 =
1√
2
(|1, 1〉〈0, 0| + |0, 1〉〈1, 0| + |0, 0〉〈1, 1|),

F′2 =
1√
2
(|+, +〉〈0, 0| + |−, +〉〈1, 0| + |−,−〉〈1, 1|).

Solving the stationary equation F̄ ′ (W) = W with W ∈ H (Mtrue (HVAR)), we obtain the unique solution W0 =

(|0, 0〉 + |1, 1〉)(〈0, 0| + 〈1, 1|). Hence the invariant space I of P′ is actually supp(W0) = span({|0, 0〉 + |1, 1〉}), which
entails that P′2 is not universally terminating. �

ACM Trans. Softw. Eng. Methodol.

32 • M. Xu, J. Fu, H. Jiang, et al.

Whenever the program has no invariant space, every input state has its own scheduler that achieves the
termination with probability one. In the following, we are to synthesize a universal scheduler that forces all input
states to be terminating with probability one. The procedure of synthesizing such a universal scheduler is stated
in Algorithm 5. In detail, each inner loop (Line 3) attempts to find a pure state |k 〉 in the orthocomplement S⊥
of S that is terminating with positive probability under some finite scheduler e . It is realizable per outer loop
(Line 2), since otherwise

¬∃ |k 〉 ∈ S⊥ ∃U 9 ∈ Σ : supp(E 9 (|k 〉〈k |)) 6⊥ S⇐⇒ ∀ |k 〉 ∈ S⊥ ∀U 9 ∈ Σ : supp(E 9 (|k 〉〈k |)) ⊆ S⊥

⇐⇒ ∀ d ∈ D(S⊥) ∀U 9 ∈ Σ : supp(E 9 (d)) ⊆ S⊥

entailing S⊥ is invariant, which contradicts the assumption that there is no invariant space. Utilizing this property,
we avoid the exponential-up enumerating all finite schedulers with length not greater than 3 in [71, Algorithm 1]
for expanding S by one dimension or more, which yields the desired polynomial-time efficiency. The correctness
of Algorithm 5 is guaranteed by the following lemma, and the complexity is provided below the statements of
Algorithm 5.

Lemma 7.5. If the finite scheduler e forces all input states to be terminating with positive probability, the infinite
scheduler el forces all input states to be terminating with probability one.

Proof. For each density operator d on S⊥, we know that it has a positive probability ? (d) of termination
under the finite scheduler e . Thus there is an open disk X (d) around d , in which each density operator has
termination probability at least 1

2? (d). Since D(S
⊥) is a compact set, the open cover {X (d) : d ∈ D(S⊥)} of

D(S⊥) has a subcover {X (d8) : 8 ∈ IDX } with some finite index set IDX , i. e. |IDX | < ∞. Let ? = min8∈IDX ? (d8),
which is clearly a nonzero constant. Performing the finite scheduler e once, all density operators d on S⊥ have
termination probability at least ?2 ; performing e infinitely many times, all density operators d on S⊥ achieve the
termination probability one. �

Sample-based Verification. Model checking [13] advocates the verification technology via an exhaustive check
over a finite set of system states, namely samples. Usually it cannot be applied to systems with continuous sample
spaces, e. g. the Hilbert space H which is a continuum. The above lemma, however, suggests that the exhaustive
check still works, when samples to be checked are well elaborately chosen from D(S⊥), such that the set of
samples is finite, i. e. |IDX | < ∞. Thereby, it can be developed to a practically useful verification technology using
samples like [34], which will be popular in modern software engineering. �

Algorithm 5 Synthesizing a Universal Scheduler for Termination
Input: a nondeterministic quantum program P = (Σ, E, {Mtrue,Mfalse}) with Σ = {U 9 : 9 = 1, 2, . . . ,<} and
E(U 9) = E 9 over H with dimension 3 that has no invariant space;

Output: a universal scheduler under which P terminates with probability one on all input states.
1: S← Mfalse (H) and e ← n ;
2: while S ≠ H do
3: for all U 9 ∈ Σ do
4: if there is a |k 〉 ∈ S⊥ such that supp(E 9 (|k 〉〈k |)) is not orthogonal to S then
5: let |k 〉 be such an element in S⊥;
6: S← S ∨ span({|k 〉}) and e ← e · U 9 ;
7: break;
8: return el .

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 33

Complexity. Note that there are less than< · 3 times of entering the inner loop in Line 3. Each inner loop
seeks a pure state |k 〉 ∈ S⊥, satisfying that E: |k 〉 is not orthogonal to S for some Kraus operator E: in the
Kraus representation E 9 = {E: : : = 1, 2, . . . , } where ≤ 32. Let {|k; 〉 : ; = 1, 2, . . . , !} with ! < 3 be the
orthonormal basis of S. For a fixed pair of E: and |k; 〉, determining whether E: |k 〉 is orthogonal to |k; 〉 amounts
to solving the linear equation 〈k; | E: |k 〉 = 0, which costs O(33) operations. Hence Algorithm 5 is in polynomial
time O(· ! ·< · 33) ⊆ O(< · 36). �

Example 7.6. In Example 7.4, we have known that P2 is universally terminating. By Algorithm 5, we can
synthesize a universal scheduler that forces all input states to be terminating with probability one as follows.

(1) Initially, we have S0 = span({|0, 1〉}) and e0 = n .
(2) ForS⊥0 = span({|0, 0〉 , |1, 0〉 , |1, 1〉}), we can find a pure state |k1〉 = |+, 0〉 ∈ S⊥0 such that supp(E1 (|k1〉〈k1 |)) =

span({|0, 1〉}) = S0. Then we update

S1 = S0 ∨ span({|k1〉}) = span({|0, 1〉 , |+, 0〉}) and e1 = e0 · U1 = U1.

(3) Next, for S⊥1 = span({|−, 0〉 , |1, 1〉}), we can find a pure state |k2〉 = |1, 1〉 ∈ S⊥1 such that supp(E2 (|k2〉〈k2 |)) =
span({|0,−〉}) which is not orthogonal to S1. Then we update

S2 = S1 ∨ span({|k2〉}) = span({|0, 1〉 , |+, 0〉 , |1, 1〉}) and e2 = e1 · U2 = U1U2 .

(4) Finally, for S⊥2 = span({|−, 0〉}), the pure state |k3〉 = |−, 0〉 ∈ S⊥2 gives supp(E1 (|k3〉〈k3 |)) = span({|1, 1〉})
which is not orthogonal to S2, and we get

S3 = span({|0, 1〉 , |+, 0〉 , |1, 1〉 , |−, 0〉}) = HVAR and e3 = U1U2U1.

Thereby, e3 = U1U2U1 is the finite scheduler that forces all input states to be terminating with positive probability,
and el3 is the infinite scheduler that forces all input states to be terminating with probability one. �

By Lemma 7.3 and Algorithm 5, we obtain the result:

Theorem 7.7. The universal termination problem described in Problem 3.14 can be solved in polynomial time.

As an immediate corollary, we get that it is in polynomial time to synthesize a scheduler for the termination if
exists.

8 CONCLUSION
In this paper, we have studied the model of nondeterministic quantum program and the termination and the
universal termination problems. To decide the termination, we needed two ingredients. One was computing the
reachable space of a program fed with an input state, that was a superset of the set of reachable states but was of
explicit algebraic structure. A more precise over-approximation of the reachable set was proposed and could be
computed in polynomial time. The other was computing the divergent set of a program, which could be obtained
in exponential time. The termination follows from the necessary and sufficient condition that the two sets were
disjoint.

For the universal termination, the necessary and sufficient condition was the existence of invariant space, which
could be detected in polynomial time. Once a program was decided to be universally terminating, a universal
scheduler would be synthesized in polynomial time to force all input states to be terminating with probability
one. A case study of the quantum Bernoulli factory protocol was provided to demonstrate our methods.

For future work, we would like to:
• consider the weak termination problem, as described in Problem 3.12, over nondeterministic quantum

programs;

ACM Trans. Softw. Eng. Methodol.

34 • M. Xu, J. Fu, H. Jiang, et al.

• synthesize the optimal scheduler that minimizes the expected execution time for a specified input state
(resp. all input states with uniform distribution), whenever the termination (resp. universal termination)
is guaranteed.

Here, for a specified input state d , the expected execution time under an infinite scheduler f is defined by TEf (d) =∑∞
8=0 8 · tr(MtrueFf↑8 (d)); the expected execution time under an optimal infinite scheduler is inff∈Σl TEf (d).

When the input state is unspecified, we could choose the input state as the uniform distribution d = I/3 .

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China under Grant Nos. 12271172,
11871221, 62072176 & 61832015, the National Key R&D Program of China under Grant No. 2018YFA0306704, the
Fundamental Research Funds for the Central Universities under Grant No. 2021JQRH014, and the “Digital Silk
Road” Shanghai International Joint Lab of Trustworthy Intelligent Software under Grant No. 22510750100.

REFERENCES
[1] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. 2018. Lexicographic Ranking Supermartingales: An Efficient Approach

to Termination of Probabilistic Programs. Proceedings of the ACM on Programming Languages 2, POPL, Article 34 (2018), 32 pages.
[2] Shaukat Ali, Tao Yue, and Rui Abreu. 2022. When Software Engineering Meets Quantum Computing. Commun. ACM 65, 4 (2022),

84–88.
[3] Thorsten Altenkirch and Jonathan Grattage. 2005. A Functional Quantum Programming Language. In 20th IEEE Symposium on Logic in

Computer Science (LICS 2005). IEEE Computer Society, Washington, 249–258.
[4] Martin Avanzini, Georg Moser, Romain Péchoux, Simon Perdrix, and Vladimir Zamdzhiev. 2022. Quantum Expectation Transformers

for Cost Analysis. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Christel Baier and Dana Fisman (Eds.).
ACM, New York, Article 10, 13 pages.

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press, Cambridge, MA.
[6] Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. An Assertion-Based

Program Logic for Probabilistic Programs. In Programming Languages and Systems - 27th European Symposium on Programming, ESOP
2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018 (LNCS, Vol. 10801), Amal Ahmed (Ed.).
Springer, Berlin, 117–144.

[7] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real Algebraic Geometry (2 ed.). Springer, Berlin.
[8] Kevin Batz, Tom J. Biskup, Joost-Pieter Katoen, and Tobias Winkler. 2024. Programmatic Strategy Synthesis: Resolving Nondeterminism

in Probabilistic Programs. Proceedings of the ACM on Programming Languages 8, POPL (2024), 2792–2820.
[9] Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions for Linear-Constraint Loops. Journal of the ACM 61, 4, Article 26

(2014), 55 pages.
[10] Aleksandar Chakarov and Sleksandar Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Computer Aided

Verification, 25th International Conference, CAV 2013 (LNCS, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, Berlin,
511–526.

[11] Krishnendu Chatterjee, Hongfei Fu, and Amir K. Goharshady. 2016. Termination Analysis of Probabilistic Programs through Posi-
tivstellensatz’s. In Computer Aided Verification, 28th International Conference, CAV 2016, Part I (LNCS, Vol. 9779), Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer, Berlin, 3–22.

[12] Isaac L. Chuang, Neil A. Gershenfeld, and Mark Kubinec. 1998. Experimental Implementation of Fast Quantum Searching. Physical
Review Letters 80 (1998), 3408–3411.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic
Specifications. ACM Transactions on Programming Languages and Systems 8, 2 (1986), 244–263.

[14] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In 4th ACM Symposium on Principles of Programming Languages, Robert M. Graham, Michael A. Harrison,
and Ravi Sethi (Eds.). ACM, New York, 238–252.

[15] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk. 2017. A Storm is Coming: A Modern Probabilistic Model Checker. In Computer Aided
Verification: 29th International Conference, CAV 2017, Part II (LNCS, Vol. 10427), Rupak Majumdar and Viktor Kuncak (Eds.). Springer,
Berlin, 592–600.

[16] Ellie D’Hondt and Prakash Panangaden. 2006. Quantum Weakest Preconditions. Mathematical Structures in Computer Science 16, 3
(2006), 429–451.

[17] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, New York.

ACM Trans. Softw. Eng. Methodol.

Termination Problems for Nondeterministic Quantum Programs • 35

[18] Wang Fang and Mingsheng Ying. 2024. Symbolic Execution for Quantum Error Correction Programs. Proceedings of the ACM on
Programming Languages 8, PLDI (2024), 1040–1065.

[19] Yuan Feng, Runyao Duan, Zheng-Feng Ji, and Mingsheng Ying. 2007. Proof Rules for the Correctness of Quantum Programs. Theoretical
Computer Science 386, 1-2 (2007), 151–166.

[20] Yuan Feng and Sanjiang Li. 2023. Abstract Interpretation, Hoare Logic, and Incorrectness Logic for Quantum Programs. Information
and Computation 294, Article 105077 (2023), 22 pages.

[21] Yuan Feng and Yingte Xu. 2023. Verification of Nondeterministic Quantum Programs. In 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 3, ASPLOS 2023, Tor M. Aamodt, Natalie D. Enright
Jerger, and Michael M. Swift (Eds.). ACM, New York, 789–805.

[22] Yuan Feng and Mingsheng Ying. 2021. Quantum Hoare Logic with Classical Variables. ACM Transactions on Quantum Computing 2, 4,
Article 16 (2021), 43 pages.

[23] Yuan Feng, Nengkun Yu, and Mingsheng Ying. 2013. Model Checking Quantum Markov Chains. J. Comput. System Sci. 79, 7 (2013),
1181–1198.

[24] Luis M. F. Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Compositionality. In 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Sriram. K. Rajamani and David Walker
(Eds.). ACM, New York, 489–501.

[25] Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification, Model Checking,
and Abstract Interpretation - 20th International Conference, VMCAI 2019 (LNCS, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.).
Springer, Berlin, 468–490.

[26] Google. 2018. Cirq: A Python Library for Writing, Manipulating, and Optimizing Quantum Circuits and Running Them against Quantum
Computers and Simulators. https://github.com/quantumlib/Cirq.

[27] Ji Guan, Yuan Feng, Andrea Turrini, and Mingsheng Ying. 2024. Measurement-Based Verification of Quantum Markov Chains. In
Computer Aided Verification - 36th International Conference, CAV 2024, Part III (LNCS, Vol. 14683), Arie Gurfinkel and Vijay Ganesh (Eds.).
Springer, Berlin, 533–554.

[28] Jifeng He, Karen Seidel, and Annabelle McIver. 1997. Probabilistic Models for the Guarded Command Language. Science of Computer
Programming 28, 2–3 (1997), 171–192.

[29] Nils Herrmann, Daanish Arya, Marcus W. Doherty, Angus Mingare, Jason C. Pillay, Florian Preis, and Stefan Prestel. 2023. Quantum
Utility — Definition and Assessment of a Practical Quantum Advantage. In 2023 IEEE International Conference onQuantum Software
(QSW). IEEE Computer Society, Washington, 162–174.

[30] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580.
[31] IBM. 2020. Qiskit: An Open-source SDK for Working with Quantum Computers at the Level of Pulses, Circuits, and Algorithms.

https://github.com/QISKit.
[32] IBM. 2023. IBM Debuts Next-Generation Quantum Processor & IBM Quantum System Two, Extends Roadmap to Advance Era of

Quantum Utility. https://newsroom.ibm.com/.
[33] Vasile I. Istrǎţescu. 2001. Fixed Point Theory: An Introduction. Springer, Berlin.
[34] Hui Jiang, Jianling Fu, Ming Xu, Yuxin Deng, and Zhi-Bin Li. 2024. A Sample-Driven Solving Procedure for the Repeated Reachability of

Quantum Continuous-time Markov Chains. In 27th ACM International Conference on Hybrid Systems: Computation and Control, HSCC
2024. ACM, New York, Article 9, 12 pages.

[35] Jiaqing Jiang, Jialin Zhang, and Xiaoming Sun. 2018. Quantum-to-Quantum Bernoulli Factory Problem. Physical Review A 97, 3, Article
032303 (2018), 6 pages.

[36] Karuna Kadian, Sunita Garhwal, and Ajay Kumar. 2021. Quantum Walk and Its Application Domains: A Systematic Review. Computer
Science Review 41, Article 100419 (2021), 52 pages.

[37] Benjamin L. Kaminski and Joost-Pieter Katoen. 2015. On the Hardness of Almost-Sure Termination. In Mathematical Foundations of
Computer Science 2015 - 40th International Symposium, MFCS 2015, Part I (LNCS, Vol. 9234), Giuseppe F. Italiano, Giovanni Pighizzini,
and Donald Sannella (Eds.). Springer, Berlin, 307–318.

[38] Benjamin L. Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition Reasoning for
Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems, 25th European Symposium on Programming,
ESOP 2016 (LNCS, Vol. 9632), Peter Thiemann (Ed.). Springer, Berlin, 364–389.

[39] Benjamin L. Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2018. Weakest Precondition Reasoning for
Expected Runtimes of Randomized Algorithms. Journal of the ACM 65, 5, Article 30 (2018), 68 pages.

[40] Joost-Pieter Katoen, Friedrich Gretz, Nils Jansen, Benjamin L. Kaminski, and Federico Olmedo. 2015. Understanding Probabilistic
Programs. In Correct System Design (LNCS, Vol. 9360), Roland Meyer, André Platzer, and Heike Wehrheim (Eds.). Springer, Berlin, 15–32.

[41] M. S. Keane and George L. O’Brien. 1994. A Bernoulli Factory. ACM Transactions on Modeling and Computer Simulation 4, 2 (1994),
213–219.

ACM Trans. Softw. Eng. Methodol.

https://github.com/quantumlib/Cirq
https://github.com/QISKit
https://newsroom.ibm.com/

36 • M. Xu, J. Fu, H. Jiang, et al.

[42] Dexter Kozen. 1979. Semantics of Probabilistic Programs. In 20th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society, Washington, 101–114.

[43] Dexter Kozen. 1983. A Probabilistic PDL. In 15th Annual ACM Symposium on Theory of Computing, David S. Johnson, Ronald Fagin,
Michael L. Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and
Joel I. Seiferas (Eds.). ACM, New York, 291–297.

[44] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Probabilistic Real-Time Systems. In Computer Aided
Verification: 23rd International Conference, CAV 2011 (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer (Eds.). Springer, Berlin, 585–591.

[45] Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. 2023. Formal Verification of Quantum Programs: Theory, Tools, and Challenges.
ACM Transactions onQuantum Computing 5, 1, Article 1 (2023), 35 pages.

[46] Yangjia Li and Mingsheng Ying. 2018. Algorithmic Analysis of Termination Problems for Quantum Programs. Proceedings of the ACM
on Programming Languages 2, POPL, Article 35 (2018), 29 pages.

[47] Yangjia Li, Nengkun Yu, and Mingsheng Ying. 2014. Termination of Nondeterministic Quantum Programs. Acta Informatica 51, 1 (2014),
1–24.

[48] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and Naijun Zhan. 2019. Formal Verification
of Quantum Algorithms Using Quantum Hoare Logic. In Computer Aided Verification - 31st International Conference, CAV 2019, Part II
(LNCS, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer, Berlin, 187–207.

[49] Junyi Liu, Li Zhou, Gilles Barthe, and Mingsheng Ying. 2022. Quantum Weakest Preconditions for Reasoning about Expected Runtimes
of Quantum Programs. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Christel Baier and Dana Fisman
(Eds.). ACM, New York, Article 4, 13 pages.

[50] Annabelle McIver and Carroll Morgan. 2006. Abstraction, Refinement and Proof for Probabilistic Systems. Springer, Berlin.
[51] Annabelle McIver, Carroll Morgan, Benjamin L. Kaminski, and Joost-Pieter Katoen. 2018. A New Proof Rule for Almost-Sure Termination.

Proceedings of the ACM on Programming Languages 2, POPL, Article 33 (2018), 28 pages.
[52] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura Kovács. 2021. Automated Termination Analysis of Polynomial

Probabilistic Programs. In Programming Languages and Systems - 30th European Symposium on Programming, ESOP 2021 (LNCS, Vol. 12648),
Nobuko Yoshida (Ed.). Springer, Berlin, 491–518.

[53] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Transactions on Programming
Languages and Systems 18, 3 (1996), 325–353.

[54] Markus Müller-Olm and Helmut Seidl. 2004. Computing Polynomial Program Invariants. Inform. Process. Lett. 91, 5 (2004), 233–244.
[55] Juan M. Murillo, José García-Alonso, Enrique Moguel, Johanna Barzen, Frank Leymann, Shaukat Ali, Tao Yue, Paolo Arcaini, Ricardo

Pérez, Ignacio G. R. de Guzmán, Mario Piattini, Antonio Ruiz-Cortés, Antonio Brogi, Jianjun Zhao, Andriy V. Miranskyy, and Manuel
Wimmer. 2024. Challenges of Quantum Software Engineering for the Next Decade: The Road Ahead. CoRR abs/2404.06825 (2024),
12 pages. https://doi.org/10.48550/arXiv.2404.06825

[56] Michael A. Nielsen and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press, London.
[57] Bernhard Ömer. 1998. A Procedural Formalism for Quantum Computing. Technical Report. Technical University of Vienna.
[58] Jeff W. Sanders and Paolo Zuliani. 2000. Quantum Programming. In Mathematics of Program Construction, R. Backhouse and J. N.

Oliveira (Eds.). Springer, Berlin, 80–99.
[59] Peter Selinger. 2004. Towards a Quantum Programming Language. Mathematical Structures in Computer Science 14, 4 (2004), 527–586.
[60] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova,

Andres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum Computing and Development with a High-level DSL. In
Proceedings of the Real World Domain Specific Languages Workshop, RWDSL@CGO 2018. ACM, New York, Article 7, 10 pages.

[61] Ming Xu, Jianling Fu, Jingyi Mei, and Yuxin Deng. 2022. An Algebraic Method to Fidelity-Oriented Model Checking over Quantum
Markov Chains. Theoretical Computer Science 935 (2022), 61–81.

[62] Ming Xu, Jianling Fu, Jingyi Mei, and Yuxin Deng. 2022. Model Checking QCTL Plus on Quantum Markov Chains. Theoretical Computer
Science 913 (2022), 43–72.

[63] Ming Xu, Cheng-Chao Huang, and Yuan Feng. 2021. Measuring the Constrained Reachability in Quantum Markov Chains. Acta
Informatica 58, 6 (2021), 653–674.

[64] Mingsheng Ying. 2011. Floyd–Hoare Logic for Quantum Programs. ACM Transactions on Programming Languages and Systems 33, 6,
Article 19 (2011), 49 pages.

[65] Mingsheng Ying. 2016. Foundations of Quantum Programming. Morgan Kaufmann, Amsterdam.
[66] Mingsheng Ying. 2019. Toward Automatic Verification of Quantum Programs. Formal Aspects of Computing 31, 1 (2019), 3–25.
[67] Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji. 2010. Predicate Transformer Semantics of Quantum Programs. Semantic

Techniques in Quantum Computation 8 (2010), 311–360.
[68] Mingsheng Ying and Yuan Feng. 2010. Quantum Loop Programs. Acta Informatica 47, 4 (2010), 221–250.
[69] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. 2017. Invariants of Quantum Programs: Characterisations and Generation. In 44th

ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.48550/arXiv.2404.06825

Termination Problems for Nondeterministic Quantum Programs • 37

New York, 818–832.
[70] Mingsheng Ying, Nengkun Yu, Yuan Feng, and Runyao Duan. 2013. Verification ofQuantum Programs. Science of Computer Programming

78, 9 (2013), 1679–1700.
[71] Shenggang Ying and Mingsheng Ying. 2018. Reachability Analysis ofQuantumMarkov Decision Processes. Information and Computation

263 (2018), 31–51.
[72] Nengkun Yu and Jens Palsberg. 2021. Quantum Abstract Interpretation. In PLDI ’21: 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, Stephen N. Freund and Eran Yahav (Eds.). ACM, New York, 542–558.
[73] Nengkun Yu and Mingsheng Ying. 2012. Reachability and Termination Analysis of Concurrent Quantum Programs. In CONCUR 2012 -

Concurrency Theory - 23rd International Conference (LNCS, Vol. 7454), Maciej Koutny and Irek Ulidowski (Eds.). Springer, Berlin, 69–83.
[74] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng

Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu,
Chao-Yang Lu, and Jian-Wei Pan. 2020. Quantum Computational Advantage Using Photons. Science 370, 6523 (2020), 1460–1463.

[75] Paolo Zuliani. 2004. Non-deterministic Quantum Programming. In Proceedings of the 2nd International Workshop on Quantum Program-
ming Languages (TUCS General Publication, 33). Turku Centre for Computer Science, Turku, 179–195.

A EXERCISE 2.73 IN REFERENCE 38
Let d be a density operator. A minimal ensemble for d is an ensemble {(?: , |k:〉) : : = 1, 2, . . . , } containing a
number of elements equal to the rank of d . Let |k 〉 be any state in the support of d . Show that there is a minimal
ensemble for d that contains |k 〉, and moreover that in any such ensemble |k 〉 must appear with a constructive
probability.

Proof. Let
∑
:=1 ?: |k:〉〈k: | be the spectral decomposition of d , where ?: are all nonzero eigenvalues of d , |k:〉

are the corresponding eigenvectors, and is the rank of d . Clearly, the supportΞ of d is span({|k1〉 , |k2〉 , . . . , |k 〉}).
For any |k 〉 ∈ Ξ, by the orthonormality of eigenvectors, we can uniquely determine the subspace Ξ′ ⊆ Ξ that
is spanned by those |k:〉 satisfying 〈k: |k 〉 ≠ 0. Namely, this Ξ′ is spanned by |k: ′〉. We claim there is a con-
structive positive value of ? , such that detΞ′ (d − ? |k 〉〈k |) = 0, where detΞ′ is the determinant on the subspace
Ξ′ of H. Then, letting ?0 be the smallest value of ? , we obtain d = ?0 |k 〉〈k | + d ′, where d ′ is a positive oper-
ator with less rank than d . Under the spectral decomposition

∑ −1
9=1 @ 9 |i 9 〉〈i 9 |, we get the minimal ensemble

{(?0, |k 〉)} ∪ {(@ 9 , |i 9 〉) : 9 = 1, 2, . . . , − 1} of d as desired.
Now we turn to prove the aforementioned claim. Utilizing the facts:
• both d and |k 〉〈k | are positive operators, and
• the difference d − ? |k 〉〈k | would be no longer positive when ? is sufficiently large,

the existence of ?0 follows by the middle-value theorem, since 5 (?) = detΞ′ (d − ? |k 〉〈k |) is a continuous
function in ? , satisfying both 5 (0) > 0 and lim?→∞ 5 (?) < 0. Let U =

∑
: ′ |: ′〉〈k: ′ | /

√
?: ′ . It is easy to see

UdU† =
∑
: ′ |k: ′〉〈k: ′ | = IΞ′ =

∑
: ′ |: ′〉〈: ′ | and U |k 〉〈k | U† = ∑

: ′ | 〈k: ′ |k 〉 |2 |: ′〉〈: ′ | /?: ′ . Furthermore, such
values of ? should satisfy the following equations:

det
Ξ′
(d − ? |k 〉〈k |) = 0⇐⇒ det

Ξ′
(U(d − ? |k 〉〈k |)U†) = 0

⇐⇒ det
Ξ′

[(∑
: ′

|: ′〉〈: ′ |
)
−

(∑
: ′

?

?:′
| 〈k: ′ |k 〉 |2 |: ′〉〈: ′ |

)]
= 0

⇐⇒
∏
: ′

(
? − ?: ′

| 〈k: ′ |k 〉 |2

)
= 0.

It entails that ?0 should be chosen as

min
: ′

{
?: ′

| 〈k: ′ |k 〉 |2

}
. �

ACM Trans. Softw. Eng. Methodol.

38 • M. Xu, J. Fu, H. Jiang, et al.

B IMPLEMENTATION
Algorithms 1 through 5 have been implemented in the Wolfram language on Mathematica 11.3 with an Intel Core
i5-4590 CPU at 3.30GHz. An integrated source file is also available at https://www.wolframcloud.com/obj/tpnqp/
Published/TPNQP. We list below the main functions for analyzing the termination and the universal termination
problems of nondeterministic quantum programs.
• ReachableSpaceI(Operas_, Meas_, Inistate_, Dims_) computes the I-reachable subspace w. r. t. an input

state and returns an orthonormal basis of that subspace.
• ReachableSpaceII(Operas_, Meas_, Inibasis_, Inistate_, Dims_) computes the II-reachable subspace w. r. t.

an input state and returns a linearly independent basis of that subspace.
• Divergent(Operas_, Meas_, Dims_, Sigma_) computes the set of finite schedulers and the union of their

corresponding generated pure divergent sets from which the program has a divergence scheduler, i. e.,
the program terminates with probability zero.
• NTScheduler(Operas_, Meas_, Inibasis_, Dims_, RSI_, PD_, Sigma_, pdAss_, actionAss_) computes a non-

termination scheduler under which the program does not terminate with probability one on the input
state, once the intersection of the I-reachable space and the pure divergent set is checked to be not empty.
• UniScheduler(Operas_, Meas_, Dims_) computes a universal scheduler under which the program termi-

nates with probability one on all input states.
After specifying the Hilbert space, a nondeterministic quantum program and an input state, the five algorithms
can be performed by calling these functions.

B.1 Quantum Bernoulli Factory Protocol
For the nondeterministic quantum program describing the quantum Bernoulli factory (QBF) protocol in Ex-
ample 3.2, by invoking the implemented algorithms, we have validated the nontermination and the universal
termination of the program. The detailed performance of the five algorithms is shown in Table 4.

Table 4. Algorithmic performance on the QBF protocol

QBF ReachSpace-I ReachSpace-II Divergent NTScheduler UniScheduler
Example No. 4.6 4.10 5.4 6.2 7.6

Time (s) 0.016 0.015 1.422 0.203 2.593
Memory (MB) 132.605 205.833 181.868 133.217 205.833

B.2 Nondeterministic Quantum Walk
Here we consider another example, a quantum walk along a ring with three vertexes in a 3-dimensional Hilbert
space [36]. The vertex set is + = {|0〉 , |1〉 , |2〉} entailing H = span(+), where |0〉 denotes the starting position
and |2〉 denotes the absorbing boundary. A projective measurement {Mtrue,Mfalse} with Mfalse = |2〉〈2| and
Mtrue = I −Mfalse = |0〉〈0| + |1〉〈1| is designed to observe whether the particle is trapped in the boundary after
each move. Each move of the particle is modelled by a quantum operation which is nondeterministically chosen
from actions {F1,F2}, so that E(F1) = {W1} and E(F2) = {W2} with

W1 =
1√
3


1 1 1
1 s s2

1 s2 s

 and W2 =
1√
3


1 1 1
1 s2 s

1 s s2


ACM Trans. Softw. Eng. Methodol.

https://www.wolframcloud.com/obj/tpnqp/Published/TPNQP
https://www.wolframcloud.com/obj/tpnqp/Published/TPNQP

Termination Problems for Nondeterministic Quantum Programs • 39

where s = e2c i/3 is the root of unit. Then we can formally describe the quantum walk with nondeterministic
moves as the program P3 = ({F1,F2}, E, {Mtrue,Mfalse}).

By invoking the implemented algorithms, we can obtain the following results.
• Starting from position |0〉, the I-reachable space Φ(P3, |0〉〈0|) of the particle is

span({|0〉 , (|1〉 + |2〉)/
√
2, i(|1〉 − |2〉)/

√
2}) = H,

and the II-reachable space Υ(P3, |0〉〈0|) is

span

©­­­­­­­­­­­­­­«




1 0 0
0 0 0
0 0 0

 ,

1 1 1
1 1 1
1 1 1

 ,


8 2 + 2
√
3i 2 − 2

√
3i

2 − 2
√
3i 2 −1 −

√
3i

2 + 2
√
3i −1 +

√
3i 2

 ,


8 2 − 2
√
3i 2 + 2

√
3i

2 + 2
√
3i 2 −1 +

√
3i

2 − 2
√
3i −1 −

√
3i 2

 ,
14 5 −

√
3i 11 − 5

√
3i

5 +
√
3i 2 5 −

√
3i

11 + 5
√
3i 5 +

√
3i 14

 ,


14 11 − 5
√
3i 5 −

√
3i

11 + 5
√
3i 14 5 +

√
3i

5 +
√
3i 5 −

√
3i 2

 ,
26 17 + 5

√
3i 14 − 2

√
3i

17 − 5
√
3i 14 8 − 4

√
3i

14 + 2
√
3i 8 + 4

√
3i 8

 ,


26 14 − 2
√
3i 17 + 5

√
3i

14 + 2
√
3i 8 8 + 4

√
3i

17 − 5
√
3i 8 − 4

√
3i 14





ª®®®®®®®®®®®®®®¬
.

• The divergent set is %� (P3) = ∅, implying no nontermination scheduler, thus the particle is proven to be
surely absorbed no matter which move it takes in each step.
• There exists a universal schedulerFl1 that forces the particle to reach the absorbing boundary regardless

of its initial position.
The detailed performance of the five algorithms is shown in Table 5.

Table 5. Algorithmic performance on the nondeterministic quantum walk (NQW)

NQW ReachSpace-I ReachSpace-II Divergent NTScheduler UniScheduler
Time (s) 0.032 1.766 0.203 0.000 0.015

Memory (MB) 94.770 205.833 98.328 100.629 176.579

Generally speaking, all of the functions involved in Algorithms 1, 2 and 5 are much efficient as their theoretical
complexity has an upper bound of PTIME. Those in Algorithms 3 and 4 may be inefficient in the worst case,
due to the fact that the derivation tree construction for the pure divergent set is EXPTIME. Fortunately, their
running time is rather acceptable in our case studies.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Innovation

	2 Preliminaries
	3 Program Model and Termination Problems
	3.1 Program Model
	3.2 Operational Semantics
	3.3 Termination Problems

	4 Computing the Reachable Spaces
	5 Computing the Divergent Set
	6 Deciding the Termination Problem
	7 Synthesizing a Universal Scheduler
	8 Conclusion
	Acknowledgments
	References
	A Exercise 2.73 in Reference 38
	B Implementation
	B.1 Quantum Bernoulli Factory Protocol
	B.2 Nondeterministic Quantum Walk

