
Lecture Notes on Probabilistic Concurrency

Yuxin Deng

June 11, 2008

Preface

These are lecture notes I drafted for a semantics course (Spring 2008) at Shanghai Jiao Tong
University for graduate students interested in formal methods. They are not in a polished form
and there may be some errors and typos. The citation of the references is also biased by my own
viewpoint; I apologize for any inaccuracy or omission. The contents are updated from time to time.
The latest version is available from the following link:

http://basics.sjtu.edu.cn/∼yuxin

I should very much appreciate being told of any corrections or possible improvements. My e-mail
address is deng-yx@cs.sjtu.edu.cn.

The text material may be used for personal use or classroom use, but not for commercial purposes.

Shanghai, China Yuxin Deng

i

ii

Contents

Preface i

1 Mathematical Preliminaries 1
1.1 Lattice theory . 1
1.2 Domain theory . 2
1.3 Metric spaces . 4
1.4 Probability and measure theory . 5

2 Classical Process Algebras 7
2.1 Labelled transition systems . 7
2.2 Bisimulation . 8

2.2.1 Bisimulation as post-fixed point . 10
2.2.2 Approximating bisimilarity . 10
2.2.3 Modal characterisation . 11
2.2.4 Game characterisation . 12

2.3 Weak bisimulations . 13
2.4 “Bisimulation up to” techniques . 15
2.5 A simple process algebra . 16
2.6 Axiomatisations . 18
2.7 Equivalence checking . 21

2.7.1 A partition-refinement algorithm for bisimilarity 21
2.7.2 An on-the-fly algorithm for bisimilarity . 24
2.7.3 Tools . 24
2.7.4 Formal verification . 26

3 A Brief Introduction of CCS and π-calculi 29
3.1 A calculus of communicating systems . 29
3.2 The π-calculus . 30

3.2.1 From CCS to the π-calculus . 30
3.2.2 The untyped π-calculus . 31
3.2.3 Sorts and sorting . 33
3.2.4 A simple example . 33
3.2.5 The simply typed π-calculus . 34
3.2.6 Subtyping . 35

4 Probabilistic Process Algebras 37
4.1 Probabilistic LTS . 37
4.2 Probabilistic bisimulations . 38

4.2.1 Lifting relations . 38
4.2.2 Probabilistic bisimulation . 40
4.2.3 Modal characterisation . 41

4.3 Characteristic formulae . 42

iii

4.3.1 Probabilistic modal mu-calculus . 42
4.3.2 Characteristic equation systems . 43
4.3.3 Characteristic formulae . 45

4.4 Metric analogue of bisimulation . 45
4.5 Equivalence checking . 49

4.5.1 Computing strong bisimulation . 49
4.5.2 Computing strong simulation . 51

4.6 Probabilistic testing semantics . 53
4.6.1 A general testing framework . 53
4.6.2 Testing probabilistic processes . 55

4.7 Reward testing . 57
4.7.1 A geometric property . 57
4.7.2 Reward testing . 58
4.7.3 Maximum rewards . 59
4.7.4 Minimum rewards . 61
4.7.5 Vector testing versus scalar testing . 61
4.7.6 One success never leads to another . 63

5 Testing Finite Probabilistic Processes 65
5.1 Introduction . 65
5.2 Finite probabilistic CSP . 67

5.2.1 The language . 67
5.2.2 Operational semantics of pCSP . 67
5.2.3 The precedence of probabilistic choice . 69
5.2.4 Graphical representation of pCSP processes . 70
5.2.5 Testing pCSP processes . 71

5.3 Counterexamples . 72
5.4 Must versus may testing . 76
5.5 Simulation and failure simulation . 77

5.5.1 Lifting relations . 77
5.5.2 The simulation preorder . 78
5.5.3 The simulation preorders are precongruences 81
5.5.4 Simulations are sound for testing preorders . 83

5.6 State- versus action-based testing . 84
5.7 Vector-based testing . 85
5.8 Resolution-based testing . 90
5.9 Modal logic . 93
5.10 Characteristic tests . 95
5.11 Equational theories . 96
5.12 Inequational theories . 98
5.13 Completeness . 99
5.14 Summary and discussions . 101

5.14.1 Probabilistic models . 102
5.14.2 Bisimulation, and the alternating approach . 102
5.14.3 Testing . 103
5.14.4 Simulations . 104

6 Other Probabilistic Models 107
6.1 Probabilistic Kripke structures . 107
6.2 Discrete-time Markov chains . 109
6.3 Probabilistic computation tree logic . 110
6.4 Model checking PCTL . 111
6.5 Markov decision processes . 113
6.6 Stochastic games . 115

iv

Bibliography 117

v

vi

Chapter 1

Mathematical Preliminaries

1.1 Lattice theory

Definition 1.1 A set X with a binary relation " is called a partially ordered set if the following
holds for all x, y, z ∈ X:

1. x " x (Reflexivity)

2. if x " y and y " x then x = y (Antisymmetry)

3. if x " y and y " z then x " z (Transitivity)

Below are some basic concepts from order theory. An element x ∈ X is called an upper bound for
a subset Y " X , if y " x for all y ∈ Y . Dually, x is an lower bound for Y , if x " y for all y ∈ Y . If
y ∈ Y is an upper bound for Y , then y is said to be the largest element . We can dually define the
least element . In the presence of a least element we speak of a pointed partially ordered set. If the
set of upper bounds for Y has a least element x, then x is called the supremum or join of Y , written⊔

Y . Dually we have infimum or meet and write
!

Y . We call X a complete lattice if suprema and
infima exist for all the subsets of X .

Example 1.2 Given a set X, its powerset P(X) = {Y | Y ⊆ X} with the inclusion relation ⊆ forms
a complete lattice whose join and meet being set union and intersection, respectively.

Given a function f : X → Y and a set Z ⊆ X , we write f(Z) for the set {f(z) | z ∈ Z}. Given a
partially ordered set X and a function f : X → X , we say x ∈ X a fixed point (resp. pre-fixed point ,
post-fixed point) of f if x = f(x) (resp. f(x) " x, x " f(x)).

Definition 1.3 Let X and Y be partially ordered sets. A function f : X → Y is called monotone if
for all x, y ∈ X with x " y it holds that f(x) " f(y) in Y .

Theorem 1.4 (Knaster-Tarski fixed point theorem) If X is a complete lattice then every mono-
tone function f from X to X has a fixed point. The least of these is given by

lfp(f) =
"

{x ∈ X | f (x) " x},

the greatest by
gfp(f) =

⊔
{x ∈ X | x " f (x)}.

Proof: Let Y = {x ∈ X | f(x) " x} and y =
!

Y . For each x ∈ Y we have y " x and
f(y) " f(x) " x. Taking the infimum we get f(y) "

!
f(Y) "

!
Y = y, thus y ∈ Y . On the other

hand, x ∈ Y implies f(x) ∈ Y by monotonicity. Applying this to y yields f(y) ∈ Y which implies
y " f(y). &'

1

Usually, an object is defined inductively (resp. coinductively) if it is the least (resp. greatest) fixed
point of a function. So the above theorem provides two proof principles: the induction principle says
that to show lfp(f) " x it is enough to prove f(x) " x; the coinduction principle says that to show
x " gfp(f) it is enough to prove x " f(x).

Definition 1.5 Given a complete lattice X, the function f : X → X is continuous if it preserves
increasing chains, i.e. for all sequences x0 ≤ x1 ≤ ... we have f(

⊔
n≥0 xn) =

⊔
n≥0 f(xn). Dually, f

is cocontinuous if it preserves decreasing chains.

Notice that continuity and cocontinuity imply monotonicity. For example, if f is continuous and
x " y, then we obtain from the increasing sequence x " y " y " ... that f(

⊔
{x, y}) = f(y) =⊔

{f(x), f(y)}, which means f(x) " f(y). With continuity and cocontinuity we can construct in a
tractable way the least and greatest fixed point, respectively.

Proposition 1.6 Let X be a complete lattice.

1. Every continuous function f on X has a least fixed point, given by
⊔

n≥0 fn(⊥), where ⊥ is
the bottom element of the lattice, and fn(⊥) is the n-th iteration of f on ⊥: f0(⊥) := ⊥ and
fn+1(⊥) := f(fn(⊥)) for n ≥ 0.

2. Every cocontinuous function f on X has a greatest fixed point, given by
!

n≥0 fn(+), where +
is the top element of the lattice.

Proof: We only prove the first clause, since the second one is dual.
We notice that ⊥ " f(⊥) and then monotonicity of f yields an increasing sequence:

⊥ " f(⊥) " f2(⊥) " ...

By continuity of f we have f(
⊔

n≥0 fn(⊥)) =
⊔

n≥0 fn+1(⊥) and the latter is equal to
⊔

n≥0 fn(⊥).
If x is also a fixed point of f , then we have ⊥ " x and then fn(⊥) " x for all n by induction. So

x is an upper bound of all fn(⊥). &'

1.2 Domain theory

Definition 1.7 Let X be a partially ordered set. A subset Y of X is directed, if it is non-empty and
each pair of elements of Y has an upper bound in Y .

Simple examples of directed sets are chains, which are totally ordered non-empty subsets, i.e. for
each pair x, y either x " y or y " x holds.

Definition 1.8 A partially ordered set X is directed-complete, or called DCPO, if every directed
subset has a supremum in it.

Every complete lattice is also a DCPO. Every finite partially ordered set is a DCPO.

Proposition 1.9 A partially ordered set X is a DCPO if and only if each chain in X has a supre-
mum.

Proof: The proof uses the Axiom of Choice, and can be found in [Mar76]. &'

Definition 1.10 Let X and Y be DCPO’s. A function X → Y is (Scott-) continuous if it is
monotone and if for each directed subset Z of X we have f(

⊔
Z) =

⊔
f(Z). We denote the set of all

continuous functions from X to Y , ordered pointwise, by [X → Y].

Proposition 1.11 Let X and Y be DCPO’s. Then [X → Y] is also a DCPO. Directed suprema in
[X → Y] are calculated pointwise.

2

Proof: Let F be a directed subset [X → Y]. It follows that for any x ∈ X , the set {f(x) | f ∈ F}
is directed. Let f∗ : X → Y be the function defined by f∗(x) :=

⊔
f∈F f(x). We now show that

f∗ ∈ [X → Y]. Let Z ⊆ X be directed.

f∗(
⊔

Z) =
⊔

f∈F f(
⊔

Z)
=

⊔
f∈F

⊔
x∈Z f(x)

=
⊔

x∈Z

⊔
f∈F f(x)

=
⊔

x∈Z f∗(x)

Therefore, f∗ is continuous. &'

In DCPO we have a counterpart of Proposition 1.6 (1).

Proposition 1.12 Let X be a pointed DCPO. Every continuous function f on X has a least fixed
point. It is given by

⊔
n∈N fn(⊥).

Proof: Similar to the proof of Proposition 1.6 (1). &'

Let R+ be the set of non-negative real numbers. The following property is very useful. It says
that the directed sup and countable sum can be interchanged.

Lemma 1.13 Let S be a set and (S → R+) be the set of all functions from S to R+. Suppose
{fi | i ∈ I} is any directed subset of (S → R+).

1. If S is finite, then ∑

s∈S

⊔

i∈I

fi(s) =
⊔

i∈I

∑

s∈S

fi(s).

2. If S is countable and the partial sum Sn :=
∑n

j=1

⊔
i∈I fi(sj) is bounded, i.e. there exists some

c ∈ R+ such that Sn ≤ c for any n, then
∑

s∈S

⊔

i∈I

fi(s) =
⊔

i∈I

∑

s∈S

fi(s).

Proof:

1. Since S is finite, we can assume that |S| = N for some N ∈ N. Let ε be any positive real
number. For each s ∈ S, there is some index is such that 0 ≤

⊔
i∈I fi(s) − fi(s) ≤ ε

N for all
i > is. Let iS = max{is | s ∈ S}. For any s ∈ S, we have 0 ≤

⊔
i∈I fi(s) − fi(s) ≤ ε

N for all
i > iS . Summing up over all s ∈ S, we get 0 ≤

∑
s∈S

⊔
i∈I fi(s)−

∑
s∈S fi(s) ≤ ε for all i > iS .

Therefore,
⊔

i∈I

∑
s∈S fi(s) = limi→∞

∑
s∈S fi(s) =

∑
s∈S

⊔
i∈I fi(s).

2. Since the sequence {Sn}n∈N is increasing and bounded, it converges to
∑

s∈S

⊔
i∈I fi(s). Let ε

be any positive real number. We can take a finite subset S′ of S which is large enough so that

0 ≤
∑

s∈S

⊔

i∈I

fi(s) −
∑

s∈S′

⊔

i∈I

fi(s) ≤
ε

2
. (1.1)

With the same argument as in the proof the first clause, we can choose an index iS′ so that

0 ≤
∑

s∈S′

⊔

i∈I

fi(s) −
∑

s∈S′

fi(s) ≤
ε

2
(1.2)

for all i > iS′ . We observe that fi(s) ≤
⊔

i∈I fi(s), so the sequence {
∑n

j=1 fi(s)}n∈N, for any
i ∈ I, is increasing and bounded, thus converges to

∑
s∈S fi(s). Therefore, there exists some

N ∈ N such that

0 ≤
∑

s∈S

fi(s) −
N∑

j=1

fi(s) ≤
ε

2
(1.3)

3

for all i ∈ I. Without loss of generality, we assume that {s1, ..., sN} ⊆ S′. It follows from (1.3)
that

− ε

2
≤

∑

s∈S′

fi(s) −
∑

s∈S

fi(s) ≤ 0 (1.4)

for all i ∈ I. Take the sum of the three inequalities (1.1), (1.2) and (1.4), we obtain

− ε

2
≤

∑

s∈S

⊔

i∈I

fi(s) −
∑

s∈S

fi(s) ≤ ε (1.5)

for all i > iS′ . Therefore,
⊔

i∈I

∑
s∈S fi(s) = limi→∞

∑
s∈S fi(s) =

∑
s∈S

⊔
i∈I fi(s).

&'

1.3 Metric spaces

Definition 1.14 A metric space is a pair (X, d) consisting of a set X and a distance function
m : X × X −→ R+ satisfying

1. for all x, y ∈ X, d(x, y) = 0 iff x = y (isolation)

2. for all x, y ∈ X, d(x, y) = d(y, x) (symmetry)

3. for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

If we replace the first clause with ∀x ∈ X : d(x, x) = 0, we obtain the definition of pseudometric
space.

A metric d is c-bounded if ∀x, y ∈ X : d(x, y) ≤ c, where c is a positive real number.

Example 1.15 Let X be a set. The discrete metric m : X × X −→ [0, 1] is defined by

d(x, y) =
{

0 if x = y
1 otherwise.

Definition 1.16 A sequence (xn) in a metric space (X, d) is convergent to x ∈ X, if for an arbitrary
ε > 0 there exists N ∈ N such that d(xn, x) < ε whenever n > N .

Definition 1.17 A sequence (xn) in a metric space (X, d) is called a Cauchy sequence if for an
arbitrary ε > 0 there exists N ∈ N such that d(xm, xn) < ε whenever m, n > N .

Definition 1.18 A metric space is complete if every Cauchy sequence is convergent.

For example, the space of real numbers with the usual metric is complete.

Example 1.19 Let X be a non-empty set and F denote the collection of functions from X to the
interval [0, 1]. A metric is defined on F as follows:

d(f, g) := supx∈X |f(x) − g(x)|

In fact, (F, d) is a complete metric space. Let (fn) be a Cauchy sequence in F . Then for every
x ∈ X, the sequence (fn(x)) is Cauchy; and since [0, 1] is complete, the sequence converges to some
ax ∈ [0, 1]. Let f be the function defined by f(x) = ax. Thus (fn) converges to f .

Definition 1.20 Let (X, d) be a metric space. A function f : X → X is said to be a contraction
mapping if there is a constant δ with 0 ≤ δ < 1 such that

d(f(x), f(y)) ≤ δ · d(x, y)

for all x, y ∈ X.

4

Contractions have an important property.

Theorem 1.21 (Banach fixed point theorem) Every contraction on a complete metric space has
a unique fixed point.

Proof: Let (X, d) be a complete metric space, and f be a contraction mapping on (X, d) with
constant δ. For any x0 ∈ X , define the sequence (xn) by xn+1 := f(xn) for n ≥ 0. Let a := d(x0, x1).
It is easy to show that

d(xn, xn+1) ≤ δn · a

by repeated application of the property d(f(x), f(y)) ≤ δ · d(x, y). Given any ε > 0, it is possible to
choose a natural number N such that δn

1−δa < ε for all n ≥ N . Now, for any m, n ≥ N with m ≤ n,

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + ... + d(xn−1, xn)
≤ δm · a + δm+1 · a + ... + δn−1 · a
= δm 1−δn−m

1−δ a

< δm

1−δa < ε

by repeated application of the triangle inequality. So the sequence (xn) is a Cauchy sequence. Since
(X, d) is complete, the sequence has a limit in (X, d). We define x∗ to be this limit and show that
it is a fixed point of f . Suppose it is not, then a∗ := d(x∗, f(x∗)) > 0. Since (xn) converges to x∗,
there exists some N ∈ N such that d(xn, x∗) < a∗

2 for all n ≥ N . Then

d(x∗, f(x∗)) ≤ d(x∗, xN+1) + d(xN+1, f(x∗))
≤ d(x∗, xN+1) + δ · d(xN , x∗)
< a∗

2 + a∗

2 = a∗,

this gives rise to a contradiction. So x∗ is a fixed point of f . It is also unique. Otherwise, suppose
there is another fixed point x′; we have d(x′, x∗) > 0 since x′ /= x∗. But then we would have

d(x′, x∗) = d(f(x′), f(x∗)) ≤ δ · d(x′, x∗) < d(x′, x∗).

Therefore, x∗ is the unique fixed point of f . &'

1.4 Probability and measure theory

In this section, we recall some basic concepts from probaility and measure theory. More details can
be found in many textbooks, for example [Bil95].

Definition 1.22 Let X be an arbitrary non-empty set and X a family of subsets of X. We say that
X is a field on X if

1. the emptyset ∅ ∈ X ;

2. whenever A ∈ X , then the complement X\A ∈ X ;

3. whenever A, B ∈ X , then A ∪ B ∈ X .

A field X is a σ-algebra if it is closed under countable union: whenever Ai ∈ X for i ∈ N, then⋃
i∈N Ai ∈ X .

The elements of a σ-algebra are called measurable sets , and (X,X) is called a measurable space. A
σ-algebra generated by a family of sets X , denoted σ(X), is the smallest σ-algebra that contains X .
The existence of σ(X) is ensured by the following proposition.

Proposition 1.23 For any non-empty set X and X a family of subsets of X, there exists a unique
smallest σ-algebra containing X . &'

5

Definition 1.24 Let (X,X) be a measurable space. A function µ : X → [0, 1] is a probability
measure on (X,X) and (X,X , µ) a probability space, if µ satisfies the following properties:

1. µ(X) = 1

2. µ(
⋃

i Ai) =
∑

i µ(Ai) for any countable disjoint elements A1, A2, ... of X .

The measure µ is also called a probability distribution, the set X a sample space, and the elements of
X events .

Definition 1.25 A family X of subsets of X is called a semi-ring if

1. ∅ ∈ X ;

2. whenever A, B ∈ X , then A ∩ B ∈ X ;

3. if A, B ∈ X and A ⊆ B, then there are finitely many pairwise disjoint subsets C1, ..., Ck ∈ X
such that B\A =

⋃k
i=1 Ci.

Theorem 1.26 If X is a semi-ring on X and µ : X → [0,∞] satisfies

1. µ(∅) = 0

2. µ(
⋃k

i=1 Ai) =
∑k

i=1 µ(Ai) for any finite disjoint elements A1, ., Ak ∈ X

3. µ(
⋃

i Ai) ≤
∑

i µ(Ai) for any countable elements A1, A2, ... ∈ X ,

then µ extends to a unique measure on the σ-algebra generated by X . &'

See [Bil95] for a proof of this theorem.
Let (X,X , µ) be a probability space. A function f : X → R+ is said to be a random variable.

The expectation or average value with respect to the measure µ is given by the following integral:

E[f] :=
∫

x∈X
f(x)dµ .

6

Chapter 2

Classical Process Algebras

A great amount of work in process algebra has centered around behavioural relations such as equiv-
alences and refinement preorders as a basis for establishing system correctness. Usually both specifi-
cations and implementations are written as process terms in the same algebra, where a specification
describes the expected high-level behaviour of the system under consideration and an implementa-
tion gives the detailed procedure of achieving the behaviour. An appropriate equivalence or pre-
order is then chosen to verify that the implementation conforms to the specification. Informally, for
equivalence-based reasoning, a correct implementation has “the same behaviour” as that of the spec-
ification; for a preorder-based reasoning, a correct implementation has a behaviour “at least as good
as” that required by the specification. A distinguished feature of such process-algebraic approaches
of system verification is compositional reasoning in the sense that specifications and implementations
can be built up from their components. In the last three decades, many different process algebras
have been proposed, and a lot of equivalences and preorders have been developed to capture various
aspects of behaviour.

Most of existing behavioural relations are defined on top of labelled transition systems, which offer
a semantic model of systems, rather than on a particular syntax of process algebra. Equivalences
and preorders defined in this way are applicable to any algebra with a semantics given by labelled
transition systems. Moreover, for finitary labelled transition systems, these behavioural relations
could be computed in a purely mechanical manner, so automatic verification tools may be developed
to check that implementations conform to specifications.

2.1 Labelled transition systems

A process is the behaviour of a system such as a machine, a communication protocol, a game player
etc. It is usually described by a labelled transition system, which is essentially a labelled directed
graph.

Definition 2.1 (Labelled Transition Systems) A labelled transition system (LTS) is a triple
(S,Act ,→), where

1. S is a set of states

2. Act is a set of actions

3. −→⊆ S × Act × S is the transition relation.

It is usual to use the more intuitive notation s
α−→ s′ instead of (s,α, s′) ∈ −→.

The central topic in the study of processes is when should two processes be considered equal,
i.e. two systems behave similarly. It is widely accepted that two processes should be equivalent
if we cannot distinguish them by interacting with them. That is, the observations we could make

7

coin

button

coffee
coin

button button

coffee coffee

Figure 2.1: Two vending machines

while interacting with them are the same. Formally speaking, two processes can be identified if their
observational semantics are the same.

Since processes can be described as labelled directed graphs, we think of the graph isomorphism
from graph theory.

Definition 2.2 A graph isomorphism between two LTSs (S1,Act ,→) and (S2,Act ,→) is a bijective
function f : S1 → S2 such that s

α−→ t iff f(s) α−→ f(t).

Example 2.3 Imagine we have two vending machines. Machine A has a slot, a button, and a tray.
Whenever a coin is inserted in the slot and the button is pushed, a cup of coffee is delivered in the
tray. Machine B also has a slot and a tray but with two buttons. Whenever a coin is inserted in the
slot and any of the two buttons is pushed, a cup of coffee is delivered in the tray. Their behaviours
are described in Figure 2.1.

Intuitively the two machines exhibit similar behaviour and should not be distinguished. However,
there is no graph isomorphism between their LTSs.

This example shows that graph isomorphism is too strong to be a good behavioural equivalence.
A natural alternative is trace equivalence from automata theory. For any alphabet Σ, let Σ∗ be the
set of finite sequences over Σ.

Definition 2.4 A sequence of actions a1...an ∈ Act∗ for some n > 0 is a trace of s ∈ S if there are
some states s1, ..., sn such that s

a−→ s1
a−→ ...

a−→ sn. We say s and t are trace equivalent, written
s =T t, if they have the same set of traces.

Example 2.5 Consider a bad vending machine which is the same as the second machine in Exam-
ple 2.3 except that one button does not function, i.e. when it is pushed the machine is deadlocked. Its
behaviour is described in Figure 2.2.

We can interact with this machine and easily distinguish it from the above two machines by pushing
the bad button. However, there is no trace that shows the difference from the above two machines.

This example shows that trace equivalence is too weak to be a good behavioural equivalence
since it is even insensitive to deadlock. We should seek equivalences that are stronger than trace
equivalence but weaker than graph isomorphism in terms of their distinguishing power.

2.2 Bisimulation

Let R be a binary relation, we use the infix notation s R s′ to mean (s, s′) ∈ R, and we set
R−1 = {(s′, s) | s R s′}. The composition of relations R1 and R2 is R1R2, i.e. s R1R2 s′ holds if
for some s′′, both s R1 s′′ and s′′ R2 s′ hold.

8

coin

button button

coffee

Figure 2.2: A bad vending machine

s
a

b c

t
a

b

a

b c

a

c

Figure 2.3: s /∼ t

Definition 2.6 (Bisimulation) A binary relation R on the states of an LTS is a simulation if
whenever s1 R s2:

• for all s′1 with s1
α−→ s′1, there exists some s′2 such that s2

α−→ s′2 and s′1 R s′2.

The relation R is a bisimulation if both R and R−1 are simulations. Bisimilarity, written ∼, is the
union of all bisimulations; thus s ∼ t holds if there is a bisimulation R with s R t. We write s ≺ t
if there is a simulation R with s R t.

Example 2.7 It is clear that ≺ is a preorder whose kernel ≺ ∩ ≺−1 is coarser than bisimilarity. In
general, the kernel does not coincide with bisimilarity. For example, consider the two states s and t in
Figure 2.3. We have that s ≺ t and t ≺ s, but s /∼ t. However, the kernel coincides with bisimilarity
for deterministic LTSs, where for any state s and action α there is at most one outgoing transition
from s that is labelled by α.

Bisimilarity enjoys a number of mathematical properties. Firstly, it is itself a bisimulation, and in
fact is the largest bisimulation with respect to set inclusion. Secondly, it is an equivalence relation in
that it is reflexive, symmetric and transitive. Finally, it can be characterised in terms of fixed point
theory and a modal logic, as we shall see in the next few sections.

Proposition 2.8 1. If R1 and R2 are bisimulations, then so are R1 ∪R2 and R1R2.

2. ∼ is a bisimulation.

3. ∼ is an equivalence relation.

Definition 2.9 (Bisimulation up to ∼) A binary relation R on the states of an LTS is a bisim-
ulation up to ∼ if whenever s1 R s2:

• for all s′1 with s1
α−→ s′1, there exists some s′2 such that s2

α−→ s′2 and s′1 ∼ R ∼ s′2;

• for all s′2 with s2
α−→ s′2, there exists some s′1 such that s1

α−→ s′1 and s′1 ∼ R ∼ s′2.

Proposition 2.10 If R is a bisimulation up to ∼ then R ⊆ ∼.

Proof: It is easy to check that ∼ R ∼ is a bisimulation and R ⊆ ∼ R ∼. &'

9

2.2.1 Bisimulation as post-fixed point

Let (S,Act ,→) be an LTS. The function F∼ : P(S × S) → P(S × S) is defined by letting F∼(R) be
the set of all pairs (s1, s2) such that

• for all s′1 with s1
α−→ s′1, there exists some s′2 such that s2

α−→ s′2 and s′1 R s′2;

• for all s′2 with s2
α−→ s′2, there exists some s′1 such that s1

α−→ s′1 and s′1 R s′2.

Proposition 2.11 1. F∼ is monotone;

2. R is a bisimulation iff R is a post-fixed point of F∼;

3. ∼ is the greatest fixed point of F∼.

2.2.2 Approximating bisimilarity

We can approximate bisimilarity using a family of inductively defined relations and their limit. Sim-
ilarity can be approximated by similar constructions.

Definition 2.12 (Approximation of bisimilarity) Let S be the state set of an LTS. We define:

• ∼0:= S × S

• s1 ∼n+1 s2, for n ≥ 0, if

1. for all s′1 with s1
α−→ s′1, there exists some s′2 such that s2

α−→ s′2 and s′1 ∼n s′2;

2. for all s′2 with s2
α−→ s′2, there exists some s′1 such that s1

α−→ s′1 and s′1 ∼n s′2.

• ∼ω:=
⋂

n≥0 ∼n

It is easy to see that ∼ is a finer relation than ∼ω. In fact it is strictly finer, i.e. ∼ ! ∼ω, as the
following example shows.

Example 2.13 Consider the LTS (S, {a},−→) where S = {s, t,ω} ∪ {0, 1, 2, ...} and the transitions
are:

• For all n ≥ 0, n + 1 a−→ n, s
a−→ n, and t

a−→ n;

• ω
a−→ ω and t

a−→ ω.

It can be shown by induction on n that s ∼n t for all n ≥ 0, thus s ∼ω t. However, s /∼ t because t
can make a transition to reach the state ω which is not bisimilar to any state reachable from s.

In order to reach ∼ by approximation, in general we have to appeal to transfinite induction instead
of the natural induction used in Definition 2.12. However, natural induction is sufficient if the LTSs
are image-finite, that is, for all s the set of its derivatives {s′ | s

α−→ s′, for some α} is finite.

Proposition 2.14 On image-finite LTSs, ∼ω coincides with ∼.

Proof: It is trivial to show by induction that s ∼ t implies s ∼n t for all n ≥ 0, thus s ∼ω t.
Now we show that ∼ω is a bisimulation. Suppose s ∼ω t and s

a−→ s′. We have to show that
there is some t′ with t

a−→ t′ and s′ ∼ω t′. Consider the set

T ′ := {t′ | t
a−→ t′ ∧ s′ /∼ω t′}.

For each t′ ∈ T ′, we have s′ /∼ω t′, which means that there is some nt′ > 0 with s′ /∼nt′ t′. Since t
is image-finite, T ′ is a finite set. Let N = max{nt′ | t′ ∈ T ′}. It holds that s′ /∼N t′ for all t′ ∈ T ′,
since by a straightforward induction on m we can show that s ∼n t implies s ∼m t for all m, n ≥ 0
with n > m. By the assumption s ∼ω t we know that s ∼N+1 t. It follows that there is some t′ with
t

a−→ t′ and s′ ∼N t′, so t′ /∈ T ′ and hence s′ ∼ω t′. By symmetry we also have that if t
a−→ t′ then

there is some s′ with s
a−→ s′ and s′ ∼ω t′. &'

10

2.2.3 Modal characterisation

Bisimulation provides a convenient proof technique (coinduction) to show that two processes are
bisimilar since it suffices to construct a bisimulation that relates the two processes. However, to show
them inequivalent, it is awkward to exhaustively prove that no possible bisimulation exists. For this
purpose, we make use of modal logic to exhibit a modal formula satisfied by one process but not the
other. Below we give a modal characterisation of strong bisimilarity in an infinitary Hennessy-Milner
logic [HM85, vG01].

Definition 2.15 The class LB of infinitary Hennessy-Milner formulae over Act, ranged over by φ,
is defined by the following grammar:

φ :=
∧

i∈I

φi | 〈a〉φ | ¬φ

where I is a set and a ∈ Act. We write + for
∧

i∈∅ φi. The satisfaction relation |=⊆ S × LB is
defined by

• s |=
∧

i∈I φi if s |= φi for all i ∈ I.

• s |= 〈a〉φ if for some s′ ∈ S, s
a−→ s′ and s′ |= φ.

• s |= ¬φ if it is not the case that s |= φ.

We write s =B t just when s |= φ⇔ t |= φ for all φ ∈ LB.

Proposition 2.16 s ∼ t iff s =B t.

Proof: (⇒) Suppose s ∼ t, we show that s |= φ⇔ t |= φ by structural induction on φ.

• Let s |= 〈a〉φ. Then s
a−→ s′ and s′ |= φ for some s′. Since s ∼ t, there is some t′ with t

a−→ t′

and s′ ∼ t′. By induction hypothesis we have t′ |= φ, thus t |= 〈a〉φ. By symmetry we also have
t |= 〈a〉φ⇒ s |= 〈a〉φ.

• Let s |=
∧

i∈I φi. Then s |= φi for all i ∈ I. So by induction t |= φi, and we have t |=
∧

i∈I φi.
By symmetry we also have t |=

∧
i∈I φi implies s |=

∧
i∈I φi.

• Let s |= ¬φ. So s /|= φ, and by induction we have t /|= φ. Thus t |= ¬φ. By symmetry we also
have t /|= φ implies s /|= φ.

(⇐) It sufficies to establish that =B is a bisimulation. Suppose s =B t and s
a−→ s′. We have to

show that there is some t′ with t
a−→ t′ and s′ =B t′. Consider the set

T ′ := {t′ | t
a−→ t′ ∧ s′ /=B t′}.

For each t′ ∈ T ′, we have s′ /=B t′. It means that (i) either there is a formula φt′ with s′ |= φt′ but
t′ /|= φt′ (ii) or there is a formula φ′t′ with t′ |= φ′t′ but s′ /|= φ′t′ . In the latter case we set φt′ = ¬φ′t′
and return back to the former case. Let

φ := 〈a〉
∧

t′∈T ′

φt′ .

It is clear that s |= φ, hence t |= φ by s =B t. It follows that there must be a t′ with t
a−→ t′ and

t′ /∈ T ′, which means s′ =B t′. &'

In the above proof, the set T ′ is finite if we only consider image-finite LTSs. Then it sufficies
to characterise similarity using modal formulae involving finite conjunctions. The sub-logic that
only uses finite conjunctions is called Hennessy-Milner logic and it exactly captures similarity on
image-finite LTSs.

11

2.2.4 Game characterisation

In this subsection we present a game characterisation of strong bisimilarity. The account below closely
follows [Sti97].

Definition 2.17 (Bisimulation game) Given an LTS (S,Act ,→), a strong bisimulation game
G(s0, t0) starting from the pair of states (s0, t0) ∈ S × S is a two-player game. A play of the game is
a finite or infinite length sequence of the form (s0, t0) . . . (si, ti) Player I, viewed as an attacker,
attempts to show that the initial states are different whereas player II, viewed as a defender, wishes
to establish that they are equivalent. Suppose an initial part of a play is (s0, t0) . . . (si, ti). The next
pair (si+1, ti+1) is determined by one the following two moves:

• Player I chooses a transition si
a−→ si+1 and then player II chooses a transition with the same

label ti
a−→ ti+1.

• Player I chooses a transition ti
a−→ ti+1 and then player II chooses a transition with the same

label si
a−→ si+1.

The play continues with further moves. Player I always chooses first, and then player II, with full
knowledge of player I’s selection, must choose a corresponding transition from the other state.

A play of a game continues until one of the players wins. Player I wins if she can choose a
transition and player II will be unable to match it. Player II wins if the play is infinite, or if the
play reaches the configuration (si, ti) and both states have no available transitions. In both these
circumstances player I has been unable to detect a difference between the stating states.

Note that a game can have many different plays according to the choices made by the players.
Player I can choose a state, an action and a transition. Player II can only choose one of the available
transitions from the other state that is labelled with the same action as that chosen by player I. A
play will be won either by player I or by player II; it cannot be won by both at the same time.

Example 2.18 Consider the LTS given in Example 2.13. For the game G(t,ω), there are plays
that player I wins and plays that player II wins. If player I initially moves t a−→ 0 then after her
opponent makes the move ω a−→ ω we reach the configuration (ω, 0). Now player I wins by choosing
the transition ω a−→ ω because player II cannot answer a move from state 0. If player I initially
chooses transitions t a−→ ω or ω a−→ ω then player II can win. However player I has the power to
win any play of (t,ω) by initially choosing the transition t a−→ 0.

The above example shows that different plays of a game can have different winners. Nevertheless
for each game one of the players is able to win any play irrespective of what moves her opponent
makes. For explain this, we introduce the notion of strategy. A strategy for a player is a family of rules
that tell the player how to move. For player I a rule has the form: if the play so far is (s0, t0) . . . (si, ti)
then choose the transition ξ, where ξ is si

a−→ s′ or ti
a−→ t′ for some states s′, t′. For player II it has

the form: if the play so far is (s0, t0) . . . (si, ti) and player I has chosen the transition ξ then choose
the transition ξ′, where ξ is si

a−→ s′ or ti
a−→ t′ and ξ′ is a corresponding transition of the other

state. However it turns out that we only need to consider history-free strategies whose rules do not
depend on what happened previously in the play. Therefore, for player I a rule has the form

at configuration (s, t) choose transition ξ.

For player II a rule has the form

at configuration (s, t) when player I has chosen ξ then choose ξ′.

A player uses the strategy π in a play if all her moves obey the rules in π. The strategy π is a winning
strategy if the player wins every play in which she uses π.

Example 2.19 For the game G(t,ω) we analysed in Example 2.18, player I has a winning strategy:
if the configuration is (t,ω) then choose t a−→ 0, and if the configuration is (0,ω) then choose ω a−→ ω.

12

Proposition 2.20 For any game G(s, t) either player I or player II has a history-free winning strat-
egy.

Proof: See the proof of Proposition 3 in [Sti97]. &'

If player II has a winning strategy for G(s, t) then s is game equivalent to t. Game equivalence
is indeed an equivalence. Player II’s winning strategy for G(s, s) is the copy-cat strategy (always
choose the same transition as player I). If π is a winning strategy for player II for G(s, t) then π′

which changes each rule “at configuration (s, t) choose ...” to “at configuration (t, s) choose ...” is a
winning strategy for G(t, s). Finally if π is a winning strategy for player II for G(s, t) and π′ for G(t, u)
then the composition of these strategies is a winning strategy for player II for G(s, u): composition is
defined in such a way that, for instance, the pair of rules “at (s, t) when player I has chosen s a−→ s′

choose ξ” in π and “at (t, u) when player I has chosen ξ choose ξ′” becomes “ at (s, u) when player I
has chosen s a−→ s′ choose ξ′”.

When two states s and t are game equivalent, player II can always match player I’s moves: if
s a−→ s′ then there is a corresponding transition t a−→ t′ and s′ and t′ are also game equivalent, and
if t a−→ t′ then there is also a corresponding transition s a−→ s′ with s′ and t′ game equivalent. This
is precisely the criterion for being a bisimulation relation. The following proposition relates strong
bisimilarity to the corresponding game characterisation.

Proposition 2.21 s is game equivalent to t iff s ∼ t.

Proof: Assume that s is game equivalent to t. We show s ∼ t by establishing that the relation

R = {(s, t) | s and t are game equivalent}

is a bisimulation. Suppose s a−→ s′, and as this is a possible move by player I we know that player
II can respond with t a−→ t′ in such a way that (s′, t′) ∈ R, and similarly when t a−→ t′. For the
other direction suppose s ∼ t, and so there is a bisimulation relation R such that (s, t) ∈ R. We
construct a winning strategy for player II for the game G(s, t): in any play, whatever move player I
makes player II responds by making sure that the resulting pair of processes remain in the relation
R. Clearly player I cannot then win any play from G(s, t). &'

The above game characterisation provides an intuitive understanding of bisimilarity. It can be
used in practice to show that two states are strong bisimilar and to show that they are not.

2.3 Weak bisimulations

Sometimes we do not want to care about every action that a process performs, especially those
internal or invisible actions. For this purpose we introduce a special action τ to represent invisible
activities of processes and set Actτ := Act ∪{τ}. We write =⇒ for the reflexive and transitive closure
of τ−→, i.e. s =⇒ s′ if there are s0, ..., sn ∈ S with n ≥ 0 and s = s0

τ−→ s1
τ−→ ...

τ−→ sn ≡ s′. If in
that sequence n ≥ 1 then we write s

τ=⇒ s′. There are several versions of bisimulations, depending
on how τ -transitions are ignored in the bisimulation game.

Definition 2.22 A binary relation R on the states of an LTS is a branching simulation if s R t
implies that whenever s

α−→ s′ then

(Cτ): either α = τ and s′ R t

(Cb): or there exist t′, t′′ such that t =⇒ t′′
α−→ t′ with s R t′′ and s′ R t′.

The relation R is a branching bisimulation if both R and R−1 are branching simulations. Two
processes s and t are branching bisimilar, denoted s ≈b t, if there exists a branching bisimulation
relating s and t.

There are some variants of the above matching conditions:

13

(Cs
τ): either α = τ and there exists t′ such that t =⇒ t′ with s R t′ and s′ R t′

(Cq
τ): either α = τ and there exists t′ such that t =⇒ t′ with s′ R t′

(Cη): or there exist t′, t′′ such that t =⇒ t′′
α−→=⇒ t′ with s R t′′ and s′ R t′

(Cd): or there exists t′ such that t =⇒ α−→ t′ with s′ R t′

(Cw): or there exists t′ such that t =⇒ α−→=⇒ t′ with s′ R t′

Semi-branching bisimilarity (≈s) is defined in terms of (Cs
τ) and (Cb).

quasi-branching bisimilarity (≈q) is defined in terms of (Cq
τ) and (Cb).

η-bisimilarity (≈η) is defined in terms of (Cτ) and (Cη).
Delay bisimilarity (≈d) is defined in terms of (Cτ) and (Cd).
Weak bisimilarity (≈w) is defined in terms of (Cτ) and (Cw).

It can be checked that all the bisimilarities defined above are indeed equivalence relations. In
[vGW96] it is shown that ≈s coincides with ≈b, the inclusions ≈b⊆≈q⊆≈η⊆≈w and ≈b⊆≈q⊆≈d⊆≈w

are strict, but ≈η and ≈d are incomparable.
Although the largest semi-branching bisimulation coincides with the largest branching bisimu-

lation, it is suggested in [Bas96] that semi-branching bisimulation is more intuitive than branching
bisimulation. Moreover, to show that two processes are branching bisimilar, we often find it easier
to exhibit a semi-branching bisimulation than a branching bisimulation. An example is the proof of
Proposition 2.29.

In the above bisimulation game, if one process performs an initial τ -transition, the other can
simulate it by doing nothing. If we disallow this by requiring the other process to make at least one
step of τ -transitions, we obtain a slightly stronger relations.

Definition 2.23 s and t are quasi-branching congruent, written s =q t, if

1. whenever s
α−→ s′ then

(a) either α = τ and there exists t′ such that t
τ=⇒ t′ and s′ ≈q t′,

(b) or there exists t′ such that t
α−→ t′ and s′ ≈q t′;

2. symmetric to clause 1 by exchanging the roles of s and t.

The other four congruences can be defined in a similar way.

Proposition 2.24 For x ∈ {b, q, η, d, w}, if s ≈x t then one of the following three cases holds:

1. there exists some s′ such that s
τ−→ s′ and s′ ≈x t;

2. there exists some t′ such that t
τ−→ t′ and s ≈x t′;

3. s =x t.

Proof: Here we only consider ≈b. Similar arguments can be made for other bisimilarities.
Let us examine how s and t match each other’s transitions. We distinguish four possible cases.

1. s
τ−→ s′ and s′ ≈b t. This is exactly what Clause 1 says.

2. s
α−→ s′ and t

τ−→ t′ =⇒ t′′
α−→ t′′′ such that s ≈b t′′ and s′ ≈b t′′′. It follows from Lemma 2.28

that s ≈b t′.

3. The symmetric cases of 1 and 2 by exchanging the roles of s and t.

4. None of the first three cases hold, i.e., either both s and t have no transition or each strong
transition s

α−→ s′ from s is matched by a strong transition t
α−→ t′ from t with s′ ≈b t′ and

vice versa. In this case it holds that s = t.

&'

14

2.4 “Bisimulation up to” techniques

To prove that two processes are bisimilar, usually one needs to exhibit a relation which is a bisimu-
lation and which contains the two processes as a pair. In practice, to reduce the size of the relation
exhibited one prefers to define a relation which is a bisimulation only when closed up under some
specific relation, as to relieve the proof work needed. This kind of “bisimulation up to” techniques
are first introduced in [Mil89b], for strong bisimulation and weak bisimulation. In a similar way,
we present “bisimulation up to” techniques for branching bisimulation, quasi-branching bisimulation,
η-bisimulation, as well as delay bisimulation.

Definition 2.25 A branching bisimulation up to ≈b is a relation R ⊆ S × S such that

1. if sRt and s =⇒ s′
α−→ s′′ then one of the following two cases holds:

(a) α = τ and there exists t′′ such that t =⇒ t′′ with s′ ≈b R ≈b t′′ and s′′ ≈b R ≈b t′′;

(b) there exist t′, t′′ such that t =⇒ t′
α−→ t′′ with s′ ≈b R ≈b t′ and s′′ ≈b R ≈b t′′;

2. symmetric to Clause 1 by exchanging the roles of s and t.

The other four “up to” relations can be defined similarly.

The following property is very simple, but it underpins several other results in the rest of the
section.

Lemma 2.26 For x ∈ {b, q, η, d, w}, if s ≈x t. Then

1. if s =⇒ s′ there exists some t′ such that t =⇒ t′ and s′ ≈x t′;

2. if t =⇒ t′ there exists some s′ such that s =⇒ s′ and s′ ≈x t′.

Proof: Clause 1 can be shown by induction on the length of the transition from s to s′; Clause 2 is
similar.

&'

In the literature on branching bisimulation, the stuttering property is widely used. A bisimulation
satisfies this property means that: for any processes s0 and sk such that they are related to the same
process t and s0 can evolve into sk by a sequence of τ -transitions, then all intermediate processes are
also related to t. Following [Bas96], we give the formal definition.

Definition 2.27 (Stuttering property) A binary relation R on S satisfies the stuttering property
if for all k ≥ 0 and s, s0, ..., sk, t, t0, ..., tk ∈ S:

1. s0Rt, skRt, and s0
τ−→ s1

τ−→ ...
τ−→ sk implies that siRt for all i, 1 ≤ i < k;

2. sRt0, sRtk, and t0
τ−→ t1

τ−→ ...
τ−→ tk implies that sRti for all i, 1 ≤ i < k.

Lemma 2.28 For x ∈ {b, q, η, d, w}, ≈x satisfies the stuttering property.

Proof: It is shown in [vGW96] that ≈b satisfies the stuttering property. That proof can be easily
adapted for ≈η.

Below we only consider ≈w; the cases for ≈q and ≈d are quite similar. Let t
τ−→ t1

τ−→ ...
τ−→

tn
τ−→ t′ with n ≥ 1 be a sequence of transitions from t satisfying s ≈w t and s ≈w t′. We prove that

R = {(s, ti) | 1 ≤ i ≤ n} ∪ ≈w

is a weak bisimulation. It suffices to check that s and ti can match each other’s transition, for any
1 ≤ i ≤ n.

1. If s
α−→ s′, we know from s ≈w t′ that there are two possibilities:

15

(a) α = τ and s′ ≈w t′. So ti =⇒ τ−→ t′ and s′Rt′.

(b) t′ =⇒ α−→=⇒ t′′ and s′ ≈w t′′. Hence ti =⇒ t′ =⇒ α−→=⇒ t′′ and s′Rt′′.

2. If ti
α−→ t′′, then t =⇒ ti

α−→ t′′. Since t ≈w s we know from Lemma 2.26 that there exists
some s′ such that s =⇒ s′ and ti ≈w s′. Now there are two possibilities:

(a) α = τ and t′′ ≈w s′. Then either s = s′ with t′′Rs or s =⇒ τ−→ s′ with t′′Rs′.

(b) s′ =⇒ α−→=⇒ s′′ and t′′ ≈w s′′. Therefore s =⇒ s′ =⇒ τ−→=⇒ s′′ and t′′Rs′′.

&'

As expected, the “bisimulation up to” techniques are useful because of the following proposition.

Proposition 2.29 For x ∈ {b, q, η, d, w}, if R is a x-bisimulation up to ≈x then R ⊆≈x.

Proof: We first consider ≈b. It suffices to prove that the relation ≈b R ≈b is a semi-branching
bisimulation, from which it follows that R ⊆ ≈b R ≈b ⊆ ≈b by the coincidence between ≈s and ≈b.

Suppose that s0 ≈b sRt ≈b t0 and s0
α−→ s′′0 . We distinguish two cases.

1. α = τ and s =⇒ s′′ such that s0 ≈b s′′ and s′′0 ≈b s′′. Let us analyze the transition s =⇒ s′′.
There are two subcases.

(a) s = s′′. Then it is trivial to see that t0 =⇒ t0, s0 ≈b R ≈b t0 and s′′0 ≈b R ≈b t0.

(b) There exists some s′ such that s =⇒ s′
τ−→ s′′. By Lemma 2.28, we know that s0 ≈b s′.

By Definition 2.25, we have two possible transitions:
i. t =⇒ t′′ with s′ ≈b R ≈b t′′ and s′′ ≈b R ≈b t′′. By Lemma 2.26, there exists some t′′0

such that t0 =⇒ t′′0 and t′′ ≈b t′′0 . It is clear that s0 ≈b R ≈b t′′0 and s′′0 ≈b R ≈b t′′0 .
ii. t =⇒ t′

τ−→ t′′ with s′ ≈b R ≈b t′ and s′′ ≈b R ≈b t′′. By Lemma 2.26, there exists
some t′0 such that t0 =⇒ t′0 and t′ ≈b t′0. There are two possible transitions from t′0:
A. t′0 =⇒ t′′0 with t′ ≈b t′′0 and t′′ ≈b t′′0 . It is easy to see that t0 =⇒ t′′0 , s0 ≈b R ≈b t′′0

and s′′0 ≈b R ≈b t′′0 .
B. t′0 =⇒ t′′′0

τ−→ t′′0 with t′ ≈b t′′′0 and t′′ ≈b t′′0 . It is easy to see that t0 =⇒ t′′′0
τ−→ t′′0 ,

s0 ≈b R ≈b t′′′0 and s′′0 ≈b R ≈b t′′0 .

2. s =⇒ s′
α−→ s′′ with s0 ≈b s′ and s′′0 ≈b s′′. By Definition 2.25, we have two possible transitions:

(a) α = τ and t =⇒ t′′ with s′ ≈b R ≈b t′′ and s′′ ≈b R ≈b t′′. Then the arguments are the
same as in Case 1(b)i.

(b) t =⇒ t′
α−→ t′′ with s′ ≈b R ≈b t′ and s′′ ≈b R ≈b t′′. The remaining arguments are

similar to those in Case 1(b)ii.

The case for ≈η is similar to that of ≈b.
For ≈q we can directly prove that ≈q R ≈q is a quasi-branching bisimulation.
The case for ≈d and ≈w are similar to that of ≈q. &'

2.5 A simple process algebra

Following [vGW96], we consider a simple language, the basic CCS. But the result in this section
can be easily generalised. The class of processes Pr is defined by the following syntax; we shall use
P, Q, ... as metavariables over Pr.

P ::= 0 (inaction)
α.P (prefixing, α ∈ Aτ)
P + Q (summation)

16

The process 0 represents a process that is unable to perform any action. α.P stands for a process
that first performs the action α and then proceeds as P . P + Q represents a process that behaves as
either P or Q.

We define a labelled transition system (Pr,Act ,−→), where the transition relation −→⊆ Pr ×
Actτ × Pr is the smallest relation satisfying

• α.P
α−→ P ;

• if P
α−→ R or Q

α−→ R then P + Q
α−→ R.

The lemma below reports a simple property that holds for all the five bisimilarities defined in
Section 2.3. We shall exploit this property to prove Lemma 2.35.

Lemma 2.30 For x ∈ {b, q, η, d, w}, if τ.P + Q ≈x P then P + Q ≈x P .

Proof: Here we only consider ≈b. Similar arguments can be made for other bisimilarities.
We show that the relation

R = {(P + Q, P) | τ.P + Q ≈b P} ∪ Id

is a branching bisimulation up to ≈b, where Id is the identity relation on Pr. For convenience of
proof, we can regard ≈b as the largest semi-branching bisimulation. We only need to consider all
transitions of P + Q that are resulted from the transitions of Q.

1. Suppose P + Q
α−→ Q′′, which comes from Q

α−→ Q′′. Since τ.P + Q ≈b P , P must match the
transition τ.P + Q

α−→ Q′′. There are two cases.

(a) α = τ and P =⇒ P ′′ with τ.P + Q ≈b P ′′ and Q′′ ≈b P ′′. It is easy to see that
P + Q R P ≈b τ.P + Q ≈b P ′′. It follows that P + Q ≈b R ≈b P ′′ and Q′′ ≈b Id ≈b P ′′.

(b) P =⇒ P ′ α−→ P ′′ with τ.P + Q ≈b P ′ and Q′′ ≈b P ′′. It is easy to see that P + Q ≈b

R ≈b P ′ and Q′′ ≈b Id ≈b P ′′.

2. Suppose P + Q
τ=⇒ Q′ α−→ Q′′, which comes from Q

τ=⇒ Q′ α−→ Q′′. Clearly we have the
transition τ.P + Q

τ=⇒ Q′. Since τ.P + Q ≈b P , by Lemma 2.26 there exists a transition
P =⇒ P ′ such that Q′ ≈b P ′. There are two ways for P ′ to match the transition Q′ α−→ Q′′.

(a) α = τ and P ′ =⇒ P ′′ with Q′ ≈b P ′′ and Q′′ ≈b P ′′. Obviously we have that P =⇒ P ′′

with Q′ ≈b Id ≈b P ′′ and Q′′ ≈b Id ≈b P ′′.
(b) P ′ =⇒ P ′′′ α−→ P ′′ with Q′ ≈b P ′′′ and Q′′ ≈b P ′′. Obviously we can get P =⇒ P ′′′ α−→

P ′′ with Q′ ≈b Id ≈b P ′′′ and Q′′ ≈b Id ≈b P ′′.

&'

For ≈d and ≈w, we have the following result, where the part on ≈w is known as the original
Hennessy Lemma in CCS.

Lemma 2.31 For x ∈ {d, w}, P ≈x Q iff (τ.P =x Q or P =x Q or P =x τ.Q).

Proof: For ≈w, the result is proved in [Mil89b]. Further, that proof can be adapted for ≈d easily.
&'

Remark 2.32 The above property does not hold for ≈b, ≈q and ≈η. For a counterexample, consider
the two processes τ.(a + b) + a and a + b. Let x ∈ {b, q, η}, it is true that τ.(a + b) + a ≈x a + b.
However,

τ.(τ.(a + b) + a) /=x a + b (2.1)
τ.(a + b) + a /=x a + b (2.2)

τ.(a + b) + a /=x τ.(a + b) (2.3)
In (2.1) an action b from the right hind side cannot be matched up by any action from the left hide
side of the inequality. Similar for (2.2). In (2.3) an action a from the left hind side cannot be matched
up by any action from the right hide side of the inequality.

17

S1 P + 0 = P
S2 P + Q = Q + P
S3 P + (Q + R) = (P + Q) + R
S4 P + P = P

B α.(τ.(P + Q) + Q) = α.(P + Q)

T1 α.τ.P = α.P
T2 τ.P + P = τ.P
T3 α.(P + τ.Q) + α.Q = α.(P + τ.Q)

T3′ τ.(P + τ.Q) + τ.Q = τ.(P + τ.Q)

Table 2.1: All the axioms

2.6 Axiomatisations

An (equational) axiomatisation or an axiom system A for an equivalence = is a collection of equations
P = Q. We write A > P = Q if this equation can be derived from the equations in A by using the
standard rules of equational logic. The soundness of A means that if A > P = Q then P = Q, and
the completeness means that if P = Q then if A > P = Q, for all processes P and Q.

We shall consider complete axiomatisations of branching congruence, quasi-branching congruence,
η-congruence, delay congruence, and weak congruence. For all the axiomatisations, the soundness
properties are quite easy to show, thus we omit them. So we focus on the completeness properties
and provide a uniform but simple completeness proof that works for the five congruences.

All the axioms that we need are displayed in Figure 2.1. It is shown in [Mil89b] that S1-4 form a
complete axiom system for strong bisimilarity. By adding the three τ -laws T1-3, Milner has obtained
a complete axiom system for weak congruence. In [vGW96] van Glabbeek and Weijland have built a
complete axiomatisation of branching congruence by adding B to S1-4. Two other congruences =η
and =d are also axiomatized in [vGW96], just by adding {B,T3} and T1-2, respectively, to S1-4.
The axiom T3′ is the special case of T3 when α = τ , and it is derivable from T2 and S4. We shall
show that =q can be axiomatized by adding {B,T3′} to S1-4. We use the following abbreviations
for the axiom systems of the five congruences.

Ab = {S1-4,B}
Aq = {S1-4,B,T3′}
Aη = {S1-4,B,T3}
Ad = {S1-4,T1-2}
Aw = {S1-4,T1-3}

Note that B implies T1 and is derivable from T1-2. So we can also use T1 when doing equational
reasoning in Ab,Aq,Aη, and use B in Ad,Aw.

The following saturation properties, Clauses 1 and 3 in particular, are well-known in CCS. Here we
also consider two special cases of the transition relation =⇒ α−→=⇒: α−→=⇒ and =⇒ α−→, in Clauses
2 and 3, respectively.

Lemma 2.33 (Saturation) 1. if P
τ=⇒ P ′ then {S1-4,T3′} > P = P + τ.P ′;

2. if P
α−→=⇒ P ′ then {S1-4,T3} > P = P + α.P ′;

3. if P =⇒ α−→ P ′ then {S1-4,T2} > P = P + α.P ′;

18

4. if P =⇒ α−→=⇒ P ′ then {S1-4,T2-3} > P = P + α.P ′.

Proof: The proof is carried out by transition induction. As an example, we show the second clause.
Base case: P

α−→ P ′. Then the conclusion holds by S4.
Inductive step: P

α−→=⇒ P ′′ τ−→ P ′. Then we infer

{S1-4,T3} > P = P + α.P ′′ by induction
= P + α.(P ′′ + τ.P ′) by S4
= P + α.(P ′′ + τ.P ′) + α.P ′ by T3
= P + α.P ′

&'

As usual we use the notation of normal form. P is in normal form if it is of the form
∑n

i=1 αi.Pi,
where each Pi is also in normal form.

Lemma 2.34 For each P , there is a normal form P ′ such that {S1-4} > P = P ′.

We now introduce the important promotion lemma. It relates operational semantics to equational
rewriting. Its proof is achieved by induction on the sizes of processes. We define the size, size(P), of
process P as follows.

size(0) = 0
size(α.P) = 1 + size(P)

size(P + Q) = size(P) + size(Q)

Lemma 2.35 (Promotion) 1. If P ≈b Q then Ab > τ.P = τ.Q;

2. If P ≈q Q then Aq > τ.P = τ.Q;

3. If P ≈η Q then Aη > τ.P = τ.Q;

4. If P ≈d Q then Ad > τ.P = τ.Q;

5. If P ≈w Q then Aw > τ.P = τ.Q.

Proof: By Lemma 2.34, we can assume that P and Q are in normal form.

1. We carry out the proof by induction on size(P + Q).

Base case If size(P + Q) = 0, then both P and Q are 0. We infer Ab > τ.0 = τ.0 trivially.

Inductive step Suppose size(P +Q) > 0. Since P ≈b Q, by Proposition 2.24 we can distinguish
three cases.

(a) There exists some P ′ such that P
τ−→ P ′ and P ′ ≈b Q. To have the strong transition

P
τ−→ P ′, P must be of the form τ.P ′ +R for some process R. Since τ.P ′ +R ≈b Q ≈b P ′,

it follows from Lemma 2.30 that P ′ + R ≈b P ′ ≈b Q. Note that size(P ′ + R + Q) <
size(τ.P ′ + R + Q) and size(P ′ + Q) < size(τ.P ′ + R + Q). By induction hypothesis, it
can be inferred that

Ab > τ.(P ′ + R) = τ.Q = τ.P ′. (2.4)

So we derive
Ab > τ.P = τ.(τ.P ′ + R)

= τ.(τ.(P ′ + R) + R) by (2.4)
= τ.(P ′ + R) by B
= τ.Q by (2.4)

(b) There exists some Q′ such that Q
τ−→ Q′ and P ≈b Q′. This case is symmetric to Case 1

by exchanging the roles of P and Q.

19

(c) P = Q. We aim to prove that each summand of P can be absorbed by Q. Let α.P ′ be a
summand of P , which gives rise to a transition P

α−→ P ′. Correspondingly, there exists
some Q′ such that Q

α−→ Q′ and P ′ ≈b Q′. Clearly we can derive

Ab > Q = Q + α.Q′ (∗)

by the axiom S4. Note that size(P ′ + Q′) < size(P + Q). So by induction hypothesis we
obtain

Ab > τ.P ′ = τ.Q′. (2.5)

So we derive
Ab > Q + α.P ′ = Q + α.τ.P ′ by T1

= Q + α.τ.Q′ by (2.5)
= Q + α.Q′ by T1
= Q by (*)

In summary, Ab > Q + P = Q and symmetrically Ab > P + Q = P . Therefore Ab > τ.P =
τ.(P + Q) = τ.Q.

2. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aq and ≈q, and replace the two underlined parts with “either Q

α−→ Q′ or
α = τ and Q

τ=⇒ Q′” and “either the axiom S4 or Lemma 2.33(1)” respectively.

3. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aη and ≈η, and replace the two underlined parts with Q

α−→=⇒ Q′ and
Lemma 2.33(2) respectively.

4. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Ad and ≈d, and replace the two underlined parts with Q =⇒ α−→ Q′ and
Lemma 2.33(3) respectively.

5. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aw and ≈w, and replace the two underlined parts with Q =⇒ α−→=⇒ Q′ and
Lemma 2.33(4) respectively.

&'

Remark 2.36 In the inductive step of the above proof, we have distinguished three independent cases
by Proposition 2.24, and in the first two cases Lemma 2.30 plays an important role. Nevertheless,
for behavioural equivalences that are insensitive to the branching structure of processes such as ≈d

and ≈w, the proof of the above lemma can be simplified. For instance, in the case of ≈w, one just
needs to consider two possibilities: (i) P

α−→ P ′ with P ′ ≈w Q, (ii) P
τ−→ P ′ with Q =⇒ α−→=⇒ Q′

and P ′ ≈w Q′. In the particular case of (ii), one can prove the property (*) by Lemma 2.33(4). This
proof schema is adopted in [FY03] to show the promotion property of all the five weak behavioural
equivalences considered in that paper. It is also adapted to a probabilistic setting in [DP05b] where
probabilistic weak bisimilarity is investigated. However, the proof schema does not apply to weak
behavioural equivalences that are to some extent sensitive to the branching structure of processes,
such as ≈b, ≈q and ≈η. The reason is that for these equivalences the τ-transitions before the α-
transition in (ii) cannot be simply absorbed. Otherwise, the branching structure of processes would
not be observable.

With the saturation and promotion properties we are now ready to establish the following com-
pleteness theorem.

Theorem 2.37 (Completeness) 1. If P =b Q then Ab > P = Q;

2. If P =q Q then Aq > P = Q;

20

3. If P =η Q then Aη > P = Q;

4. If P =d Q then Ad > P = Q;

5. If P =w Q then Aw > P = Q.

Proof:

1. Similar to the proof Lemma 2.35(1) we assume P, Q in normal form and proceed by induction
on size(P + Q). The base case is trivial, so we only consider the inductive step. Let α.P ′ be
a summand of P . Then P

α−→ P ′ must be matched up by Q
α−→ Q′ for some Q′ such that

P ′ ≈b Q′. Clearly we can derive

Ab > Q = Q + α.Q′ (∗∗)

by the axiom S4. By Promotion Lemma,

Ab > τ.P ′ = τ.Q′. (2.6)

Therefore
Ab > Q + α.P ′ = Q + α.Q′ by T1 and (2.6)

= Q by (**)

Hence we have Ab > Q + P = Q. Symmetrically Ab > P + Q = P . Therefore Ab > P = Q.

2. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aq and ≈q, and replace the two underlined parts with “either Q

α−→ Q′ or
α = τ and Q

τ=⇒ Q′” and “either the axiom S4 or Lemma 2.33(1)” respectively.

3. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aη and ≈η, and replace the two underlined parts with Q

α−→=⇒ Q′ and
Lemma 2.33(2) respectively.

4. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Ad and ≈d, and replace the two underlined parts with Q =⇒ α−→ Q′ and
Lemma 2.33(3) respectively.

5. The arguments are the same as in the proof of Clause 1 except that we change all the notations
Ab and ≈b into Aw and ≈w, and replace the two underlined parts with Q =⇒ α−→=⇒ Q′ and
Lemma 2.33(4) respectively.

&'

Remark 2.38 For x ∈ {d, w}, there exists a even simpler completeness proof that does not rely on
the Promotion Lemma. The reason is that Lemma 2.31 helps to lift P ≈x Q to either τ.P =x Q or
P =x Q or P =x τ.Q, thus allowing the induction hypothesis to apply when proving (2.6) in the last
proof. For instance, this is the method adopted in [Mil89b] for showing that Aw constitutes a complete
axiom system for =w. For x ∈ {b, q, η}, however, this method cannot be used because the Hennessy
Lemma fails for them (cf. Remark 2.32).

2.7 Equivalence checking

2.7.1 A partition-refinement algorithm for bisimilarity

In this section we present an algorithm which, given an LTS (S, A,→) where both S and A are finite,
iterately compute bisimilarity. It is due to Kanellakis and Smolka [KS90] and commonly known as
a partition refinement algorithm (see Figure 2.4). The idea is to represent the state space as a set

21

B := {S}
repeat

Bold := B
B := Refine(B)

until Bold = B
return B

Figure 2.4: Schema for the partition refinement algorithm

a a a

B

B′

a a a

B1 B2

B′

B B

Figure 2.5: Splitting a block

of blocks , where a block is set of states standing for an equivalence class, and the equivalence of
two given states can be tested by checking whether they belong to a same block. The blocks form
a partition of the state space. Starting from the partition {S}, the algorithm iterately refines the
partition by splitting each block into two smaller blocks if two states in one block are found to exhibit
different behaviour. Eventually, when no further refinement is possible for a partition, the algorithm
terminates and all states in a block of the partition are bisimilar.

Let B = {B1, ..., Bn} be a partition consisting of a set of blocks. The algorithm tries to refine the
partition by splitting each block. A splitter for a block B ∈ B is the block B′ ∈ B such that some
states in B have a-transitions, for a ∈ A, into B′ and others do not. In this case B′ splits B with
respect to a into two blocks B1 = {s ∈ B | ∃s′ ∈ B′ : s a−→ s′} and B2 = B − B1.

The refinement operator Refine(B) yields the partition

Refine(B) =
⋃

B∈B,a∈A

Split(B, a,B) (2.7)

where Split(B, a,B) is the splitting procedure which detects whether the partition B contains a
splitter for a given block B ∈ B with respect to action a ∈ A. If such splitter exists, B is
splitted into two blocks B1 and B2. Otherwise, B itself is returned. In the procedure Split
we use the following notation: {s a−→ •} := {t ∈ S | s a−→ t} is the postset of s respect to a, and
[S′]B := {B ∈ B | ∃s ∈ S′ : s ∈ B} is the minimal set of blocks in B that cover all states in S′. So
[{s a−→ •}]B is the set of blocks that are reachable from s by one step of a-transition. With a slight
abuse of terminology we call this set the postset of s in B with respect to a. The procedure Split
chooses a state from B and compares its postset in P with the postsets of other states in B. If the

22

postsets of two states are different, we know that there exists a splitter that will put these states in
different blocks.

Procedure 1 Split(B, a,B)
choose s ∈ B
B1 = ∅
B2 = ∅
for all s′ ∈ B do

if [{s a−→ •}]B = [{s′ a−→ •}]B then
B1 = B1 ∪ {s′}

else
B2 = B2 ∪ {s′}

end if
end for
if B2 = ∅ then

return {B1}
else

return {B1, B2}
end if

Procedure 2 Partition
B := {S}
changed := true
while changed do

changed := false
for all B ∈ B do

for all a ∈ A do
if Split(B, a,B) /= {B} then
B := B − {B} ∪ Split(B, a,B)
changed := true
break

end if
end for

end for
end while

In the main loop of Partition, the algorithm iteratively attempts to split every block in B with
respect to every action in A until no further splitting is possible.

Given a partition B, we write B̂ for the equivalence relation generated by B. For example, if
B = {{s1, s2, s3}, {s4}}, then

B̂ = {(s1, s1), (s2, s2), (s3, s3), (s1, s2), (s2, s1), (s1, s3), (s3, s1), (s2, s3), (s3, s2), (s4, s4)}.

Correctness of algorithm Partition relies on the fact that when changed is false, no block in B can
be split. So B̂ = F∼(B̂) and Proposition 2.11 (3) yields B̂ ⊆ ∼. Moreover, if we denote by B̂n the
partition after the n-th iteration of the main loop of Partition, we have ∼ ⊆ ∼n ⊆ B̂n. It follows
that B̂ = ∼ when the algorithm terminates.

The complexity of Partition is given by the following theorem.

Theorem 2.39 Given an LTS (S, A,→) with |S| = n and | → | = m, algorithm Partition takes
O(n · m) time.

Proof: The main loop of Partition is repeated at most n times. Within one iteration of the main
loop, procedure Split is called for each block at most once for each action in A. In turn, Split

23

considers each transition of each state in the block at most once. So the calls to Split within one
iteration of the main loop take O(m) time. &'

Performance of the partition refinement algorithm can be significantly improved by using more
complex data structures. In addition, the algorithm can be used to decide several other behavioural
equivalences such as weak bisimilarity, branching bisimilarity, testing equivalence etc. In order to
obtain a partition refinement algorithm for an equivalence relation R, one needs to define a suitable
transformation TR so that, for any two states s1, s2, s1Rs2 if and only if TR(s1) ∼ TR(s2). See
[CS01] for more details.

2.7.2 An on-the-fly algorithm for bisimilarity

The algorithm presented in the previous section requires to generate the whole state space of a
system in advance. However, in many cases, one may be able to determine that one process fails
to be related to another by examining only a fraction of the state space. We would like to have a
verification algorithm that exploits this fact.

On-the-fly algorithms combine the verification of a system’s behaviour with the generation of
the system’s state space. In this section we present the bisimilarity-checking algorithm originally
proposed in [Lin98] for value-passing processes.

The main procedure in the algorithm is Bisim(s, t). It starts with the initial state pair (s, t),
trying to find the smallest bisimulation relation containing the pair by matching transitions from each
pair of states it reaches. It uses three auxiliary data structures:

• NotBisim collects all state pairs that have already been detected as not bisimilar.

• V isited collects all state pairs that have already been visited.

• Assumed collects all state pairs that have already been visited and assumed to be bisimilar.

The core procedure, Match, is called from function Bis inside the main procedure Bisim. Whenever
a new pair of states is encountered it is inserted into V isited. If two states fail to match each other’s
transitions then they are not bisimilar and the pair is added to NotBisim. If the current state pair
has been visited before, we check whether it is in NotBisim. If this is the case, we return false.
Otherwise, a loop has been detected and we make assumption that the two states are bisimilar, by
inserting the pair into Assumed, and return true. Later on, if we find that the two states are not
bisimilar after finishing searching the loop, then the assumption is wrong, so we first add the pair
into NotBisim and then raise the exception WrongAssumption, which forces the function Bis to
run again, with the new information that the two states in this pair are not bisimilar. In this case,
the size of NotBisim has been increased by at least one. Hence, Bis can only be called for finitely
many times. Therefore, the procedure Bisim(s, t) will terminate. If it returns true, then the set
(V isited − NotBisim) constitutes a bisimulation relation containing the pair (s, t).

Below we consider the time complexity of the algorithm. Let s and t be two states in an LTS with
n states in total. The number of state pairs is bounded by n2. The time required for the first call of
Bis(s, t) is at most O(n2), for the second call is at most O(n2 − 1), · · · . Therefore, the worst case
time complexity of Bis(s, t) is O(n2 + (n2 − 1) + · · · + 1) = O(n4). However, the worst case rarely
happens in practical applications.

2.7.3 Tools

A few tools have been developed to check behavioural equivalences and preorders. Two notewor-
thy examples are the Concurrency Workbench [CPS93] and FDR [Ros94]. The former implements
partition-refinement algorithms for several equivalences such as bisimulations, observational equiva-
lence, and branching bisimulations. The latter is based on CSP [Hoa85a] and can be used to establish
refinements (behavioural preorders) between processes.

24

Procedure 3 Bisim(s, t)
NotBisim := {}
fun Bis(s, t)={

V isited := {}
Assumed := {}
Match(s, t)}

} handle WrongAssumption ⇒ Bis(s, t)
return Bis(s, t)

Procedure 4 Match(s, t)
V isited := V isisted∪ {(s, t)}
b =

∧
a∈A MatchAction(s, t, a)

if b = false then
NotBisim := NotBisim ∪ {(s, t)}
if (s, t) ∈ Assumed then

raise WrongAssumption
end if

end if
return b

Procedure 5 MatchAction(s, t, a)
for all s a−→ si do

for all t a−→ tj do
bij = Close(si, tj)

end for
end for
return (

∧
i(

∨
j bij)) ∧ (

∧
j(

∨
i bij))

Procedure 6 Close(s, t)
if (s, t) ∈ NotBisim then

return false
else if (s, t) ∈ V isited then

Assumed := Assumed ∪ {(s, t)}
return true

else
return Match(s, t)

end if

25

2.7.4 Formal verification

Checking behavioural equivalence between an implementation and a specification belongs to a broader
research area called formal verification whose aim is to establish system correctness with mathematical
rigour. In this section we give a briefly overview of some typical formal verification techniques. More
details can be found in e.g. [BK08].

In developing complex software and hardware systems, more effort is spent on verification rather
than on construction. Formal methods are playing more and more important roles in system verifi-
cation. There are roughly two kinds of approaches in formal verification: deductive and model-based
methods.

With deductive methods, the correctness of systems is formalised as properties in a mathematical
theory, and then proven by tools such as theorem provers and proof checkers.

With model-based methods, real systems are modelled in a mathematical way (e.g. by automata)
and then all states in system models are systematically explored. Typical examples include model
checking, which explores state spaces exhaustively, and simulation, which works with a restrictive set
of scenarios in systems models.

Model-based simulation Simulation is widely known and practically used in industry. The soft-
ware tool called simulator allows the user to study how the system under consideration will react on
certain scenarios. The scenarios are usually provided by the user or generated by tools like random
scenario generators. Simulation is useful to assess the quality of prototype designs, but it is not good
at finding subtle errors simply because of the impossibility of generating all possible scenarios of real
systems.

Model checking Model checking explores the state space of a system model exhaustively (this
is one of the reasons that it is mainly used in control-intensive applications and less suited for
data-intensive applications since data often have infinite domains). The system model is usually
expressed by finite state automata which can be generated from a model description specified in some
appropriate dialect of programming languages like C or Java or hardware description languages such
as Verilog or VHDL. The properties we are interested in can be described in a property specification
language e.g. a temporal logic. Typical system properties are reachability (is a deadlock state
reachable?), safety (something bad never happens), liveness (something good will eventually happen),
fairness (will an event repeatedly occur under certain condition?), etc. With a system model and a
desired property as input, a model checker is run to examine all relevant states to check if they satisfy
the property. If a state is found to violate the property, the model checker provides a counterexample,
which describes an execution path that goes from the initial state to a state that violates the property
being verified.

When doing model checking, one often encounters the problem that a model is too large to be
handled (state-space explosion). To combat this problem, some techniques have been developed that
try to exploit implicit regularities in the structure of models; examples are the representation of state
space using symbolic techniques such as binary decision diagrams or partial-order reduction. An
alternative method is to use abstractions of system models; abstractions should be relatively small
but preserve the (in)validity of the properties that are to be checked.

Nowadays, model checking is used in a wide range of applications such as embedded systems,
software engineering, and hardware designs. Successful applications of model checking in system
design have been reported by some companies such as IBM, Intel, Motorola, Lucent Technologies,
Fujitsu etc.

Theorem proving Formal verification of some problems can also be regarded as proving theorems
of the form: system specification ⇒ desired property. This is the main idea with deductive methods
that transform a system specification into a mathematical theory. A theorem prover uses a set of
given axioms to either construct a proof of a theorem by generating the intermediate proof steps, or
to refute it. Theorem provers are also called proof assistants. They have different variants.

26

Proof checkers are highly automated proof assistants. They check whether a proof suggested
by a user is valid or not. The capacity of proof checkers to generate proofs automatically is very
limited. General-purpose proof assistants usually have built-in search components. To reduce the
search effort in theorem proving, interaction with the user is necessary. Interactive proof assistants
are useful in giving a proof by keeping track of what needs to be done and by providing hints on how
these remaining theorems can be proven. Moreover, each proof step is automatically verified.

The strength of theorem proving is that it can deal with infinite state space by using proof
principles such as structural induction. The weakness is that the verification process is slow and
error-prone. In addition, to use proof assistants requires users to have good expertise in mathematical
logics. Typical proof assistants make use of higher-order logics; examples include PVS, Coq, HOL
and Isabelle.

27

28

Chapter 3

A Brief Introduction of CCS and
π-calculi

This chapter introduces some basic notions about process calculi. The presentation is based on CCS
and the π-calculus, and partly guided by two textbooks [Mil99, SW01].

3.1 A calculus of communicating systems

We presuppose an infinite set of process variables, Var = {X, Y, ...}, and an infinite set of names,
N = {u, v, ...}. We use the set of conames, N = {ū | u ∈ N}. Given a special name τ , we let a range
over the set of labels, L = N ∪N ∪{τ}. A label represents an indivisible action that a communicating
system performs, such as reading a datum, or sending a datum. The class of process expressions Eccs
is given by the following grammar:

E, F ::= 0 | a.E | E + F | E|F | νuE | X | µXE

The expression 0 represents inaction. The prefix a.E describes the behaviour of first performing an
action labelled a then behaving like E. The sum or nondeterministic choice E +F behaves either like
E or F nondeterministically. The parallel composition E|F allows each of its components to behave
independently, but also to synchronize with each other by a handshake on a complementary name.
The restriction νuE restricts the scope of u to E. The recursion µXE provides infinite behaviour
by unfolding itself to be E{µXE/X}. Operator precedence is (1) prefix, restriction, recursion, (2)
parallel composition, and (3) nondeterministic choice.

Note that in CCS [Mil89b] the operators differ a little. The restriction νuE is written E\u. There
is also a renaming operator E[v1/u1, ..., vn/un], which is not present here; its job is largely done by
syntactic substitution of names. We shall write E{ṽ/ũ} for syntactic substitution of names ṽ for
names ũ.

We use fpv (E) for the set of free process variables (i.e., not bound by any µX) in E. As usual
we identify expressions which differ only by a change of bound process variables. We shall write
E{F1, ..., Fn/X1, ..., Xn} or E{F̃ /X̃} for the result of simultaneously substituting Fi for each occur-
rence of Xi in E (1 ≤ i ≤ n), renaming bound variables if necessary.

For operational semantics, we use a labelled transition system

(Eccs,L, { a−→⊆ Eccs × Eccs | a ∈ L})

with Eccs as the set of states and L as transition labels. The transition relation is defined as the
smallest relation generated by the rules in Table 3.1. The symmetric rules of sum1, par1 and com1
are omitted. As can be seen from the rule com1, for a communication between two processes to
take place, one of them must offer an atomic action u, the other its complementary action ū. The

29

act
a.E

a−→ E
sum1 E

a−→ E′

E + F
a−→ E′

par1 E
a−→ E′

E|F a−→ E′|F
com1 E

u−→ E′ F
ū−→ F ′

E|F τ−→ E′|F ′

res E
a−→ E′

νuE
a−→ νuE′ for u /= a rec

E{µXE/X} a−→ E′

µXE
a−→ E′

Table 3.1: The transition rules for Eccs

P Q

R

P’

R

a a

b b

(2)(1)

Q’

Figure 3.1: Link mobility

communication results in a τ -action, meaning that the communication serves as synchronisation and
the result is invisible. On the other hand, in some literature on the analysis of distributed systems,
parallel composition is defined as in CSP [Hoa85a], where a communication between two processes
occurs if both of them offer the same action u, and the result is still a u-action.

3.2 The π-calculus

We first give the motivation and introduce the untyped π-calculus. Then we focus on channel types;
we review sorts, simple channel types and subtyping progressively.

3.2.1 From CCS to the π-calculus

A significant limitation of CCS, as argued in [Mil99], is that it is not able to naturally specify
communicating systems with dynamically changing connectivity. For example, let us consider the
system composed of three components P, Q and R as displayed in Figure 3.1(1). Initially P and R
are connected by the link a, while P and Q are connected by b. In the configuration of Figure 3.1(2),
P and Q have evolved into P ′ and Q′ respectively and the link to R has moved from P to Q. Since
CCS gives us no way of creating new links among existing components, we are not able to specify the
system in (1) as a CCS expression that can evolve into (2). However, this kind of evolution occurs
often in many real systems. For instance, we may imagine R as a critical section that are accessed
by P and Q successively. A natural way of dealing with link mobility like this is to give actions more
structures so that links can be passed around in communicating systems. This is the method adopted
by the π-calculus.

30

3.2.2 The untyped π-calculus

Let the set N of names be defined as in Section 3.1. The set Prπ of processes is defined by the
following syntax:

P, Q ::= 0 | u(x).P | ūv.P | P |Q | P + Q | νuP | !u(x).P

The input prefix u(x).P can receive any name via u and continue as P with the received name
substituted for x. The output prefix ūv.P can send v via u and continue as P . The replicated input
!u(x).P can be thought of as an infinite composition u(x).P |u(x).P | · · · , and it can encode recursive
definitions [Mil91]. For example, take the simple CCS expression E := µX(u.(X |X)), which has the
infinite behaviour:

E
u−→ E|E u−→ E|E|E u−→ ...

The same effect can be derived by using a replicated input:

νv(v̄|!v.u.(v̄|v̄))
τ−→ u−→ νv(v̄|v̄|!v.u.(v̄|v̄))
τ−→ u−→ νv(v̄|v̄|v̄|!v.u.(v̄|v̄))
τ−→ u−→ ...

All other operators (inaction, sum, restriction, and parallel composition) keep their meaning as in
Section 3.1.

The π-calculus has two name-binding operators. In the processes u(v).P and νvP the occurrences
of v in P are considered bound with scope P . An occurrence of a name in a process is free if it is not
bound. We write bn(P) (resp. fn(P)) for the set of names that have a bound (resp. free) occurrence
in P . Changing a bound name into a fresh name is called alpha-conversion, and we identify processes
up to alpha-conversion.

A substitution {v/u} is a function on names that maps u to v and acts as identity on other names.
Hence the postfix operator P{v/u} is defined as the result of replacing all free occurrences of u in
P by v, possibly applying alpha-conversion to avoid name capture by introducing unintended bound
occurrences of names.

Convention: When considering a collection of processes and substitutions, we assume that each
bound name of the processes is chosen to be unique, i.e., different from other names of the processes
and the substitutions.

The early style [MPW92] of operational semantics for processes in Prπ is specified via a labelled
transition system

(Prπ,Act , { α−→⊆ Prπ × Prπ | α ∈ Act})

where Act stands for the set of actions, of which there are four kinds.

1. The internal action τ . As in CCS, P
τ−→ Q means that P can evolve into Q without any

interaction with the environment. Internal actions arise from internal communication within a
process.

2. An input action uv. The transition P
uv−→ Q means that P can receive v along u before

evolving into Q. This departs from CCS because an input action contains the actual received
value. Input actions arise from input prefixes.

3. A free output action ūv. The transition P
ūv−→ Q implies that P can emit the free name v along

name u. Free output actions arise from output prefixes.

4. A bound output action ū(v). Intuitively, P
ū(v)−→ Q means that P can emit the private name v

(i.e. v is bound in P) along u before evolving into Q. Bound output actions arise from free
output actions which carry names out of their scope, as in the process νv(ūv.Q) for example.

31

kind α subj (α) obj (α) fn(α) bn(α)
input uv u v {u, v} ∅
free output ūv u v {u, v} ∅
bound output ū(v) u v {u} {v}
internal action τ - - ∅ ∅

Table 3.2: Terminology and notation for actions

in
u(x).P uv−→ P{v/x}

out
ūv.P

ūv−→ P

sum1 P
α−→ P ′

P + Q
α−→ P ′ par1

P
α−→ P ′ bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′|Q

com1 P
ūv−→ P ′ Q

uv−→ Q′

P |Q τ−→ P ′|Q′ close1
P

ū(v)−→ P ′ Q
uv−→ Q′ v /∈ fn(Q)

P |Q τ−→ νv(P ′|Q′)

res
P

α−→ P ′ u /∈ n(α)
νuP

α−→ νuP ′ open P
ūv−→ P ′ v /= u

νvP
ū(v)−→ P ′

rep
!u(x).P uv−→!u(x).P |P{v/x}

Table 3.3: The transition rules for Prπ

Table 3.2 displays each kind of action, its subject, its object, its set of free names, and its set of
bound names. We let n(α) := fn(α) ∪ bn(α) denote the set of names occurring in α.

The transition relation α−→ is defined by the rules in Table 3.3. The symmetric rules of sum1,
par1, com1 and close1 are omitted. Some of the rules deserve to be explained. We see from the rule
in that u(x).P can receive any name via u, and when a name is received it is substituted for the
placeholder x in P . The rule open expresses extrusion of the scope of the name v, which can be seen
in the rule close1. A process capable of performing a bound output ū(v) can interact with a process
that can receive v via u and in which v is not free. The interaction is represented by a τ -transition,
and in the derivative the two components are within the scope of a restriction νv. We may say that
the scope of v is opened via open while closed again via close1. The scope of the restricted name
is extended to include the process that receives it. The side condition in the rule par1 is necessary
because it prevents free names in Q from being incorrectly identified as bound names in P ′. The
rule rep captures the idea that !u(x).P can spawn infinitely many copies of u(x).P and each copy can
perform an input action as in the rule in.

Sometimes we use the notation α=⇒ which is an abbreviation for (τ−→)∗ α−→ (τ−→)∗, where (τ−→)∗

is the reflexive and transitive closure of τ−→.
The capacity to change the connectivity of a network of processes is the crucial difference between

the π-calculus and CCS. Let us consider an example based on Figure 3.1. Suppose two processes P, Q
need to use some resource R in a critical section. Initially only process P has access to the resource,
represented by a communication link a. After an interaction with Q along other link b this access
is transferred to Q. This kind of behaviour can be described in the π-calculus as follows: process P
that sends a along b is b̄a.P ′ (suppose a does not appear in P ′); process Q that receives some link
along b and then uses it to send data c is b(x).x̄c.Q′′. The interaction between P and Q is formulated
as:

b̄a.P ′|b(x).x̄c.Q′′ τ−→ P ′|āc.Q′′.

After the interaction, the connection between P and R disappears while a new connection between
Q′ and R is built, where Q′ is the process āc.Q′′.

32

The π-calculus presented above is monadic in that a message consists of exactly one name. Some-
time we want to send messages consisting of more than one name. So it is useful to allow polyadic
inputs and outputs: u(x1, ..., xn).P and ū〈v1, ..., vn〉.Q. Accordingly we can extend the transition
rules in Table 3.3 to allow for polyadic communication:

u(x̃).P |ū〈ṽ〉.Q τ−→ P{ṽ/x̃}|Q

where x̃ and ṽ have the same length. After the extension we obtain the polyadic π-calculus [Mil91].

3.2.3 Sorts and sorting

To regulate the use of names, Milner introduced the notion sorting [Mil91], which is essential to avoid
disagreement in the arities of tuples carried by a given name in the polyadic π-calculus. Assume a
basic collection Σ of sorts. To every name u is assigned a sort ι, and we write u : ι. A sort list over Σ
is a finite sequence ι̃ = ι1, ..., ιn of sorts. Σ∗ is the set of all sort lists over Σ. We write ũ : ι̃ if ui : ιi
for all i with 1 ≤ i ≤ n. A sorting over Σ is a partial function

f : Σ A→ Σ∗

and we say that a process respects f if, for every subterm of the form u(ṽ).P or ū〈ṽ〉.Q,

if u : ι then ṽ : f(ι).

For example, consider the following process

F := !a(n, b).if n = 1 then b̄〈1〉 else νc(ā〈n − 1, c〉|c(m).b̄〈m ∗ n〉) (3.1)

which represents the factorial function. Let us choose Σ = {Sa, Sbc, Nat} with

a : Sa, b : Sbc, c : Sbc, m : Nat, n : Nat.

Then a sorting f respected by F is such that

f :
{

Sa A→ Nat, Sbc

Sbc A→ Nat.

3.2.4 A simple example

Before proceeding to the formal presentation of type systems for the π-calculus, we informally explain
the usefulness of types, capability types in particular, by a simple example from [PS96]. Imagine the
common situation in which two processes must cooperate in the use of a shared resource such as
a printer. The printer provides a request channel u on which the client processes send their data
for printing. If one client process has the form Q1 := ūv1.ūv2.0, then we expect that executing
the program νu(P |Q1|Q2) should result in the print jobs represented by v1 and v2 eventually being
received and processed, in that order, by the printer process P (see Figure 3.2(1), where an arrow
from one process to another means that some data are transmitted from the source of the arrow to the
target). However, this is not necessarily the case: a misbehaving implementation of Q2 can disrupt
the protocol expected by P and Q1 simply by reading print requests from u and throwing them
away: Q2 :=!u(v).0 (see Figure 3.2(2)). We can prevent this kind of bad behaviour by distinguishing
three kinds of access to a channel – the capability to write values, the capability to read values,
and the capability to do both – and requiring each process to use its channels with some prescribed
capabilities. Here, for instance, the client processes should only be allowed to write to u. The printer,
on the other hand, should only read from u. When we impose this constraint, process Q2 will be
ruled out because it attempts to read from u.

33

P

(2)(1)

Q1 Q2

v1, v2

Q1 Q2

P

v1, v2

Figure 3.2: A printer example

T ::= V | L types

V ::= L | bool | Nat value types
L ::= #V channel types

Γ ::= ∅ | Γ, x : T type environments

w ::= x | true, false | 0, 1, 2, · · · values

P, Q ::= 0 | u(x : V).P | ūw.P | P |Q | P + Q | (νa : L)P | !u(x : V).P processes

T-in
Γ " u : #V Γ, x : V " P

Γ " u(x : V).P
T-out

Γ " u : #V Γ " w : V Γ " P
Γ " ūw.P

T-nil
Γ " 0

T-par
Γ " P Γ " Q

Γ " P |Q T-sum
Γ " P Γ " Q

Γ " P + Q
T-res

Γ, a : L " P
Γ " (νa : L)P

T-rep
Γ " u(x : V).P
Γ "!u(x : V).P

Table 3.4: Processes, types and typing rules of the simply typed π-calculus

3.2.5 The simply typed π-calculus

To begin with, we introduce some terminology and notation concerning types. An assignment of a
type T to a name u is of the form u : T . A type environment is a finite set of assignments of types
to names, where the names in the assignments are all different. We use Γ, ∆ to range over type
environments. Sometimes we regard a type environment Γ as a partial function from names to types.
Thus we write Γ(u) for the type assigned to u by Γ, and say that the names of the assignments in Γ
are the names on which Γ is defined. We write dom(Γ) for the set of names of the assignments in Γ.
When dom(Γ) ∩ dom(∆) = ∅, we write Γ, ∆ for the union of Γ and ∆.

A process type judgment Γ > P asserts that process P is well typed under the type environment
Γ, and a value type judgment Γ > w : V that value w has type V under the type assumptions in Γ.
We say P is well typed under Γ if the judgment Γ > P can be derived by using the typing rules of a
given type system.

A channel is a name that may be used to engage in communications. The values are the objects
that can be exchanged along channels. The channel types are the types that can be ascribed to
channels. The value types are the types that can be ascribed to values. In the π-calculus, channel
types can be used as value types. In other words, we allow channels to be transmitted as values, and
hence allow mobility.

Since our purpose in this section is to introduce the type system of the simply typed π-calculus
rather than to propose a pragmatic notation for programming, we adopt an explicitly typed presen-
tation in which every bound name is annotated with a type. The syntax of types and processes as

34

well as the typing rules are shown in Table 3.4. The syntactic distinction between value types and
channel types is made by the use of V to range over value types and L over channel types (the letter
C is reserved for other use later). However, in typing and operational rules, unless important for
the sense we will use only the letters S, T , which stand for arbitrary types. We observe that in the
simply typed π-calculus there is only one channel type constructor #V . A type assignment u : #V
means that u can be used as a channel to carry values of type V . Value types include channel types
and basic types, thus both channels and basic values are allowed to be communicated. In the above
table, we only display the typing rules for processes. The typing rules for values are the usual ones.
For example, we may have the following rules:

Γ, x : T > x : T Γ > true : bool Γ > 0 : Nat ...

For simplicity we only consider two basic types: bool, for boolean values, and Nat, for natural
numbers. Values of basic types are said to be of first-order because, unlike channels, they cannot
carry other values. We also assume some basic operations on first-order values. For example, we may
use addition (n+m), subtraction (n−m), multiplication (n ∗m) for Nat expressions. To avoid being
too specific, we do not give a rigid syntax and typing rules for first-order expressions. We just assume
a separate mechanism for evaluating expressions of type Nat.

The inert process 0 is well typed under any type environment. The parallel composition and the
sum of two processes are well typed if each is well typed in isolation. A process (νa : L)P is well
typed if P observes the constraints imposed both by the type environment and by the declared type
L of the new name a. Note that here L is a channel type. In an input u(x : V).P the subject u
should have a channel type, which is compatible with the type of x, moreover, the body P is well
typed under the extension of Γ with the type of x. The case for !u(x : V).P is similar. An output
ūw.P is well typed if u has a channel type compatible with that of w, and P itself is well typed.

The transition rules for typed processes are similar to those of the untyped processes (Table 3.3).
We just need to annotate bound names with their types. For example, the rule open would take this
form:

P
(νev:eV)ūw−→ P ′ a ∈ fn(w)\{ṽ, u}

(νa : L)P
(νev:eV ,a:L)ūw−→ P ′

Given the operational semantics for typed processes, we can prove the subject reduction property,
which represents the fact that type judgments are invariant under computation. In particular, if
Γ > P and P

τ−→ P ′ then it holds that Γ > P ′.

3.2.6 Subtyping

Subtyping is a preorder on types. If S is a subtype of T then all operations available on values of
type T are also available on values of type S; therefore an expression of type S can always replace an
expression of type T . The possibility of having operations that work on all subtypes of a given type
is a major advantage of subtyping in a programming language.

We shall write subtype judgments in the form S <: T , which asserts that S is a subtype of T
(equally T is a supertype of S). A type construct is covariant in its i-th argument if the construct
preserves the direction of subtyping in that argument. Dually, a type construct is contravariant in its
i-th argument if the construct inverts the direction of subtyping in that argument. A type construct
is invariant in its i-th argument if it is both covariant and contravariant in that argument.

We now refine channel types by distinguishing between the capabilities of using a channel in input
or in outputs. For this we introduce the types iV and oV , with the intended meanings: iV is the
type of a channel that can be used only in input and that carries values of type V ; similar for oV
w.r.t. output. By extending the simply typed π-calculus with the two capability types, we obtain
the simply typed π-calculus with subtyping. For this, we redefine channel types as

L ::= #V | iV | oV channel types

35

S-ref
T <: T

S-tra
T <: T ′ T ′ <: T ′′

T <: T ′′ S-bi #T <: iT

S-bo #T <: oT S-ii
T <: T ′

iT <: iT ′ S-oo
T <: T ′

oT ′ <: oT

S-bb
T <: T ′ T ′ <: T

#T <: #T ′

T-ins
Γ > u : iV Γ, x : V > P

Γ > u(x : V).P T-outs
Γ > u : oV Γ > w : V Γ > P

Γ > ūw.P

subsum
Γ > u : T T <: T ′

Γ > u : T ′

(rules T-ins and T-outs replace T-in and T-out respectively)

Table 3.5: Additional rules on subtyping

and use the additional rules reported in Table 3.5.
We briefly comment on the subtyping rules. The rules S-ref and S-tra show that <: is a preorder.

The axioms S-bi and S-bo show that a name of all capabilities can be used in places where only the
input or only the output capability is required. Rule S-ii says that i is a covariant construct, while
S-oo says that o is a contravariant construct. Finally S-bb shows that # is invariant.

The typing rules T-ins and T-outs are similar to the rules T-in and T-out, except that now the
subject of a prefix is checked to have the appropriate input or output capability. The old rules are
derivable from the new ones.

36

Chapter 4

Probabilistic Process Algebras

4.1 Probabilistic LTS

A (discrete) probability distribution over a set S is a mapping ∆ : S → [0, 1] with
∑

s∈S ∆(s) = 1.
The support of ∆ is given by B∆C := { s ∈ S | ∆(s) > 0 }. In this chapter we only consider finite
state systems, so it suffices to use distributions with finite support; let D(S), ranged over by ∆, Θ, Φ,
denote the collection of all such distributions over S. We use s to denote the point distribution,
satisfying

s(t) =

{
1 if t = s,

0 otherwise

while if pi ≥ 0 and ∆i is a distribution for each i in some finite index set I, then
∑

i∈I pi ·∆i is given
by

(
∑

i∈I

pi · ∆i)(s) =
∑

i∈I

pi · ∆i(s)

If
∑

i∈I pi = 1 then this is easily seen to be a distribution in D(S), and we will sometimes write it as
p1 · ∆1 + . . . + pn · ∆n when the index set I is {1, . . . , n}, and as ∆1 p⊕ ∆2 when I = {p1, p2} and
p = p1. Finally, the product of two probability distributions ∆, Θ over S, T is the distribution ∆×Θ
over S × T defined by (∆ × Θ)(s, t) := ∆(s) · Θ(t).

For ∆ a distribution over S and function f : S → X into a vector space X ; we sometimes write
Exp∆(f) for

∑
s∈S ∆(s) · f(s), the expected value of f . Our primary use of this notation is with X

being the vector space of reals, but we will also use it with tuples of reals, or distributions over some
set. In the latter case this amounts to the notation

∑
i∈I pi · ∆i, where I is a finite index set and∑

i∈I pi = 1. When p∈ [0, 1], we also write f1 p⊕ f2 for p · f1 + (1 − p) · f2. More generally, for
function F : S → P+(X) with P+(X) being the collection of non-empty subsets of X , we define
Exp∆F := {Exp∆(f) | f ∈ F }; here f ∈ F means that f : S → X is a choice function, that is it
satisfies the constraint that f(s)∈F (s) for all s∈S.

We can now present the probabilistic generalisation of an LTS:

Definition 4.1 A probabilistic labelled transition system (pLTS) is a triple
〈S,Actτ ,→〉, where

1. S is a set of states and Act is a set of actions, as in LTSs;

2. Actτ is a set of external actions Act with an internal action τ ;

3. → ⊆ S × Actτ ×D(S).

As with LTSs, we usually write s α−→ ∆ in place of (s,α, ∆) ∈ →. We write s α−→ for ∃∆ : s α−→ ∆
and s → for ∃α : s α−→. An LTS may be viewed as a degenerate pLTS, one in which only point
distributions are used.

37

a
1
2

b

d

c

e

1
2

b

f

c

g

a
1
2

b

d

c

g

1
2

b

f

c

e

a

τ
1
2

b

d

ω

1
2

c

e

ω

τ
1
2

b

f

ω

1
2

c

g

ω

(i) P (ii) Q (iii) T

Figure 4.1: Example pLTSs

Given that in a pLTS transitions go from states to distributions, we need to introduce additional
edges to connect distributions back to states, thereby obtaining a bipartite graph. States are rep-
resented by nodes of the form • and distributions by nodes of the form ◦. For any state s and
distribution ∆ with s α−→ ∆ we draw an edge from s to ∆, labelled with α. Consequently, the edges
leaving a •-node are all labelled with actions from Actτ . For any distribution ∆ and state s in B∆C,
the support of ∆, we draw an edge from ∆ to s, labelled with ∆(s). Consequently, the edges leaving
a ◦-node are labelled with positive real numbers that sum up to 1.

Some example pLTSs are described in Figure 4.1. Note that to make these graphs more compact
we omit nodes ◦ when they represent trivial point distributions.

For each state s, the outgoing transitions s α−→ ∆ represent the nondeterministic alternatives in the
state s. The nondeterministic choices provided by s are supposed to be resolved by the environment,
which are formalized by a scheduler or an adversary. On the other hand, the probabilistic choices
in the underlying distribution ∆ are made by the system itself. Therefore, for each state s, the
environment chooses some outgoing transition s α−→ ∆. Then the action α is performed, the system
resolves the probabilistic choice, and subsequently with probability ∆(s′) the system reaches state s′.

If we impose the constraint that for any state s and action α at most one outgoing transition from
s is labelled α, then we obtain reactive pLTSs which are probabilistic counterpart to deterministic
LTS. The assumption behind reactive pLTSs is that the environment determines which actions are
possible. For each action α, the system behaves randomly and reaches state s′ with probability ∆(s′).
Formally, a pLTS is reactive if for each s ∈ S,α ∈ Act we have that s α−→ ∆ and s α′

−→ ∆′ imply
∆ = ∆′.

4.2 Probabilistic bisimulations

4.2.1 Lifting relations

Definition 4.2 Given two sets S and T and a relation R ⊆ S ×T . We lift R to be a relation
R ⊆ D(S)×D(T) by letting ∆ R Θ whenever

1. ∆ =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1

2. For each i ∈ I there is a state ti such that siRti

3. Θ =
∑

i∈I pi · ti.

An important point here is that in the decomposition (1) of ∆ into
∑

i∈I pi · si, the states si are
not necessarily distinct : that is, the decomposition is not in general unique. Thus when establishing

38

the relationship between ∆ and Θ, a given state s in ∆ may play a number of different roles. This is
reflected in the following property.

Proposition 4.3 s R Θ iff s R t for all t ∈ BΘC. &'

From Definition 4.2, the next two properties follows. In fact, they are sometimes used in the
literature as definitions of lifting relations instead of being properties (see e.g. [SL94, LS91]).

Proposition 4.4 1. Let ∆ and Θ be distributions over S and T , respectively. Then ∆ R Θ iff
there exists a weight function w : S × T → [0, 1] such that

(a) ∀s ∈ S :
∑

t∈T w(s, t) = ∆(s)
(b) ∀t ∈ T :

∑
s∈S w(s, t) = Θ(t)

(c) ∀(s, t) ∈ S × T : w(s, t) > 0 ⇒ s R t.

2. Let ∆, Θ be distributions over a finite set S and R is an equivalence relation. Then ∆ R Θ
iff ∆(C) = Θ(C) for all equivalence class C ∈ S/R, where ∆(C) stands for the accumulation
probability

∑
s∈C ∆(s).

&'

Proposition 4.5 1. If R1 ⊆ R2 then R1 ⊆ R2

2. If R is a transitive relation, then so is R.

Proof:

1. By definition, it is straightforward to show that if ∆1 R1 ∆2 and R1 ⊆ R2 then ∆1 R2 ∆2.

2. Given three distributions ∆1, ∆2, ∆3 and a transitive relation R, we show that if ∆1 R ∆2 and
∆2 R ∆3 then ∆1 R ∆3.
First ∆1 R ∆2 means that

∆1 =
∑

i∈I

pi · si, si R s′i, ∆2 =
∑

i∈I

pi · s′i ; (4.1)

also ∆2 R ∆3 means that

∆2 =
∑

j∈J

qj · t′j , t′j R tj , ∆3 =
∑

j∈J

qj · ti ; (4.2)

and we can assume w.l.o.g. that all the coefficients pi, qj are non-zero. Now define Ij = { i ∈ I | s′i =
t′j } and Ji = { j ∈ J | t′j = s′i }, so that trivially

{(i, j) | i ∈ I, j ∈ Ji} = {(i, j) | j ∈ J, i ∈ Ij} (4.3)

and note that
∆2(s′i) =

∑

j∈Ji

qj and ∆2(t′j) =
∑

i∈Ij

pi (4.4)

Because of (4.4) we have

∆1 =
∑

i∈I pi · si =
∑

i∈I pi ·
∑

j∈Ji

qj

∆2(s′
i)
· si

=
∑

i∈I

∑
j∈Ji

pi·qj

∆2(s′
i)
· si

Similarly
∆3 =

∑
j∈J qj · tj =

∑
j∈J qj ·

∑
i∈Ij

pi

∆2(t′j)
· tj

=
∑

j∈J

∑
i∈Ij

pi·qj

∆2(t′j)
· tj

=
∑

i∈I

∑
j∈Ji

pi·qj

∆2(t′j)
· tj by (4.3)

39

Now for each j in Ji we know that in fact t′j = s′i, and so from the middle parts of (4.1) and (4.2),
together with the transitivity of R, we obtain ∆1 R ∆3. &'

In analogy with Definition 4.2, the transition relation a−→ between states and distributions can
be lifted to one between distributions and distributions, by letting ∆ â−→ Θ whenever

1. ∆ =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1

2. For each i ∈ I there is a distribution Θi such that si
a−→ Θi

3. Θ =
∑

i∈I pi · Θi.

The lifting construction satisfies the following two useful properties, whose proofs we leave to the
reader.

Proposition 4.6 Suppose R ⊆ S × S or S ×D(S) and
∑

i∈I pi = 1. Then we have

1. Θi R ∆i implies (
∑

i∈I pi · Θi) R (
∑

i∈I pi · ∆i).

2. If (
∑

i∈I pi · Θi) R ∆ then ∆ =
∑

i∈I pi · ∆i for some set of distributions ∆i such that Θi R ∆i.
&'

4.2.2 Probabilistic bisimulation

Definition 4.7 A relation R ⊆ S × S is a strong simulation if s R t implies

• if s a−→ ∆ then there exists some Θ such that t a−→ Θ and ∆ R Θ.

If both R and R−1 are strong simulations, then R is a strong bisimulation. We s ∼p t if there exists
a strong bisimulation R with s R t.

Lemma 4.8 Let R be a bisimulation. Suppose ∆ R Φ and ∆ a−→ ∆′. Then Φ a−→ Φ′ for some Φ′

such that ∆′ R Φ′.

Proof: First ∆ R Φ means that

∆ =
∑

i∈I

pi · si, si R ri, Φ =
∑

i∈I

pi · ri ; (4.5)

also ∆ a−→ ∆′ means

∆ =
∑

j∈J

qj · tj , tj
a−→ Θj, ∆′ =

∑

j∈J

qj · Θj , (4.6)

and we can assume w.l.o.g. that all the coefficients pi, qj are non-zero. Now define Ij = { i ∈ I | si =
tj } and Ji = { j ∈ J | tj = si }, so that trivially

{(i, j) | i ∈ I, j ∈ Ji} = {(i, j) | j ∈ J, i ∈ Ij} (4.7)

and note that
∆(si) =

∑

j∈Ji

qj and ∆(tj) =
∑

i∈Ij

pi (4.8)

Because of (4.8) we have

Φ =
∑

i∈I pi · ri =
∑

i∈I pi ·
∑

j∈Ji

qj

∆(si)
· ri

=
∑

i∈I

∑
j∈Ji

pi·qj

∆(si)
· ri

Now for each j in Ji we know that in fact tj = si, and so from the middle parts of (4.5) and (4.6) we
obtain ri

a−→ Φ′
ij such that Θj R Φ′

ij . So we have that

Φ a−→ Φ′ =
∑

i∈I

∑
j∈Ji

pi·qj

∆(si)
· Φ′

ij

40

where within the summations si = tj , so that, using (4.7), Φ′ can also be written as
∑

j∈J

∑

i∈Ij

pi · qj

∆(tj)
· Φ′

ij (4.9)

Below we show that ∆′ R Φ′, which we do by manipulating ∆′ so that it takes on a form similar
to that in (4.9):

∆′ =
∑

j∈J qj · Θj

=
∑

j∈J qj ·
∑

i∈Ij

pi

∆(tj)
· Θj using (4.8) again

=
∑

j∈J

∑
i∈Ij

pi·qj

∆(tj)
· Θj

Comparing this with (4.9) above we see that the required result, ∆′ R Φ′, follows from an application
of Proposition 4.6(1). &'

4.2.3 Modal characterisation

Definition 4.9 The class LPB of modal formulae over Act, ranged over by φ, is defined by the
following grammar:

φ :=
∧

i∈I

φi | 〈a〉φ | ¬φ |
⊕

i∈I

pi · φi

The satisfaction relation |=⊆ D(S) × LPB is defined by

• ∆ |=
∧

i∈I φi if ∆ |= φi for all i ∈ I.

• ∆ |= 〈a〉φ if for some ∆′ ∈ D(S), ∆ a−→ ∆′ and ∆′ |= φ.

• ∆ |= ¬φ if it is not the case that ∆ |= φ.

• ∆ |=
⊕

i∈I pi · φi if there are ∆i ∈ D(S), for all i ∈ I, t ∈ B∆iC, with t |= φi, such that
∆ =

∑
i∈I pi · ∆i.

We write ∆ =PB Θ just when ∆ |= φ⇔ Θ |= φ for all φ ∈ LPB.

Proposition 4.10 s ∼p t iff s =PB t.

Proof: (⇒) We prove a general result that

If ∆ ∼p Θ then ∆ =PB Θ (4.10)

from which it is immediately that s ∼p t implies s =PB t.
Suppose ∆ ∼p Θ, we show that ∆ |= φ⇔ Θ |= φ by structural induction on φ.

• Let ∆ |= 〈a〉φ. Then ∆ a−→ ∆′ and ∆′ |= φ for some ∆′. Since ∆ ∼p Θ, there is some Θ′

with Θ a−→ Θ′ and ∆′ ∼p Θ′. By induction hypothesis we have Θ′ |= φ, thus Θ |= 〈a〉φ. By
symmetry we also have Θ |= 〈a〉φ⇒ ∆ |= 〈a〉φ.

• Let ∆ |=
∧

i∈I φi. Then ∆ |= φi for all i ∈ I. So by induction Θ |= φi, and we have Θ |=
∧

i∈I φi.
By symmetry we also have Θ |=

∧
i∈I φi implies ∆ |=

∧
i∈I φi.

• Let ∆ |= ¬φ. So ∆ /|= φ, and by induction we have Θ /|= φ. Thus Θ |= ¬φ. By symmetry we
also have Θ /|= φ implies ∆ /|= φ.

• Let ∆ |=
⊕

i∈I pi · φi. So ∆ =
∑

i∈i pi ·∆i and for all i ∈ I and t ∈ B∆iC we have t |= φi. Since
∆ ∼p Θ, by Proposition 4.6 (2) we have that Θ =

∑
i∈I pi · Θi and ∆i ∼p Θi. It follows that

for each t′ ∈ BΘiC there is some t ∈ B∆iC with t ∼p t′, thus t ∼p t′. So by induction we have
t′ |= φi for all t′ ∈ BΘiC and i ∈ I. Therefore, we have Θ |=

⊕
i∈I pi · φi.

41

(⇐) Let R = {(s, t) | s =PB t}. We show that R is a strong probabilistic bisimulation. Suppose
s R t and s a−→ ∆. We have to show that there is some Θ with t a−→ Θ and ∆ ∼p Θ. Consider the
set

T := {Θ | t a−→ Θ ∧ Θ =
∑

s′∈*∆+

∆(s′) · Θs′ ∧ ∃s′ ∈ B∆C, ∃t′ ∈ BΘs′C : s′ /=PB t′}

For each Θ ∈ T , there must be some s′Θ ∈ B∆C and t′Θ ∈ BΘs′
Θ
C such that (i) either there is a

formula φΘ with s′Θ |= φΘ but t′Θ /|= φΘ (ii) or there is a formula φ′Θ with t′Θ |= φ′Θ but s′Θ /|= φ′Θ.
In the latter case we set φΘ = ¬φ′Θ and return back to the former case. So for each s′ ∈ B∆C it
holds that s′ |=

∧
{Θ∈T |s′

Θ=s′} φΘ and for each Θ ∈ T with s′Θ = s′ there is some t′Θ ∈ BΘs′C with
t′Θ /|=

∧
{Θ∈T |s′

Θ=s′} φΘ. Let

φ := 〈a〉
⊕

s′∈*∆+

∆(s′) ·
∧

{Θ∈T |s′
Θ=s′}

φΘ.

It is clear that s |= φ, hence t |= φ by ∆ =PB Θ. It follows that there must be a Θ∗ with t a−→ Θ∗,
Θ∗ =

∑
s′∈*∆+ ∆(s′)·Θ∗

s′ and for each s′ ∈ B∆C, t′ ∈ BΘ∗
s′C we have t′ |=

∧
{Θ∈T |s′

Θ=s′} φΘ. This means
that Θ∗ /∈ T and hence for each s′ ∈ B∆C, t′ ∈ BΘ∗

s′C we have s′ =PB t′, i.e. s′ R t′. Consequently,
we obtain ∆ R Θ∗. By symmetry all transitions of t can be matched up by transitions of s. &'

4.3 Characteristic formulae

4.3.1 Probabilistic modal mu-calculus

Let Var be a countable set of variables. We define a set Lµ of modal formulae in positive normal
form given by the following grammar:

φ := 〈a〉φ | [a]φ |
∧

i∈I

φi |
∨

i∈I

φi |
⊕

i∈I

pi · φi | X | µX.φ | νX.φ

where a ∈ Act , I is an index set and
∑

i∈I pi = 1. As usual, we have
∧

i∈∅ φi = + and
∨

i∈∅ φi = ⊥.
The two fixpoint operators µX and νX bind the respective variable X . We apply the usual

terminoloty of free and bound variables in a formula and write fv (φ) for the set of free variables in φ.
We use environments, which binds free variables to sets of distributions, in order to give semantics

to formulae. Let
Env = { ρ | ρ : Var → P(D(S)) }

be the set of all environments and ranged over by ρ. For a set V ⊆ D(S) and a variable X ∈ Var ,
we write ρ[X A→ V] for the environment that maps X to V and Y to ρ(Y) for all Y /= X .

The semantics of a formula φ can be given as the set of distributions satisfying it. This leads to a
semantic functional : Lµ → Env → P(D(S)) defined inductively in Figure 4.2. As the meaning of
a closed formula φ does not depend on the environment, we write φ for φ ρ where ρ is an arbitrary
environment.

The semantics of probabilistic modal mu-calculus (pMu) is the same as that of the modal mu-
calculus [Koz83] except that distributions are taking the roles of states. The characterisation of least
fixpoint formula µX.φ and greatest fixpoint formula νX.φ follows from the well-known Knaster-Tarski
fixpoint theorem [Tar55].

We shall consider (closed) equation systems of formulae of the form

E : X1 = φ1
...

Xn = φn

42

+ ρ = D(S)
⊥ ρ = ∅∧

i∈I φi ρ =
⋂

i∈I φi ρ∨
i∈I φi ρ =

⋃
i∈I φi ρ⊕

i∈I pi · φi ρ = {∆ ∈ D(S) | ∆ =
⊕

i∈I pi · ∆i ∧ ∀i ∈ I, ∀t ∈ B∆iC : t ∈ φi ρ }
〈a〉φ ρ = {∆ ∈ D(S) | ∃∆′ : ∆ a−→ ∆′ ∧ ∆′ ∈ φ ρ }
[a]φ ρ = {∆ ∈ D(S) | ∀∆′ : ∆ a−→ ∆′ ⇒ ∆′ ∈ φ ρ }

X ρ = ρ(X)
µX.φ ρ =

⋂
{V ⊆ D(S) | φ ρ[X ,→V] ⊆ V }

νX.φ ρ =
⋃
{V ⊆ D(S) | φ ρ[X ,→V] ⊇ V }

Figure 4.2: Semantics of probabilistic modal mu-calculus

where X1, ..., Xn are mutually distinct variables and φ1, ...,φn are formulae haveing at most X1, ..., Xn

as free variables. Here E can be viewed as a function E : Var → Lµ defined by E(Xi) = φi for
i = 1, ..., n and E(Y) = Y for other variables Y ∈ Var .

An environment ρ is a solution of an equation system E if ∀i : ρ(Xi) = φi ρ. The existence
of solutions for an equation system can be seen from the following arguments. The set Env, which
includes all candidates for solutions, together with the partial order ≤ defined by

ρ ≤ ρ′ iff ∀X ∈ Var : ρ(X) ⊆ ρ′(X)

forms a complete lattice. The equation functional E : Env → Env given in the λ-calculus notation by

E := λρ.λX. E(X) ρ

is monotonic. Thus, the Knaster-Tarski fixpoint theorem guarantees existence of solutions, and the
largest solution

ρE :=
⊔

{ ρ | ρ ≤ E(ρ) }

4.3.2 Characteristic equation systems

As studied in [SI94], the behaviour of a process can be characterised by an equation system of modal
formulae. Below we show that this idea also applies in the probabilistic setting.

Strong bisimulation

Definition 4.11 Given a finite state pLTS, its characteristic equation system for strong bisimulation
consists of one equation for each state s1, ..., sn ∈ S.

E : Xs1 = φs1

...
Xsn = φsn

where
φs := (

∧

s
a−→∆

〈a〉X∆) ∧ (
∧

a∈Actτ

[a]
∨

s
a−→∆

X∆) (4.11)

with X∆ :=
⊕

s∈*∆+ ∆(s) · Xs.

Theorem 4.12 Suppose E is a characteristic equation system for strong bisimulation. Then s ∼ t
iff t ∈ ρE(Xs).

43

Proof: (⇐) Let R= { (s, t) | t ∈ ρE(Xs) }. We first show that

Θ ∈ X∆ ρE
implies ∆ R Θ. (4.12)

Let ∆ =
⊕

i∈I pi ·si, then X∆ =
⊕

i∈I pi ·Xsi . Suppose Θ ∈ X∆ ρE
. We have that Θ =

⊕
i∈I pi ·Θi

and, for all i ∈ I and t ∈ B∆iC, that t ∈ Xsi ρE
, i.e. si R t. It follows that si R Θi and thus ∆ R Θ.

Now we show that R is a bisimulation.

1. Suppose s R t and s a−→ ∆. Then t ∈ ρE(Xs) = φs ρE
. It follows from (4.11) that t ∈

〈a〉X∆ ρE
. So there exists some Θ such that t a−→ Θ and Θ ∈ X∆ ρE

. Now we apply (4.12).

2. Suppose s R t and t a−→ Θ. Then t ∈ ρE(Xs) = φs ρE
. It follows from (4.11) that t ∈

[a]
∨

s
a−→∆ X∆ . Notice that it must be the case that s a−→, otherwise, t ∈ [a]⊥ ρE

and thus
t / a−→, in contradiction with the assumption t a−→ Θ. Therefore, Θ ∈

∨
s

a−→∆ X∆ ρE
, which

implies Θ ∈ X∆ ρE
for some ∆ with s a−→ ∆. Now we apply (4.12).

(⇒) We define the environment ρ∼ by

ρ∼(Xs) := { t | s ∼ t }.

It sufficies to show that ρ∼ is a post-fixpoint of E , i.e.

ρ∼ ≤ E(ρ∼) (4.13)

because in that case we have ρ∼ ≤ ρE , thus s ∼ t implies t ∈ ρ∼(Xs) implies t ∈ ρE(Xs).
We first show that

∆ ∼ Θ implies Θ ∈ X∆ ρ∼
. (4.14)

Suppose ∆ ∼ Θ, we have that (i) ∆ =
⊕

i∈I pi · si, (ii) Θ =
⊕

i∈I pi · ti, (iii) si ∼ ti for all i ∈ I.
We know from (iii) that ti ∈ Xsi ρ∼

. Using (ii) we have that Θ ∈
⊕

i∈I pi · Xsi ρ∼
. Using (i) we

obtain Θ ∈ X∆ ρ∼
.

Now we are in a position to show (4.13). Suppose t ∈ ρ∼(Xs). We must prove that t ∈ φs ρ∼
,

i.e.
t ∈ (

⋂

s
a−→∆

〈a〉X∆ ρ∼
) ∩ (

⋂

a∈Actτ

[a]
∨

s
a−→∆

X∆ ρ∼
)

by (4.11). This can be done by showing that t belongs to each of the two parts of this intersection.

1. In the first case, we assume that s a−→ ∆. Since s ∼ t, there exists some Θ such that t a−→ Θ
and ∆ ∼ Θ. By (4.14), we get Θ ∈ X∆ ρ∼

. It follows that t ∈ 〈a〉X∆ ρ∼
.

2. In the second case, there are two possibilities.

• s / a−→. Then
∨

s
a−→∆ X∆ = ⊥. Since s ∼ t, we have t / a−→, thus t ∈ [a]⊥ ρ∼

.
• s a−→. If t a−→ Θ, then by s ∼ t there exists some ∆ such that we have s a−→ ∆ and ∆ ∼ Θ.

By (4.14), we get Θ ∈ X∆ ρ∼
. As a consequence, t ∈ [a]

∨
s

a−→∆ X∆ ρ∼
.

&'

Strong simulation

Characteristic equation systems for strong simulation are defined as in Definition 4.11 except that we
drop the second part of the intersection in (4.11), so φs takes the following form

φs :=
∧

s
a−→∆

〈a〉X∆ (4.15)

With this modification, we have the following theorem, which can be shown by using the ideas in
the proof of Theorem 4.12, and with fewer cases to analyse.

Theorem 4.13 Suppose E is a characteristic equation system for strong simulation. Then s ≺ t iff
t ∈ ρE(Xs).

44

1. Rule 1: E → F

2. Rule 2: E → G

3. Rule 3: E → H if Xn /∈ fv (φ1, ...,φn)

E : X1 = φ1 F : X1 = φ1 G : X1 = φ1[φn/Xn] H : X1 = φ1
...

...
...

...
Xn−1 = φn−1 Xn−1 = φn−1 Xn−1 = φn−1[φn/Xn] Xn−1 = φn−1

Xn = φn Xn = νXn.φn Xn = φn

Figure 4.3: Transformation rules

4.3.3 Characteristic formulae

So far we know how to construct characteristic equation systems for a finite state pLTS. As introduced
in [MO98], the three transformation rules in Figure 4.3 can be used to obtain from an equation system
E a formula whose interpretation coincides with the interpretation of X1 in the greatest solution of E.
The formula thus obtained from a characteristic equation system is called a characteristic formula.

Theorem 4.14 Given a characteristic equation system E, there is a characteristic formula φs such
that ρE(Xs) = φs for any state s.

The above theorem, together with the results in Section 4.3.2, leads to the following corollary.

Corollary 4.15 For each state s in a finite state pLTS,

1. there is a characteristic formula φ∼s such that s ∼ t iff t ∈ φ∼s ;

2. there is a characteristic formula φ≺s such that s ≺ t iff t ∈ φ≺s .

4.4 Metric analogue of bisimulation

In the bisimulation game probabilities are treated as labels since they are matched only when they
are identical. One may argue that this does not provide a robust relation: Processes that differ for a
very small probability, for instance, would be considered just as different as processes that perform
completely different actions. This is particularly relevant to security systems where specifications can
be given as perfect, but impractical processes and other, practical processes are considered safe if
they only differ from the specification with a negligible probability.

To find a more flexible way to differentiate processes, researchers in this area have borrowed from
pure mathematics the notion of metric1. A metric is defined as a function that associates a set
distance with a pair of elements. Whereas topologists use metrics as a tool to study continuity and
convergence, we will use them to provide a measure of the difference between two processes that are
not quite bisimilar.

Since different processes may behave the same, they will be given distance zero in our metric
semantics. So we are more interested in pseudometrics than metrics.

In the rest of this section, we fix a finite-state pLTS (S,Act ,−→) and provide the set of pseudo-
metrics on S with the following partial order.

1For simplicity, in this section we use the term metric to denote both metric and pseudometric. All the results are
based on pseudometrics.

45

Definition 4.16 The relation G for the set M of 1-bounded pseudometrics on S is defined by

m1 G m2 if ∀s, t : m1(s, t) ≥ m2(s, t).

Here we reverse the ordering with the purpose of characterizing bisimilarity as the greatest fixed point
(cf: Corollary 4.28).

Lemma 4.17 (M,G) is a complete lattice.

Proof: The top element is given by ∀s, t : +(s, t) = 0; the bottom element is given by ⊥(s, t) = c if
s /= t, 0 otherwise. Greatest lower bounds are given by (

!
X)(s, t) = sup{m(s, t) | m ∈ X} for any

X ⊆ M. Finally, least upper bounds are given by
⊔

X =
!

{m ∈ M | ∀m′ ∈ X : m′ G m}. &'

In order to define the notion of state-metrics (which will correspond to bisimulations) and the
monotone transformation on metrics, we need to associate a metric with D(S). Here we give a
definition based on the Kantorovich metric [Kan42] on probability measures, which has been used by
van Breugel and Worrell for defining metrics on fully probabilistic systems [vBW01a] and reactive
probabilistic systems [vBW01b]; and by Desharnais et al. for labelled Markov chains [DJGP02] and
labelled concurrent Markov chains [DJGP04], respectively.

Definition 4.18 For each m ∈ M, we lift it to be a metric m̂ over D(S). Given ∆, ∆′ ∈ D(S), we
define m̂(∆, ∆′) as the solution to the following linear program:

maximize
∑

s∈S(∆(s) − ∆′(s))xs

subject to • ∀s ∈ S : 0 ≤ xs ≤ 1
• ∀s, s′ ∈ S : xs − xs′ ≤ m(s, s′)

(4.16)

An alternative definition would be to scale the above m̂(∆, ∆′) by a factor e ∈ (0, 1], see van
Breugel and Worrell [vBW05] for more discussions. Here we simply let e = 1 because all the main
results obtained in this section are independent from e.

Proposition 4.19 For each m ∈ M, m̂ is a metric over D(S).

Proof: We verify that (D(S), m̂) satisfies the definition of pseudometric space.

1. It is clear that m̂(∆, ∆) = 0.

2. We observe that
∑

s∈S(∆(s) − ∆′(s))xs =
∑

s∈S(∆′(s) − ∆(s))(1 − xs) +
∑

s∈S ∆(s) −
∑

s∈S ∆′(s)
=

∑
s∈S(∆′(s) − ∆(s))(1 − xs)

Now x′
s = 1− xs also satisfy the constraints on xs in Definition 4.18, hence the symmetry of m̂

can be shown.

3. Let ∆1, ∆2, ∆3 ∈ D(S), we have
∑

s∈S

(∆1(s) − ∆3(s))xs =
∑

s∈S

(∆1(s) − ∆2(s))xs +
∑

s∈S

(∆2(s) − ∆3(s))xs.

By taking the maximum over the xs for the left hand side, we obtain

m̂(∆1, ∆3) ≤ m̂(∆1, ∆2) + m̂(∆2, ∆3).

&'

Definition 4.20 m ∈ M is a state-metric if, for all ε ∈ [0, 1), m(s, t) ≤ ε implies:

• if s a−→ ∆ then there exists some ∆′ such that t a−→ ∆′ and m̂(∆, ∆′) ≤ ε.

46

Note that if m is a state-metric then it is also a metric. By m(s, t) ≤ ε we have m(t, s) ≤ ε, which
implies

• if t a−→ ∆′ then there exists some ∆ such that s a−→ ∆ and m̂(∆′, ∆) ≤ ε.

In the above definition, we prohibit ε to be 1 because we use 1 to represent the distance between any
two incomparable states including the case where one state may perform a transition and the other
may not.

The greatest state-metric is defined as

mmax =
⊔

{m ∈ M | m is a state-metric}.

When compared with Proposition 2.11, it turns out that state-metrics correspond to bisimulations
and the greatest state-metric corresponds to bisimilarity. To make the analogy closer, in what follows
we will characterize mmax as a fixed point of a suitable monotone function on M. First we recall the
definition of Hausdorff distance.

Definition 4.21 Given a 1-bounded metric d on Z, the Hausdorff distance between two subsets X, Y
of Z is defined as follows:

Hd(X, Y) = max{supx∈Xinfy∈Y d(x, y), supy∈Y infx∈Xd(y, x)}

where inf ∅ = 1 and sup ∅ = 0.

Next we define a function F on M by using the Hausdorff distance.

Definition 4.22 Let der(s, a) = {∆ | s a−→ ∆}. F (m) is a pseudometric given by:

F (m)(s, t) = maxa∈Act{Hm̂(der(s, a), der(t, a))}.

Thus we have the following property.

Lemma 4.23 For all ε ∈ [0, 1), F (m)(s, t) ≤ ε if and only if:

• if s a−→ ∆ then there exists some ∆′ such that t a−→ ∆′ and m̂(∆, ∆′) ≤ ε;

• if t a−→ ∆′ then there exists some ∆ such that s a−→ ∆ and m̂(∆′, ∆) ≤ ε.

&'

The above lemma can be proved by directly checking the definition of F , as can the next lemma.

Lemma 4.24 m is a state-metric iff m G F (m). &'

Consequently we have the following characterisation:

mmax =
⊔

{m ∈ M | m G F (m)}.

Lemma 4.25 F is monotone on M. &'

Because of Lemma 4.17 and 4.25, we can apply Theorem 1.4, which tells us that mmax is the
greatest fixed point of F . Furthermore, by Lemma 4.24 we know that mmax is indeed a state-metric,
and it is the greatest state-metric.

In addition, if our pLTS is image-finite, i.e. for all a ∈ Act , s ∈ S the set der(s, a) is finite, the
closure ordinal of F is ω. Therefore one can proceed in a standard way to show that

mmax =
"

{F i(+) | i ∈ N}

where + is the top metric in M and F 0(+) = +.

47

Lemma 4.26 For image-finite pLTSs, the closure ordinal of F is ω.

Proof: Let mmax (s, t) ≤ ε. Let s a−→ ∆. For each mi = F i(+) there is a Θi such that t a−→ Θi and
m̂i(∆, Θ) ≤ ε. Since the pLTSs are image-finite, there is a Θ such that for all but finitely many i,
t a−→ Θ and m̂i(∆, Θ) ≤ ε. &'

We now show the correspondence between our state-metrics and bisimulations.

Theorem 4.27 Given a binary relation R and a pseudometric m ∈ M such that

m(s, t) =
{

0 if sRt
1 otherwise.

Then R is a bisimulation iff m is a state-metric.

Proof: Given two distributions ∆, ∆′ over S, let us consider how to compute m̂(∆, ∆′) if R is an
equivalence relation. Since S is finite, we may assume that V1, ..., Vn ∈ S/R are all the equivalence
classes of S under R. If s, t ∈ Vi for some i ∈ 1..n, then m(s, t) = 0, which implies xs = xt by the
second constraint of (4.16). So for each i ∈ 1..n there exists some xi such that xi = xs for all s ∈ Vi.
Thus, some summands of (4.16) can be grouped together and we have the following linear program:

∑

i∈1..n

(∆(Vi) − ∆′(Vi))xi (4.17)

with the constraint xi − xj ≤ 1 for any i, j ∈ 1..n with i /= j. Briefly speaking, if R is an equivalence
relation then m̂(∆, ∆′) is obtained by maximizing the linear program (4.17).

(⇒) Suppose R is a bisimulation and m(s, t) = 0. By assumption R is clearly an equivalence
relation. By the definition of m we have sRt. If s a−→ ∆ then t a−→ ∆′ for some ∆′ such that ∆ R ∆′.
To show that m is a state-metric it suffices to prove m(∆, ∆′) = 0. We know from ∆ R ∆′ and
Proposition 4.4 (2) that ∆(Vi) = ∆′(Vi), for each i ∈ 1..n. It follows that (4.17) is maximized to be
0, thus m(∆, ∆′) = 0.

(⇐) Suppose m is a state-metric and has the relation as defined in the hypothesis. Notice that R
is an equivalence relation. We show that it is a bisimulation. Suppose sRt, which means m(s, t) = 0.
If s a−→ ∆ then t a−→ ∆′ for some ∆′ such that m(∆, ∆′) = 0. To ensure that m(∆, ∆′) = 0, in (4.17)
the following two conditions must be satisfied.

1. No coefficient is positive. Otherwise, if ∆(Vi) − ∆′(Vi) > 0 then (4.17) would be maximized to
a value not less than (∆(Vi) − ∆′(Vi)), which is greater than 0.

2. It is not the case that at least one coefficient is negative and the other coefficients are either
negative or 0. Otherwise, by summing up all the coefficients, we would get

∆(S) − ∆′(S) < 0

which contradicts the assumption that ∆ and ∆′ are distributions over S.

Therefore the only possibility is that all coefficients in (4.17) are 0, i.e., ∆(Vi) = ∆′(Vi) for any
equivalence class Vi ∈ S/R. It follows from Proposition 4.4 (2) that ∆ R ∆′. So we have shown that
R is indeed a bisimulation. &'

Corollary 4.28 s ∼p t iff mmax (s, t) = 0.

Proof: (⇒) Since ∼p is a bisimulation, by Theorem 4.27 there exists some state-metric m such
that s ∼p t iff m(s, t) = 0. By the definition of mmax we have m G mmax . Therefore mmax (s, t) ≤
m(s, t) = 0.

(⇐) From mmax we construct a pseudometric m as follows.

m(s, t) =
{

0 if mmax (s, t) = 0
1 otherwise.

48

Since mmax is a state-metric, it is easy to see that m is also a state-metric. Now we construct a
binary relation R such that ∀s, s′ : sRs′ iff m(s, s′) = 0. If follows from Theorem 4.27 that R is a
bisimulation. If mmax (s, t) = 0, then m(s, t) = 0 and thus sRt. Therefore we have the required result
s ∼p t because ∼p is the largest bisimulation. &'

4.5 Equivalence checking

In this section we consider a probabilistic extension of strong simulation and bisimulation.

Definition 4.29 A relation R ⊆ S × S is a strong simulation if s R t implies

• if s a−→ ∆ then there exists some Θ such that t a−→ Θ and ∆ R Θ.

If both R and R−1 are strong simulations, then R is a strong bisimulation. We s ∼ t if there exists
a strong bisimulation R with s R t.

We present two algorithms for computing bisimulation and simulation [BEMC00].

4.5.1 Computing strong bisimulation

We will give a partition-refinement algorithm for pLTSs. Before that we briefly sketch how the
partitioning technique presented in Section 2.7.1 can be modified for reactive pLTSs and explain why
this method fails for general pLTSs.

The partitioning technique for reactive pLTSs Let 〈S, A,→〉 be a reactive pLTS. For any
a ∈ A and B ⊆ S, we define the equivalence relation ∼(a,B) by letting s ∼(a,B) t if s a−→ ∆ and
t a−→ Θ with ∆(B) = Θ(B). We still use the schema shown in Figure 2.4 and the refinement operator
in (2.7), but change the splitting procedure as follows

Split(B, a,B) =
⋃

C∈B
Split(B, a, C) where Split(B, a, C) = C/ ∼(a,B) . (4.18)

An implementation of the algorithm using some tricks on data structures yields the following com-
plexity result.

Theorem 4.30 The bisimulation equivalence classes of a reactive pLTS with n states and m transi-
tions can be computed in time O(mn log n) and space O(mn).

The splitter technique in (4.18) does not work for general pLTSs when we use the obvious mod-
ification of the equivalence relation ∼(a,B) where s ∼(a,B) t iff for any transition s a−→ ∆ there is a
transition t a−→ Θ with ∆(B) = Θ(B) and vice versa.

Example 4.31 Consider the pLTS described in Figure 4.4, we have s /∼ s′ because the transition
s a−→ 1

2 t+ 1
2u cannot be matched by any transition from s′. However, s and s′ cannot be distinguished

by using the above partitioning technique. The problem is that after one round of refinement, we
obtain the blocks

{s, s′}, {t}, {u}, {v}, {w}

and then no further refinement can split the block {s, s′}.

49

s

a

t

1
2

b

u

1
2

c

a

v

1
2

d

w

1
2

e

s′

a

t

1
2

b

v

1
2

d

a

u

1
2

c

w

1
2

e

Figure 4.4: s /∼ s′

The partitioning technique for pLTSs To compute bisimulation equivalence classes in general
pLTSs, we can keep the schema sketched in Figure 2.4 but use two partitions: a partition B for states
and a partition M for transitions. By a transition partition we mean a set M consisting of pairs
(a, M) where a ∈ A and M ⊆ Ma with Ma =

⋃
s∈S{∆ | s a−→ ∆} such that, for any action a, the set

{M | (a, M) ∈ M} is a partition of the set Ma.
The algorithm works as follows. We skip the first refinement step and start with the state partition

Binit = S/ ∼A where s ∼A t iff {a | s a−→} = {a | t a−→}

that identifies those states that can perform the same actions immediately. The initial transition
partition

Minit = {(a, Ma) | a ∈ A}

identifies all transitions with the same label. In each iteration, we try to refine the state partition
B according to an equivalence class (a, M) of M or the transition partition M according to a block
B ∈ B. The refinement of B by (a, M) is done by the operation Split(M, a,B) that divides each
block B of B into two subblocks B(a,M) = {s ∈ B | s a−→ M} and B\B(a,M). In other words,

Split(M, a,B) =
⋃

B∈B
Split(M, a, B)

where Split(M, a, B) = {B(a,M), B\B(a,M)} and B(a,M) = {s ∈ B | s a−→ M}. The refinement of M
by B is done by the operation Split(B,M) that divides any block (a, M) ∈ M by the subblocks
(a, M1), ..., (a, Mn) where {M1, ..., Mn} = M/ ∼B and ∆ ∼B Θ iff ∆(B) = Θ(B). Formally,

Split(B,M) =
⋃

(a,M)∈M

Split(B, (a, M))

where Split(B, (a, M)) = {(a, M ′) | M ′ ∈ M/ ∼B}. If no further refinement of B and M is possible
then we have B = S/ ∼. The algorithm is sketched in Figure 4.5. See [BEMC00] for the correctness
proof of the algorithm and the suitable data structures used to obtain the following complexity result.

Theorem 4.32 The bisimulation equivalence classes of a pLTS with n states and m transitions can
be decided in time O(mn(log m + log n)) and space O(mn).

50

B := S/ ∼A where s ∼A t iff {a | s a−→} = {a | t a−→}
M := {(a, Ma) | a ∈ A} where Ma =

⋃
s∈S{∆ | s a−→ ∆}

As long as B or M can be modified perform one of the following steps:
• either choose some B ∈ B and put M := Split(B,M)
• or choose some (a, M) ∈ M and put B := Split(M, a,B)

Return B

Figure 4.5: The algorithm for computing bisimulation equivalence classes in pLTSs

R := S × S
While there exists (s, t) ∈ R with s /≺R t do

R := R\{(s, t)}
Return R

Figure 4.6: Schema for computing strong simulation

4.5.2 Computing strong simulation

The key idea of the algorithm for computing strong simulation is as in the non-probabilistic case
[HHK95] (see Figure 4.6). We start with the trivial relation R = S×S and successively remove those
pairs (s, s′) from R where s /≺R t. Intuitively, the condition s /≺R t says that s has a transition that
cannot be matched by a transition of t with respect to the current relation R. Formally, we define
s ≺R t iff for each transition s a−→ ∆ there exists t a−→ Θ such that ∆ R Θ.

In contrast to the method for non-probabilistic LTSs [HHK95], the algorithm below relies on an
explicit test for the condition s ≺R t with a network-based technique for testing if ∆ R Θ.

Networks We briefly recall the basic definitions of networks. More details can be found in e.g.
[Eve79]. A network is a tuple N = (N, E,⊥,+, c) where (N, E) is a finite directed graph (i.e. N is
a set of nodes and E ⊆ N × N is a set of edges) with two special nodes ⊥ (the source) and + (the
sink) and a capability c, i.e. a function that assigns to each edge (v, w) ∈ E a non-negative number
c(v, w). A flow function f for N is a function that assigns to edge e a real number f(e) such that

• 0 ≤ f(e) ≤ c(e) for all edges e.

• Let in(v) be the set of incoming edges to node v and out(v) the set of outgoing edges from
node v. Then, for each node v ∈ N\{⊥,+},

∑

e∈in(v)

f(e) =
∑

e∈out(v)

f(e).

The flow F (f) of f is given by

F (f) =
∑

e∈out(⊥)

f(e) −
∑

e∈in(⊥)

f(e).

The maximum flow in N is the supremum (maximum) over the flows F (f), where f is a flow function
in N .

The test whether ∆ R Θ We will see that the question whether ∆ R Θ can be reduced to a
maximum flow problem in a suitably chosen network. Suppose R ⊆ S × S and ∆, Θ ∈ D(S). Let
S′ = {s′ | s ∈ S} where s′ are pairwise distinct new states, i.e. s′ ∈ S for all s ∈ S. We create two
states ⊥ and + not contained in S ∪S′ with ⊥ /= +. We associate with the pair (∆, Θ) the following
network N (∆, Θ,R).

51

Input : A nonempty finite set S, distributions ∆, Θ ∈ D(S) and R ⊆ S × S
Output : If ∆ R Θ then “yes” else “no”
Method :

Construct the network N (∆, Θ,R)
Compute the maximum flow F in N (∆, Θ,R)
If F < 1 then return “no” else “yes”.

Figure 4.7: Test whether ∆ R Θ

• The nodes are N = S ∪ S′ ∪ {⊥,+}.

• The edges are E = {(s, t′) | (s, t) ∈ R} ∪ {(⊥, s) | s ∈ S} ∪ {(s′,+) | s ∈ S}.

• The capability c is defined by c(⊥, s) = ∆(s), c(t′,+) = Θ(t) and c(s, t′) = 1 for all s, t ∈ S.

Lemma 4.33 The following statements are equivalent.

(i) There exists a weight function w for (∆, Θ) with respect to R.

(ii) The maximum flow in N (∆, Θ,R) is 1.

Proof: (i) =⇒ (ii): Let w be a weight function for (∆, Θ) with respect to R. We define a flow
function f as follows: f(⊥, s) = ∆(s), f(t′,+) = Θ(t) and f(s, t′) = w(s, t) for all s, t ∈ S. Then
F (f) =

∑
s∈S f(⊥, s) =

∑
s∈S ∆(s) = 1. So the maximum flow of N (∆, Θ,R) is 1.

(ii) =⇒ (i): Let f be a flow function with F (f) = 1. Since f(⊥, s) ≤ c(⊥, s) = ∆(s) and
∑

s∈S

f(⊥, s) = F (f) = 1 =
∑

s∈S

∆(s)

it must be the case that f(⊥, s) = ∆(s) for all s ∈ S. Similarly, we get f(t′,+) = Θ(t) for all t ∈ S.
Let w be the weight function defined by w(s, t) = f(s, t′) for all (s, t) ∈ R and w(s, t) = 0 if (s, t) /∈ R.
We can check that ∑

t∈S

w(s, t) =
∑

t∈S

f(s, t′) = f(⊥, s) = ∆(s)

and similarly,
∑

s∈S w(s, t) = Θ(t). So w is a weight function for (∆, Θ) with respect to R. &'

Corollary 4.34 ∆ R Θ iff the maximum flow in N (∆, Θ,R) is 1.

Proof: Combining Proposition 4.4(1) and Lemma 4.33. &'

Corollary 4.34 provides a method for deciding whether ∆ R Θ. We construct the network
N (∆, Θ,R) and compute the maximum flow with well-known methods, as sketched in Figure 4.7. As
shown in [CHM90], computing the maximum flow in a network can be done in time O(n3/ logn) and
space O(n2), where n is the number of nodes in the network. So we immediately have the following
result.

Lemma 4.35 The test whether ∆ R Θ can be done in time O(n3/ logn) and space O(n2). &'

Algorithm for computing simulation The algorithm for computing simulation is formulated in
Figure 4.8. The key idea of the algorithm is as in Figure 4.6, but we start with the relation

Rinit = {(s, t) ∈ S × S | act(s) ⊆ act(t), s /= t}

and keep removing the pairs (∆, Θ) for which we have detected that ∆ R Θ does not hold. Note that
if ∆ is not related to Θ via R in the current iteration, it is also not related to Θ via R in all further

52

R := {(s, t) ∈ S × S | act(s) ⊆ act(t), s /= t}, where act(s) = {a | s a−→}
For all (s, t) ∈ R and s a−→ ∆ do Sim(s,a,∆)(t) := {Θ | t a−→ Θ}
Repeat

Rold := R;R := ∅
For all (s, t) ∈ Rold do
For all s a−→ ∆ do

Repeat
Choose some Θ ∈ Sim(s,a,∆)(t)
If ∆ R Θ does not hold then remove Θ from Sim(s,a,∆)(t)

until Sim(s,a,∆)(t) = ∅ or ∆ R Θ
If Sim(s,a,∆)(t) /= ∅ then R := R ∪ {(s, t)}

until Rold = R
Return R

Figure 4.8: Algorithm for computing simulation in pLTSs

iterations because the relation R becomes smaller and smaller as the iterative procedure goes on.
In the main loop, for any pair (s, t) ∈ R and transition s a−→ ∆, we deal with the set Sim(s,a,∆)(t)
that contains all distributions obtained after performing an a-transition from t that are candidates
for simulating ∆. Once we detect that ∆ is not related to Θ via the current relation R, i.e. Θ cannot
simulate ∆, then we remove Θ from Sim(s,a,∆)(t). To check wheter s ≺R t for the current R, we
consider each transition s a−→ ∆ and search in Sim(s,a,∆)(t) for a distribution Θ with ∆ R Θ. If we
find such a distribution then (s, t) passes the current round of testing and will go into the next round
to be tested against the new relation R. The following complexity result of the algorithm is shown
in [BEMC00].

Theorem 4.36 Computing strong simulation for a pLTS with n states and m transitions can be done
in time O((mn6 + m2n3)/ log n) and space O(mn + n2 + m2).

4.6 Probabilistic testing semantics

4.6.1 A general testing framework

It is natural to view the semantics of processes as being determined by their ability to pass tests
[DNH84, Hen88, YL92, Seg96]; processes P1 and P2 are deemed to be semantically equivalent unless
there is a test which can distinguish them. The actual tests used typically represent the ways in
which users, or indeed other processes, can interact with Pi.

Let us first set up a general testing scenario, within which this idea can be formulated. It assumes

• a set of processes Proc

• a set of tests T , which can be applied to processes

• a set of outcomes O, the possible results from applying a test to a process

• a function Apply : T × Proc → P+(O), representing the possible results of applying a specific
test to a specific process.

Here P+(O) denotes the collection of non-empty subsets of O; so the result of applying a test T to a
process P , Apply(T, P), is in general a set of outcomes, representing the fact that the behaviour of
processes, and indeed tests, may be nondeterministic.

Moreover, some outcomes are considered better then others; for example the application of a test
may simply succeed, or it may fail, with success being better than failure. So we can assume that O
is endowed with a partial order, in which o1 ≤ o2 means that o2 is a better outcome than o1.

53

When comparing the result of applying tests to processes we need to compare subsets of O. There
are two standard approaches to make this comparison, based on viewing these sets as elements of
either the Hoare or Smyth powerdomain [Hen82, AJ94] of O. For O1, O2 ∈ P+(O) we let

(i) O1 "Ho O2 if for every o1 ∈ O1 there exists some o2 ∈ O2 such that o1 ≤ o2

(ii) O1 "Sm O2 if for every o2 ∈ O2 there exists some o1 ∈ O1 such that o1 ≤ o2.

Using these two comparison methods we obtain two different semantic preorders for processes:

(i) For P, Q ∈ Proc let P "may Q if Apply(T, P) "Ho Apply(T, Q) for every test T

(ii) Similarly, let P "must Q if Apply(T, P) "Sm Apply(T, Q) for every test T .

We use P =may Q and P =must Q to denote the associated equivalences.
The terminology may and must refers to the following reformulation of the same idea. Let

Pass ⊆ O be an upwards-closed subset of O, i.e. satisfying o′ ≥ o ∈ Pass ⇒ o′ ∈ Pass , thought
of as the set of outcomes that can be regarded as passing a test. Then we say that a process P
may pass a test T with an outcome in Pass, notation “P may Pass T ”, if there is an outcome
o ∈ Apply(P, T) with o ∈ Pass, and likewise P must pass a test T with an outcome in Pass, notation
“P must Pass T ”, if for all o ∈ Apply(P, T) one has o ∈ Pass. Now

P "may Q iff ∀T ∈ T ∀Pass ∈ P↑(O) (P may Pass T ⇒ Q may Pass T)
P "must Q iff ∀T ∈ T ∀Pass ∈ P↑(O) (P must Pass T ⇒ Q must Pass T)

where P↑(O) is the set of upwards-closed subsets of O.
The original theory of testing [DNH84, Hen88] is obtained by using as the set of outcomes O the

two-point lattice

⊥

+

with + representing the success of a test application, and ⊥ failure.
However, for probabilistic processes we consider an application of a test to a process to succeed

with a given probability. Thus we take as the set of outcomes the unit interval [0, 1], with the
standard mathematical ordering; if 0 ≤ p < q ≤ 1 then succeeding with probability q is considered
better than succeeding with probability p. This yields two preorders for probabilistic processes, which
for convenience we rename "pmay and "pmust, with the associated equivalences =pmay and =pmust

respectively. These preorders, and their associated equivalences, were first defined by Wang and
Larsen [YL92]. In the rest of this section, we will study them in detail.

Before doing so let us first point out a useful simplification: the Hoare and Smyth preorders
on finite subsets of [0, 1] (and more generally on closed subsets of [0, 1]) are determined by their
maximum and minimum elements respectively.

Proposition 4.37 For O1, O2 ∈ P+
fin(Oprob) we have

(i) O1 "Ho O2 if and only if max(O1) ≤ max(O2)

(ii) O1 "Sm O2 if and only if min(O1) ≤ min(O2).

Proof: Straightforward calculations. &'

As in the non-probabilistic case [DNH84], we could also define a testing preorder combining the may-
must-preorders; we will not study this combination here.

54

4.6.2 Testing probabilistic processes

Definition 4.38 A (probabilistic) process is a tuple 〈S, ∆◦,Actτ ,→〉, where 〈S,Actτ ,→〉 is a pLTS
and ∆◦ is a distribution over S, called the initial distribution of the pLTS.

A process is fully probabilistic if each state has at most one outgoing transition.

We now define the parallel composition of two processes.

Definition 4.39 Let P1 = 〈S1, ∆◦
1,Actτ ,→1〉 and P2 = 〈S2, ∆◦

2,Actτ ,→2〉 be two processes, and A
a set of visible actions. The parallel composition P1|AP2 is 〈S1 × S2, ∆◦

1 × ∆◦
2,Actτ ,→〉 where → is

the least relation satisfying the following rules:

s1
α−→1 ∆

(s1, s2) α−→ ∆ × s2
α !∈ A

s2
α−→2 ∆

(s1, s2) α−→ s1 × ∆
α !∈ A

s1
a−→1 ∆1, s2

a−→2 ∆2

(s1, s2) τ−→ ∆1 × ∆2
a ∈ A

Parallel composition is the basis of testing: it models the interaction of the observer with the
process being tested; and it models the observer himself — as a process. Let Ω := {ω1,ω2, · · · } be a
countable set of success actions , disjoint from Actτ , define a test to be a process 〈S, ∆◦,Actτ ∪Ω,→〉
with the constraint that s ωi−→ and s ωj−→ implies i = j. Let T be the class of all such tests, and write
Tn for the subclass of T that uses only n success actions; we write TN for

⋃
n∈N Tn.

To apply test T to process P we first form the composition P |Act T and then resolve all nondeter-
ministic choices into probabilistic choices. Thus, we obtain a set of resolutions as in Definition 4.40
below. For each resolution, any particular success action ωi will have some probability of occurring;
and those probabilities, taken together, give us a single success tuple for the whole resolution, so that
if o is the tuple then oi is the recorded probability of ωi’s occurrence. The set of all those tuples, i.e.
over all resolutions of P |Act T , is then the complete outcome of applying test T to process P : as
such, it will be a subset of [0, 1]N

+
.

Definition 4.40 A resolution of a process 〈S, ∆◦,→〉 is a fully probabilistic process 〈T, Θ◦,→〉 such
that there is a resolving function f ∈ T → S which satisfies the following conditions:

1. f(Θ◦) = ∆◦

2. if t ω−→ Θ for some ω ∈ Ω then f(t) ω−→ f(Θ)

3. if t α−→ Θ for some α /∈ Ω then f(t) / ω−→ for all ω ∈ Ω and f(t) α−→ f(Θ)

4. if t /−→ then f(t) /−→

where f(Θ) is the distribution defined by f(Θ)(s) =
∑

f(t)=s Θ(t).

Given two tuples o1, o2 ∈ [0, 1]N, we can compare them component-wise. Let S be a set, the set
of functions S → [0, 1]N forms a complete lattice when equipped with the partial order ≤ defined by:
f ≤ g iff f(s) ≤ g(s) for all s ∈ S. Consider the function F : (S → [0, 1]N) → (S → [0, 1]N) defined
below; it extends to type D(S) → [0, 1]N via the convention f(∆) := Exp∆(f).

F (f)(s) :=

1i if s ωi−→ for some ωi ∈ Ω
/0 if s /−→
f(∆) otherwise

(4.19)

where /0 is the everywhere-zero vector.

Lemma 4.41 The function F defined above is continuous.

55

Proof: Let f0 ≤ f1 ≤ ... be an increasing chain in S → [0, 1]N. We need to show that

F (
⊔

n≥0

fn) =
⊔

n≥0

F (fn) (4.20)

For any s ∈ S, we are in one of the following three cases:

1. s ωi−→ for some ωi ∈ Ω. We have

F (
⊔

n≥0 fn)(s) = 1i by (4.19)
=

⊔
n≥0 1i

=
⊔

n≥0 F (fn)(s)
= (

⊔
n≥0 F (fn))(s)

2. s /−→. Similar to last case. We have

F (
⊔

n≥0

fn)(s) = /0 = (
⊔

n≥0

F (fn))(s).

3. Otherwise, s α−→ ∆ for some ∆ ∈ D(S) and α ∈ Actτ . Then we infer that

F (
⊔

n≥0 fn)(s) = (
⊔

n≥0 fn)(∆) by (4.19)
=

∑
s∈*∆+ ∆(s) · (

⊔
n≥0 fn)(s)

=
∑

s∈*∆+ ∆(s) · (
⊔

n≥0 fn(s))
=

∑
s∈*∆+

⊔
n≥0 ∆(s) · fn(s)

=
⊔

n≥0

∑
s∈*∆+ ∆(s) · fn(s) by Lemma 1.13

=
⊔

n≥0 fn(∆)
=

⊔
n≥0 F (fn)(s)

= (
⊔

n≥0 F (fn))(s)

&'

Because of Lemma 4.41 and Proposition 1.6, the function F has a least fixed point lfp(F) =
'n∈NFn(⊥), where ⊥(s) = 0 for all s ∈ S.

Definition 4.42 Given a fully probabilistic process 〈S, ∆◦,→〉, we define a results-gathering function
as follows:

V(∆◦) := lfp(F)(∆◦)

The results of applying Ω-test T to process P is given by:

Apply(T, P) := {V(∆◦) | ∆◦ is the initial distribution of a resolution of P |Act T }

We note that the result set Apply(T, P) is convex.

Lemma 4.43 For any test T and process P , if o1, o2 ∈ Apply(T, P), then their weighted average
o1 p⊕ o2 is also in Apply(T, P) for any p ∈ [0, 1].

Proof: Let R1, R2 be the resolutions of P |Act T that gave rise to o1, o2. Form R as their disjoint
union, except initially we define ∆◦ := ∆◦

1 p⊕ ∆◦
2, where ∆◦, ∆◦

1, ∆◦
2 are the initial distributions of

R, R1, R2 respectively. The new resolution R generates the interpolated tuple o1 p⊕ o2 as required.
&'

Definition 4.44 Let P and Q be two probabilistic processes.

P "n
pmay Q iff ∀T ∈ Tn : Apply(T, P) "Ho Apply(T, Q)

P "n
pmust Q iff ∀T ∈ Tn : Apply(T, P) "Sm Apply(T, Q)

56

4.7 Reward testing

In this section we introduce a new way of testing based on giving rewards to success actions.
We begin with some notation. A reward tuple is an n-tuple h ∈ Rn of real numbers. Given two

tuples h, o ∈ Rn, we write h · o for the dot-product of them. Given a set of tuples O ∈ [0, 1]n and a
reward tuple h ∈ Rn, we write h · O for the set of rewards {h · o | o ∈ O}.

4.7.1 A geometric property

Definition 4.45 A subset O of the n-dimensional Euclidean space is p-closed (for probabilistically
closed) iff

• It is convex, that is if o1, o2 ∈ O and p ∈ [0, 1] then the weighted average o1 p⊕ o2 is also in O,
and

• It is Cauchy closed, that is it contains all its limit points in the usual Euclidean metric, and it
is bounded. 2

P-closure allows us to appeal to the Separating Hyperplane Lemma from discrete geometry [Mat02,
Theorem 1.2.4 paraphrased]:

Lemma 4.46 Let A and B be two convex- and Cauchy-closed subsets of Euclidean n-space; assume
that they are disjoint and that at least one of them is bounded. Then there is a hyperplane that strictly
separates them.

Here a hyperplane is a set of the form {w ∈ Rn | h · w = c} for certain h ∈ Rn (the normal of the
hyperplane) and c ∈ R, and such a hyperplane strictly separates A and B if for all a ∈ A and b ∈ B
we have h · a < c < h · b or h · a > c > h · b.

Theorem 4.47 Let A, B be subsets of [0, 1]n; then we have

A "Ho B iff ∀h ∈ [0, 1]n :
⊔

h · A ≤
⊔

h · B if B is p-closed, and
A "Sm B iff ∀h ∈ [0, 1]n :

!
h · A ≤

!
h · B if A is p-closed.

Proof: We consider first the only-if -direction for the Smyth case:

A "Sm B
⇔ ∀b ∈ B : ∃a ∈ A : a ≤ b [Definition of "Ho]
⇒ ∀h ∈ [0, 1]n : ∀b ∈ B : ∃a ∈ A : h · a ≤ h · b [h ≥ 0]
⇒ ∀h ∈ [0, 1]n : ∀b ∈ B :

!
h · A ≤ h · b [

!
h · A ≤ h · a]

⇒ ∀h ∈ [0, 1]n :
!

h · A ≤
!

h · B [Definition of infimum]

For the if -direction we use separating hyperplanes, proving the contrapositive:

A /"Sm B
⇔ ∀a ∈ A : ¬(a ≤ b) [Definition of "Sm; for some b ∈ B]
⇔ A ∩ B′ = ∅ [define B′ := {b′ ∈ Rn | b′ ≤ b}]
⇔ ∃h ∈ Rn, c ∈ R : [Lemma 4.46; A is p-closed; B′ is convex and Cauchy-closed]

∀a ∈ A, b′ ∈ B′ :
h · b′ < c < h · a

where without loss of generality the inequality can be in the direction shown, else we simply
multiply h, c by −1.

We now argue that h is non-negative, whence by scaling of h, c we obtain without loss of generality
that h ∈ [0, 1]n. Assume for a contradiction that hi < 0. Choose scalar d ≥ 0 large enough so that the

2Cauchy closure and boundedness together amounts to compactness.

57

point b′ := (b1, · · · , bi − d, · · · , bn) falsifies h · b′ < c; since b′ is still in B′, however, that contradicts
the separation. Thus we continue

⇔
∃h ∈ [0, 1]n, c ∈ R :
∀a ∈ A, b′ ∈ B′ :

h · b′ < c < h · a
[above comments concerning d]

⇔ ∃h ∈ [0, 1]n, c ∈ R : ∀a ∈ A : h · b < c < h · a [set b′ to b; note b ∈ B′]
⇒ ∃h ∈ [0, 1]n, c ∈ R : h · b < c ≤

!
h · A [property of infimum]

⇒ ∃h ∈ [0, 1]n, c ∈ R :
!

h · B < c ≤
!

h · A [b ∈ B, hence
!

h · B ≤ h · b]
⇒ ¬(∀h ∈ [0, 1]n :

!
h · A ≤

!
h · B)

The proof for the Hoare-case is analogous. &'

4.7.2 Reward testing

Definition 4.48 Let P and Q be two probabilistic processes. We define two reward testing preorders.

P "n
rmay Q iff ∀T ∈ Tn, ∀h ∈ [0, 1]n :

⊔
h · Apply(T, P) ≤

⊔
h · Apply(T, Q)

P "n
rmust Q iff ∀T ∈ Tn, ∀h ∈ [0, 1]n :

!
h · Apply(T, P) ≤

!
h · Apply(T, Q)

Definition 4.49 Given a fully probabilistic process with state set S, we define the function Vδk : S →
[0, 1]m to calculate the vector of success probabilities for each state with respect to the discount factor
δ ∈ (0, 1]; it extends to type D(S) → [0, 1]m via the convention Vδk(∆) := Exp∆(Vδk).

• Vδ0(s) :=
{

1i if s ωi−→
/0 otherwise

• Vδ(k+1)(s) :=

1i if s ωi−→ for some ωi ∈ Ω
/0 if s /−→
δ · Vk(∆) otherwise

where 1i is the vector that is 1 at position i and 0 elsewhere, while /0 is the zero vector.
Given a reward tuple h ∈ [0, 1]m, we define a scalar outcome Vδ,hk : S → [0, 1] by taking the inner

product of two vectors:
Vδ,hk (s) := h · Vδk(s)

By construction, for every state s we have

• Vδ,hk (s) ≤ 1

• Vδ,hk (s) ≤ Vδ,h(k+1)(s)

Therefore, we can define Vδ,h : S → [0, 1] by letting Vδ,h(s) := limk→∞ Vδ,hk (s).
Consider the set of all functions from S to [0, 1], denoted by FS , and the distance function d

over FS defined by d(f, g) = maxs∈S |f(s) − g(s)|. We can check that (FS , d) constitutes a complete
metric space (cf. Example 1.19). The functional F δ,h : FS → FS defined by

F δ,h(f)(s) =

hi if s ωi−→
0 if s /−→
δ · f(∆) otherwise

where f(∆) = Exp∆(f) and δ ∈ (0, 1), is a contraction mapping with constant δ. It follows from
Theorem 1.21 that F δ,h has a unique fixed point, which is the limit of the sequence (F k(Vδ,h0))∞k=0,
that is Vδ,h.

58

4.7.3 Maximum rewards

Definition 4.50 Given a probabilistic process with state set S and a reward tuple h ∈ [0, 1]m, we
define the function Vmax δ,hk : S → [0, 1]m to calculate the maximum reward for each state with respect
to the discount factor δ ∈ (0, 1].

• Vmax δ,h0 (s) :=
{

hi if s ωi−→
0 otherwise

• Vmax δ,h(k+1)(s) :=

hi if s ωi−→
0 if s /−→
δ · max{Vmax δ,hk (∆) | s α−→ ∆} otherwise

where Vmax δ,hk (∆) = Exp∆(Vmax δ,hk) and hi is the i-th component of the tuple h.

By construction, for every state s we have

• Vmax δ,hk (s) ≤ 1

• Vmax δ,hk (s) ≤ Vmax δ,h(k+1)(s)

Therefore, we can define Vmax δ,h : S → [0, 1] by letting Vmax δ,h(s) := limk→∞ Vmax δ,hk (s).
Similar to Vδ,h, the function Vmax δ,h is the unique fixed point of the functional Fmax δ,h : FS →

FS defined by

Fmax δ,h(f)(s) =

hi if s ωi−→
0 if s /−→
δ · max{f(∆) | s α−→ ∆} otherwise.

Lemma 4.51 1. Vmax δ,h(∆) =
∑

s∈S ∆(s) · Vmax δ,h(s)

2. Vδ,h(Θ) =
∑

t∈T Θ(t) · Vδ,h(t)
&'

Lemma 4.52 Suppose δ ∈ (0, 1] and h ∈ [0, 1]m. If (T, Θ◦,→) is a resolution of (S, ∆◦,→), then
Vmax δ,h(∆◦) ≥ Vδ,h(Θ◦).

Proof: Let f : T → S be the resolving function associated with the resolution (T, Θ◦,→), we show
by induction on k that

Vmax δ,hk (f(t)) ≥ Vδ,hk (t) for any t ∈ T (4.21)

The case k = 0 is trivial. For the inductive step, the interesting case is when t τ−→ Θ. Then f(t) / ω−→
for all ω ∈ Ω and f(t) τ−→ f(Θ). We can infer that

Vmax δ,h(k+1)(f(t)) = δ · max{Vmax δ,hk (∆)|f(t) τ−→ ∆}
≥ δ · Vmax δ,hk (f(Θ))
= δ ·

∑
s∈S f(Θ)(s) · Vmax δ,hk (s)

= δ ·
∑

t∈T Θ(t) · Vmax δ,hk (f(t))
≥ δ ·

∑
t∈T Θ(t) · Vδ,hk (t) by induction

= δ · Vδ,hk (Θ)
= Vδ,h(k+1)(t)

It follows from (4.21) that
Vmax δ,h(f(t)) ≥ Vδ,h(t) for any t ∈ T (4.22)

59

Therefore, we have that

Vmax δ,h(∆◦) = Vmax δ,h(f(Θ◦))
=

∑
s∈S f(Θ◦)(s) · Vmax δ,h(s) by Lemma 4.51 (2)

=
∑

t∈T Θ◦(t) · Vmax δ,h(f(t))
≥

∑
t∈T Θ◦(t) · Vδ,h(t) by (4.22)

= Vδ,h(Θ◦) by Lemma 4.51 (3)

&'

We say a resolution of a process is static if its associated resolving function is injective.

Lemma 4.53 Suppose δ ∈ (0, 1) and h ∈ [0, 1]m. Given a process (S, ∆◦,→), there exists a static
resolution (T, Θ◦,→) such that Vmax δ,h(∆◦) = Vδ,h(Θ◦).

Proof: Let (T, Θ◦,→) be a resolution with an injective resolving function f such that if t τ−→ Θ then
Vmax δ,h(f(Θ)) = max{Vmax δ,h(∆) | f(t) τ−→ ∆}. The assumption of finite branchingness ensures
the existence of such resolving function f .

Let g : T → [0, 1] be the function defined by g(t) = Vmax δ,h(f(t)). Below we show that g is a
fixed point of F δ,h. We only consider the non-trivial case that t τ−→ Θ. By the definition of f , we
have f(t) / ω−→ for all ω ∈ Ω, f(t) τ−→ f(Θ) with Vmax δ,h(f(Θ)) = max{Vmax δ,h(∆) | f(t) τ−→ ∆}.
Therefore,

F δ,h(g)(t) = δ · g(Θ)
= δ ·

∑
t∈T Θ(t) · g(t)

= δ ·
∑

t∈T Θ(t) · Vmax δ,h(f(t))
= δ ·

∑
s∈S f(Θ)(s) · Vmax δ,h(s)

= δ · Vmax δ,h(f(Θ))
= δ · max{Vmax δ,h(∆)|f(t) τ−→ ∆}
= Vmax δ,h(f(t))
= g(t)

Since F δ,h has a unique fixed point Vδ,h, we derive that g coincides with Vδ,h, i.e. Vδ,h(t) = g(t) =
Vmax δ,h(f(t)) for all t ∈ T , from which we can obtain the required result Vδ,h(Θ◦) = Vmax δ,h(∆◦).

&'

Lemma 4.54 Let {δn}n≥1 be a nondecreasing sequence of discount factors converging to 1.

• Vmax1,h = limn→∞ Vmax δn,h

• V1,h = limn→∞ Vδn,h

&'

Theorem 4.55 Suppose h ∈ [0, 1]m. Given a process (S, ∆◦,→), there exists a static resolution
(T, Θ◦,→) such that Vmax 1,h(∆◦) = V1,h(Θ◦).

Proof: By Lemma 4.53, for every discount factor d ∈ (0, 1) there exists a static resolution which
achieves the maximum reward. Since there are finitely many states in S, there are finitely many static
resolutions. There must exist a static resolution that achieves the maximum rewards for infinitely
many discount factors. In other words, for every nondecreasing sequence {δn}n≥1 converging to 1,
there exists a subsequence {δnk}k≥1 and a static resolution (T,−→, Θ◦) with resolving function f0

such that Vδnk
,h(t) = Vmax δnk

,h(f0(t)) for all t ∈ T and k = 1, 2, By Lemma 4.54, we have that,
for every t ∈ T ,

V1,h(t) = limk→∞ Vδnk
,h(t)

= limk→∞ Vmax δnk
,h(f0(t))

= Vmax 1,h(f0(t))

It follows that V1,h(Θ◦) = Vmax 1,h(∆◦). &'

60

4.7.4 Minimum rewards

We now consider probabilistic processes which are finitely branching and can have countably many
states. The dual of Vmax δ,h is Vminδ,h by replacing max with min in Definition 4.50. In fact, we
do not need discount factors any more. So we just write Vminh for Vmin1,h, Vh for V1,h, and Fh

for F 1,h.

Lemma 4.56 For any h ∈ [0, 1]m, if (T, Θ◦),→ is a resolution of (S, ∆◦,→), then it holds that
Vminh(∆◦) ≤ Vh(Θ◦).

Proof: Analogous to the proof of Lemma 4.52. &'

Theorem 4.57 Suppose h ∈ [0, 1]m. Given a process (S,−→, ∆◦). There exists a static resolution
(T, Θ◦,→) such that Vminh(∆◦) = Vh(Θ◦).

Proof: Similar to the proof of Lemma 4.53. Let (T, Θ◦,→) be a resolution with an injective resolving
function f such that if t τ−→ Θ then Vminh(f(Θ)) = min{Vminh(∆) | f(t) τ−→ ∆}.

Let g : T → [0, 1] be the function defined by g(t) = Vminδ,h(f(t)). As in the proof of Lemma 4.53,
we show that g is a fixed point of Fh. It is also easy to prove that Vh is the least fixed point of
Fh. Therefore, Vh(t) ≤ g(t) = Vminh(f(t)) for all t ∈ T , from which we can obtain Vh(Θ◦) ≤
Vminh(∆◦). Using Lemma 4.56, we derive that Vminh(∆◦) = Vh(Θ◦). &'

From Lemmas 4.52, 4.56 and Theorems 4.55 and 4.57, we obtain the following corollary.

Corollary 4.58 Let h ∈ [0, 1]m and M = (S, ∆◦,→) be a finitely branching probabilistic process.

1. If S is finite, then

Vmaxh = max{Vh(Θ◦) | Θ◦ is the initial distribution of a resolution of M}

2. If S is countable, then

Vminh = min{Vh(Θ◦) | Θ◦ is the initial distribution of a resolution of M}

So the two ways of calculating maximum/minimum rewards coincide: one is to do the calculation
on a probabilistic process directly (Vmaxh and Vminh), the other is to calculate the reward of each
resolution of the process (Vh) and then take the maximum/minimum rewards.

As a remark, in the special case of having only one success action, as in [DvGH+07a, DvGH+07b],
Vmaxh and Vminh give the maximum and minimum success probabilities, respectively, by taking
h = 1.

4.7.5 Vector testing versus scalar testing

Definition 4.59 The results of applying Ω-test T to process P is given by:

Applyf(T, P) := H{V(∆◦) | ∆◦ is the initial distribution of a static resolution of P |Act T }

A process is finitary if it is finitely branching and has finitely many states.

Lemma 4.60 For any test T and process P , we have Applyf(T, P) ⊆ Apply(T, P). If P and T are
finitary, then Applyf(T, P) is p-closed.

Proof: The first statement is trivial, since static resolutions are still resolutions and Lemma 4.43
maintains that Apply(T, P) is convex. If P and T are finitary, their composition P |Act T is finitary
too. The set Applyf(T, P) is the convex closure of a finite number of points, so it is clearly Cauchy
closed. &'

61

Lemma 4.61 Let h ∈ [0, 1]m be a reward tuple, T ∈ Tm and P are finitary test and process, respec-
tively. ⊔

h · Applyf(T, P) =
⊔

h · Apply(T, P)!
h · Applyf(T, P) =

!
h · Apply(T, P)

Proof: Lemma 4.52 and Theorem 4.55 imply that
⊔

h · Applyf(T, P) = Vmax 1,h(T, P) =
⊔

h · Apply(T, P) (4.23)

Similarly, Lemma 4.56 and Theorem 4.57 imply that
"

h · Applyf(T, P) = Vmax 1,h(T, P) =
"

h · Apply(T, P) (4.24)

&'

Lemma 4.62 For any n ∈ N and finitary processes P, Q we have

P "n
pmay Q iff P "n

rmay Q
P "n

pmust Q iff P "n
rmust Q

Proof: For the only-if -direction, we apply Theorem 4.47; this direction does not require p-closure.
For the if -direction, we prove the must-case in the contrapositive; the may-case is similar.

P /"n
pmust Q

⇔ Apply(T, P) /"Sm Apply(T, Q) [for some T ∈ Tn]
⇒ Applyf(T, P) /"Sm Apply(T, Q) [Lemma 4.60]
⇔

!
h · Applyf(T, P) /"Sm

!
h · Apply(T, Q) [Lemma 4.60; Theorem 4.47]

⇔
!

h · Apply(T, P) /"Sm
!

h · Apply(T, Q) [for all h ∈ [0, 1]n; Lemma 4.61]
⇒ P /"n

rmust Q

&'

We now show that for finitary processes scalar testing is equally powerful as finite-dimensional
reward testing. In doing so, we assume that tests are ω-terminal in the sense that they halt after
execution of any success action. 3

Theorem 4.63 For any n ∈ N and finitary processes P, Q we have

P "n
rmay Q iff P "1

rmay Q
P "n

rmust Q iff P "1
rmust Q

Proof: The only-if -direction is trivial in both cases. For if we prove the must-case in the contra-
positive; the may-case is similar.

Suppose thus that P /"n
rmust Q, then P, Q are distinguished by some test T ∈ Tn and reward

h ∈ [0, 1]n, so that "
h · Apply(T, P) /≤

"
h · Apply(T, Q). (4.25)

Without loss of generality, we assume that the success actions are ω1, · · · ,ωn and construct a
process U such that

• The state space is {u0, · · · , un} together with a deadlock state u,

• The actions are ω1, · · ·ωn and ω, all external,

• The initial distribution is u0 and

• The transitions are u0
ωi−→ ui hi

⊕ u and ui
ω−→ u, for 1 ≤ i ≤ n.

3This assumption is justified in Section 4.7.6.

62

We now consider the test T |ΩU with ω as its only success action. In T |ΩU an occurrence of
ωi is with probability hi followed immediately by an occurrence of ω (and with probability 1 − hi

by deadlock). For any process P , the overall probability of ω’s occurrence, in any resolution of
P |Act (T |ΩU), is therefore the h-weighted reward h · o for the tuple o in the corresponding resolution
of P |Act T .

Thus from (4.25) we have that P, Q can be distinguished using the scalar test T |ΩU with its single
success action ω; that is, we achieve P /"1

rmust Q as required. &'

Combining Lemma 4.62 and Theorem 4.63 yields that scalar testing is as powerful as finite-
dimensional vector-based testing.

Theorem 4.64 For any n ∈ N and finitary processes P, Q we have

P "n
pmay Q iff P "1

pmay Q
P "n

pmust Q iff P "1
pmust Q

&'

4.7.6 One success never leads to another

Here we substantiate the claim made in Section 4.7.5 (Footnote 3) that without loss of generality we
can assume that our tests halt after engaging in any success action. The reward-testing construction
requires this because the test U used in Theorem 4.63 implementing a particular reward-tuple h
effectively causes the composite test T |ΩU to halt after the reward is applied — hence for correctness
of the construction we required that the original T must have halted anyway.

Below we show that the may- and must testing preorders do not change upon restricting the class
of available tests to those that cannot perform multiple success actions in a single run. A second
reduction to tests that actually halt after performing any success action is trivial: just change any
transition of the form s ωi−→ ∆ into a transition s ωi−→ 0 leading to a deadlocked state 0.

Suppose our original test T has n success actions ω1, · · · ,ωn. By running it in parallel with
another test V (below) we will convert it to a new test with the required property and corresponding
success actions ω′

1, · · · ,ω′
n, and with success n-tuples that are exactly 1/n times the success tuples

of T ; since testing is insensitive to scaling of the tuples, that will give us our result. Note that the
1/n factor is natural given that we are making our n success actions mutually exclusive: it ensures
the tuple’s elements’ total does not exceed one.

We construct the test V := 〈S, ∆◦,→) as follows:

• The state space is S := P({ω1, . . . ,ωn}) ∪ {0, . . . , n}, where the powerset-states record which
success actions have already occurred, the scalar states 1, . . . , n are “about-to-terminate” states,
and 0 is a deadlock state;

• The actions are ω1, . . . ,ωn and ω′
1, . . . ,ω

′
n, all external; and

• The initial distribution ∆◦ is the point distribution ∅.
The transitions of V are of three kinds:

• “Terminating” transitions take state n with probability one via action ω′
n to the deadlocked

state 0, i.e. n ω′
n−→ 0;

• “Do-nothing” transitions, from state s ∈ P({ω1, · · · ,ωn}), lead with probability one via action
ωi ∈ s back to s, implementing that second and subsequent occurrences of any success action
in T can be ignored, i.e. s ωi−→ s for ωi ∈ s; and

• “Success” transitions, from state s ∈ P({ω1, · · · ,ωn}) lead via action ωi /∈ s with probability
1

n−#s to state i, whence the subsequent terminating transition will emit ω′
i; the remaining

probability at s leads to state s ∪ {ωi}, recording silently that ωi has now been taken care of.
That is, s ωi−→ i 1

n−#s
⊕ s ∪ {ωi} for ωi /∈ s.

When the original test T has finitely many states and transitions, so does the composite test T |ΩV .

63

64

Chapter 5

Testing Finite Probabilistic
Processes

5.1 Introduction

A satisfactory semantic theory for processes which encompass both nondeterministic and probabilistic
behaviour has been a long-standing research problem [HJ90, YL92, Low93, JHSY94, SL94, Sei95,
Seg95, JY95, MMSS96, Seg96, HSM97, KN98, Mis00, BS01, JY02, LSV03, CCR+03a, TKP05, DP07].
In 1992 Wang & Larsen posed the problems of finding complete axiomatisations and alternative
characterisations for a natural generalisation of the standard testing preorders [DNH84] to such
processes [YL92]. Here we solve both problems, at least for finite processes, by providing a detailed
account of both may- and must testing preorders for a finite version of the process calculus CSP
extended with probabilistic choice. For each preorder we provide three independent characterisations,
using (i) co-inductive simulation relations, (ii) a modal logic and (iii) sets of inequations.

Testing processes: Our starting point is the finite process calculus pCSP [DvGH+07a] obtained
by adding a probabilistic choice operator to finite CSP; like others who have done the same, we
now have three choice operators, external P ! Q, internal P & Q and the newly added probabilistic
choice P p⊕ Q. So a semantic theory for pCSP will have to provide a coherent account of the precise
relationships between these operators.

The object of this chapter is to give alternative characterisations of these testing preorders. This
problem was addressed previously by Segala in [Seg96], but using testing preorders ("̂Ω

pmay and
"̂Ω

pmust) that differ in two ways from the ones in [DNH84, Hen88, YL92, DvGH+07a] and the present
chatper. First of all, in [Seg96] the success of a test is achieved by the actual execution of a predefined
success action, rather than the reaching of a success state. We call this an action-based approach,
as opposed to the state-based approach used in this chatper. Secondly, [Seg96] employs a countable
number of success actions instead of a single one; we call this vector-based , as opposed to scalar ,
testing. Segala’s results in [Seg96] depend crucially on this form of testing. To achieve our current
results, we need Segala’s preorders as a stepping stone. We relate them to ours by considering
intermediate preorders "̂pmay and "̂pmust that arise from action-based but scalar testing, and use
Theorem 4.64 from Chapter 4 saying that for finite processes the preorders "̂Ω

pmay and "̂Ω
pmust coincide

with "̂pmay and "̂pmust. Here we show that on pCSP the preorders "̂pmay and "̂pmust also coincide
with "pmay and "pmust.1

Simulation preorders: In Section 5.5 we use the transitions s α−→ ∆ to define two co-inductive
preorders, the simulation preorder "S [Seg95, LSV03, DvGH+07a], and the novel failure simulation
preorder "FS over pCSP processes. The latter extends the failure simulation preorder of [Gla93] to

1However in the presence of divergence they are slightly different.

65

probabilistic processes. Their definition uses a natural generalisation of the transitions, first (Kleisli-
style) to take the form ∆ α−→ ∆′, and then to weak versions ∆ α=⇒ ∆′. The second preorder differs
from the first one in the use of a failure predicate s / X−→, indicating that in the state s none of the
actions in X can be performed.

Both preorders are preserved by all the operators in pCSP, and are sound with respect to the
testing preorders; that is P "S Q implies P "pmay Q and P "FS Q implies P "pmust Q. For "S

this was established in [DvGH+07a], and the proofs for "FS are similar. But completeness, that the
testing preorders imply the respective simulation preorders, requires some ingenuity. We prove it
indirectly, involving a characterisation of the testing and simulation preorders in terms of a modal
logic.

Modal logic: Our modal logic, defined in Section 5.9, uses finite conjunction
∧

i∈I φi, the modality
〈a〉φ from the Hennessy-Milner Logic [HM85], and a novel probabilistic construct

⊕
i∈I pi · φi. A

satisfaction relation between processes and formulae then gives, in a natural manner, a logical preorder
between processes: P "L Q means that every L-formula satisfied by P is also satisfied by Q. We
establish that "L coincides with "S (and hence "pmay also).

To capture failures, we add, for every set of actions X , a formula ref(X) to our logic, satisfied
by any process which, after it can do no further internal actions, can perform none of the actions
in X either. The constructs

∧
, 〈a〉 and ref () stem from the modal characterisation of the non-

probabilistic failure simulation preorder, given in [Gla93]. We show that "pmust, as well as "FS , can
be characterised in a similar manner with this extended modal logic.

Proof strategy: We prove these characterisation results through two cycles of inclusions:

"L ⊆ "S

[DvGH+07a]
⊆ "pmay ⊆ "̂pmay

[DvGMZ07]
= "̂Ω

pmay ⊆ "L

"F ⊆ "FS ⊆ "pmust ⊆ "̂pmust
[DvGMZ07]

= "̂Ω
pmust ⊆ "F

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Sec. 5.9 Sec. 5.5 Sec. 4.6.1 Sec. 5.6 Sec. 5.7 Sec. 5.10

In Section 5.9 we show that P "LQ implies P "S Q (and hence P "pmay Q), and likewise for "F and
"FS ; the proof involves constructing, for each pCSP process P , a characteristic formula φP . To obtain
the other direction, in Section 5.10 we show how every modal formula φ can be captured, in some
sense, by a test Tφ; essentially the ability of a pCSP process to satisfy φ is determined by its ability to
pass the test Tφ. We capture the conjunction of two formulae by a probabilistic choice between the
corresponding tests; in order to prevent the results from these tests getting mixed up, we employ the
vector-based tests of [Seg96], so that we can use different success actions in the separate probabilistic
branches. Therefore, we complete our proof by demonstrating that the state-based testing preorders
imply the action-based ones (Section 5.6) and recalling Theorem 4.64 that the action-based scalar
testing preorders imply the vector-based ones (Section 5.7).

(In)equations: It is well-known that may- and must testing for standard CSP can be captured
equationally [DNH84, BHR84, Hen88]. In Section 5.3 we show that most of the standard equations
are no longer valid in the probabilistic setting of pCSP. However, we show in Section 5.12 that both
P "pmay Q and P "pmust Q can still be captured equationally over full pCSP. In the may case the
essential (in)equation required is

a.(P p⊕ Q) " a.P p⊕ a.Q

The must case is more involved: in the absence of the distributivity of the external and internal
choices over each other, to obtain completeness we require a complicated inequational schema.

66

5.2 Finite probabilistic CSP

We first define the language and its operational semantics. Then we show how the general probabilistic
testing theory outlined in Section 4.6.1 can be applied to processes from this language.

5.2.1 The language

Let Act be a set of actions, ranged over by a, b, c, . . ., which processes can perform. Then the finite
probabilistic CSP processes are given by the following syntax:

P ::= 0 | a.P | P & P | P ! P | P |A P | P p⊕ P

The intuitive meaning of the various constructs is straightforward:

(i) 0 represents the stopped process.

(ii) a.P , where a is in Act, is a process which first performs the action a, and then proceeds as P .

(iii) P & Q is the internal choice between the processes P and Q; it will act either like P or like Q,
but a user is unable to influence which.

(iv) P ! Q is the external choice between P and Q; again it will act either like P or like Q but, in
this case, according to the demands of a user.

(v) P |A Q, where A is a subset of Act, represents processes P and Q running in parallel. They
may synchronise by performing the same action from A simultaneously; such a synchronisation
results in an internal action τ /∈ Act . In addition P and Q may independently do any action
from (Act \ A) ∪ {τ}.

(vi) P p⊕ Q, where p is an arbitrary probability, a real number strictly between 0 and 1, is the
probabilistic choice between P and Q. With probability p it will act like P and with probability
(1−p) it will act like Q.

We use pCSP to denote the set of terms defined by this grammar, and CSP denotes the subset
of that which does not use the probabilistic choice. Of course the language CSP in all its glory
[BHR84, Hoa85b, OH86] has many more operators; we have simply chosen a representative selection,
adding probabilistic choice to obtain an elementary probabilistic version of CSP. Our parallel operator
is not a CSP primitive, but it can easily be expressed in terms of the CSP primitives—in particular
P |A Q = (P‖AQ)\A, where ‖A and \A are the parallel composition and hiding operators of [OH86].
It can also be expressed in terms of the parallel composition, renaming and restriction operators of
CCS. We have chosen this (non-associative) operator for its convenience in defining the application
of tests to processes.

As usual we tend to omit occurrences of 0; the action prefixing operator a. binds stronger
than any of the binary operators, and precedence between the binary operators will be indicated
via brackets or spacing. We will also sometimes use n-ary versions of the binary operators, such as⊕

i∈I piPi with
∑

i∈I pi = 1, and
#

i∈I Pi.

5.2.2 Operational semantics of pCSP

The above intuitive reading of the various operators can be formalised by an operational semantics
which associates with each process term a graph-like structure representing the manner in which it
may react to users’ requests. Let us briefly recall this procedure for (non-probabilistic) CSP.

The operational semantics of CSP is obtained by endowing the set of terms with the structure of
an LTS (cf. Section 2.1). Specifically

(i) the set of states S is taken to be all terms from the language CSP

(ii) the action relations P α−→ Q are defined inductively on the syntax of terms.

67

A precise definition may be found in [OH86].
In order to interpret the full pCSP operationally we need to use pLTSs, the probabilistic general-

isation of LTSs (see Section 4.1).
We now mimic the operational interpretation of CSP as an LTS by associating with pCSP a

particular pLTS 〈Sp,Actτ ,→〉. However there are two major differences:

(i) only a subset of terms in pCSP will be used as the set of states Sp in the pLTS

(ii) terms in pCSP will be interpreted as distributions over Sp, rather than as elements of Sp.

First we define the subset Sp of states that we use: it is the least set satisfying

(i) 0 ∈ Sp

(ii) a.P ∈ Sp

(iii) P & Q ∈ Sp

(iv) s1, s2 ∈ Sp implies s1 ! s2 ∈ Sp

(v) s1, s2 ∈ Sp implies s1 |A s2 ∈ Sp.

Thus, Sp is the set of pCSP expressions in which every occurrence of the probabilistic choice operator
p⊕ is weakly guarded, i.e. is within a subexpression of the form a.P or P & Q. The interpretation of
terms in pCSP as distributions in D(Sp) is as follows:

1. 0 = 0

2. a.P = a.P

3. P & Q = P & Q

4. P p⊕ Q = p · P + (1−p) · Q

5. P ! Q = P ! Q

6. P |A Q = P |A Q .

In the last two cases we take advantage of the fact that both ! and |A can be viewed as binary
operators over Sp, and can therefore be lifted to D(Sp) in the standard manner. Namely we define

(∆1 ! ∆2)(s) =

{
∆1(t1) · ∆2(t2) if s = t1 ! t2,

0 otherwise

with ∆1 |A ∆2 given similarly; note that as a result we have P = P for all P ∈Sp. Finally the
definition of the relations α−→ is given in Figure 5.1. These rules are very similar to the standard
ones used to interpret CSP as an LTS [OH86], modified to take into account that the result of an
action must be a distribution. For example (int.l) and (int.r) say that P & Q makes an internal
unobservable choice to act either like P or like Q. Similarly the four rules (ext.l), (ext.r), (ext.i.l)
and (ext.i.r) can be read as giving the standard interpretation to the external choice operator: the
process P ! Q may perform any external action of its components P and Q, which resolves the
choice; it may also perform any of their internal actions, but when these are performed the choice is
not resolved.

68

(action)

a.P a−→ P

(int.l)

P & Q τ−→ P
(int.r)

P & Q τ−→ Q

(ext.i.l)

s1
τ−→ ∆

s1 ! s2
τ−→ ∆ ! s2

(ext.i.r)

s2
τ−→ ∆

s1 ! s2
τ−→ s1 ! ∆

(ext.l)

s1
a−→ ∆

s1 ! s2
a−→ ∆

(ext.r)

s2
a−→ ∆

s1 ! s2
a−→ ∆

(par.l)

s1
α−→ ∆

s1 |A s2
α−→ ∆ |A s2

µ !∈ A

(par.r)

s2
α−→ ∆

s1 |A s2
α−→ s1 |A ∆

µ !∈ A

(par.i)

s1
a−→ ∆1, s2

a−→ ∆2

s1 |A s2
τ−→ ∆1 |A ∆2

a ∈ A

Figure 5.1: Operational semantics of pCSP. Here a ranges over Act and µ over Actτ .

5.2.3 The precedence of probabilistic choice

Our operational semantics entails that ! and |A distribute over probabilistic choice:

P ! (Q p⊕ R) = (P ! Q)p⊕ (P ! R)
P |A (Q p⊕ R) = (P |A Q)p⊕ (P |A R)

In Section 5.11, these identities will return as axioms of may testing. However, this is not so much a
consequence of our testing methodology: it is hardwired in our interpretation of pCSP expressions
as distributions. We could have obtained the same effect by introducing pCSP as a two-sorted
language, given by the grammar

P ::= S | P p⊕ P

S ::= 0 | a.P | P & P | S ! S | S |A S

and introducing expressions like P ! (Q p⊕ R) and P |A (Q p⊕ R) as syntactic sugar for the
grammatically correct expressions obtained by distributing ! and |A over p⊕. In that case, the
S-expressions would constitute the set Sp of states in the pLTS of pCSP, and s = s for any s∈Sp.

A consequence of our operational semantics is that in the process a.(b 1
2
⊕ c) |∅ d the action d can

be scheduled either before a, or after the probabilistic choice between b and c—but it can not be
scheduled after a and before this probabilistic choice. We justify this by thinking of P p⊕ Q not as
a process that starts with making a probabilistic choice, but rather as one that has just made such
a choice, and with probability p is no more and no less than the process P . Thus a.(P p⊕ Q) is a
process that in doing the a-step makes a probabilistic choice between the alternative targets P and
Q.

This design decision is in full agreement with previous work featuring nondeterminism, probabilis-
tic choice and parallel composition [HJ90, YL92, Seg95]. Moreover, a probabilistic choice between
processes P and Q that does not take precedence over actions scheduled in parallel can simply be
written as τ.(P p⊕ Q). Here τ.P is an abbreviation for P & P . Using the operational semantics
of & in Figure 5.1, τ.P is a process whose sole initial transition is τ.P τ−→ P , hence τ.(P p⊕ Q) is
a process that starts with making a probabilistic choice, modelled as an internal action, and with
probability p proceeds as P . Any activity scheduled in parallel with τ.(P p⊕ Q) can now be scheduled

69

1

d

1

abbrev. to
d 1

τ

1

b

1

τ

1

c

1

abbrev. to
τ

b

τ

c

i) d. 0 ii) b. 0 & c. 0

1
2

τ

b d

d τ

c d

1
2

τ

b a

a τ

c a

1
3

a

1
3

τ

b d

d τ

c d

1
3

τ

b a

a τ

c a

iii) (b & c) ! (d 1
2
⊕ a) iv) a 1

3
⊕ ((b & c) ! (d 1

2
⊕ a))

Figure 5.2: Example pLTSs

before or after this internal action, hence before or after the making of the choice. In particular,
a.τ.(b 1

2
⊕ c) |∅ d allows d to happen between a and the probabilistic choice.

5.2.4 Graphical representation of pCSP processes

We graphically depict the operational semantics of a pCSP expression P by drawing the part of the
pLTS defined above that is reachable from P as a finite acyclic directed graph. Given that in a
pLTS transitions go from states to distributions, we need to introduce additional edges to connect
distributions back to states, thereby obtaining a bipartite graph. States are represented by nodes
of the form • and distributions by nodes of the form ◦. For any state s and distribution ∆ with
s α−→ ∆ we draw an edge from s to ∆, labelled with α. Consequently, the edges leaving a •-node are
all labelled with actions from Actτ . For any distribution ∆ and state s in B∆C, the support of ∆, we
draw an edge from ∆ to s, labelled with ∆(s). Consequently, the edges leaving a ◦-node are labelled
with positive real numbers that sum up to 1. Because for our simple language the resulting directed
bipartite graphs are acyclic, we leave out arrowheads on edges and we assume control to flow from
top to bottom.

A few examples are described in Figure 5.2. In i) we find d. 0 as the point distribution d. 0,
represented by a tree with one edge from the root, labelled with the probability 1, to the state d. 0.
In turn this state is represented as the subtree with one outgoing edge, labelled by the only possible
action d to 0 . Finally this is also a point distribution, represented as a subtree with one edge
leading to a leaf, labelled by the probability 1.

These edges labelled by probability 1 occur so frequently that it makes sense to omit them, together
with the associated nodes ◦ representing point distributions. With this convention d. 0 turns out to
be a simple tree with one edge labelled by the action d. The same convention simplifies considerably
the representation of b & c in ii), resulting in an LTS detailing an internal choice between the two
actions. Officially, the endnodes of this graph ought to be merged, as both of them represent the
process 0. However, for reasons of clarity, in graphical representations we often unwind the underlying
graph into a tree, thus representing the same state or distribution multiple times.

The interpretation of (b & c) ! (d 1
2
⊕ a) is more interesting. This requires clause (v) above in the

70

(a.ω 1
4
⊕ (b ! c.ω)) |Act (b ! c ! d)

a.ω |Act (b ! c ! d)

1
4

(b ! c.ω) |Act (b ! c ! d)

3
4

0 |Act 0

τ

ω |Act 0

τ

0 |Act 0

ω

Apply((a.ω 1
4
⊕ (b ! c.ω)), (b ! c ! d)) = 1

4 · {0} + 3
4 · {0, 1} = {0, 3

4}

Figure 5.3: Example of testing

definition of , resulting in the distribution (b & c) ! ∆, where ∆ is the distribution resulting from
the interpretation of (d 1

2
⊕ a), itself a two-point distribution mapping both the states d. 0 and a. 0

to the probability 1
2 . The result is again a two-point distribution, this time mapping the two states

(b & c) ! d and (b & c) ! a to 1
2 . The end result in iii) is obtained by further interpreting these two

states using the rules in Figure 5.1. Finally in iv) we show the graphical representation which results
when this term is combined probabilistically with the simple process a. 0.

To sum up, the operational semantics endows pCSP with the structure of a pLTS, and the function
interprets process terms in pCSP as distributions in this pLTS, which can be represented by finite

acyclic directed graphs (typically drawn as trees), with edges labelled either by probabilities or actions,
so that edges labelled by actions and probabilities alternate (although in pictures we may suppress
1-labelled edges and point distributions).

5.2.5 Testing pCSP processes

Let us now turn to applying the testing theory from Section 4.6.1 to pCSP. As with the standard
theory [DNH84, Hen88], we use as tests any process from pCSP itself, which in addition can use a
special symbol ω to report success. For example, a.ω 1

4
⊕ (b ! c.ω) is a probabilistic test, which 25%

of the time requests an a action, and 75% requests that c can be performed. If it is used as must test
the 75% that requests a c action additionally requires that b is not possible. As in [DNH84, Hen88],
it is not the execution of ω that constitutes success, but the arrival in a state where ω is possible.
The introduction of the ω-action is simply a method of defining a success predicate on states without
having to enrich the language of processes explicitly with such predicates.

Formally, let ω /∈Actτ and write Actω for Act ∪ {ω} and Actωτ for Act ∪ {τ,ω}. In Figure 5.1 we
now let a range over Actω and α over Actωτ . Tests may have subterms ω.P , but other processes may
not. To apply the test T to the process P we run them in parallel, tightly synchronised; that is, we
run the combined process T |Act P . Here P can only synchronise with T , and in turn the test T
can only perform the success action ω, in addition to synchronising with the process being tested; of
course both tester and testee can also perform internal actions. An example is provided in Figure 5.3,
where the test a.ω 1

4
⊕ (b ! c.ω) is applied to the process b ! c ! d. We see that 25% of the time the

test is unsuccessful, in that it does not reach a state where ω is possible, and 75% of the time it may
be successful, depending on how the now internal choice between the actions b and c is resolved, but
it is not the case that it must be successful.

T |Act P is representable as a finite graph which encodes all possible interactions of the test
T with the process P . It only contains the actions τ and ω. Each occurrence of τ represents a

71

∆s

s1

1
2

τ

ω

τ

s2

1
2

τ

ω

∆t

t1

1
4

τ

ω

τ

t2

3
4

τ τ

ω

V(∆s) = { 1
2 , 1} V(∆t) = {0, 1

4 , 3
4 , 1}

Figure 5.4: Collecting results

nondeterministic choice, either in T or P themselves, or as a nondeterministic response by P to a
request from T , while the distributions represent the resolution of underlying probabilities in T and
P . We use the structure T |Act P to define Apply(T, P), the non-empty finite subset of [0, 1]
representing the set of probabilities that applying T to P will be a success.

First we define a function V : Sp → P+
fin([0, 1]), which when applied to any state in Sp returns a

finite subset of [0, 1]; it extends to type D(Sp) → P+
fin([0, 1]) via the convention V(∆) := Exp∆V (cf.

Section 4.1).

V(s) =

{1} if s ω−→,
⋃
{V(∆) | s τ−→ ∆ } if s / ω−−→, s τ−→,

{0} otherwise

We will tend to write the expected value of V explicitly and use the convenient notation

V(∆) = ∆(s1) · V(s1) + . . . + ∆(sn) · V(sn)

where B∆C = {s1, . . . sn}. Note that V() is indeed a well-defined function, because the pLTS
〈Sp,Actτ ,→〉 is finitely branching and well-founded.

For example consider the transition systems in Figure 5.4, where for reference we have labelled
the nodes. Then V(s1) = {1, 0} while V(s2) = {1}, and therefore V(∆s) = 1

2 · {1, 0} + 1
2 · {1} which,

since there are only two possible choice functions c∈*∆s+ V, evaluates further to { 1
2 , 1}. Similarly

V(t1) = V(t2) = {0, 1} and using the four choice functions c∈*∆t+ V, the calculation of V(∆t) =
1
4 · {0, 1} + 3

4 · {0, 1} leads to {0, 1
4 , 3

4 , 1}.

Definition 5.1 For any P ∈ pCSP and T ∈ T let Apply(T, P) = V(T |Act P).

With this definition we now have two testing preorders for pCSP, one based on may testing, P "pmay

Q, and the other on must testing, P "pmust Q.

5.3 Counterexamples

We will see in this section that many of the standard testing axioms are not valid in the pres-
ence of probabilistic choice. We also provide counterexamples for a few distributive laws involving
probabilistic choice that may appear plausible at first sight. In all cases we establish a statement
P /=pmay Q by exhibiting a test T such that max(Apply(T, P)) /= max(Apply(T, Q)) and a state-
ment P /=pmust Q by exhibiting a test T such that min(Apply(T, P)) /= min(Apply(T, Q)). In
case max(Apply(T, P)) > max(Apply(T, Q)) we find in particular that P /"pmay Q, and in case
min(Apply(T, P)) > min(Apply(T, Q)) we obtain P /"pmust Q.

72

a

1
2

b

1
2

c

1
2

a

b

1
2

a

c

τ

a

b

ω

τ

a

c

ω

R1 = a.(b 1
2
⊕ c) R2 = a.b 1

2
⊕ a.c T = a.b.ω & a.c.ω

τ

τ

1
2

τ

ω

1
2

τ

τ

1
2

1
2

τ

ω

1
2

τ

τ

τ

ω

τ

τ

1
2

τ

τ

τ

τ

τ

ω

T |Act R1 T |Act R2

Apply(T, R1) = { 1
2} Apply(T, R2) = {0, 1

2 , 1}

Figure 5.5: Counterexample: action prefix does not distribute over probabilistic choice

Example 5.2 The axiom a.(P p⊕ Q) = a.P p⊕ a.Q is unsound.

Consider the example in Figure 5.5. In R1 the probabilistic choice between b and c is taken after
the action a, while in R2 the choice is made before the action has happened. These processes can
be distinguished by the nondeterministic test T = a.b.ω & a.c.ω. First consider running this test on
R1. There is an immediate choice made by the test, effectively running either the test a.b.ω on R1

or the test a.c.ω; in fact the effect of running either test is exactly the same. Consider a.b.ω. When
run on R1 the a action immediately happens, and there is a probabilistic choice between running b.ω
on either b or c, giving as possible results {1} or {0}; combining these according to the definition of
the function V() we get 1

2 · {0} + 1
2 · {1} = { 1

2}. Since running the test a.c.ω has the same effect,
Apply(T, R1) turns out to be the same set { 1

2}.
Now consider running the test T on R2. Because R2, and hence also T |Act R2, starts with a

probabilistic choice, due to the definition of the function V(), the test must first be applied to the
probabilistic components, a.b and a.c, respectively, and the results subsequently combined probabilis-
tically. When the test is run on a.b, immediately a nondeterministic choice is made in the test, to
run either a.b.ω or a.c.ω. With the former we get the result {1}, with the latter {0}, so overall, for
running T on a.b, we get the possible results {0, 1}. The same is true when we run it on a.c, and
therefore Apply(T, R2) = 1

2 · {0, 1} + 1
2 · {0, 1} = {0, 1

2 , 1}.
So we have R2 /"pmay R1 and R1 /"pmust R2.

Example 5.3 The axiom a.(P & Q) = a.P & a.Q is unsound.

It is well known that this axiom is valid in the standard theory of testing, for non-probabilistic pro-
cesses. However, consider the instance R1 and R2 in Figure 5.6, and note that these processes
do not contain any probabilistic choice. But they can be differentiated by the probabilistic test
T = a.(b.ω 1

2
⊕ c.ω); the details are in Figure 5.6. There is only one possible outcome from ap-

73

a

τ

b

τ

c

τ

a

b

τ

a

c

a

1
2

b

ω

1
2

c

ω

R1 = a.(b & c) R2 = a.b & a.c T = a.(b.ω 1
2
⊕ c.ω)

τ

1
2

τ

τ

ω

τ

1
2

τ τ

τ

ω

τ

τ

1
2

τ

ω

1
2

τ

τ

1
2

1
2

τ

ω

T |Act R1 T |Act R2

Apply(T, R1) = {0, 1
2 , 1} Apply(T, R2) = { 1

2}

Figure 5.6: Counterexample: action prefix does not distribute over internal choice

plying T to R2, the probability 1
2 , because the nondeterministic choice is made before the probabilistic

choice. On the other hand when T is applied to R1 there are three possible outcomes, 0, 1
2 and 1,

because effectively the probabilistic choice takes precedence over the nondeterministic choice. So we
have R1 /"pmay R2 and R2 /"pmust R1.

Example 5.4 The axiom a.(P ! Q) = a.P ! a.Q is unsound.

This axiom is valid in the standard may-testing semantics. However, consider the two processes
R1 = a.(b ! c), R2 = a.b ! a.c and the probabilistic test T = a.(b.ω 1

2
⊕ c.ω). Now Apply(T, R1) = {1}

and Apply(T, R2) = { 1
2}. Therefore R1 /"pmay R2 and R1 /"pmust R2.

Example 5.5 The axiom P = P ! P is unsound.

Let R1, R2 denote (a 1
2
⊕ b) and (a 1

2
⊕ b) ! (a 1

2
⊕ b), respectively. It is easy to calculate that

Apply(a.ω, R1) = { 1
2} but, because of the way we interpret external choice as an operator over distri-

butions of states in a pLTS, it turns out that R2 = ((a ! a) 1
2
⊕ (a ! b)) 1

2
⊕ ((b ! a) 1

2
⊕ (b ! b))

and so Apply(a.ω, R2) = { 3
4}. Therefore R2 /"pmay R1 and R2 /"pmust R1.

Example 5.6 The axiom P p⊕ (Q & R) = (P p⊕ Q) & (P p⊕ R) is unsound.

Consider the processes R1 = a 1
2
⊕ (b & c) and R2 = (a 1

2
⊕ b) & (a 1

2
⊕ c), and the test T1 = a.ω &

(b.ω 1
2
⊕ c.ω). In the best of possible worlds, when we apply T1 to R1 we obtain probability 1, that is

max(Apply(T1, R1)) = 1. Informally this is because half the time when it is applied to the subprocess
a of R1, optimistically the sub-test a.ω is actually run. The other half of the time, when it is applied
to the subprocess (b & c), optimistically the sub-test Tr = (b.ω 1

2
⊕ c.ω) is actually used. And here

again, optimistically, we obtain probability 1: whenever the test b.ω is used it might be applied to the
subprocess b, while when c.ω is used it might be applied to c. Formally we have

74

Apply(T1, R1) = 1
2 · Apply(T1, a) + 1

2 · Apply(T1, b & c)

= 1
2 · (Apply(a.ω, a) ∪Apply(Tr, a)) +

1
2 ·(Apply(T1, b) ∪Apply(T1, c) ∪Apply(a.ω, b& c) ∪Apply(Tr, b& c))

= 1
2 · ({1} ∪ {0}) + 1

2 · ({0, 1
2} ∪ {0, 1

2} ∪ {0} ∪ {0, 1
2 , 1})

= {0, 1
4 , 1

2 , 3
4 , 1}

However no matter how optimistic we are when applying T1 to R2 we can never get probability 1;
the most we can hope for is 3

4 , which might occur when T1 is applied to the subprocess (a 1
2
⊕ b).

Specifically when the subprocess a is being tested the sub-test a.ω might be used, giving probability 1,
and when the subprocess b is being tested the sub-test (b.ω 1

2
⊕ c.ω) might be used, giving probability

1
2 . We leave the reader to check that formally

Apply(T1, R2) = {0, 1
4 , 1

2 , 3
4}

from which we can conclude R1 /"pmay R2.
We can also show that R2 /"pmust R1, using the test

T2 = (b.ω ! c.ω) & (a.ω 1
3
⊕ (b.ω 1

2
⊕ c.ω)).

Reasoning pessimistically, the worst that can happen when applying T2 to R1 is we get probability
0. Each time the subprocess a is tested the worst probability will occur when the sub-test (b.ω !
c.ω) is used; this results in probability 0. Similarly when the subprocess (b & c) is being tested
the subtest (a.ω 1

3
⊕ (b.ω 1

2
⊕ c.ω)) will give probability 0. In other words min(Apply(T2, R1)) = 0.

When applying T2 to R2, things can never be as bad. The worst probability will occur when T2 is
applied to the subprocess (a 1

2
⊕ b), namely probability 1

6 . We leave the reader to check that formally
Apply(T2, R1) = {0, 1

6 , 1
3 , 1

2 , 2
3} and Apply(T2, R2) = { 1

6 , 1
3 , 1

2 , 2
3}.

Example 5.7 The axiom P & (Q p⊕ R) = (P & Q)p⊕ (P & R) is unsound.

Let R1 = a & (b 1
2
⊕ c), R2 = (a & b) 1

2
⊕ (a & c) and T = a.(ω 1

2
⊕ 0) ! b.ω. One can check

that Apply(T, R1) = { 1
2} and Apply(T, R2) = 1

2{
1
2 , 1} + 1

2{
1
2 , 0} = { 1

4 , 1
2 , 3

4}. Therefore we have
R2 /"pmay R1 and R1 /"pmust R2.

Example 5.8 The axiom P ! (Q & R) = (P ! Q) & (P ! R) is unsound.

Let R1 = (a 1
2
⊕ b) ! (c & d), R2 = ((a 1

2
⊕ b) ! c) & ((a 1

2
⊕ b) ! d) and T = (a.ω 1

2
⊕ c.ω) & (b.ω 1

2
⊕

d.ω). This time we get Apply(T, R1) = {0, 1
4 , 1

2 , 3
4 , 1} and Apply(T, R2) = { 1

4 , 3
4}. So R1 /"pmay R2

and R2 /"pmust R1.

Example 5.9 The axiom P & (Q ! R) = (P & Q) ! (P & R) is unsound.

Let R1 = (a 1
2
⊕ b) & ((a 1

2
⊕ b)!0) and R2 = ((a 1

2
⊕ b) & (a 1

2
⊕ b)) ! ((a 1

2
⊕ b) & 0).

One obtains Apply(a.ω, R1) = { 1
2} and Apply(a.ω, R2) = { 1

2 , 3
4}. So R2 /"pmay R1. Let R3 and R4

result from substituting a 1
2
⊕ b for each of P , Q and R in the axiom above. Now Apply(a.ω, R3) =

{ 1
2 , 3

4} and Apply(a.ω, R4) = { 3
4}. So R4 /"pmust R3.

Example 5.10 The axiom P p⊕ (Q ! R) = (P p⊕ Q) ! (P p⊕ R) is unsound.

Let R1 = a 1
2
⊕ (b ! c), R2 = (a 1

2
⊕ b) ! (a 1

2
⊕ c) and R3 = (a ! b) 1

2
⊕ (a ! c). R1 is

an instance of the left-hand side of the axiom, and R2 an instance of the right-hand side. Here
we use R3 as a tool to reason about R2, but in Section 5.14.4 we need R3 in its own right. Note
that R2 = 1

2 · R1 + 1
2 · R3 . Let T = a.ω. It is easy to see that Apply(T, R1) = { 1

2} and
Apply(T, R3) = {1}. Therefore Apply(T, R2) = { 3

4}. So we have R2 /"pmay R1 and R2 /"pmust R1.
Of all the examples in this section, this is the only one for which we can show that "pmay and

Jpmay both fail, i.e. both inequations that can be associated with the axiom are unsound for may
testing. Let T = a.(ω 1

2
⊕ 0) & (b.ω 1

2
⊕ c.ω). It is not hard to check that Apply(T, R1) = {0, 1

4 , 1
2 , 3

4}
and Apply(T, R3) = { 1

2}. Thus Apply(T, R2) = { 1
4 , 3

8 , 1
2 , 5

8}. Therefore, we have R1 /"pmay R2.
For future reference, we also observe that R1 /"pmay R3 and R3 /"pmay R1.

75

5.4 Must versus may testing

On pCSP there are two differences between the preorders "pmay and "pmust:

• Must testing is more discriminating

• The preorders "pmay and "pmust are oriented in opposite directions.

In this section we substantiate these claims by proving that P "pmust Q implies Q "pmay P , and
by providing a counterexample that shows the implication is strict. We are only able to obtain the
implication since our language does not feature divergence, infinite sequences of τ -actions. It is well
known from the non-probabilistic theory of testing [DNH84, Hen88] that in the presence of divergence
=may and =must are incomparable.

To establish a relationship between must testing and may testing, we define the context C[] =
|{ω} (ω ! (ν & ν)) so that for every test T we obtain a new test C[T], by considering ν instead of

ω as success action.

Lemma 5.11 For any process P and test T , it holds that

1. if p∈Apply(T, P) then (1−p)∈Apply(C[T], P)

2. if p∈Apply(C[T], P) then there exists a q ∈Apply(T, P) such that 1−q ≤ p.

Proof: A state of the form C[s] |Act t can always do a τ -move, and never directly a success action
ν. The τ -steps that C[s] |Act t can do fall into three classes: the resulting distribution is either

• a point distribution v with v ν−→ ; we call this a successful τ -step, because it contributes 1 to
the set V(C[s] |Act t)

• a point distribution u with u a state from which the success action ν is unreachable; we call
this an unsuccessful τ -step, because it contributes 0 to the set V(C[s] |Act t)

• or a distribution of form C[Θ] |Act ∆.

Note that

• C[s] |Act t can always do a successful τ -step

• C[s] |Act t can do an unsuccessful τ -step iff s |Act t can do a ω-step

• and C[s] |Act t τ−→ C[Θ] |Act ∆ iff s |Act t τ−→ Θ |Act ∆.

Using this, both claims follow by a straightforward induction on T and P . &'

Proposition 5.12 If P "pmust Q then Q "pmay P .

Proof: Suppose P "pmust Q. We must show that, for any test T , if p ∈ Apply(T, Q) then there exists
a q ∈ Apply(T, P) such that p ≤ q. So suppose p ∈ Apply(T, Q). By the first clause of Lemma 5.11,
we have (1−p) ∈ Apply(C[T], Q). Given that P "pmust Q, there must be an x ∈ Apply(C[T], P)
such that x ≤ 1−p. By the second clause of Lemma 5.11, there exists a q ∈ Apply(T, P) such that
1−q ≤ x. It follows that p ≤ q. Therefore Q "pmay P . &'

Example 5.13 To show that must testing is strictly more discriminating than may testing con-
sider the processes a ! b and a & b, and expose them to test a.ω. It is not hard to see that
Apply(a.ω, a ! b) = {1}, whereas Apply(a.ω, a & b) = {0, 1}. Since min(Apply(a.ω, a ! b)) = 1
and min(Apply(a.ω, a & b)) = 0, using Proposition 4.37 we obtain that (a ! b) /"pmust (a & b).

Since max(Apply(a.ω, a ! b)) = max(Apply(a.ω, a & b)) = 1, as a may test, the test a.ω does
not differentiate between a ! b and a & b. In fact, we have (a & b) "pmay (a ! b), and even
(a ! b) =pmay (a & b), but this cannot be shown so easily, as we would have to consider all possible
tests. In Section 5.5 we will develop a tool to prove statements P "pmay Q, and apply it to derive the
equality above (axiom (EI) in Figure 5.8).

76

5.5 Simulation and failure simulation

The examples of Section 5.3 have been all negative, because one can easily demonstrate an inequiva-
lence between two processes by exhibiting a test which distinguishes them in the appropriate manner.
A direct application of the definition of the testing preorders is usually unsuitable for establishing
positive results, as this involves a universal quantification over all possible tests that can be applied.
To give positive results of the form P "pmay Q (and similarly for P "pmust Q) we need to come up
with a preorder "finer such that (P "finer Q) ⇒ (P "pmay Q) and statements P "finer Q can be
obtained by exhibiting a single witness.

In this section we report on investigations in this direction, using simulations as our witnesses.
We confine ourselves to may testing, although similar results hold for must testing. The definitions
are somewhat complicated by the fact that in a pLTS transitions go from states to distributions;
consequently if we are to use sequences of transitions, or weak transitions a=⇒ which abstract from
sequences of internal actions that might precede or follow the a-transition, then we need to generalise
transitions so that they go from distributions to distributions. We first develop the mathematical
machinery for doing this.

5.5.1 Lifting relations

Let R ⊆ S ×D(S) be a relation from states to distributions. We lift it to a relation R ⊆ D(S)×D(S)
by letting ∆1 R ∆2 whenever

(i) ∆1 =
∑

i∈I pi · si, where I is a finite index set and
∑

i∈I pi = 1

(ii) For each i∈ I there is a distribution Φi such that si R Φi

(iii) ∆2 =
∑

i∈I pi · Φi.

An important point here is that in the decomposition (i) of ∆1 into
∑

i∈I pi · si, the states si are not
necessarily distinct : that is, the decomposition is not in general unique. Thus when establishing the
relationship between ∆1 and ∆2, a given state s in ∆1 may play a number of different roles, and this
is seen clearly if we apply this definition to the action relations α−→ ⊆ Sp ×D(Sp) in the operational
semantics of pCSP. We obtain lifted relations between D(Sp) and D(Sp), which to ease the notation
we write as ∆1

α−→ ∆2; then, using pCSP terms to represent distributions, a simple instance of a
transition between distributions is given by

(a.b ! a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

But we also have

(a.b ! a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d (5.1)

because, viewed as a distribution, the term (a.b ! a.c) 1
2
⊕ a.d may be re-written as ((a.b ! a.c) 1

2
⊕

(a.b ! a.c)) 1
2
⊕ a.d representing the sum of point distributions

1
4 · (a.b ! a.c) + 1

4 · (a.b ! a.c) + 1
2 · a.d

from which the move (5.1) can easily be derived using the three moves from states

a.b ! a.c a−→ b a.b ! a.c a−→ c a.d a−→ d

The lifting construction can also be used to define the concept of a partial internal move between
distributions, one where part of the distribution does an internal move and the remainder remains
unchanged. Write s τ̂−→ ∆ if either s τ−→ ∆ or ∆ = s. This relation between states and distributions
can be lifted to one between distributions and distributions, and again for notational convenience

77

we use ∆1
τ̂−→ ∆2 to denote the lifted relation. As an example, again using process terms to denote

distributions, we have

(a & b) 1
2
⊕ (a & c) τ̂−→ a 1

2
⊕ (a & b 1

2
⊕ c)

This follows because as a distribution (a & b) 1
2
⊕ (a & c) may be written as

1
4 · (a & b) + 1

4 · (a & b) + 1
4 · (a & c) + 1

4 · (a & c)

and we have the four moves from states to distributions:

(a & b) τ̂−→ a (a & b) τ̂−→ (a & b)
(a & c) τ̂−→ a (a & c) τ̂−→ c

5.5.2 The simulation preorder

Following tradition it would be natural to define simulations as relations between states in a pLTS
[JYL01, SL94]. However, technically it is more convenient to use relations in Sp ↔ D(Sp). One
reason may be understood through the example in Figure 5.5. Although in Example 5.2 we found
that R2 /"pmay R1, we do have R1 "pmay R2. If we are to relate these processes via a simulation-like
relation, then the initial state of R1 needs to be related to the initial distribution of R2, containing
the two states a.b and a.c.

Our definition of simulation uses weak transitions [Mil89a], which have the standard definitions
except that they now apply to distributions, and τ̂−→ is used instead of τ−→. This reflects the under-
standing that if a distribution may perform a sequence of internal moves before or after executing a
visible action, different parts of the distribution may perform different numbers of internal actions:

• Let ∆1
τ̂=⇒ ∆2 whenever ∆1

τ̂−→∗ ∆2.

• Similarly ∆1
â=⇒ ∆2 denotes ∆1

τ̂−→∗ a−→ τ̂−→∗ ∆2 whenever a ∈ Act .

We write s / X−→ with X ⊆ Act when ∀α ∈ X ∪ {τ} : s / α−→, and ∆ / X−→ when ∀s ∈ B∆C : s / X−→.

Definition 5.14 A relation R ⊆ S ×D(S) is said to be a failure simulation if for all s, Θ,α, ∆ we
have that

• s R Θ ∧ s α−→ ∆ implies ∃Θ′ : Θ α̂=⇒ Θ′ ∧ ∆ R Θ′

• s R Θ ∧ s / X−→ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ Θ′ / X−→.

We write s "FS Θ to mean that there is some failure simulation R such that s R Θ. Similarly, we
define simulation and s "S Θ by dropping the second clause in Definition 5.14.

Definition 5.15 The simulation preorder "S and failure simulation preorder "FS on pCSP are
defined as follows:

P "S Q iff Q τ̂=⇒ Θ for some Θ with P "S Θ
P "FS Q iff P τ̂=⇒ Θ for some Θ with Q "FS Θ .

(Note the opposing directions.) The equivalences generated by "S and "FS are called (failure) simu-
lation equivalence, denoted =S and =FS , respectively.

If P ∈ Sp, that is if P is a state in the pLTS of pCSP and so P = P , then to establish P "S Q it
is sufficient to exhibit a simulation between the state P and the distribution Q , because trivially
s "S ∆ implies s "S ∆.

78

s0

∆1

a

s1

1
2

b

s2

1
4

c

s3

1
4

c

t0

∆2

a

t1

1
4

b

t2

1
4

b

t3

1
2

c

P1 = a.(b 1
2
⊕ (c 1

2
⊕ c)) P2 = a.((b 1

2
⊕ b) 1

2
⊕ c)

Figure 5.7: Two simulation equivalent processes

Example 5.16 Consider the two processes Pi in Figure 5.7. To show P1 "S P2 it is sufficient to
exhibit a simulation R such that s0 R t0. Let R ⊆ Sp ×D(Sp) be defined by

s0 R t0 s1 R ∆t s2 R t3 s3 R t3 0 R 0

where ∆t is the two-point distribution mapping both t1 and t2 to the probability 1
2 . Then it is straight-

forward to check that it satisfies the requirements of a simulation: the only non-trivial requirement is
that ∆1 R ∆2. But this follows from the fact that

∆1 = 1
2 · s1 + 1

4 · s2 + 1
4 · s3

∆2 = 1
2 · ∆t + 1

4 · t3 + 1
4 · t3

As another example reconsider R1 = a.(b 1
2
⊕ c) and R2 = a.b 1

2
⊕ a.c from Figure 5.5, where for

convenience we use process terms to denote their semantic interpretations. It is easy to see that
R1 "S R2 because of the simulation

R1 R R2 b R b c R c 0 R 0

Namely R2
a−→ (b 1

2
⊕ c) and (b 1

2
⊕ c) R (b 1

2
⊕ c).

Similarly (a 1
2
⊕ c) & (b 1

2
⊕ c) "S (a & b) 1

2
⊕ c because it is possible to find a simulation between

the state (a 1
2
⊕ c) & (b 1

2
⊕ c) and the distribution (a & b) 1

2
⊕ c.

In case P /∈Sp, a statement P "S Q cannot always be established by a simulation R such that
P R Q .

Example 5.17 Compare the processes P = a 1
2
⊕ b and P & P . Note that P is the distribution

1
2 a + 1

2 b whereas P & P is the point distribution P & P . The relation R given by

(P & P) R (1
2 a + 1

2 b) a R a b R b 0 R 0

is a simulation, because the τ-step P & P τ−→ (1
2 a + 1

2 b) can be matched by the idle transition (1
2 a

+ 1
2 b) τ̂=⇒ (1

2 a + 1
2 b), and we have (1

2 a + 1
2 b) R (1

2 a + 1
2 b). Thus (P & P) "S (1

2 a + 1
2 b) = P ,

hence P & P "S P , and therefore P & P "S P .
This type of reasoning does not apply to the other direction. Any simulation R with (1

2 a + 1
2 b

) R P & P would have to satisfy a R P & P and b R P & P . However, the move a a−→ 0 cannot be
matched by the process P & P , as the only transition the latter process can do is P & P τ−→ (1

2 a + 1
2 b),

and only half of that distribution can match the a-move. Thus, no such simulation exists, and we
find P /"S P & P . Nevertheless, we still have P "S P & P . Here, the transition τ̂=⇒ from
Definition 5.15 comes to the rescue. As P & P τ̂=⇒ P and P "S P , we obtain P "S P & P .

Example 5.18 Let P = a 1
2
⊕ b and Q = P ! P . We have P "S Q because P "S Q which comes

from the following observations:

79

1. P = 1
2 a + 1

2 b

2. Q = 1
2 (1

2 a ! a + 1
2 a ! b) + 1

2 (1
2 a ! b + 1

2 b ! b)

3. a "S (1
2 a ! a + 1

2 a ! b)

4. b "S (1
2 a ! b + 1

2 b ! b)

This kind of reasoning does not apply to "FS. For example, we have a /"FS (1
2 a ! a + 1

2 a ! b) because
the state on the left hand side can refuse to do action b while the distribution on the right hand side
cannot. Indeed, it holds that Q /"FS P .

Because of the asymmetric use of distributions in the definition of simulations it is not immediately
obvious that "S and "FS are actually preorders (reflexive and transitive relations) and hence =S

and =FS are equivalence relations. In order to show this, we first need to establish some properties
of "S and "FS.

Lemma 5.19 Suppose
∑

i∈I pi = 1 and ∆i
α̂=⇒ Φi for each i∈ I, with I a finite index set. Then

∑

i∈I

pi · ∆i
α̂=⇒

∑

i∈I

pi · Φi

Proof: We first prove the case α = τ . For each i∈ I there is a number ki such that ∆i = ∆i0
τ̂−→

∆i1
τ̂−→ ∆i2

τ̂−→ · · · τ̂−→ ∆iki = ∆′
i. Let k = max{ki | i∈ I}, using that I is finite. Since we have

Φ τ̂−→ Φ for any Φ∈D(S), we can add spurious transitions to these sequences, until all ki equal k.
After this preparation the lemma follows by k applications of Proposition 4.6(i), taking τ̂−→ for R.

The case α∈Act now follows by one more application of Proposition 4.6(i), this time with R = a−→,
preceded and followed by an application of the case α = τ . &'

Lemma 5.20 Suppose ∆ "S Φ and ∆ α−→ ∆′. Then Φ α̂=⇒ Φ′ for some Φ′ such that ∆′ "S Φ′.

Proof: Similar to the proof of Lemma 4.8. &'

Lemma 5.21 Suppose ∆ "S Φ and ∆ α̂=⇒ ∆′. Then Φ α̂=⇒ Φ′ for some Φ′ such that ∆′ "S Φ′.

Proof: First we consider two claims

(i) If ∆ "S Φ and ∆ τ̂−→ ∆′, then Φ τ̂=⇒ Φ′ for some Φ′ such that ∆′ "S Φ′.

(ii) If ∆ "S Φ and ∆ τ̂=⇒ ∆′, then Φ τ̂=⇒ Φ′ for some Φ′ such that ∆′ "S Φ′.

The proof of claim (i) is similar to the proof of Lemma 5.20. Claim (ii) follows from claim (i) by
induction on the length of the derivation of τ̂=⇒. By combining claim (ii) with Lemma 5.20, we obtain
the required result. &'

Proposition 5.22 The relation "S is both reflexive and transitive on distributions.

Proof: We leave reflexivity to the reader; it relies on the fact that s "S s for every state s.
For transitivity, let R ⊆ Sp ×D(Sp) be given by s R Φ iff s "S ∆ "S Φ for some intermediate

distribution ∆. Transitivity follows from the two claims

(i) Θ "S ∆ "S Φ implies Θ R Φ

(ii) R is a simulation, hence R ⊆ "S.

80

Claim (ii) is a straightforward application of Lemma 5.21, so let us look at (i). From Θ "S ∆ we
have

Θ =
∑

i∈I

pi · si, si "S ∆i, ∆ =
∑

i∈I

pi · ∆i

Since ∆ "S Φ, from part (ii) of Proposition 4.6 we know Φ =
∑

i∈I pi · Φi such that ∆i "S Φi. So
for each i we have si R Φi, from which it follows that Θ R Φ. &'

Proposition 5.23 "S and "FS are preorders, i.e. they are reflexive and transitive.

Proof: By combination of Lemma 5.21 and Proposition 5.22, we obtain that "S is a preorder.
The case for "FS can be similarly established by proving the counterparts of Lemma 5.21 and
Proposition 5.22. &'

5.5.3 The simulation preorders are precongruences

In Theorem 5.26 of this section we establish that the pCSP operators are monotone w.r.t. the simula-
tion preorders, i.e. that both "S and "FS are precongruences for pCSP. This implies that the pCSP
operators are compositional for them or, equivalently, that =S and =FSare congruences for pCSP.
The following two lemmas gather some facts we need in the proof of this theorem. Their proofs are
straightforward, although somewhat tedious.

Lemma 5.24 (i) If Φ τ̂=⇒ Φ′ then Φ ! ∆ τ̂=⇒ Φ′ ! ∆ and ∆ ! Φ τ̂=⇒ ∆ ! Φ′.

(ii) If Φ a−→ Φ′ then Φ ! ∆ a−→ Φ′ and ∆ ! Φ a−→ Φ′.

(iii) (
∑

j∈J pj · Φj) ! (
∑

k∈K qk · ∆k) =
∑

j∈J

∑
k∈K(pj · qk) · (Φj ! ∆k).

(iv) Given relations R,R′ ⊆ Sp ×D(Sp) satisfying sR′∆ whenever s = s1 ! s2 and ∆ = ∆1 ! ∆2

with s1 R ∆1 and s2 R ∆2. Then Φi R ∆i for i = 1, 2 implies (Φ1 ! Φ2) R′ (∆1 ! ∆2). !

Lemma 5.25 (i) If Φ τ̂=⇒ Φ′ then Φ |A ∆ τ̂=⇒ Φ′ |A ∆ and ∆ |A Φ τ̂=⇒ ∆ |A Φ′.

(ii) If Φ a−→ Φ′ and a /∈ A then Φ |A ∆ a−→ Φ′ |A ∆ and ∆ |A Φ a−→ ∆ |A Φ′.

(iii) If Φ a−→ Φ′, ∆ a−→ ∆′ and a ∈ A then ∆ |A Φ τ−→ ∆′ |A Φ′.

(iv) (
∑

j∈J pj · Φj) |A (
∑

k∈K qk · ∆k) =
∑

j∈J

∑
k∈K(pj · qk) · (Φj |A ∆k).

(v) Given relations R,R′ ⊆ Sp ×D(Sp) satisfying sR′∆ whenever s = s1 |A s2 and ∆ = ∆1 |A ∆2

with s1 R ∆1 and s2 R ∆2. Then Φi R ∆i for i = 1, 2 implies (Φ1 |A Φ2) R′ (∆1 |A ∆2). !

Theorem 5.26 Let " ∈ {"S,"FS}. Suppose Pi " Qi for i = 1, 2. Then

1. a.P1 " a.Q1

2. P1 & P2 " Q1 & Q2

3. P1 ! P2 " Q1 ! Q2

4. P1 p⊕ P2 " Q1 p⊕ Q2

5. P1 |A P2 " Q1 |A Q2

Proof: We first consider the case for "S .

1. Since P1 "S Q1, there must be a ∆1 such that Q1
τ̂=⇒ ∆1 and P1 "S ∆1. It is easy to see

that a.P1 "S a.Q1 because the transition a.P1
a−→ P1 can be matched by a.Q1

a−→ Q1
τ̂=⇒

∆1. Thus a.P1 = a.P1 "S a.Q1 = a.Q1 .

81

2. Since Pi "S Qi, there must be a ∆i such that Qi
τ̂=⇒ ∆i and Pi "S ∆i. It is easy to see

that P1 & P2 "S Q1 & Q2 because the transition P1 & P2
τ−→ Pi , for i = 1 or i = 2, can be

matched by Q1 & Q2
τ−→ Qi

τ̂=⇒ ∆i. Thus P1 & P2 = P1 & P2 "S Q1 & Q2 = Q1 & Q2 .

3. Let R ⊆ Sp ×D(Sp) be defined by s R ∆ iff either s "S ∆ or s = s1 ! s2 and ∆ = ∆1 ! ∆2

with s1 "S ∆1 and s2 "S ∆2. We show that R is a simulation.

Suppose s1 "S ∆1, s2 "S ∆2 and s1 ! s2
a−→ Θ with a∈Act . Then si

a−→ Θ for i = 1 or
i = 2. Thus ∆i

â=⇒ ∆ for some ∆ with Θ "S ∆, and hence Θ R ∆. By Lemma 5.24 we have
∆1 ! ∆2

â=⇒ ∆.

Now suppose s1 "S ∆1, s2 "S ∆2 and s1 ! s2
τ−→ Θ. Then s1

τ−→ Φ and Θ = Φ ! s2 or
s2

τ−→ Φ and Θ = s1 ! Φ. By symmetry we may restrict attention to the first case. Thus
∆1

τ̂=⇒ ∆ for some ∆ with Φ "S ∆. By Lemma 5.24 we have (Φ ! s2) R (∆ ! ∆2) and
∆1 ! ∆2

τ̂=⇒ ∆ ! ∆2.

The case that s "S ∆ is trivial, so we have checked that R is a simulation indeed. Using this,
we proceed to show that P1 ! P2 "S Q1 ! Q2.

Since Pi "S Qi, there must be a ∆i such that Qi
τ̂=⇒ ∆i and Pi "S ∆i. By Lemma 5.24,

we have P1 ! P2 = (P1 ! P2) R (∆1 ! ∆2). Therefore P1 ! P2 "S (∆1 ! ∆2). By
Lemma 5.24 we also obtain Q1 ! Q2 = Q1 ! Q2

τ̂=⇒ ∆1 ! Q2
τ̂=⇒ ∆1 ! ∆2, so the

required result is established.

4. Since Pi "S Qi, there must be a ∆i such that Qi
τ̂=⇒ ∆i and Pi "S ∆i. Thus Q1 p⊕ Q2 =

p · Q1 + (1−p) · Q2
τ̂=⇒ p · ∆1 + (1−p) · ∆2 by Lemma 5.19

and P1 p⊕ P2 = p · P1 + (1−p) · P2 "S p · ∆1 + (1−p) · ∆2 by Proposition 4.6(i). Hence
P1 p⊕ P2 "S Q1 p⊕ Q2.

5. Let R ⊆ Sp ×D(Sp) be defined by s R ∆ iff s = s1 |A s2 and ∆ = ∆1 |A ∆2 with s1 "S ∆1

and s2 "S ∆2. We show that R is a simulation. There are three cases to consider.

(a) Suppose s1 "S ∆1, s2 "S ∆2 and s1 |A s2
α−→ Θ1 |A s2 because of the transition s1

α−→ Θ1

with µ /∈ A. Then ∆1
µ̂=⇒ ∆′

1 for some ∆′
1 with Θ1 "S ∆′

1. By Lemma 5.25 we have
∆1 |A ∆2

µ̂=⇒ ∆′
1 |A ∆2 and also (Θ1 |A s2) R (∆′

1 |A ∆2).

(b) The symmetric case can be similarly analysed.

(c) Suppose s1 "S ∆1, s2 "S ∆2 and s1 |A s2
τ−→ Θ1 |A Θ2 because of the transitions

s1
a−→ Θ1 and s2

a−→ Θ2 with a ∈ A. Then for i = 1 and i = 2 we have ∆i
τ̂=⇒

∆′
i

a−→ ∆′′
i

τ̂=⇒ ∆′′′
i for some ∆′

i, ∆′′
i , ∆′′′

i with Θ1 "S ∆′′′
i . By Lemma 5.25 we have

∆1 |A ∆2
τ̂=⇒ ∆′

1 |A ∆′
2

τ−→ ∆′′
1 |A ∆′′

2
τ̂=⇒ ∆′′′

1 |A ∆′′′
2 and (Θ1 |A Θ2) R (∆′′′

1 |A ∆′′′
2).

So we have checked that R is a simulation.

Since Pi "S Qi, there must be a ∆i such that Qi
τ̂=⇒ ∆i and Pi "S ∆i. By Lemma 5.25

we have P1 |A P2 = (P1 |A P2) R (∆1 |A ∆2). Therefore P1 |A P2 "S (∆1 |A ∆2). By
Lemma 5.25 we also obtain Q1 |A Q2 = Q1 |A Q2

τ̂=⇒ ∆1 |A Q2
τ̂=⇒ ∆1 |A ∆2, which

had to be established.

The case for "FS is analogous. As an example, we show that "FS is preserved under parallel
composition. The key step is to show that the binary relation R ⊆ sCSP ×D(sCSP) defined by

R := {(s1|As2, ∆1|A∆2) | s1 "FS ∆1 ∧ s2 "FS ∆2}.

is a failure simulation.
Suppose si "FS ∆i for i = 1, 2 and s1 |A s2

X−/−→ for some X ⊆ Act . For each a ∈ X there are two
possibilities:

• If a /∈ A then s1
a−/−→ and s2

a−/−→, since otherwise we would have s1 |A s2
a−→.

82

• If a ∈ A then either s1
a−/−→ or s2

a−/−→, since otherwise we would have s1 |A s2
τ−→.

Hence we can partition the set X into three subsets: X0, X1 and X2 such that X0 = X\A and
X1 ∪ X2 ⊆ A with s1

X1−/−→ and s2
X2−/−→, but allowing s1

a−/−→ for some a ∈ X2 and s2
a−/−→ for some

a ∈ X1. We then have that si
X0∪Xi−−/−−→ for i = 1, 2. By the assumption that si "FS ∆i for i = 1, 2,

there is a ∆′
i with ∆i

τ̂=⇒ ∆′
i

X0∪Xi−−/−−→. Therefore ∆′
1|A∆′

2
X−/−→ as well. It is stated in [DvGH+07a,

Lemma 6.12(i)] that if Φ τ̂=⇒ Φ′ then Φ |A ∆ τ̂=⇒ Φ′ |A ∆ and ∆ |A Φ τ̂=⇒ ∆ |A Φ′. So we have
∆1 |A ∆2

τ̂=⇒ ∆′
1 |A ∆′

2. Hence ∆1 |A ∆2 can match up the failures of s1 |A s2.
The matching up of transitions and the using of R to prove the preservation property of "FS

under parallel composition are similar to those in the corresponding proof for simulations [DvGH+07a,
Theorem 6.13(v)], so we omit them. &'

5.5.4 Simulations are sound for testing preorders

This section is devoted to the proof that (i) P "S Q implies P "pmay Q and (ii) P "FS Q implies
P "pmust Q.

Theorem 5.27 If P "S Q then P "pmay Q.

Proof: For any test T ∈ pCSPω and process P ∈ pCSP the set V(T |Act P) is finite, so

P "pmay Q iff max(V(T |Act P)) ≤ max(V(T |Act Q)) for every test T . (5.2)

The following properties for ∆1, ∆2 ∈ pCSPω and α ∈ Actτ are not hard to establish:

∆1
α̂=⇒ ∆2 implies max(V(∆1)) ≥ max(V(∆2)). (5.3)

∆1 "S ∆2 implies max(V(∆1)) ≤ max(V(∆2)). (5.4)

In [DvGH+07a, Lemma 6.15 and Proposition 6.16] similar properties are proven using a function
maxlive instead of max◦ V. The same arguments apply here.

Now suppose P "S Q. Since "S is preserved by the parallel operator we have that T |Act P "S

T |Act Q for an arbitrary test T . By definition, this means that there is a distribution ∆ such that
T |Act Q τ̂=⇒ ∆ and T |Act P "S ∆. By (5.3) and (5.4) we infer that max(V(T |Act P)) ≤

max(V(T |Act Q)). The result now follows from (5.2). &'

It is tempting to use the same idea to prove that "FS implies "pmust, but now using the function
min◦ V. However, the min-analogue of Property (5.3) is in general invalid. For example, let R be
the process a |Act (a ! ω). We have min(V(R)) = 1, yet R τ−→ 0 |Act 0 and min(V(0 |Act 0)) = 0.
Therefore, it is not the case that ∆1

τ̂=⇒ ∆2 implies min(V(∆1)) ≤ min(V(∆2)).
Our strategy is therefore as follows. Write s α−→ω ∆ if both s ω−/−→ and s α−→ ∆ hold. We define

τ̂−→ω as τ̂−→ using τ−→ω in place of τ−→. Similarly we define =⇒ω and α̂=⇒ω. Thus the subscript ω on
a transition of any kind indicates that no state is passed through in which ω is enabled. A version of
failure simulation adapted to these transition relations is then defined as follows.

Definition 5.28 Let "e
FS

⊆ sCSPω ×D(sCSPω) be the largest relation such that s "e
FS

Θ implies

• if s α−→ω ∆ then there is some Θ′ with Θ α̂=⇒ω Θ′ and ∆ "e
FS

Θ′

• if s X−/−→ with ω ∈ X then there is some Θ′ with Θ τ̂=⇒ω Θ′ and Θ′ X−→.

Let P "e
FS Q iff P τ̂=⇒ω Θ for some Θ with Q "e

FS
Θ.

Note that for processes P, Q in pCSP (as opposed to pCSPω), we have P "FS Q iff P "e
FS Q.

Proposition 5.29 If P, Q are processes in pCSP with P "FS Q and T is a process in pCSPω then
T |Act P "e

FS T |Act Q.

83

Proof: Similar to the proof of Theorem 5.26. &'

Proposition 5.30 The following properties hold for min◦ V, with ∆1, ∆2 ∈ D(sCSPω):

P "pmust Q iff min(V(T |Act P)) ≤ min(V(T |Act Q)) for every test T . (5.5)

∆1
α̂=⇒ω ∆2 for α ∈ Actτ implies min(V(∆1)) ≤ min(V(∆2)). (5.6)

∆1 "e
FS

∆2 implies min(V(∆1)) ≥ min(V(∆2)). (5.7)

Proof: Property (5.5) is again straightforward, and Property (5.6) can be established just as in
Lemma 6.15 in [DvGH+07a], but with all ≤-signs reversed. Property (5.7) follows by structural
induction, simultaneously with the property, for s ∈ sCSPω and ∆ ∈ D(sCSPω), that

s "e
FS

∆ implies min(V(s)) ≥ min(V(∆)) . (5.8)

The reduction of Property (5.7) to (5.8) proceeds exactly as in [DvGH+07a, Lemma 6.16(ii)]. For
(5.8) itself we distinguish three cases:

• If s ω−→, then min(V(s)) = 1 ≥ min(V(∆)) trivially.

• If s ω−/−→ but s →, then we can closely follow the proof of [DvGH+07a, Lemma 6.16(i)]:
Whenever s α−→ω Θ, for α ∈ Actτ and Θ ∈ D(sCSPω), then s "e

FS
∆ implies the existence

of some ∆Θ such that ∆ α̂−→∗
ω ∆Θ and Θ "e

FS
∆Θ. By induction, using (5.7), it follows that

min(V(Θ)) ≥ min(V(∆Θ)). Consequently, we have that

min(V(s)) = min({min(V(Θ)) | s α−→ Θ})
≥ min({min(V(∆Θ)) | s α−→ Θ})
≥ min({min(V(∆)) | s α−→ Θ}) (by (5.6))
= min(V(∆)) .

• If s /→, that is s Actω

−−/−−→, then there is some ∆′ such that ∆ τ̂=⇒ω ∆′ and ∆′ Actω

−−/−−→. By the
definition of V, min(V(∆′))=0. Using (5.6), we have min(V(∆)) ≤ min(V(∆′)), so min(V(∆))=
0 as well. Thus, also in this case min(V(s)) ≥ min(V(∆)).

&'

Theorem 5.31 If P "FS Q then P "pmust Q.

Proof: Similar to the proof of Theorem 5.27, using (5.5)–(5.7). &'

The next four sections are devoted to proving the converse of Theorems 5.27 and 5.31.

5.6 State- versus action-based testing

Much work on testing [DNH84, YL92, DvGH+07a] uses success states marked by outgoing ω-actions;
this is referred to as state-based testing, which we have used in Section 5.2.5 to define the preorders
"may and "must. In other work [Seg96, DvGMZ07], however, it is the actual execution of ω that
constitutes success. This action-based approach is formalised as in the state-based approach, via a
modified results-gathering function:

V̂(s) :=

{⋃
{V̂(∆) | s α−→ ∆∧α /= ω } ∪ {1 | s ω−→ } if s→

{0} otherwise

As in the original V, the α’s are non-success actions, including τ ; and again, this is done for generality,
since in testing outcomes the only non-success action is τ .

If we use this results-gathering function rather than V in Definition 5.1 we obtain the two slightly
different testing preorders, "̂pmay and "̂pmust. The following proposition shows that state-based
testing is at least as discriminating as action-based testing:

84

Proposition 5.32

1. If P "pmay Q then P "̂pmay Q.

2. If P "pmust Q then P "̂pmust Q.

Proof: For any action-based test T̂ we construct a state-based test T by replacing each subterm
ω.Q by τ.ω; then we have V T |Act P = V̂ T̂ |Act P for all pCSP processes P . &'

Proposition 5.32 enables us to reduce our main goal, the converse of Theorems 5.27 and 5.31, to the
following property.

Theorem 5.33

1. If P "̂pmay Q then P "S Q.

2. If P "̂pmust Q then P "FS Q.

We set the proof of this theorem as our goal in the next three sections.
Once we have obtained this theorem, it follows that in our framework of finite probabilistic

processes the state-based and action-based testing preorders coincide. This result no longer holds in
the presence of divergence, at least for must-testing.

Example 5.34 Suppose we extend our syntax with a state-based process Ω, to model divergence, and
the operational semantics of Figure 5.1 with the rule

Ω τ−→ Ω.

It is possible to extend the results-gathering functions V and V̂ to these infinite processes, although the
definitions are no longer inductive (cf. Definition 5 of [DvGMZ07] or Definition 5.45 of the appendix).
In this extended setting we will have a.Ω /"pmust a.Ω & 0 because of the test a.ω:

V(a.ω |Act a.Ω) = {1} while V(a.ω |Act a.Ω & 0) = {0, 1}.

This intuitively is due to the fact that the Ω-encoded divergence of the left-hand process occurs only
after the first action a; and since the left-hand process cannot deadlock before that action, relation
"must would prevent the right-hand process from doing so.

However, a peculiarity of action-based testing is that success actions can be indefinitely inhibited
by infinite τ-branches. We have

V̂(a.ω |Act a.Ω) = V̂(a.ω |Act a.Ω & 0) = {0, 1}.

Indeed no test can be found to distinguish them, and so one can show a.Ω "̂pmust a.Ω & 0.

Note that probabilistic behaviour plays no role in this counter-example. In CSP (without proba-
bilities) there is no difference between "̂may and "may, whereas "̂must is strictly less discriminating
than "must. For finitely branching processes, the CSP refinement preorder based on failures and
divergences [BHR84, Hoa85b, OH86] coincides with the state-based relation "must.

5.7 Vector-based testing

This section describes another variation on testing, a richer testing framework due to Segala [Seg96],
in which countably many success actions exist: the application of a test to a process yields a set
of vectors over the real numbers, rather than a set of scalars. The resulting action-based testing
preorders will serve as a stepping stone in proving Theorem 5.33.

Let Ω be a set of fresh success actions with Ω∩Actτ = ∅. An Ω-test is again a pCSP process, but
this time allowing subterms ω.P for any ω∈Ω. Applying such a test to a process yields a non-empty
set of test outcome-tuples ÂΩ(T, P) ⊆ [0, 1]Ω. As with standard scalar testing, each outcome arises

85

from a resolution of the nondeterministic choices in T |Act P . However, here an outcome is a tuple
and its ω-component gives the probability that this resolution will perform the success action ω.

For vector-based testing we again inductively define a results-gathering function, but first we
require some auxiliary notation. For any action α define α! : [0, 1]Ω → [0, 1]Ω by

α!o(ω) =

{
1 if ω = α

o(ω) otherwise

so that if α is a success action, in Ω, then α! updates the tuple to 1 at that point, leaving it unchanged
otherwise, and when α /∈ Ω the function α! is the identity. These functions lift to sets O ⊆ [0, 1]Ω as
usual, via α!O := {α!o | o∈O}.

Next, for any set X define its convex closure HX by

HX := {
∑

i∈I pioi | p∈D(I) and o : I → X } .

Here, as usual, I is assumed to be a finite index set. Finally, /0 ∈ [0, 1]Ω is given by /0(ω) = 0 for all
ω ∈ Ω. Let pCSPΩ be the set of Ω-tests, and sCSPΩ the set of state-based Ω-tests.

Definition 5.35 The action-based, vector-based, convex-closed results-gathering function V̂Ω
% : sCSPΩ →

P([0, 1]Ω) is given by

V̂Ω
% (s) :=

{
H
⋃
{α!(V̂Ω

% (∆)) | s α−→ ∆, α ∈ Ω ∪ Actτ } if s →
{/0} otherwise

(5.9)

As with our previous results-gathering functions V and V̂, this function extends to the type D(sCSPΩ) → P([0, 1]Ω)
via the convention V̂Ω

% (∆) := Exp∆V̂Ω
% .

For any pCSP process P and Ω-test T , let

ÂΩ
% (T, P) := V̂Ω

% T |Act P .

The vector-based may- and must preorders are given by

P "̂Ω
pmay Q iff for all Ω-tests T : ÂΩ

% (T, P) "Ho ÂΩ
% (T, Q)

P "̂Ω
pmust Q iff for all Ω-tests T : ÂΩ

% (T, P) "Sm ÂΩ
% (T, Q)

where "Ho and "Sm are the Hoare- and Smyth preorders on P([0, 1]Ω) generated from ≤ index-wise
on [0, 1]Ω itself.

We will explain the rôle of convex-closure H in this definition. Let V̂Ω
% be defined as V̂Ω

% above, but
omitting the use of H. It is easy to see that V̂Ω

% (s) = HV̂Ω
% (s) for all s ∈ sCSPΩ.

Applying convex closure to subsets of the one-dimensional interval [0, 1] (such as arise from ap-
plying scalar tests to processes) has no effect on the Hoare and Smyth orders between these subsets:

Lemma 5.36 Suppose X, Y ⊆ [0, 1]. Then

1. X "Ho Y if and only if HX "Ho HY .

2. X "Sm Y if and only if HX "Sm HY .

Proof: We restrict attention to (1); the proof of (2) goes likewise. It suffices to show that (i)
X "Ho HX and (ii) HX "Ho X . We only prove (ii) since (i) is obvious. Suppose x ∈ HX , then
x =

∑
i∈I pixi for a finite set I with

∑
i∈I pi = 1 and xi ∈ X . Let x∗ = max{xi | i ∈ I}. Then

x =
∑

i∈I

pixi ≤
∑

i∈I

pix
∗ = x∗ ∈ X.

&'

It follows that for scalar testing it makes no difference whether convex closure is employed or not.
Vector-based testing, as proposed in Definition 5.35, is a conservative extension of action-based test-
ing, as described in Section 5.6:

86

Corollary 5.37 Suppose Ω is the singleton set {ω}. Then

1. P "̂Ω
pmay Q if and only if P "̂pmay Q.

2. P "̂Ω
pmust Q if and only if P "̂pmust Q.

Proof: V̂Ω
% = HV̂Ω

% = HV̂ when Ω is {ω}, so the result follows from Lemma 5.36. &'

Lemma 5.36 does not generalise to [0, 1]k, when k > 1, as the following example demonstrates:

Example 5.38 Let X, Y denote {(0.5, 0.5)}, {(1, 0), (0, 1)} respectively. Then it is easy to show
that HX "Ho HY although obviously X /"Ho Y .

This example can be exploited to show that for vector-based testing it does make a difference whether
convex closure is employed.

Example 5.39 Consider the two processes

P := a 1
2
⊕ b and Q := a & b .

Take Ω = {ω1,ω2}. Employing the results-gathering function V̂Ω
% , without convex closure, with the

test T := a.ω1 ! b.ω2 we obtain

ÂΩ(T, P) = {(0.5, 0.5)}
ÂΩ(T, Q) = {(1, 0), (0, 1)} .

As pointed out in Example 5.38, this entails ÂΩ(T, P) /"Ho ÂΩ(T, Q), although their convex closures
ÂΩ

% (T, P) and ÂΩ
% (T, Q) are related under the Hoare preorder.

Convex closure is a uniform way of ensuring that internal choice can simulate an arbitrary probabilistic
choice [HSM97]. For the processes P and Q of Example 5.39 it is obvious that P "S Q, and from
Theorem 5.27 it therefore follows that P "pmay Q. This fits with the intuition that a probabilistic
choice is an acceptable implementation of a nondeterministic choice occurring in a specification.
Considering that we use "̂Ω

pmay as a stepping stone in showing the coincidence of "S and "pmay, we
must have P "̂Ω

pmay Q. For this reason we use convex closure in Definition 5.35.
In [DvGMZ07] the results-gathering function V̂Ω

% with Ω = {ω1,ω2, · · · } was called simply W
(because action-based/vector-based/convex-closed testing was assumed there throughout, making the
·̂ Ω
% -indicators superfluous); and it was defined in terms of a formalisation of the notion of a resolution.
As we show in Proposition 5.48 of the appendix, the inductive Definition 5.35 above yields the same
results. In the present paper our interest in vector-based testing stems from the following result.

Theorem 5.40

1. P "̂Ω
pmay Q iff P "̂pmay Q

2. P "̂Ω
pmust Q iff P "̂pmust Q. &'

Proof: In [DvGMZ07, Theorem 3] this theorem has been established for versions of "̂Ω
pmay and

"̂Ω
pmust where tests are finite probabilistic automata, as defined in Section 5.8. The key argument is

that when P "̂Ω
pmay Q can be refuted by means of a vector-based test T , then P "̂pmay Q can be

refuted by means of a scalar test T ‖U , where U is administrative code which collates the vector of
results produced by T and effectively renders them as a unique scalar result, and similarly for "̂Ω

pmust.
This theorem applies to our setting as well, due to the observation that if a test T can be represented
as a pCSPΩ-expression, then so can the test T ‖U . &'

Because of Theorem 5.40, in order to establish Theorem 5.33 it will suffice to show that

87

• P "̂Ω
pmay Q implies P "S Q and

• P "̂Ω
pmust Q implies P "FS Q.

This shift from scalar testing to vector-based testing is motivated by the fact that the latter enables
us to use more informative tests, allowing us to discover more intensional properties of the processes
being tested.

The crucial characteristics of ÂΩ
% needed for the above implications are summarised in Lemmas 5.41

and 5.42. For convenience of presentation, we write /ω for the vector in [0, 1]Ω defined by /ω(ω) = 1 and
/ω(ω′) = 0 for ω′ /= ω. Sometimes we treat a distribution ∆ of finite support as the pCSP expression⊕

s∈*∆+ ∆(s) · s, so that ÂΩ
% (T, ∆) := Exp∆ÂΩ

% (T,).

Lemma 5.41 Let P be a pCSP process, and T, Ti be tests.

1. o ∈ ÂΩ
% (ω, P) iff o = /ω.

2. /0 ∈ ÂΩ
% (

#
a∈X a.ω, P) iff ∃∆ : P τ̂=⇒ ∆ X−/−→.

3. Suppose the action ω does not occur in the test T . Then o ∈ ÂΩ
% (ω! a.T, P) with o(ω) = 0 iff

there is a ∆∈D(sCSP) with P â=⇒ ∆ and o ∈ ÂΩ
% (T, ∆).

4. o ∈ ÂΩ
% (

⊕
i∈I pi · Ti, P) iff o =

∑
i∈I pioi for some oi ∈ ÂΩ

% (Ti, P).

5. o ∈ ÂΩ
% (

!
i∈ITi, P) if for all i∈ I there are qi ∈ [0, 1] and ∆i ∈D(sCSP) such that

∑
i∈I qi = 1,

P τ̂=⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qioi for some oi ∈ ÂΩ
% (Ti, ∆i).

Proof: Straightforward, by induction on the structure of P . &'

The converse of Lemma 5.41 (5) also holds, as the following lemma says. However, the proof is less
straightforward.

Lemma 5.42 Let P be a pCSP process, and Ti be tests. If o ∈ ÂΩ
% (

!
i∈ITi, P) then for all i∈ I there

are qi ∈ [0, 1] and ∆i ∈D(sCSP) with
∑

i∈I qi = 1 such that P τ̂=⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qioi

for some oi ∈ ÂΩ
% (Ti, ∆i).

Proof: Given that the states of our pLTS are sCSP expressions, there exists a well-founded order
on the combination of states in sCSP and distributions in D(sCSP), such that s α−→ ∆ implies that s
is larger than ∆, and any distribution is larger than the states in its support. Intuitively, this order
corresponds to the usual order on natural numbers if we graphically depict a pLTS as a finite tree
(cf. Section 5.2.4) and assign to each node a number to indicate its level in the tree. Let T =

!
i∈ITi.

We prove the following two claims

(a) If s is a state-based process and o ∈ ÂΩ
% (T, s) then there are some {qi}i∈I with

∑
i∈I qi = 1

such that s τ̂=⇒
∑

i∈I qi · ∆i, o =
∑

i∈I qioi, and oi ∈ ÂΩ
% (Ti, ∆i).

(b) If ∆ ∈ D(sCSP) and o ∈ ÂΩ
% (T, ∆) then there are some {qi}i∈I with

∑
i∈I qi = 1 such that

∆ τ̂=⇒
∑

i∈I qi · ∆i, o =
∑

i∈I qioi, and oi ∈ ÂΩ
% (Ti, ∆i).

by simultaneous induction on the order mentioned above, applied to s and ∆.

(a) We have two sub-cases depending on whether s can make an initial τ -move or not.

• If s cannot make a τ -move, that is s τ−/−→, then the only possible moves from T |Act s
are τ -moves originating in T ; T has no non-τ moves, and any non-τ moves that might be
possible for s on its own are inhibited by the alphabet Act of the composition. Suppose
o ∈ ÂΩ

% (T, s). Then by definition (5.9) there are some {qi}i∈I with
∑

i∈I qi = 1 such that
o =

∑
i∈I qioi and oi ∈ ÂΩ

% (Ti, s) = ÂΩ
% (Ti, s). Obviously we also have s τ̂=⇒

∑
i∈I qi · s.

88

• If s can make one or more τ -moves, then we have s τ−→ ∆′
j for j ∈ J , where without loss of

generality J can be assumed to be a non-empty finite set disjoint from I, the index set for
T . The possible first moves for T |Act s are τ -moves either of T or of s, because T cannot
make initial non-τ moves and that prevents a proper synchronisation from occurring on the
first step. Suppose that o ∈ ÂΩ

% (T, s). Then by definition (5.9) there are some {pk}k∈I∪J

with
∑

k∈I∪J pk = 1 and

o =
∑

k∈I∪J

pko′k (5.10)

o′i ∈ ÂΩ
% (Ti, s) for all i ∈ I (5.11)

o′j ∈ ÂΩ
% (T, ∆j) for all j ∈ J . (5.12)

For each j ∈ J , we know by the induction hypothesis that

∆′
j

τ̂=⇒
∑

i∈I

pji · ∆′
ji (5.13)

o′j =
∑

i∈I

pjio
′
ji (5.14)

o′ji ∈ ÂΩ
% (Ti, ∆′

ji) (5.15)

for some {pji}i∈I with
∑

i∈I pji = 1. Let

qi = pi +
∑

j∈J

pjpji

∆i =
1
qi

(pi · s +
∑

j∈J

pjpji · ∆′
ji)

oi =
1
qi

(pio
′
i +

∑

j∈J

pjpjio
′
ji)

for each i ∈ I, except that ∆i and oi are chosen arbitrarily in case qi = 0. It can be
checked by arithmetic that qi, ∆i, oi have the required properties, viz. that

∑
i∈I qi = 1,

that o =
∑

i∈I qioi and that

s τ̂=⇒
∑

i∈I

pi · s +
∑

j∈J

pj · ∆′
j

τ̂=⇒
∑

i∈I

pi · s +
∑

j∈J

pj ·
∑

i∈I

pji · ∆′
ji by (5.13) and Lemma 5.19

=
∑

i∈I

qi · ∆i .

Finally, it follows from (5.11) and (5.15) that oi ∈ ÂΩ
% (Ti, ∆i) for each i ∈ I.

(b) Let B∆C = {sj}j∈J and rj = ∆(sj). W.l.o.g. we may assume that J is a non-empty finite set
disjoint from I. Using that ÂΩ

% (T, ∆) := Exp∆ÂΩ
% (T,), if o ∈ ÂΩ

% (T, ∆) then

o =
∑

j∈J

rjo
′
j (5.16)

o′j ∈ ÂΩ
% (T, sj) (5.17)

89

For each j ∈ J , we know by the induction hypothesis that

sj
τ̂=⇒

∑

i∈I

qji · ∆′
ji (5.18)

o′j =
∑

i∈I

qjio
′
ji (5.19)

o′ji ∈ ÂΩ
% (Ti, ∆′

ji) (5.20)

for some {qji}i∈I with
∑

i∈I qji = 1. Thus let

qi =
∑

j∈J

rjqji

∆i =
1
qi

∑

j∈J

rjqji · ∆′
ji

oi =
1
qi

∑

j∈J

rjqjio
′
ji

again choosing ∆i and oi arbitrarily in case qi = 0. As in the first case, it can be shown by
arithmetic that the collection ri, ∆i, oi has the required properties.

&'

5.8 Resolution-based testing

A probabilistic automaton consists of a pLTS 〈S, L,→〉 and a distribution ∆◦ over S. Since we only
consider probabilistic automata with L = Actτ ∪ Ω, we omit it and write a probabilistic automaton
simply as a triple 〈S, ∆◦,→〉 and call ∆◦ the initial distribution of the automaton. The operational
semantics of a pCSPΩ process P can thus be viewed as a probabilistic automaton with initial distribu-
tion ∆◦ := P . States in a probabilistic automata that are not reachable from the initial distribution
are generally considered irrelevant and can be omitted.

A probabilistic automaton is called finite if there exists a function depth : S∪D(S) → such that
s ∈ B∆C implies depth(s) < depth(∆) and s α−→ ∆ implies depth(s) > depth(∆). Finite probabilistic
automata can be drawn as explained at the end of Section 5.2.4.

A fully probabilistic automaton is one in which each state enables at most one action, and (general)
probabilistic automata can be “resolved” into fully probabilistic automata by pruning away multiple
action-choices until only single choices are left, possibly introducing some linear combinations in the
process. We define this formally for probabilistic automata representing pCSPΩ expressions.

Definition 5.43 [DvGMZ07] A resolution of a distribution ∆◦ ∈ D(sCSPΩ) is a fully probabilistic
automaton 〈R, Θ◦,→〉 such that there is a resolving function f : R → sCSPΩ which satisfies:

(i) f(Θ◦) = ∆◦

(ii) if r α−→ Θ then f(r) α−→ f(Θ)

(iii) if r /→ then f(r) /→

where f(Θ) is the distribution defined by f(Θ)(s) :=
∑

f(r)=s Θ(r).

Note that resolutions of distributions ∆◦ ∈ D(sCSPΩ) are always finite. We define a function which
yields the probability that a given fully probabilistic automaton will start with a particular sequence
of actions.

90

Definition 5.44 [DvGMZ07] Given a fully probabilistic automaton R = 〈R, ∆◦,→〉, the probability
that R follows the sequence of actions σ ∈ Σ∗ from its initial distribution is given by PrR(σ, ∆◦),
where PrR : Σ∗ × R → [0, 1] is defined inductively by

PrR(ε, r) := 1 and PrR(ασ, r) :=
{

PrR(σ, ∆) if r α−→ ∆
0 otherwise

and PrR(σ, ∆) := Exp∆(PrR(σ,)) =
∑

r∈*∆+ ∆(r) ·PrR(σ, r). Here ε denotes the empty sequence of
actions and ασ the sequence starting with α ∈ Σ and continuing with σ ∈ Σ∗. The value PrR(σ, r) is
the probability that R proceeds with sequence σ from state r.

Now let Σ∗α be the set of finite sequences in Σ∗ that contain α exactly once, and that at the end.
Then the probability that the fully probabilistic automaton R ever performs an action α is given by∑

σ∈Σ∗α PrR(σ, ∆◦).

We recall the results-gathering function W given in Definition 5 of [DvGMZ07].

Definition 5.45 For a fully probabilistic automaton R, let its success tuple W(R) ∈ [0, 1]Ω be such
that W(R)(ω) is the probability that R ever performs the action ω.

Then for a distribution ∆◦ ∈ D(sCSPΩ) we define the set of its success tuples to be those resulting
as above from all its resolutions separately:

W(∆◦) := {W(R) | R is a resolution of ∆◦}.

We relate these sets of tuples to Definition 5.35, in which similar sets are produced “all at once,”
that is without introducing resolutions first. In fact we will find that they are the same. Note
that Definition 5.35 of V̂Ω

% extends smoothly to states and distributions in probabilistic automata.
When applied to fully probabilistic automata, V̂Ω

% always yields singleton sets, which we will loosely
identify with their unique members; thus when we write V̂Ω

% (∆)(ω) with ∆ a distribution in a fully
probabilistic automaton, we actually mean the ω-component of the unique element of V̂Ω

% (∆).

Lemma 5.46 If R = 〈R, ∆◦,→〉 is a finite fully probabilistic automaton, then

(1) V̂Ω
% (∆) = V̂Ω

% (∆) for all ∆ ∈ D(R), and

(2) W(R) = V̂Ω
% (∆◦).

Proof: (1) is immediate: since the automaton is fully probabilistic, convex closure has no effect. For
(2) we need to show that for all ω ∈ Ω we have W(R)(ω) = V̂Ω

% (∆◦)(ω), i.e. that
∑

σ∈Σ∗ω PrR(σ, ∆◦) =
(V̂Ω

% (∆◦))(ω). So let ω ∈ Ω. We show

∑

σ∈Σ∗ω

PrR(σ, ∆) = V̂Ω
% (∆)(ω) and

∑

σ∈Σ∗ω

PrR(σ, r) = V̂Ω
% (r)(ω) (5.21)

for all ∆ ∈ D(R) and r ∈ R, by simultaneous induction on the depths of ∆ and r.

• In the base case r has no enabled actions. Then ∀i :
∑
σ∈Σ∗ω PrR(σ, r) = 0 and V̂Ω

% (r) = /0, so
V̂Ω

% (r)(ω) = 0.

• Now suppose there is a transition r α−→ ∆ for some action α and distribution ∆. There are two
possibilities:

– α = ω. We then have V̂Ω
% (s)(ω) = 1. Now for any finite non-empty sequence σ without

any occurrence of ω we have PrR(σω, r) = 0. Thus
∑

σ∈Σ∗ω PrR(σ, r) = PrR(ω, r) = 1 as
required.

91

– α /= ω. Since V̂Ω
% (r) = α!V̂Ω

% (∆), we have V̂Ω
% (r)(ω) = V̂Ω

% (∆)(ω). On the other hand,
PrR(βσ, r) = 0 for β /= α. Therefore

∑
σ∈Σ∗ω PrR(σ, r) =

∑
ασ∈Σ∗ω PrR(ασ, r)

=
∑
σ∈Σ∗ω PrR(ασ, r)

=
∑
σ∈Σ∗ω PrR(σ, ∆)

= V̂Ω
% (∆)(ω) by induction

= V̂Ω
% (r)(ω) .

• Finally,
∑

σ∈Σ∗ω PrR(σ, ∆) =
∑

σ∈Σ∗ω Exp∆(PrR(σ,)) = Exp∆(
∑

σ∈Σ∗ω PrR(σ,))
= Exp∆(V̂Ω

% ()(ω)) = Exp∆(V̂Ω
% ())(ω) = V̂Ω

% (∆)(ω).

&'

Now we look more closely at the interaction of V̂Ω
% and resolutions.

Lemma 5.47 Let ∆◦ ∈ D(sCSPΩ).

(1) If 〈R, Θ◦,→〉 is a resolution of ∆◦, then V̂Ω
% (Θ◦) ∈ V̂Ω

% (∆◦).

(2) If o ∈ V̂Ω
% (∆◦) then there is a resolution 〈R, Θ◦,→〉 of ∆◦ such that V̂Ω

% (Θ◦) = o.

Proof:

(1) Let 〈R, Θ◦,→〉 be a resolution of ∆◦ with resolving function f . We observe that for any Θ ∈ D(R)
we have

∀r ∈ BΘC : V̂Ω
% (r) ∈ V̂Ω

% (f(r)) implies V̂Ω
% (Θ) ∈ V̂Ω

% (f(Θ)) (5.22)
because

V̂Ω
% (Θ) =

∑
r∈*Θ+ Θ(r) · V̂Ω

% (r)
∈

∑
r∈*Θ+ Θ(r) · V̂Ω

% (f(r))
=

∑
s∈*f(Θ)+ f(Θ)(s) · V̂Ω

% (s)
= V̂Ω

% (f(Θ)) .

We now prove by induction on depth(r) that ∀r ∈ T : V̂Ω
% (r) ∈ V̂Ω

% (f(r)), from which the required
result follows in view of (5.22) and the fact that f(Θ◦) = ∆◦.

• In the base case we have r /→, which implies f(r) /→. Therefore, we have V̂Ω
% (r) = /0 ∈

V̂Ω
% (f(r)).

• Otherwise r has a transition r α−→ Θ for some α and Θ. By induction we have V̂Ω
% (r′) ∈

V̂Ω
% (f(r′)) for all r′ ∈ BΘC. Using (5.22) we get V̂Ω

% (Θ) ∈ V̂Ω
% (f(Θ)). Now

V̂Ω
% (r) = α!V̂Ω

% (Θ) ∈ α!V̂Ω
% (f(Θ)) ⊆ V̂Ω

% (f(r))

where the last step follows from the fact that f(r) α−→ f(Θ) is one of the transitions of f(r).

(2) This clause is proved by induction on depth(∆◦). First consider the special case that ∆◦ is a point
distribution on some state s.

• In the base case we have s /→. The probabilistic automaton 〈{s}, s, ∅〉 is a resolution of
∆◦ = s with the resolving function being the identity. Clearly, this resolution satisfies our
requirement.

• Otherwise there is a finite, non-empty index set I such that s αi−→ ∆i for some actions
αi and distributions ∆i. If o ∈ V̂Ω

% (∆◦) = V̂Ω
% (s), then by the definition of V̂Ω

% we have
o =

∑
i∈I pi · αi!oi with oi ∈ V̂Ω

% (∆i) and
∑

i∈I pi = 1 for some pi ∈ [0, 1]. By induction,
for each i ∈ I there is a resolution 〈Ri, Θ◦

i ,→i〉 of ∆i with resolving function fi such that
V̂Ω

% (Θ◦
i) = oi. Without loss of generality, we assume that Ri is disjoint from Rj for i /= j,

as well as from {ri | i ∈ I}. We now construct a fully probabilistic automaton 〈R, Θ◦,→′〉
as follows:

92

• R := {ri | i ∈ I} ∪
⋃

i∈I Ri

• Θ◦ :=
∑

i∈I pi · ri

• →′:= {ri
αi−→ Θ◦

i | i ∈ I} ∪
⋃

i∈I →i.
This automaton is a resolution of ∆◦ = s with resolving function f defined by

f(r) =
{

s if r = ri for i ∈ I
fi(r) if r ∈ Ri for i ∈ I.

The resolution thus constructed satisfies our requirement because

V̂Ω
% (Θ◦) = V̂Ω

% (
∑

i∈I pi · ri)
=

∑
i∈I pi · V̂Ω

% (ri)
=

∑
i∈I pi · αi!V̂Ω

% (Θ◦
i)

=
∑

i∈I pi · αi!oi

= o .

We now consider the general case that ∆◦ is a proper distribution with B∆◦C = {sj | j ∈J} for
some finite index set J . Using the reasoning in the above special case, we have a resolution
〈Rj , Θ◦

j ,→j〉 of each distribution sj. Without loss of generality, we assume that Rj is disjoint
from Rk for j /= k. Consider the probabilistic automaton 〈

⋃
j∈J Rj ,

∑
j∈J ∆◦(sj) ·Θ◦

j ,
⋃

j∈J →j〉.
It is a resolution of ∆◦ satisfying our requirement. If o ∈ V̂Ω

% (∆◦) then o =
∑

j∈J ∆◦(sj) · oj with
oj ∈ V̂Ω

% (sj). Since oj = V̂Ω
% (Θ◦

j), we have o = V̂Ω
% (

∑
j∈J ∆◦(sj) · Θ◦

j).

&'

We can now give the result relied on in Section 5.7.

Proposition 5.48 Let ∆◦ ∈ D(sCSPΩ). Then we have that W(∆◦) = V̂Ω
% (∆◦).

Proof: Combine Lemmas 5.46 and 5.47. &'

5.9 Modal logic

In this section we present logical characterisations "L and "F of our testing preorders. Besides their
intrinsic interest, these logical preorders also serves as a stepping stone in proving Theorem 5.33. In
this section we show that the logical preorders are sound w.r.t. the simulation and failure simulation
preorders, and hence w.r.t. the testing preorders; in the next section we establish completeness. To
start, we define a set F of modal formulae, inductively, as follows:

• ref(X) ∈ F when X ⊆ Act ,

• 〈a〉φ ∈ F when φ∈F and a∈Act ,

•
∧

i∈I φi ∈ F when φi ∈F for all i∈ I, with I finite,

• and
⊕

i∈I pi · φi ∈ F when pi ∈[0, 1] and φi ∈F for all i∈ I, with I a finite index set, and∑
i∈I pi = 1.

We often write φ1 ∧ φ2 for
∧

i∈{1,2} φi and + for
∧

i∈∅ φi.
The satisfaction relation |= ⊆ D(sCSP) × F is given by:

• ∆ |= ref(X) iff there is a ∆′ with ∆ τ̂=⇒ ∆′ and ∆′ X−/−→,

• ∆ |= 〈a〉φ iff there is a ∆′ with ∆ â=⇒ ∆′ and ∆′ |= φ,

• ∆ |=
∧

i∈I φi iff ∆ |= φi for all i∈ I

93

• and ∆ |=
⊕

i∈I pi · φi iff there are ∆i ∈ D(sCSP), for all i∈ I, with ∆i |= φi, such that
∆ τ̂=⇒

∑
i∈I pi · ∆i.

Let L be the subclass of F obtained by skipping the ref(X) clause. We write P "L Q just when
P |= φ implies Q |= φ for all φ∈L, and P "F Q just when P |= φ is implied by Q |= φ for all
φ∈F . (Note the opposing directions.)

In order to obtain the main result of this section, Theorem 5.52, we introduce the following tool.

Definition 5.49 The F-characteristic formula φs or φ∆ of a process s∈ sCSP or ∆∈D(sCSP) is
defined inductively:

• φs :=
∧

s
a−→∆〈a〉φ∆ ∧ ref({a | s a−/−→}) if s τ−/−→,

• φs :=
∧

s
a−→∆〈a〉φ∆ ∧

∧
s
τ−→∆ φ∆ otherwise,

• φ∆ :=
⊕

s∈*∆+ ∆(s) · φs.

Here the conjunctions
∧

s
a−→∆ range over suitable pairs a, ∆, and

∧
s
τ−→∆ ranges over suitable ∆. The

L-characteristic formulae ψs and ψ∆ are defined likewise, but omitting the conjuncts ref ({a | s a−/−→}).

Write φ # ψ with φ,ψ ∈F if for each distribution ∆ one has ∆ |= φ implies ∆ |= ψ. Then it is
easy to see that φs $# φs and

∧
i∈I φi # φi for any i∈ I; furthermore, the following property can be

established by an easy inductive proof.

Lemma 5.50 For any ∆∈D(sCSP) we have ∆ |= φ∆, as well as ∆ |= ψ∆. &'

It and the following lemma help to establish Theorem 5.52.

Lemma 5.51 For any processes P, Q ∈ pCSP we have that P |= φ
Q

implies P "FS Q, and

likewise that Q |= ψ
P

implies P "S Q.

Proof: To establish the first statement, we define the relation R by sRΘ iff Θ |= φs; to show that
it is a failure simulation we first prove the following technical result:

Θ |= φ∆ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ ∆ R Θ′. (5.23)

Suppose Θ |= φ∆ with φ∆ =
⊕

i∈I pi · φsi , so that we have ∆ =
∑

i∈I pi · si and for all i∈ I there are
Θi ∈D(sCSP) with Θi |= φsi such that Θ τ̂=⇒ Θ′ with Θ′ :=

∑
i∈I pi · Θi. Since siRΘi for all i∈ I we

have ∆ R Θ′.
Now we show that R is a failure simulation.

• Suppose sRΘ and s τ−→ ∆. Then from Definition 5.49 we have φs # φ∆, so that Θ |= φ∆.
Applying (5.23) gives us Θ τ̂=⇒ Θ′ with ∆ R Θ′ for some Θ′.

• Suppose sRΘ and s a−→ ∆ with a∈Act . Then φs # 〈a〉φ∆, so Θ |= 〈a〉φ∆. Hence ∃Θ′ with
Θ â=⇒ Θ′ and Θ′ |= φ∆. Again apply (5.23).

• Suppose sRΘ and s X−/−→ with X ⊆ A. Then φs # ref (X), so Θ |= ref(X). Hence ∃Θ′ with
Θ τ̂=⇒ Θ′ and Θ′ X−/−→.

Thus R is indeed a failure simulation. By our assumption P |= φ
Q

, using (5.23), there exists a

Θ′ such that P τ̂=⇒ Θ′ and Q R Θ′, which gives P "FS Q via Definition 5.15.
To establish the second statement, define the relation S by sSΘ iff Θ |= ψs; exactly as above one

obtains
Θ |= ψ∆ implies ∃Θ′ : Θ τ̂=⇒ Θ′ ∧ ∆ S Θ′. (5.24)

Just as above it follows that S is a simulation. By the assumption Q |= φ
P

, using (5.24), there

exists a Θ′ such that Q τ̂=⇒ Θ′ and P S Θ′. Hence P "S Q via Definition 5.15. &'

94

Theorem 5.52

1. If P "LQ then P "S Q.

2. If P "F Q then P "FS Q.

Proof: Suppose P "F Q. By Lemma 5.50 we have Q |=φ
Q

and hence P |= φ
Q

. Lemma 5.51
gives P "FS Q.

For (1), assuming P "LQ, we have P |= ψ
P

, hence Q |= ψ
P

, and thus P "S Q. &'

5.10 Characteristic tests

Our final step towards Theorem 5.33 is taken in this section, where we show that every modal formula
φ can be characterised by a vector-based test Tφ with the property that any pCSP process satisfies φ
just when it passes the test Tφ.

Lemma 5.53 For every φ∈F there exists a pair (Tφ, vφ) with Tφ an Ω-test and vφ ∈ [0, 1]Ω, such
that ∆ |= φ iff ∃o ∈ ÂΩ

% (Tφ, ∆) : o ≤ vφ (5.25)

for all ∆∈D(sCSP), and in case φ ∈ L we also have

∆ |= φ iff ∃o ∈ ÂΩ
% (Tφ, ∆) : o ≥ vφ . (5.26)

Tφ is called a characteristic test of φ and vφ its target value.
Proof: First of all note that if a pair (Tφ, vφ) satisfies the requirements above, then any pair obtained
from (Tφ, vφ) by bijectively renaming the elements of Ω also satisfies these requirements. Hence a
characteristic test can always be chosen in such a way that there is a success action ω∈Ω that does
not occur in (the finite) Tφ. Moreover, any countable collection of characteristic tests can be assumed
to be , meaning that no ω∈Ω occurs in two different elements of the collection.

The required characteristic tests and target values are obtained as follows.

• Let φ = +. Take Tφ := ω for some ω∈Ω, and vφ := /ω.

• Let φ = ref(X) with X ⊆ Act . Take Tφ :=
#

a∈X a.ω for some ω∈Ω, and vφ := /0.

• Let φ = 〈a〉ψ. By induction, ψ has a characteristic test Tψ with target value vψ . Take Tφ :=
ω! a.Tψ where ω∈Ω does not occur in Tψ, and vφ := vψ.

• Let φ =
∧

i∈I φi with I a finite and non-empty index set. Choose a Ω-disjoint family (Ti, vi)i∈I

of characteristic tests Ti with target values vi for each φi. Furthermore, let pi ∈ (0, 1] for i∈ I
be chosen arbitrarily such that

∑
i∈I pi = 1. Take Tφ :=

⊕
i∈I pi · Ti and vφ :=

∑
i∈I pivi.

• Let φ =
⊕

i∈I pi ·φi. Choose a Ω-disjoint family (Ti, vi)i∈I of characteristic tests Ti with target
values vi for each φi, such that there are distinct success actions ωi for i∈ I that do not occur
in any of those tests. Let T ′

i := Ti 1
2
⊕ ωi and v′i := 1

2vi + 1
2 /ωi. Note that for all i∈ I also T ′

i is
a characteristic test of φi with target value v′i. Take Tφ :=

!
i∈I T ′

i and vφ :=
∑

i∈I piv′i.

Note that vφ(ω) = 0 whenever ω ∈Ω does not occur in Tφ. By induction on φ we now check (5.25)
above.

• Let φ = +. For all ∆ ∈ D(sCSP) we have ∆ |= φ as well as ∃o ∈ ÂΩ
% (Tφ, ∆) : o ≤ vφ, using

Lemma 5.41(1).

• Let φ = ref(X) with X ⊆ Act . Suppose ∆ |= φ. Then there is a ∆′ with ∆ τ̂=⇒ ∆′ and ∆′ X−/−→.
By Lemma 5.41(2), /0∈ ÂΩ

% (Tφ, ∆).

Now suppose ∃o∈ ÂΩ
% (Tφ, ∆) : o ≤ vφ. This implies o = /0, so by Lemma 5.41(2) there is a ∆′

with ∆ τ̂=⇒ ∆′ and ∆′ X−/−→. Hence ∆ |= φ.

95

• Let φ = 〈a〉ψ with a∈Act . Suppose ∆ |= φ. Then there is a ∆′ with ∆ â=⇒ ∆′ and ∆′ |= ψ.
By induction, ∃o∈ ÂΩ

% (Tψ, ∆′) : o ≤ vψ. By Lemma 5.41(3), o∈ ÂΩ
% (Tφ, ∆).

Now suppose ∃o∈ ÂΩ
% (Tφ, ∆) : o ≤ vφ. This implies o(ω) = 0, so by Lemma 5.41(3) there is a

∆′ with ∆ â=⇒ ∆′ and o∈ ÂΩ
% (Tψ, ∆′). By induction, ∆′ |=ψ, so ∆ |=φ.

• Let φ =
∧

i∈I φi with I a finite and non-empty index set. Suppose ∆ |= φ. Then ∆ |= φi for all
i∈ I, and hence, by induction, ∃oi ∈ ÂΩ

% (Ti, ∆) : oi ≤ vi. Thus o :=
∑

i∈I pioi ∈ ÂΩ
% (Tφ, ∆) by

Lemma 5.41(4), and o ≤ vφ.

Now suppose ∃o∈ ÂΩ
% (Tφ, ∆) : o ≤ vφ. Then, using Lemma 5.41(4), o =

∑
i∈I pioi for certain

oi ∈ ÂΩ
% (Ti, ∆). Note that (Ti)i∈I is an Ω-disjoint family of tests. One has oi ≤ vi for all i∈ I,

for if oi(ω) > vi(ω) for some i∈ I and ω∈Ω, then ω must occur in Ti and hence cannot occur
in Tj for j /= i. This implies vj(ω) = 0 for all j /= i and thus o(ω) > vφ(ω), in contradiction with
the assumption. By induction, ∆ |= φi for all i∈ I, and hence ∆ |= φ.

• Let φ =
⊕

i∈I pi · φi. Suppose ∆ |= φ. Then for all i∈ I there are ∆i ∈D(sCSP) with ∆i |= φi

such that ∆ τ̂=⇒
∑

i∈I pi · ∆i. By induction, there are oi ∈ ÂΩ
% (Ti, ∆i) with oi ≤ vi. Hence,

there are o′i ∈ ÂΩ
% (T ′

i , ∆i) with o′i ≤ v′i. Thus o :=
∑

i∈I pio′i ∈ ÂΩ
% (Tφ, ∆) by Lemma 5.41(5),

and o ≤ vφ.

Now suppose ∃o∈ ÂΩ
% (Tφ, ∆) : o ≤ vφ. Then, by Lemma 5.42, there are q ∈D(I) and ∆i,

for i∈ I, such that ∆ τ̂=⇒
∑

i∈I qi · ∆i and o =
∑

i∈I qio′i for some o′i ∈ ÂΩ
% (T ′

i , ∆i). Now ∀i :
o′i(ωi) = v′i(ωi) = 1

2 , so, using that (Ti)i∈I is an Ω-disjoint family of tests, 1
2qi = qio′i(ωi) =

o(ωi) ≤ vφ(ωi) = piv′i(ωi) = 1
2pi. As

∑
i∈I qi =

∑
i∈I pi = 1, it must be that qi = pi for all

i∈ I. Exactly as in the previous case one obtains o′i ≤ v′i for all i∈ I. Given that T ′
i = Ti 1

2
⊕ ωi,

using Lemma 5.41(4), it must be that o′ = 1
2oi + 1

2 /ωi for some oi ∈ ÂΩ
% (Ti, ∆i) with oi ≤ vi. By

induction, ∆i |= φi for all i∈ I, and hence ∆ |= φ.

In case φ∈L, the formula cannot be of the form ref(X). Then a straightforward induction yields that∑
ω∈Ω vφ(ω) = 1 and for all ∆∈D(pCSP) and o∈ ÂΩ

% (Tφ, ∆) we have
∑

ω∈Ω o(ω) = 1. Therefore,
o ≤ vφ iff o ≥ vφ iff o = vφ, yielding (5.26). &'

Theorem 5.54

1. If P "̂Ω
pmay Q then P "LQ.

2. If P "̂Ω
pmust Q then P "F Q.

Proof: Suppose P "̂Ω
pmust Q and Q |= φ for some φ∈F . Let Tφ be a characteristic test of φ

with target value vφ. Then Lemma 5.53 yields ∃o∈ ÂΩ
% (Tφ, Q) : o ≤ vφ, and hence, given that

P "̂Ω
pmust Q and ÂΩ

% (Tφ, R) = ÂΩ
% (Tφ, R) for any R ∈ pCSP, by the Smyth preorder we have

∃o′ ∈ ÂΩ
% (Tφ, P) : o′ ≤ vφ. Thus P |= φ.

The may-case goes likewise, via the Hoare preorder. &'

Combining Theorems 5.40, 5.54 and 5.52, we obtain Theorem 5.33, the goal we set ourselves in
Section 5.6. Thus, with Theorems 5.27 and 5.31 and Proposition 5.32, we have shown that the
may preorder coincides with simulation and that the must preorder coincides with failure simulation.
These results also imply the converse of both statements in Theorem 5.54, and thus that the logics L
and F give logical characterisations of the simulation and failure simulation preorders "S and "FS .

&'

5.11 Equational theories

Having settled the problem of characterising the may preorder in terms of simulation, and the must
preorder in terms of failure simulation, we now turn to complete axiomatisations of the preorders.

96

(P1) P p⊕ P = P
(P2) P p⊕ Q = Q 1−p⊕ P
(P3) (P p⊕ Q) q⊕ R = P p·q⊕ (Q (1−p)·q

1−p·q
⊕ R)

(I1) P & P = P
(I2) P & Q = Q & P
(I3) (P & Q) & R = P & (Q & R)
(E1) P ! 0 = P
(E2) P ! Q = Q ! P
(E3) (P ! Q) ! R = P ! (Q ! R)
(EI) a.P ! a.Q = a.P & a.Q
(D1) P ! (Q p⊕ R) = (P ! Q)p⊕ (P ! R)
(D2) a.P ! (Q & R) = (a.P ! Q) & (a.P ! R)
(D3) (P1 & P2) ! (Q1 & Q2) = (P1 ! (Q1 & Q2)) & (P2 ! (Q1 & Q2))

& ((P1 & P2) ! Q1) & ((P1 & P2) ! Q2)

Figure 5.8: Common equations

In order to focus on the essentials we consider just those pCSP processes that do not use the parallel
operator |A; we call the resulting sub-language nCSP. For a brief discussion of the axiomatisation for
terms involving |A and the other parallel operators commonly used in CSP see Section 5.14.

Let us write P =E Q for equivalences that can be derived using the equations given in Figure 5.8.
Given the way we defined the syntax of pCSP, axiom (D1) is merely a case of abbreviation-expansion;
thanks to (D1) there is no need for (meta-)variables ranging over the sub-sort of state-based processes
anywhere in the axioms. Many of the standard equations for CSP [Hoa85b] are missing; they are not
sound for =FS . Typical examples include:

a.(P & Q) = a.P & a.Q

P = P ! P

P ! (Q & R) = (P ! Q) & (P ! R)
P & (Q ! R) = (P & Q) ! (P & R)

For a detailed discussion of the standard equations for CSP in the presence of probabilistic processes
see Section 4 of [DvGH+07a].

Proposition 5.55 Suppose P =E Q. Then P =FS Q.

Proof: Because of Theorem 5.26, that "FS is a precongruence, it is sufficient to exhibit witness
failure simulations for the axioms in Figure 5.8. These are exactly the same as the witness simulations
for the same axioms, given in [DvGH+07a]. The only axiom for which it is nontrivial to check that
these simulations are in fact failure simulations is (EI). That axiom, as stated in [DvGH+07a], is
unsound here; it will return in the next section as (May0). But the special case of a = b yields the
axiom (EI) above, and then the witness simulation from [DvGH+07a] is a failure simulation indeed.

&'

As =S is a less discriminating equivalence than =FS it follows that P =E Q implies P =S Q.
This equational theory allows us to reduce terms to a form in which the external choice operator

is applied to prefix terms only.

Definition 5.56 (Normal forms) The set of normal forms N is given by the following grammar:

N ::= N1 p⊕ N2 | N1 & N2 |
$

i∈I

ai.Ni

Proposition 5.57 For every P ∈ nCSP there is a normal form N such that P =E N .

97

May:
(May0) a.P ! b.Q = a.P & b.Q
(May1) P " P & Q
(May2) 0 " P
(May3) a.(P p⊕ Q) " a.P p⊕ a.Q

Must:
(Must1) P & Q " Q

(Must2) R &
"

i∈I

⊕

j∈Ji

pj · (ai.Qij ! Pij) "
$

i∈I

ai.
⊕

j∈Ji

pj · Qij ,

provided inits(R) ⊆ {ai}i∈I

Figure 5.9: Inequations

Proof: A fairly straightforward induction, heavily relying on (D1)–(D3). &'

We can also show that the axioms (P1)–(P3) and (D1) are in some sense all that are required to
reason about probabilistic choice. Let P =prob Q denote that equivalence of P and Q can be derived
using those axioms alone. Then we have the following property.

Lemma 5.58 Let P, Q ∈ nCSP. Then P = Q implies P =prob Q.

Here P = Q says that P and Q are the very same distributions of state-based processes in
sCSP; this is a much stronger prerequisite than P and Q being testing equivalent.
Proof: The axioms (P1)–(P3) and (D1) essentially allow any processes to be written in the unique
form

⊕
i∈I pisi, where the si ∈ sCSP are all different. &'

5.12 Inequational theories

In order to characterise the simulation preorders, and the associated testing preorders, we introduce
inequations . We write P "Emay Q when P " Q is derivable from the inequational theory obtained by
adding the four may inequations in Figure 5.9 to the equations in Figure 5.8. The first three additions,
(May0)–(May2), are used in the standard testing theory of CSP [Hoa85b, DNH84, Hen88]. For the
must case, in addition to the standard inequation (Must1), we require an inequational schema,
(Must2); this uses the notation inits(P) to denote the (finite) set of initial actions of P . Formally,

inits(0) = ∅
inits(a.P) = {a}

inits(P p⊕ Q) = inits(P) ∪ inits(Q)
inits(P ! Q) = inits(P) ∪ inits(Q)
inits(P & Q) = {τ}

The axiom (Must2) can equivalently be formulated as follows:
⊕

k∈K

$

-∈Lk

ak-.Rk- &
"

i∈I

⊕

j∈Ji

pj · (ai.Qij ! Pij) "
$

i∈I

ai.
⊕

j∈Ji

pj · Qij ,

provided {ak- | k ∈ K, 3 ∈ Kk} ⊆ {ai | i ∈ I} .

This is the case because a term R satisfies inits(R) ⊆ {ai}i∈I iff it can be converted into the form⊕

k∈K

$

-∈Lk

ak-.Rk- by means of axioms (D1), (P1)–(P3) and (E1)–(E3) of Figure 5.9. This axiom can

also be reformulated in an equivalent but more semantic style:

(Must2′) R &
!

i∈I Pi "
#

i∈I ai.Qi,

provided Pi
ai−→ Qi and R X−/−→ with X = Act\{ai}i∈I .

98

This is the case because P a−→ Q iff, up to the axioms in Figure 5.8, P has the form
⊕

j∈J pj ·
(a.Qj ! Pj) and Q has the form a.

⊕
j∈J pj · Qj for certain Pj , Qj and pj, for j ∈J .

Note that (Must2) can be used, together with (I1), to derive the dual of (May3) via the following
inference:

a.P p⊕ a.Q =E (a.P p⊕ a.Q) & (a.P p⊕ a.Q)
"Emust a.(P p⊕ Q)

where we write P "Emust Q when P " Q is derivable from the resulting inequational theory.
An important inequation that follows from (May1) and (P1) is

(May4) P p⊕ Q "Emay P & Q

saying that any probabilistic choice can be simulated by an internal choice. It is derived as follows:

P p⊕ Q "Emay (P & Q)p⊕ (P & Q)
=E (P & Q)

Likewise, we have
P & Q "Emust P p⊕ Q .

Theorem 5.59 For P, Q in nCSP, it holds that

(i) P "S Q if and only if P "Emay Q

(ii) P "FS Q if and only if P "Emust Q.

Proof: For one direction it is sufficient to check that the inequations, and the inequational schema
in Figure 5.9 are sound. For "S this has been done in [DvGH+07a], and the soundness of (Must1)
and (Must2′) for "FS is trivial. The converse, completeness, is established in the next section. &'

5.13 Completeness

The completeness proof of Theorem 5.59 depends on the following variation on the Derivative lemma
of [Mil89a]:

Lemma 5.60 (Derivative lemma) Let P, Q ∈ nCSP.

(i) If P τ̂=⇒ Q then P "Emust Q and Q "Emay P .

(ii) If P a=⇒ Q then a.Q "Emay P .

Proof: The proof of (i) proceeds in four stages. We only deal with "Emay , as the proof for "Emust

is entirely analogous.
First we show by structural induction on s ∈ sCSP ∩ nCSP that s τ−→ Q implies Q "Emay s.

So suppose s τ−→ Q . In case s has the form P1 & P2 it follows by the operational semantics of
pCSP that Q = P1 or Q = P2. Hence Q "Emay s by (May1). The only other possibility is that s
has the form s1 ! s2. In that case there must be a distribution ∆ such that either s1

τ−→ ∆ and
Q = ∆ ! s2, or s2

τ−→ ∆ and Q = s1 ! ∆. Using symmetry, we may restrict attention to the
first case. Let R be a term such that R = ∆. Then R ! s2 = ∆ ! s2 = Q , so Lemma 5.58
yields Q =prob R ! s2. By induction we have R "Emay s1, hence R ! s2 "Emay s1 ! s2, and thus
Q "Emay s.

Now we show that s τ̂−→ Q implies Q "Emay s. This follows because s τ̂−→ Q means that either
s τ−→ Q or Q = s, and in the latter case Lemma 5.58 yields Q =prob s.

Next we show that P τ̂−→ Q implies Q "Emay P . So suppose P τ̂−→ Q , that is

P =
∑

i∈I

pi · si si
τ̂−→ Qi Q =

∑

i∈I

pi · Qi

for some I, pi ∈ (0, 1], si ∈ sCSP ∩ nCSP and Qi ∈ nCSP. Now

99

1. P =
⊕

i∈I pi · si . By Lemma 5.58 we have P =prob
⊕

i∈I pi · si.

2. Q =
⊕

i∈I pi · Qi . Again Lemma 5.58 yields Q =prob
⊕

i∈I pi · Qi.

3. si
τ̂−→ Qi implies Qi "Emay si. Therefore,

⊕
i∈I pi · Qi "Emay

⊕
i∈I pi · si.

Combining (1), (2) and (3) we obtain Q "Emay P .
Finally, the general case, when P τ̂−→∗ ∆, is now a simple inductive argument on the length of

the derivation.
The proof of (ii) is similar: first we treat the case when s a−→ Q by structural induction, using

(May2); then the case P a−→ Q , exactly as above; and finally use part (i) to derive the general
case. &'

The completeness result now follows from the following two propositions.

Proposition 5.61 Let P and Q be in nCSP. Then P "S Q implies P "Emay Q.

Proof: The proof is by structural induction on P and Q, and we may assume that both P and Q
are in normal form because of Proposition 5.57. So take P, Q ∈ pCSP and suppose the claim has been
established for all subterms P ′ of P and Q′ of Q, of which at least one of the two is a strict subterm.
We start by proving that if P ∈ sCSP then we have

P "S Q implies P "Emay Q. (5.27)

There are two cases to consider.

1. P has the form P1 & P2. Since Pi "Emay P we know Pi "S P "S Q. We use induction to
obtain Pi "Emay Q, from which the result follows using (I1).

2. P has the form
#

i∈I ai.Pi. If I contains two or more elements then P may also be written as!
i∈I ai.Pi, using (May0) and (D2), and we may proceed as in case (1) above. If I is empty,

that is P is 0, then we can use (May2). So we are left with the possibility that P is a.P ′. Thus
suppose that a.P ′ "S Q . We proceed by a case analysis on the structure of Q.

• Q is a.Q′. We know from a.P ′ "S a.Q′ that P ′ "S Θ for some Θ with Q′ τ̂=⇒ Θ, thus
P ′ "S Q′. Therefore, we have P ′ "Emay Q′ by induction. It follows that a.P ′ "Emay a.Q′.

• Q is
#

j∈I aj .Qj with at least two elements in J . We use (May0) and then proceed as in
the next case.

• Q is Q1 & Q2. We know from a.P ′ "S Q1 & Q2 that P ′ "S Θ for some Θ such that
one of the following two conditions holds
(a) Qi

a=⇒ Θ for i = 1 or 2. In this case, a.P ′ "S Qi , hence a.P ′ "S Qi. By induction
we have a.P ′ "Emay Qi; then we apply (May1).

(b) Q1
a=⇒ Θ1 and Q2

a=⇒ Θ2 such that Θ = p · Θ1 + (1 − p) · Θ2 for some p ∈ (0, 1).
Let Θi = Q′

i for i = 1, 2. By the Derivative Lemma, we have a.Q′
1 "Emay Q1 and

a.Q′
2 "Emay Q2. Clearly, Q′

1 p⊕ Q′
2 = Θ, thus P ′ "S Q′

1 p⊕ Q′
2. By induction, we

infer that P ′ "Emay Q′
1 p⊕ Q′

2. So

a.P ′ "Emay a.(Q′
1 p⊕ Q′

2)
"Emay a.Q′

1 p⊕ a.Q′
2 (May3)

"Emay Q1 p⊕ Q2

"Emay Q1 & Q2 (May4)

• Q is Q1 p⊕ Q2. We know from a.P ′ "S Q1 p⊕ Q2 that P ′ "S Θ for some Θ such that
Q1 p⊕ Q2

a=⇒ Θ. From Lemma 5.19 we know that Θ must take the form p · Q′
1 + (1 −

p) · Q′
2 , where Qi

a=⇒ Q′
i for i = 1, 2. Hence P ′ "S Q′

1 p⊕ Q′
2, and by induction we

get P ′ "Emay Q′
1 p⊕ Q′

2. Then we can derive a.P ′ "Emay Q1 p⊕ Q2 as in the previous case.

100

Now we use (5.27) to show that P "S Q implies P "Emay Q. Suppose P "S Q. Applying Defini-
tion 5.15 with the understanding that any distribution Θ ∈ D(sCSP) can be written as Q′ for some
Q′ ∈ pCSP, this means that P "S Q′ for some Q τ̂=⇒ Q′ .
The Derivative Lemma yields Q′ "Emay Q. So it suffices to show P "Emay Q′. We know that
P "S Q′ means that

P =
∑

k∈K

rk · tk tk "S Q′
k Q′ =

∑

k∈K

rk · Q′
k

for some K, rk ∈ (0, 1], tk ∈ sCSP and Q′
k ∈ pCSP. Now

1. P =
⊕

k∈K rk · tk . By Lemma 5.58 we have P =prob
⊕

k∈K rk · tk.

2. Q′ =
⊕

k∈K rk · Q′
k . Again Lemma 5.58 yields Q′ =prob

⊕
k∈K rk · Q′

k.

3. tk "S Q′
k implies tk "Emay Q′

k by (5.27). Therefore,
⊕

k∈K rk · tk "Emay

⊕
k∈K rk · Q′

k.

Combining (1), (2) and (3) we obtain P "Emay Q′, hence P "Emay Q. &'

Proposition 5.62 Let P and Q be in nCSP. Then P "FS Q implies P "Emust Q.

Proof: Similar to the proof of Proposition 5.61, but using a reversed orientation of the preorders.
The only real difference is the case (2), which we consider now. So assume Q "FS P , where Q has
the form

#
i∈I ai.Qi. Let X be any set of actions such that X ∩ {ai}i∈I = ∅; then

#
i∈I ai.Qi

X−/−→.
Therefore, there exists a P ′ such that P τ̂=⇒ P ′ X−/−→. By the Derivative lemma,

P "Emust P ′ (5.28)

Since
#

i∈I ai.Qi
ai−→ Qi , there exist Pi, P ′

i , P
′′
i such that P τ̂=⇒ Pi ai−→ P ′

i
τ̂=⇒ P ′′

i and
Qi "FS P ′′

i . Now
P "Emust Pi (5.29)

using the Derivative lemma, and P ′
i "FS Qi, by Definition 5.15. By induction, we have P ′

i "Emust Qi,
hence $

i∈I

ai.P
′
i "Emust

$

i∈I

ai.Qi (5.30)

The desired result is now obtained as follows:
P "Emust P ′ &

"

i∈I

Pi by (I1), (5.28) and (5.29)

"Emust

$

i∈I

ai.P
′
i by (Must2′)

"Emust

$

i∈I

ai.Qi by (5.30) &'

Propositions 5.61 and 5.62 give us the completeness result stated in Theorem 5.59.

5.14 Summary and discussions

In this chapter we have studied three different aspects of may- and must testing preorders for finite
processes: (i) we have shown that the may preorder can be characterised as a co-inductive simulation
relation, and the must preorder as a failure simulation relation; (ii) we have given a characterisation of
both preorders in a finitary modal logic; and (iii) we have also provided complete axiomatisations for
both preorders over a probabilistic version of recursion-free CSP. Although we omitted our parallel
operator |A from the axiomatisations, it and similar CSP and CCS-like parallel operators can be
handled using standard techniques, in the must case at the expense of introducing auxiliary operators.

101

5.14.1 Probabilistic models

Models for probabilistic concurrent systems have been studied for a long time [Rab63, Der70, Var85b,
JP89]. One of the first models obtained as a simple adaptation of the traditional labelled transition
systems from concurrency theory appears in [LS91]. Their probabilistic transition systems are classical
labelled transition systems, where in addition every transition is labelled with a probability, a real
number in the interval [0,1], such that for every state s and every action a, the probabilities of all
a-labelled transitions leaving s sum up to either 0 or 1.

In [GJS90] a similar model was proposed, but where the probabilities of all transitions leaving s
sum up to either 0 or 1. [GSST90] propose the terminology reactive for the type of model studied in
[LS91], and generative for the type of model studied in [GJS90]. In a generative model, a process can
be considered to spontaneously generate actions, unless restricted by the environment; in generating
actions, a probabilistic choice is made between all transitions that can be taken from a given state,
even if they have different labels. In a reactive model, on the other hand, processes are supposed to
perform actions only in response to requests by the environment. The choice between two different
actions is therefore not under the control of the process itself. When the environment requests a
specific action, a probabilistic choice is made between all transitions (if any) that are labelled with
the requested action.

In the above-mentioned models, the nondeterministic choice that can be modelled by non-probabilistic
labelled transition systems is replaced by a probabilistic choice (and in the generative model also a
deterministic choice, a choice between different actions, is made probabilistic). Hence reactive and
generative probabilistic transition systems do not generalise non-probabilistic labelled transition sys-
tems. A model, or rather a calculus, that features both nondeterministic and reactive probabilistic
choice was proposed in [HJ90]. It was slightly reformulated in [SL94] under the name simple proba-
bilistic automata, and is essentially the same model we use in this paper.

Following the classification above, our model is reactive rather than generative. The reactive
model of [LS91] can be reformulated by saying that a state s has at most one outgoing transition
for any action a, and this transition ends in a probability distribution over its successor states. The
generalisation of [SL94], that we use here as well, is that a state can have multiple outgoing transitions
with the same label, each ending in a probability distribution. Simple probabilistic automata are a
special case of the probabilistic automata of [SL94], that also generalise the generative models of
probabilistic processes to a setting with nondeterministic choice.

5.14.2 Bisimulation, and the alternating approach

Whereas the testing semantics explored in the present paper is based on the idea that processes should
be distinguished only when there is a compelling reason to do so, (strong) bisimulation semantics
[Mil89a] is based on the idea that processes should be identified only when there is a compelling
reason to do so. It has been extended to reactive probabilistic processes in [LS91], to generative ones
in [GSST90], and to processes combining nondeterminism and probability in [HJ90]. The latter paper
also features a complete axiomatisation of a probabilistic extension of recursion-free CCS.

Weak and branching bisimulation [Mil89a, GW96] are versions of strong bisimulation that respect
the hidden nature of the internal action τ . Generalisations of these notions to nondeterministic
probabilistic processes appear, amongst others, in [SL94, Seg95, PLS00, AB01, BS01, DP05a, AW06],
with complete axiomatisations reported in [BS01, DP05a, DPP05, ABW06]. The authors of these
paper tend to distinguish whether they work in an alternating [PLS00, AB01, AW06, ABW06] or a
non-alternating model of probabilistic processes [SL94, Seg95, DP05a, DPP05], the two approaches
being compared in [BS01]. The non-alternating model stems from [SL94] and is similar to our
model of Section 5.2.2. The alternating model is attributed to [HJ90], and resembles our graphical
representation of processes in Section 5.2.4. It is easy to see that mathematically the alternating
and non-alternating model can be translated into each other without loss of information [BS01]. The
difference between the two is one of interpretation. In the alternating interpretation, the nodes of form
◦ in our graphical representations are interpreted as actual states a process can be in, whereas in the
non-alternating representation they are not. Take for example the process R1 = a.(b 1

2
⊕ c) depicted

102

in Figure 5.5. In the alternating representation this process passes through a state in which a has
already happened, but the probabilistic choice between b and c has not yet been made. In the non-
alternating interpretation on the other hand the execution of a is what constitutes this probabilistic
choice; after doing a there is a fifty-fifty change of ending up in either state. Although in strong
bisimulation semantics the alternating and non-alternating interpretation lead to the same semantic
equivalence, in weak and branching bisimulation semantics the resulting equivalences are different,
as illustrated in [PLS00, BS01, AW06]. Our testing and simulation preorders as presented here can
be classified as non-alternating; however, we believe that an alternating approach would lead to the
very same preorders.

Early additions of probability to CSP include work by Lowe [Low93], Seidel [Sei95] and Morgan
et al. [MMSS96]; but all of them were forced to make compromises of some kind in order to address
the potentially complicated interactions between the three forms of choice. The last [MMSS96] for
example applied the Jones/Plotkin probabilistic powerdomain [JP89] directly to the failures model of
CSP [BHR84], the resulting compromise being that probability distributed outwards through all other
operators; one controversial result of that was that internal choice was no longer idempotent, and that
it was “clairvoyant” in the sense that it could adapt to probabilistic-choice outcomes that had not
yet occurred. Mislove addressed this problem in [Mis00] by presenting a denotational model in which
internal choice distributed outwards through probabilistic choice. However, the distributivities of both
[MMSS96] and [Mis00] constitute identifications that cannot be justified by our testing approach; see
[DvGH+07a].

In Jou and Smolka [JS90], as in [Low93, Sei95], probabilistic equivalences based on traces, failures
and readies are defined. These equivalences are coarser than =pmay. For let

P := a.((b.d ! c.e) 1
2
⊕ (b.f ! c.g))

Q := a.((b.d ! c.g) 1
2
⊕ (b.f ! c.e)).

For example, the two processes cannot be distinguished by the equivalences of [JS90, Low93, Sei95].
However, we can tell them apart by the test:

T := a.((b.d.ω 1
2
⊕ c.e.ω) & (b.f.ω 1

2
⊕ c.g.ω))

since Apply(T, P) = {0, 1
2 , 1} and Apply(T, Q) = { 1

2}, that is, P /"pmay Q.

5.14.3 Testing

Probabilistic extensions of testing equivalences [DNH84] have been widely studied. There are two
different proposals on how to include probabilistic choice: (i) a test should be non-probabilistic,
i.e., there is no occurrence of probabilistic choice in a test [LS91, Chr90, JHSY94, KN98, GRN99];
or (ii) a test can be probabilistic, i.e., probabilistic choice may occur in tests as well as processes
[CDSY99, YL92, Núñ03, JY95, Seg96, JY02, CCR+03a]. This chatper adopts the second approach.

Some work [LS91, Chr90, CDSY99, Núñ03] does not consider nondeterminism but deals exclusively
with fully probabilistic processes. In this setting a process passes a test with a unique probability
instead of a set of probabilities, and testing preorders in the style of [DNH84] have been characterised
in terms of probabilistic traces [CDSY99] and probabilistic acceptance trees [Núñ03]. Cazorla et
al. [CCR+03a] extended the results of [Núñ03] with nondeterminism, but suffered from the same
problems as [MMSS96].

Generalisations of the testing theory of [DNH84] to probabilistic systems first appear in [Chr90]
and [CSZ92], for generative processes without nondeterministic choice. The application of testing to
the probabilistic processes we consider here stems from [YL92]. In [Seg96] a richer testing framework
is proposed, for essentially the same class of processes, namely one in which multiple success actions
ωi for i = 1, 2, . . . exists, and the application of a test to a process yields not a set of real numbers,
indicating success probabilities, but a set of tuples of real numbers, the ith component in the tuple
indicating the success probability of ωi. Segala [Seg96] defined two preorders called trace distribution
precongruence ("TD) and failure distribution precongruence ("FD). He proved that the former

103

coincides with an infinitary version of "̂Ω
pmay (cf. Definition 5.35) and that the latter coincides with

an infinitary version of "̂Ω
pmust. In [LSV03] it has been shown that "TD coincides with a notion of

simulation akin to "S . Other probabilistic extensions of simulation occurring in the literature are
reviewed in [DvGH+07a].

In [JHSY94], a testing theory is proposed that associates a reward, a non-negative real number,
to every success-state in a test process; in calculating the set of results of applying a test to a process,
the probabilities of reaching a success-state are multiplied by the reward associated to that state.
They allow non-probabilistic tests only, but apply these to arbitrary nondeterministic probabilistic
processes, and provide a trace-like denotational characterisation of the resulting may-testing preorder.
Denotational characterisations of the variant of our testing preorders in which only τ -free processes
are allowed as test-processes appear in [JY95, JY99]. These characterisations are improved in [JY02],
discussed below.

In [CCR+03b] a testing theory for nondeterministic probabilistic processes is developed in which,
as in [MMSS96], all probabilistic choices are resolved first. A consequence of this is that the idem-
potence of internal choice (our axiom (I1)) must be sacrificed. Some papers distill preorders for
probabilistic processes by means of testing scenarios in which the premise that a test is itself a
process is given up. These include [LS91, KN98] and [SV03].

5.14.4 Simulations

Four different notions of simulation for probabilistic processes occur in the literature, each a gener-
alisation of the well know concept of simulation for nondeterministic processes [Par81]. The most
straightforward generalisation [JL91] defines a simulation as a relation R between states, satisfying,
for all s, t, µ,Θ,

if sRt and s µ−→ Θ then there is a ∆′ with t µ−→ ∆′ and Θ R ∆′.

This simulation induces a preorder that does not satisfy the law

a.(P p⊕ Q) " a.P ! a.Q

which holds in probabilistic may testing semantics. The reason is that the process a.P ! a.Q can
answer the initial a-move of a.(P p⊕ Q) by taking either the a-move to P , or the a-move to Q, but
not by a probabilistic combination of the two. Such probabilistic combinations are allowed in the
probabilistic simulation of [SL94], which induces a coarser preorder on processes, satisfying the above
law. In our terminology it can be defined by changing the requirement above into

if sRt and s µ−→ Θ then there is a ∆′ with t µ−→ ∆′ and Θ R ∆′.

A weak version of this probabilistic simulation, abstracting from the internal action τ , weakens this
requirement into

if sRt and s µ−→ Θ then there is a ∆′ with t µ̂=⇒ ∆′ and Θ R ∆′.

Nevertheless, also this probabilistic simulation does not satisfy all the laws we have shown to hold
for probabilistic may testing. In particular, it does not satisfy the law

a.(P p⊕ Q) " a.P p⊕ a.Q.

Consider for instance the processes R1 = a.b.c.(d 1
2
⊕ e) and R2 = a.(b.c.d 1

2
⊕ b.c.e). The law (Q1)

above, which holds for probabilistic may testing, would yield R1 " R2. If we are to relate these
processes via a probabilistic simulation à la [SL94], the state c.(d 1

2
⊕ e) of R1, reachable after an a

and a b-step, needs to be related to the distribution (c.d 1
2
⊕ c.e) of R2, containing the two states a.b

and a.c. This relation cannot be obtained through lifting, as this would entail relating the single state
c.(d 1

2
⊕ e) to each of the states c.d and c.e. Such a relation would not be sound, because c.(d 1

2
⊕ e)

is able to perform the sequence of actions ce half of the time, whereas the process c.d cannot mimic
this.

104

In [JY02], another notion of simulation is proposed, whose definition is too complicated to explain
in a few sentences. They show for a class of probabilistic processes that do not contain τ -actions, that
probabilistic may testing is captured exactly by their notion of simulation. Nevertheless, their notion
of simulation makes strictly more identifications than ours. As an example, consider the processes
R1 = a 1

2
⊕ (b ! c) and R3 = (a ! b) 1

2
⊕ (a ! c) of Example 5.10, which also appear in Section

5 of [JY02]. There it is shown that R1 " R3 holds in their semantics. However, in our framework
we have R1 /"pmay R3, as demonstrated in Example 5.10. The difference can only be explained by
the circumstance that in [JY02] processes, and hence also tests, may not have internal actions. So
this example shows that tests with internal moves can distinguish more processes than tests without
internal moves, even when applied to processes that have no internal moves themselves.

Our notion of simulation first appears in [Seg95], although the preorder "S of Definition 5.15 is
new. Segala has no expressions that denote distributions and consequently is only interested in the
restriction of the simulation preorder to states (automata in his framework). It turns out that for
states s and t (which in our framework are expressions in the set Sp) we have s "S t iff s "S t,
so on their common domain of definition, the simulation preorder of [Seg95] agrees with ours. This
notion of simulation is strictly more discriminating than the simulation of [JY02], and strictly less
discriminating than the ones from [SL94] and [JL91].

105

106

Chapter 6

Other Probabilistic Models

In this chapter we give a brief account of a probabilistic model called distcrete-time Markov chains and
a probabilistic temporal logic called probabilistic computation tree logic as well as a model checking
algorithm. We then move to two other important models: Markov decision processes and stochastic
games. The description closely follows [KNP07, KKNP08].

6.1 Probabilistic Kripke structures

So far we have studied various semantics for pLTSs which are probabilistic extensions of LTSs. In
this chapter we will see some models that can be considered as probabilistic extensions of Kripke
structures. To put it in a nutshell, Kripke structures are directed graphs whose nodes are labelled.
So it is not surprising that they have intimate relation with LTSs which are essentially directed graphs
whose edges are labelled.

We presuppose a set AP of atomic propositions.

Definition 6.1 A Kripke structure is a triple (S, L,→), where

1. S is a set of states

2. L is a labelling function L : S → 2AP

3. →⊆ S × S is the transition relation.

Bisimulation relation can be easily defined on the states of a Kripke structure.

Definition 6.2 A binary relation R on the states of a Kripke structure is a simulation if whenever
s1 R s2:

• L(s1) = L(s2)

• for all s′1 with s1 −→ s′1 there exists some s′2 such that s2 −→ s′2 and s′1 R s′2.

The relation R is a bisimulation if both R and R−1 are simulations. We write ≺ and ∼ for the
largest simulation and bisimulation, respectively.

Given a model M, which can be a Kripke structure or an LTS, a transformation f consists of a
function that takes any state s in M to a state f(s) in f(M).

Proposition 6.3 1. A Kripke structure K can be transformed into an LTS f(K) such that s ∼ t
iff f(s) ∼ f(t).

2. An LTS L can be transformed into a Kripke structure f(L) such that s ∼ t iff f(s) ∼ f(t).
&'

107

We will prove the probabilistic counterpart of the proposition in the end of this section.

Definition 6.4 A probabilistic Kripke structure is a triple (S, L,→), where

1. S is a set of states

2. L is a labelling function L : S → 2AP

3. →⊆ S ×D(S) is the transition relation.

Bisimulation relation can also be defined on the states of a probabilistic Kripke structure.

Definition 6.5 A binary relation R on the states of a Kripke structure is a simulation if whenever
s1 R s2:

• L(s1) = L(s2)

• for all s′1 with s1 −→ ∆1 there exists some ∆2 such that s2 −→ ∆2 and ∆1 R ∆2.

The relation R is a bisimulation if both R and R−1 are simulations. We write ≺K and ∼K for the
largest simulation and bisimulation, respectively.

Proposition 6.6 1. A probabilistic Kripke structure K can be transformed into a pLTS f(K) such
that s ∼K t iff f(s) ∼ f(t).

2. A pLTS L can be transformed into a probabilistic Kripke structure f(L) such that s ∼ t iff
f(s) ∼K f(t).

Proof:

1. Let K = (S, L,→), we take f(K) be the pLTS (Ŝ ∪ {⊥}, AP,→), where

• Ŝ is the set {ŝ | s ∈ S} and f(s) = ŝ for all s ∈ S.

• s → ∆ iff ŝ L(s)−−→ ∆̂; s /−→ iff ŝ L(s)−−→ ⊥.

(⇒) Let R = {(ŝ, t̂) | s ∼K t}∪{(⊥,⊥)}. We show that R is a bisimulation. Suppose (ŝ, t̂) ∈ R
and ŝ a−→ ∆. There are two possibilities: (i) ∆ = ⊥; (ii) ∆ = ∆̂1. In (i) we have that L(s) = a
and s /−→. Since s ∼K t, we know that L(t) = a and t /−→. Therefore, t̂ a−→ ⊥ and ⊥ R ⊥
trivially. In (ii) we have that L(s) = a and s −→ ∆1. Since s ∼K t, we know that L(t) = a and
t −→ Θ1 with ∆1 ∼K Θ1. It follows that t̂ a−→ Θ̂1 and ∆̂1 R Θ̂1.

(⇐) Let R = {(s, t) | ŝ ∼ t̂}. We show that R is a bisimulation. Suppose (s, t) ∈ R. Let
L(s) = a, then we have ŝ a−→ ∆ for some distribution ∆. Since ŝ ∼ t̂, there must be a matching
transition from t̂ that is labelled by a. Hence, we see that L(t) = a. Suppose s −→ ∆1, then
ŝ a−→ ∆̂1. To match the transition there exists a transition t̂ a−→ Θ with ∆̂1 ∼ Θ. Note that
Θ /= ⊥ because all states in B∆̂1C are in the form ŝ for some s ∈ S and ŝ L(s)−−→ that cannot be
matched by ⊥ which is a deadlock state. So Θ = Θ̂1 for some Θ1 such that t −→ Θ1. It is easy
to see from ∆̂1 ∼ Θ̂1 that ∆1 R Θ1.

2. Let L = (S, A,→), we take f(L) be the probabilistic Kripke structure (Ŝ ∪ S′, L,→), where

• Ŝ = {ŝ | s ∈ S} and S′ = {s(a,∆) | s a−→ ∆}.

• every transition s a−→ ∆ in L is replaced by two transitions ŝ −→ s(a,∆) and s(a,∆) −→ ∆̂.

• L(ŝ) = ⊥ for all s ∈ S and L(s(a,∆)) = a.

108

(⇒) We construct the relation R = {(ŝ, t̂) | s ∼ t} ∪ {(s(a,∆), t(a,Θ)) | ∆ ∼ Θ} and show R
is a bisimulation. Suppose (s(a,∆), t(a,Θ)) ∈ R, we know that L(s(a,∆)) = a = L(t(a,Θ)),
s(a,∆) −→ ∆̂, t(a,Θ) −→ Θ̂ and ∆ ∼ Θ. The last condition means that ∆̂ R Θ̂. Suppose
(ŝ, t̂) ∈ R. Clearly, L(ŝ) = ⊥ = L(t̂). If ŝ −→ s(a,∆), then we must have s a−→ ∆. Since
s ∼ t, there is a matching transition t a−→ Θ such that ∆ ∼ Θ. It follows that t̂ −→ s(a,Θ) and
s(a,∆) R t(a,Θ).

(⇐) We show that the relation R = {(s, t) | ŝ ∼K t̂} is a bisimulation. Suppose (s, t) ∈ R and
s a−→ ∆. Then we know that ŝ −→ s(a,∆) and s(a,∆) −→ ∆̂. Since ŝ ∼K t̂, we have t̂ −→ Θ1

for some distribution Θ1 such that s(a,∆) ∼K Θ1. Note that each state t̂ only leads to point
distributions after one step of transition in f(L). Hence, Θ1 = t(a,Θ) for some distribution Θ
and moreover s(a,∆) ∼K t(a,Θ). Since s(a,∆) has the only transition s(a,∆) −→ ∆ and t(a,Θ) has
the only transition t(a,Θ) −→ Θ, we infer the required results that ∆ ∼K Θ and t a−→ Θ.

&'

6.2 Discrete-time Markov chains

Unlike probabilistic Kripke structures, which add probailistic choices to Kripke structures, Markov
chains replace nondeterministic choices in Kripke structures with probabilistic choices.

Definition 6.7 A labelled distcrete-time Markov chains (DTMC) is a tuple (S, s◦,P, L) where

• S is a finite set of states;

• s◦ is the initial state;

• P : S × S → [0, 1] is the transition probability matrix where
∑

s′∈S P(s, s′) = 1 for all s ∈ S;

• L : S → 2AP is a labelling function which assigns to each state s ∈ S the set L(s) of atomic
propositions that are valid in the state.

Each element P(s, s′) of the transition probability matrix gives the probability of making a transition
from state s to state s′. The probabilities of transitions emanating from a single state must sum up
to one. To satisfy this requirement, we model a terminating state, which cannot move to another
state, by adding a self-loop with probability 1.

Example 6.8 Consider the DTMC M = ({s0, s1, s2}, s0,P, L). It has three states with s0 being the
initial state. The transition probability matrix P is given by:

P =

0 0.1 0.9
1 0 0
0 0 1

The atomic propositions used to label states are taken from the set AP = {fail, succ}. The labelling
function L allows us to assign meaningful names to states. It is defined as follows:

L(s0) = ∅, L(s1) = {fail}, L(s2) = {succ}.

In Figure 6.1 we gives the graphical presentation of the DTMC. States are drawn as circles and
transitions as arrows, labelled with their associated probabilities. The initial state is indicated by an
incoming short arrow. The DTMC models a process that tries to send a message. With probability
0.9 it successfully sends the message, and with probability 0.1 it fails and then restarts the process.

109

s0

s1

{try}

s2

{succ}

0.1

0.9

1

1

Figure 6.1: A graphical presentation of DTMC

An execution of a DTMC M = (S, s◦,P, L) is represented by a path obtained by resolving the
probabilistic choice at each state. Formally, a path ξ is a non-empty sequence of states s0s1s2... where
si ∈ S and P(si, si+1) > 0 for all i ≥ 0. A path can be either finite or infinite. We write ξ(i) for
the i-th state of a path ξ, and |ξ| the length of ξ which is the number of transitions gone through
by the path. A finite path ξ1 is said to be a prefix of the infinite path ξ2 if ξ1(i) = ξ2(i) for all
0 ≤ i ≤ |ξ1|. The set of all finite and infinite paths of M starting in state s are denoted by PathM

f (s)
and PathM (s), respectively.

In order to reason about the probabilistic behaviour of the DTMC, we need to determine the
probability that certain paths are taken. Below we define a probability measure by using the transition
probability matrix P. For any finite path ξ ∈ PathM

f (s), we define the probability

Ps(ξ) :=
{

1 if n = 0
P(ξ(0), ξ(1)) · · ·P(ξ(n − 1), ξ(n)) otherwise

where n = |ξ|. We define the cylinder set or cone C(ξ) ⊆ PathM (s) as the set of all infinite paths
with prefix ξ; formally

C(ξ) := {ξ′ ∈ PathM (s) | ξ is a prefix of ξ′}.
By Proposition 1.23, there exists a unique smallest σ-algebra on PathM (s), denoted XPathM (s), which
contains all the sets C(ξ) with ξ ranging over the finite paths PathM

f (s). As the set of cylin-
ders forms a semi-ring over (PathM (s),XPathM (s)), we can apply Theorem 1.26 and define Prs on
(PathM (s),XPathM (s)) as the unique measure such that

Prs(C(ξ)) := Ps(ξ) for all ξ ∈ PathM
f (s).

Note that C(s) = PathM (s) and Ps(s) = 1, so Prs is in fact a probability measure.

Example 6.9 Consider the DTMC in Figure 6.1. There are three distinct paths of length 3 starting
in state s0. The probabilities given to the cylinder sets associated with the paths by the probability
measure Prs0 are:

Prs0(C(s0s1s0s1)) = 0.1 · 1.0 · 0.1 = 0.01
Prs0(C(s0s1s0s2)) = 0.1 · 1.0 · 0.9 = 0.09
Prs0(C(s0s2s2s2)) = 0.9 · 1.0 · 1.0 = 0.90

6.3 Probabilistic computation tree logic

To specify some properties of interest for DTMCs, we use probabilistic computation tree logic (PCTL)
[HJ94], a probabilistic extension of the temporal logic CTL.

Definition 6.10 The syntax of PCTL is defined as follows:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P!"p[φ]
φ ::= X Φ | Φ U≤k Φ

where a is an atomic proposition, "#∈ {<,≤,≥, >}, p ∈ [0, 1] and k ∈ N ∪ {∞}.

110

In the above definition, we distinguish between state formulae Φ and path formulae φ, which are
evaluated over states and paths, respectively. State formulae are self-explanatory, except for P!"p[φ].
It is satisfied by state s if the probability of taking a path from s satisfying φ is in the interval specified
by "# p. For the two path formulae, X Φ is true if Φ is satisfied in the next state and Φ U≤k Ψ is true
if Ψ is satisfied within k time-steps and Φ is true up until that point.

The semantics of PCTL over DTMCs is defined as follows.

Definition 6.11 Let M = (S, s◦,P, L) be a DTMC. For any state s ∈ S, the satisfaction relation |=
is defined inductively by:

s |= true for all s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s /|= Φ
s |= Φ ∧ Ψ ⇔ s |= Φ ∧ s |= Ψ
s |= P!"p[φ] ⇔ ProbM (s,φ) "# p

where
ProbM (s,φ) := Prs{ξ ∈ PathM (s) | ξ |= φ}

and for any path ξ ∈ PathM (s):

ξ |= X Φ ⇔ ξ(1) |= Φ
ξ |= Φ U≤k Ψ ⇔ ∃i ∈ N : i ≤ k ∧ ξ(i) |= Ψ ∧ (∀j < i : ξ(j) |= Φ).

Note that, for any state and path formula φ, the set {ξ ∈ PathM (s) | ξ |= φ} is a measurable set of
(PathM (s),XPathM (s)), see for example [Var85a], and hence Prs is well defined over this set. Observe
that some useful operators are derivable, as shown by the following logical equivalences:

false ≡ ¬true
Φ ∨ Ψ ≡ ¬(¬Φ ∧ ¬Ψ)

Φ → Ψ ≡ ¬Φ ∨ Ψ
♦Φ ≡ true U≤∞ Φ

♦≤kΦ ≡ true U≤k Φ
%Φ ≡ ¬♦¬Φ

!≤kΦ ≡ ¬♦≤k¬Φ
∃♦Φ ≡ P>0[♦Φ]

P!"p[φ] ≡ P!"1−p[¬φ]

where < ≡>, ≤ ≡≥, ≥ ≡≤ and > ≡<. Intuitively, ♦Φ means that Φ is eventually satisfied and
its bound variant ♦≤kΦ means that Φ is satisfied within k time-steps. Dually, a path satisfies !Φ
if every state of the path satisfies Φ and its bound variant !≤kΦ means that Φ is true in the first
k states of the path. Notice that ∀♦Φ and P≥1[♦Φ] are not equivalent. For example, consider the
DTMC in Figure 6.1. State s0 satisfies P≥1[♦succ] since the probability of reaching s2 is 1. However,
there is an infinite path s0s1s0s1.... which never reaches s2. Hence, ∀♦succ is not satisfied in state
s0.

6.4 Model checking PCTL

Given a DTMC M = (S, s◦,P, L) and a PCTL formula Φ, we are interested in the states which satisfy
Φ, i.e. the set Sat(Φ) = {s ∈ S | s |= Φ}. They can be computed by the model checking algorithm
presented in [CY88, HJ94, CY95].

The algorithm has the same structure as that of the model checking algorithm for CTL [CES86].
Firstly, the parse tree of the formula Φ is constructed. Each node of the tree is labelled with a
subformula of Φ; the root is labelled with Φ itself and the leaves are labelled with either true or an

111

atomic proposition. The algorithm recursively computes the set of states satisfying each subformula
in a bottom-up way:

Sat(true) = S
Sat(a) = {s ∈ S | a ∈ L(s)}

Sat(¬Φ) = S\Sat(Φ)
Sat(Φ ∧ Ψ) = Sat(Φ) ∩ Sat(Ψ)
Sat(P!"p[φ]) = {s ∈ S | ProbM (s,φ) "# p}.

For most of the formulae, model checking is trivial to implement. The exceptions are formulae of the
form P!"p[φ]. We distinguish two cases: P!"p[X Φ] and P!"p[Φ U≤k Ψ], and we assume that the sets
Sat(Φ), Sat(Ψ) have already been computed.

P!"p[X Φ] formulae In this case, we need to compute the probability ProbM (s, X Φ) for each
s ∈ S. For any particular state s, we have

ProbM (s, X Φ) =
∑

s′∈Sat(Φ)

P(s, s′).

To obtain the vector ProbM (X Φ) of probabilities for all states, we use a state-indexed column vector
Φ with Φ(s) = 1 if s ∈ Sat(Φ), 0 otherwise. Then ProbM (X Φ) is calculated via the matrix-vector
multiplication

ProbM (X Φ) = P · Φ .

P!"p[Φ U≤k Ψ] formulae In this cse, we need to compute the probabilities ProbM (s, Φ U≤k Ψ)
for all state s where k ∈ N ∪ {∞}.

Case 1 : k ∈ N. For s ∈ S and k ∈ N, it holds that

ProbM (s, Φ U≤k Ψ) =

1 if s ∈ Sat(Ψ)
0 if (s /∈ Sat(Ψ) ∧ k = 0) ∨ s ∈ Sat(¬Φ ∧ ¬Ψ)∑

s′∈S P(s, s′) · ProbM (s′, Φ U≤k−1 Ψ) otherwise.

Definition 6.12 Given a transition probability matrix P, let the transformed matrix P[Φ] be defined
as follows: if s /|= Φ then P[Φ](s, s′) = P(s, s′); if s |= Φ then P[Φ](s, s) = 1 and P[Φ](s, s′) = 0 for
all s′ /= s.

It is shown in [KNP07] that the vector of probabilities ProbM (Φ U≤k Ψ) can be computed using the
following matrix and vector multiplications

ProbM (Φ U≤k Ψ) = (P[¬Φ ∨ Ψ])k · Ψ .

Case 2 : k = ∞. We abbreviate U∞ as U. The vector of probabilities ProbM (Φ U Ψ) can be
computed as the least solution of the linear equation system

ProbM (s, Φ U Ψ) =

1 if s ∈ Sat(Ψ)
0 if s ∈ Sat(¬Φ ∧ ¬Ψ)∑

s′∈S P(s, s′) · ProbM (s′, Φ U Ψ) otherwise.

To simplify the computation we transform this equation system into one with a unique solution. We
first find all the states s for which ProbM (s, Φ U Ψ) is exactly 0 or 1, i.e. we compute the two sets
of states:

Sat(P≤0[Φ U Ψ]) = {s ∈ S | ProbM (s, Φ U Ψ) = 0}
Sat(P≥1[Φ U Ψ]) = {s ∈ S | ProbM (s, Φ U Ψ) = 1}.

They can be determined with the algorithms Prob0 and Prob1.

112

Procedure 7 Prob0(Sat(Φ), Sat(Ψ))
R := Sat(Ψ)
done := false
while done = false do

R′ := R ∪ {s ∈ Sat(Φ) | ∃s′ ∈ R : P(s, s′) > 0}
if R′ = R then

done := true
end if
R := R′

end while
return S\R

Procedure 8 Prob1(Sat(Φ), Sat(Ψ), Sat(P≤0[Φ U Ψ]))
R := Sat(P≤0[Φ U Ψ])
done := false
while done = false do

R′ := R ∪ {s ∈ Sat(Φ)\Sat(Ψ) | ∃s′ ∈ R : P(s, s′) > 0}
if R′ = R then

done := true
end if
R := R′

end while
return S\R

The probabilities ProbM (s, Φ U Ψ) can then be computed as the unique solution of the following
linear equation system

ProbM (s, Φ U Ψ) =

1 if s ∈ Sat(P≥1[Φ U Ψ])
0 if s ∈ Sat(P≤0[Φ U Ψ])∑

s′∈S P(s, s′) · ProbM (s′, Φ U Ψ) otherwise.

The linear equation system can be solved by many standard methods such as Gaussian elimination,
L/U decomposition, Jacobi and Gauss-Seidel iteration.

Discrete-time Markov chains can be generalised to a model called continuous-time Markov chains
(CTMC), mainly used in performance analysis. Both DTMCs and CTMCs can be extended with
rewards. For a detailed account of these models and their use with the probabilistic model checker
PRISM, see [KNP07].

6.5 Markov decision processes

Let R≥0 denote the set of non-negative reals. Markov decision processes are obtained form proba-
bilistic Kripke structures by adding rewards to each transition. The formal definition is as follows.

Definition 6.13 A Markov decision process (MDP) is a tuple (S, s◦,Steps , r) where

• S is a set of states;

• s◦ is the initial state;

• Steps : S → 2D(S) is a probabilistic transition function;

• r : S ×D(S) → R≥0 is a reward function.

113

A probabilistic transition s ∆−→ s′ is made from a state s by first nondeterministically selecting a
distribution ∆ ∈ Steps(s) and then making a probabilistic choice of target state s′ according to the
distribution ∆. A path of an MDP represents a particular resolution of both nondeterminism and
probability. Formally, a path of an MDP is a non-empty finite or infinite sequence of probabilistic
transitions:

ξ = s0
∆0−→ s1

∆1−→ · · ·

such that ∆i(si+1) > 0 for all i ≥ 0. We denote by ξ(i) the state si and by ξ[i] the distribution ∆i.
For a finite path ξ, we let |ξ| denote the length of ξ (i.e. the number of transitions) and last(ξ) be
its final state. Finally, ξ(i) denotes the prefix of length i of ξ.

In contrast to a path, an adversary (sometimes also known as a scheduler or policy) represents
a particular resolution of nondeterminism only. More precisely, an adversary is a function mapping
every finite path ξ to a distribution ∆ ∈ Steps(last(ξ)). For any state s ∈ S and adversary A, let
PathA

f (s) and PathA(s) denote the sets of finite and infinite paths starting in s that correspond to A.

Definition 6.14 An adversary A is called memoryless (or simple) if, for any finite paths ξ and ξ′
for which last(ξ) = last(ξ′), we have A(ξ) = A(ξ′).

The behaviour of an MDP from a state s, under a given adversary A, is fully probabilistic and is
described by a probability space (PathA(s),XPathA(s),PrA

s) over the infinite paths corresponding to
A that start in s. This can be defined in standard fashion, as we did in Section 6.2. Based on this, we
introduce two quantitative measures for MDPs which together form the basis for probabilistic model
checking of MDPs [dA97, BK98]. The first measure is probabilistic reachability, which refers to the
probability of reaching a set of target states. For adversary A, the probability of reaching the target
set F ⊆ S from state s is given by:

pA
s (F) := PrA

s {ξ ∈ PathA(s) | ∃i ∈ N : ξ(i) ∈ F}.

The second measure is expected reachability, which refers to the expected reward accumulated before
reaching a set of target states. For an adversary A, the expected reward of reaching the target set F
from state s, denoted eA

s (F), is defined as the usual expectation of the function r(F, ·) (which returns,
for a given path, the total reward accumulated until a state in F is reached along the path) with
respect to the probability measure PrA

s . More precisely:

eA
s (F) :=

∫

ξ∈PathA(s)
r(F, ξ) dPrA

s

where for any path ξ ∈ PathA(s) :

r(F, ξ) :=
{ ∑min{j|ξ(j)∈F}

i=1 r(ξ(i − 1), ξ[i − 1]) if ∃j ∈ N : ξ(j) ∈ F
∞ otherwise.

For simplicity, we have defined the reward of a path which does not reach F to be 1, even though
the total reward of the path may not be infinite. Essentially, this means that the expected reward of
reaching F from s under A is finite if and only if, under the adversary A, a state in F is reached from
s with probability 1. Quantifying over all adversaries, we consider both the minimum and maximum
values of these measures.

Definition 6.15 For an MDP (S, s◦,Steps, r), reachability objective F ⊆ S and state s ∈ S, the
minimum and maximum reachability probabilities of reaching F from s are defined by

pmin
s (F) = infA pA

s (F) and pmax
s (F) = supA pA

s (F)

and the minimum and maximum expected rewards of reaching F from s are defined by

emin
s (F) = infA eA

s (F) and emax
s (F) = supA eA

s (F).

114

Computing values for probabilistic and expected reachability reduces to the stochastic shortest path
problem for Markov decision processes; see for example [BT91, dA99]. A key result is that optimality
with respect to probabilistic and expected reachability can always be achieved with memoryless
adversaries. A consequence of this is that these quantities can be computed through an iterative
processes known as value iteration, as the following proposition says.

Proposition 6.16 Consider an MDP (S, s◦,Steps , r) and set of target states F ⊆ S.

• The sequences of vectors 〈pmin
n 〉n∈N and 〈pmax

n 〉n∈N converge to the minimum and maximum
probability of reaching the target set F , where for any state s ∈ S:

– if s ∈ F , then pmin
n (s) = pmax

n (s) = 1 for all n ∈ N;
– if s /∈ F , then:

pmin
n (s) =

{
0 if n = 0
min∆∈Steps(s)

∑
s′∈S ∆(s′) · pmin

n−1(s′) otherwise

pmax
n (s) =

{
0 if n = 0
max∆∈Steps(s)

∑
s′∈S ∆(s′) · pmax

n−1(s′) otherwise.

• The sequences of vectors 〈emin
n 〉n∈N and 〈emax

n 〉n∈N converge to the minimum and maximum
expected reward of reaching the target set F , where for any state s ∈ S:

– if s ∈ F , then emin
n (s) = emax

n (s) = 1 for all n ∈ N;
– if s /∈ F , then:

emin
n (s) =

∞ if pmax(s) < 1
0 if pmax(s) = 1 and n = 0
min∆∈Steps(s)(r(s, ∆) +

∑
s′∈S ∆(s′) · emin

n−1(s′)) otherwise

emax
n (s) =

∞ if pmin(s) < 1
0 if pmin(s) = 1 and n = 0
max∆∈Steps(s)(r(s, ∆) +

∑
s′∈S ∆(s′) · emax

n−1(s′)) otherwise.

&'

6.6 Stochastic games

In this section, we review (simple) stochastic games [Sha53, Con92], which are turn-based games
involving two players and chance.

Definition 6.17 A stochastic two-player game is a tuple G = ((V, E), v◦, (V1, V2, Vp), δ, r) where:

• (V, E) is a finite directed graph;

• v◦ ∈ V is an initial vertex;

• (V1, V2, Vp) is a partition of V ;

• δ : Vp → D(V) is the probabilistic transition function;

• r : E → R≥0 is a reward function over edges.

Vertices in V1, V2 and Vp are called “player 1”, “player 2” and “probabilistic” vertices, respectively.

The game operates as follows. Initially, a token is placed on the starting vertex v◦. At each step of
the game, the token moves from its current vertex v to a neighbouring vertex v′ in the game graph.
The choice of v′ depends on the type of the vertex v. If v ∈ V1 then player 1 chooses v′, if v ∈ V2 then
player 2 makes the choice, and if v ∈ Vp then v′ is selected randomly according to the distribution
δ(v).

115

A Markov decision process can be thought of as a stochastic game in which there are no player 2
vertices and where there is a strict alternation between player 1 and probabilistic vertices.

A play in the game G is a sequence of vertices ξ = v0v1v2... such that (vi, vi+1) ∈ E for all i ∈ N.
We denote by ξ(i) the vertex vi and, for a finite play ξ, we write last(ξ) for the final vertex of ξ and
|ξ| for its length (the number of transitions). The prefix of length i of play ξ is denoted ξ(i).

A strategy for player 1 is a function σ1 : V ∗V1 → D(V), i.e. a function from the set of finite
plays ending in a player 1 vertex to the set of distributions over vertices, such that for any ξ ∈ V ∗V1

and v ∈ V , if σ1(ξ)(v) > 0, then (last(ξ), v) ∈ E. Strategies for player 2, denoted by σ2, are defined
analogously. For a fixed pair of strategies (σ1,σ2) we denote by Playσ1,σ2

f (v) and Playσ1,σ2(v) the set
of finite and infinite plays starting in vertex v that correspond to these strategies. For strategy pair
(σ1,σ2), the behaviour of the game is completely random and, for any vertex v, we can construct a
probability space (Playσ1,σ2(v),XPlayσ1,σ2(v) ,Prσ1,σ2

v). This construction proceeds similarly to MDPs
(cf. Section 6.5).

A reachability objective of a game G is a set of vertices F which a player attempts to reach. For
a fixed strategy pair (σ1,σ2) and vertex v ∈ V we define both the probability and expected reward
corresponding to the reachability objective F as:

pσ1,σ2
v (F) := Prσ1,σ2

v {ξ ∈ Playσ1,σ2(v) | ∃i ∈ N : ξ(i) ∈ F}

eσ1,σ2
v (F) :=

∫

ξ∈Playσ1,σ2 (v)
r(F, ξ) dPrσ1,σ2

v

where for any play ξ ∈ Playσ1,σ2(v):

r(F, ξ) :=
{ ∑min{j|ξ(j)∈F}

i=1 r(ξ(i − 1), ξ(i)) if ∃j ∈ N : ξ(j) ∈ F
∞ otherwise.

Definition 6.18 For a game G = ((V, E), v◦, (V1, V2, Vp), δ, r), reachability objective F ⊆ V and
vertex v ∈ V , the optimal probabilities of the game for player 1 and player 2, with respect to F and
v, are defined as follows:

supσ1
infσ2 pσ1,σ2

v (F) and supσ2
infσ1 pσ1,σ2

v (F)

and the optimal expected rewards are:

supσ1
infσ2 eσ1,σ2

v (F) and supσ2
infσ1 eσ1,σ2

v (F).

A player 1 strategy σ1 is optimal from vertex v with respect to the probability of the objective if:

infσ2 pσ1,σ2
v (F) = supσ1

infσ2 pσ1,σ2
v (F).

The optimal strategies for player 2 and for expected rewards can be defined analogously.

Definition 6.19 A strategy σi is pure if it does not use randomisation, that is, for any finite play ξ
such that last(ξ) ∈ Vi, there exists v′ ∈ V such that σi(ξ)(v′) = 1. A strategy σi is memoryless if its
choice depends only on the current vertex, that is, σi(ξ) = σi(ξ′) for any finite plays ξ and ξ′ such
that last(ξ) = last(ξ′).

Similarly to MDPs, for any stochastic game, the family of pure memoryless strategies suffices for
optimality with respect to reachability objectives.

Proposition 6.20 Consider a stochastic game G = ((V, E), v◦, (V1, V2, Vp), δ, r) and set of target
vertices F ⊆ V .

• The sequence of vectors 〈pn〉n∈N converges to the optimal probabilities for player 1 with respect
to the reachability objective F , where for any vertex v ∈ V :

– if v ∈ F , then pn(v) = 1 for all n ∈ N;

116

– and otherwise:

pn(v) =

0 if n = 0
max(v,v′)∈E pn−1(v′) if n > 0 and v ∈ V1

min(v,v′)∈E pn−1(v′) if n > 0 and v ∈ V2∑
v′∈V δ(v)(v′) · pn−1(v′) if n > 0 and v ∈ Vp.

• The sequence of vectors 〈en〉n∈N converges to the optimal expected rewards for player 1 with
respect to the reachability objective F , where for any vertex v ∈ V :

– if v ∈ F , then en(v) = 0 for all n ∈ N;

– if supσ2
infσ1p

σ1,σ2
v (F) < 1, then en(v) = ∞ for all n ∈ N;

– and otherwise:

en(v) =

0 if n = 0
max(v,v′)∈E (r(v, v′) + en−1(v′)) if n > 0 and v ∈ V1

min(v,v′)∈E (r(v, v′) + en−1(v′)) if n > 0 and v ∈ V2∑
v′∈V (r(v, v′) + δ(v)(v′) · en−1(v′)) if n > 0 and v ∈ Vp.

&'

The above proposition is a counterpart of Proposition 6.16 for MDP solutions; it forms the basis
of an iterative method to compute the vector of optimal values for a game. Note that although this
concerns only the optimal probability for player 1, similar results hold for player 2. See [Con92,
Con93, CdAH04] for more details about results in this respect.

117

118

Bibliography

[AB01] S. Andova and J.C.M. Baeten. Abstraction in probabilistic process algebra. In Proceed-
ings of the 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science, pages
204–219. Springer, 2001.

[ABW06] S. Andova, J.C.M. Baeten, and T.A.C. Willemse. A complete axiomatisation of branch-
ing bisimulation for probabilistic systems with an application in protocol verification.
In Proceedings of the 17th International Conference on Concurrency Theory, volume
4137 of Lecture Notes in Computer Science, pages 327–342. Springer, 2006.

[AJ94] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic and Computer Science,
volume 3, pages 1–168. Clarendon Press, 1994.

[AW06] S. Andova and T.A.C. Willemse. Branching bisimulation for probabilistic systems:
Characteristics and decidability. Theoretical Computer Science, 356(3):325–355, 2006.

[Bas96] Twan Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58(3):141–147, 1996.

[BEMC00] Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisimilarity
and similarity for probabilistic processes. Journal of Computer and System Sciences,
60(1):187–231, 2000.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

[Bil95] P. Billingsley. Probability and Measure. Wiley, 1995.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11(3):125–155, 1998.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

[BS01] Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisimulation.
In Proceedings of the 28th International Colloquium on Automata, Languages and Pro-
gramming, volume 2076 of Lecture Notes in Computer Science, pages 370–381. Springer,
2001.

[BT91] D. Bertsekas and J. Tsitsiklis. An analysis of stochastic shortest path problems. Math-
ematics of Operation Research, 16(3):580–595, 1991.

[CCR+03a] D. Cazorla, F. Cuartero, V.V. Ruiz, F.L. Pelayo, and J.J. Pardo. Algebraic theory of
probabilistic and nondeterministic processes. Journal of Logic and Algebraic Program-
ming, 55:57–103, 2003.

119

[CCR+03b] D. Cazorla, F. Cuartero, V.V. Ruiz, F.L. Pelayo, and J.J. Pardo. Algebraic theory of
probabilistic and nondeterministic processes. Journal of Logic and Algebraic Program-
ming, 55(1-2):57–103, 2003.

[CdAH04] K. Chatterjee, L. de Alfaro, and T. Henzinger. Trading memory for randomness. In
Proceedings of the 1st International Conference on Quantitative Evaluation of Systems,
pages 206–217. IEEE Computer Society Press, 2004.

[CDSY99] R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen. Testing preorders for probabilistic
processes. Information and Computation, 154(2):93–148, 1999.

[CES86] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logics. ACM Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[CHM90] Joseph Cheriyan, Torben Hagerup, and Kurt Mehlhorn. Can a maximum flow be
computed on M(nm) time? In Proceedings of the 17th International Colloquium on
Automata, Languages and Programming, volume 443 of Lecture Notes in Computer
Science, pages 235–248. Springer, 1990.

[Chr90] I. Christoff. Testing equivalences and fully abstract models for probabilistic processes.
In Proceedings the 3rd International Conference on Concurrency Theory, volume 458
of Lecture Notes in Computer Science, pages 126–140. Springer, 1990.

[Con92] A. Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, 1992.

[Con93] A. Condon. On algorithms for simple stochastic games, volume 13, pages 203–224.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1993.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-
based tool for the verification of concurrency systems. ACM Transactions on Program-
ming Languages and Systems, 15(1):36–72, 1993.

[CS01] R. Cleaveland and O. Sokolsky. Equivalence and Preorder Checking for Finite-State
Systems, chapter 12, pages 391–424. North-Holland, 2001.

[CSZ92] R. Cleaveland, S.A. Smolka, and A.E. Zwarico. Testing preorders for probabilistic pro-
cesses. In Proceedings of the 19th International Colloquium on Automata, Languages
and Programming, volume 623 of Lecture Notes in Computer Science, pages 708–719.
Springer, 1992.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of finite state prob-
abilistic programs. In Proceedings of the 29th Annual Symposium on Foundations of
Computer Science, pages 338–345. IEEE Computer Society Press, 1988.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Jour-
nal of the ACM, 42(4):857–907, 1995.

[dA97] Luca de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford
University, 1997.

[dA99] Luca de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In Proceedings of the 10th International Conference on Concurrency Theory,
volume 1664 of Lecture Notes in Computer Science, pages 66–81. Springer, 1999.

[Der70] C. Derman. Finite State Markovian Decision Processes. Academic Press, 1970.

120

[DJGP02] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The
metric analogue of weak bisimulation for probabilistic processes. In Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science, pages 413–422. IEEE
Computer Society, 2002.

[DJGP04] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. Metrics
for labelled markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

[DNH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer
Science, 34:83–133, 1984.

[DP05a] Y. Deng and C. Palamidessi. Axiomatizations for probabilistic finite-state behaviors.
In Proceedings of the 8th International Conference on Foundations of Software Science
and Computation Structures, volume 3441 of Lecture Notes in Computer Science, pages
110–124. Springer, 2005.

[DP05b] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for probabilistic finite-state
behaviors. In Proceedings of the 8th International Conference on Foundations of Soft-
ware Science and Computation Structures, volume 3441 of Lecture Notes in Computer
Science, pages 110–124. Springer, 2005.

[DP07] Y. Deng and C. Palamidessi. Axiomatizations for probabilistic finite-state behaviors.
Theoretical Computer Science, 373(1-2):92–114, 2007.

[DPP05] Y. Deng, C. Palamidessi, and J. Pang. Compositional reasoning for probabilistic finite-
state behaviors. In Processes, Terms and Cycles: Steps on the Road to Infinity, Essays
Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of
Lecture Notes in Computer Science, pages 309–337. Springer, 2005.

[DvGH+07a] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan, and C. Zhang. Remarks on
testing probabilistic processes. ENTCS, 172:359–397, 2007.

[DvGH+07b] Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, Carroll Morgan, and Chenyi
Zhang. Characterising testing preorders for finite probabilistic processes. In Proceedings
of the 22nd Annual IEEE Symposium on Logic in Computer Science, pages 313–325.
IEEE Computer Society, 2007.

[DvGMZ07] Y. Deng, R.J. van Glabbeek, C.C. Morgan, and C. Zhang. Scalar outcomes suffice
for finitary probabilistic testing. In Proc. ESOP’07, volume 4421 of Lecture Notes in
Computer Science, pages 363–368. Springer, 2007.

[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, 1979.

[FY03] Yuxi Fu and Zhenrong Yang. Tau laws for pi calculus. Theoretical Computer Science,
308:55–130, 2003.

[GJS90] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. Algebraic reasoning for
probabilistic concurrent systems. In Proceedings of IFIP TC2 Working Conference on
Programming Concepts and Methods, 1990.

[Gla93] R.J. van Glabbeek. The linear time – branching time spectrum II; the semantics of
sequential systems with silent moves. In Proc. CONCUR’93, volume 715 of Lecture
Notes in Computer Science, pages 66–81. Springer, 1993.

[GRN99] C. Gregorio-Rodŕıguez and M. Núñez. Denotational semantics for probabilistic refusal
testing. ENTCS, 22:111–137, 1999.

121

[GSST90] R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N. Tofts. Reactive, generative,
and stratified models of probabilistic processes. In Proceedings of the 5th Annual
IEEE Symposium on Logic in Computer Science, pages 130–141. Computer Society
Press, 1990.

[GW96] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555–600, 1996.

[Hen82] M. Hennessy. Powerdomains and nondeterministic recursive definitions. In Proceedings
of the 5th International Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 178–193. Springer, 1982.

[Hen88] Matthew Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing sim-
ulations on finite and infinite graphs. In Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, pages 453–462. IEEE Computer Society Press,
1995.

[HJ90] Hans Hansson and Bengt Jonsson. A calculus for communicating systems with time and
probabilities. In Proceedings of IEEE Real-Time Systems Symposium, pages 278–287.
IEEE Computer Society Press, 1990.

[HJ94] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6(5):512–535, 1994.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1):137–161, 1985.

[Hoa85a] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Hoa85b] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[HSM97] Jifeng He, K. Seidel, and A.K. McIver. Probabilistic models for the guarded command
language. Science of Computer Programming, 28:171–192, 1997.

[JHSY94] B. Jonsson, C. Ho-Stuart, and Wang Yi. Testing and refinement for nondeterministic
and probabilistic processes. In Proceedings of the 3rd International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture
Notes in Computer Science, pages 418–430. Springer, 1994.

[JL91] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic processes. In
Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science, pages
266–277. Computer Society Press, 1991.

[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proceedings
of the 4th Annual IEEE Symposium on Logic in Computer Science, pages 186–195.
Computer Society Press, 1989.

[JS90] C.-C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations
for probabilistic processes. In Proc. CONCUR ’90, volume 458 of Lecture Notes in
Computer Science, pages 367–383. Springer, 1990.

[JY95] B. Jonsson and Wang Yi. Compositional testing preorders for probabilistic processes.
In Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science,
pages 431–441. Computer Society Press, 1995.

122

[JY99] B. Jonsson and Wang Yi. Fully abstract characterization of probabilistic may testing.
In Proceedings of the 5th International AMAST Workshop on Formal Methods for Real-
Time and Probabilistic Systems, volume 1601 of Lecture Notes in Computer Science,
pages 1–18. Springer, 1999.

[JY02] B. Jonsson and Wang Yi. Testing preorders for probabilistic processes can be charac-
terized by simulations. Theoretical Computer Science, 282(1):33–51, 2002.

[JYL01] B. Jonsson, Wang Yi, and K.G. Larsen. Probabilistic extensions of process algebras.
In Handbook of Process Algebra, chapter 11, pages 685–710. Elsevier, 2001.

[Kan42] L. Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk,
37(2):227–229, 1942.

[KKNP08] Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. A game-
based abstraction-refinement framework for markov decision processes. Technical Re-
port RR-08-06, Computing Laboratory, Oxford University, 2008.

[KN98] M.Z. Kwiatkowska and G. Norman. A testing equivalence for reactive probabilistic
processes. Electronic Notes in Theoretical Computer Science, 16(2), 1998.

[KNP07] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic model checking.
In Proceedings of the 7th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, volume 4486 of Lecture Notes in
Computer Science, pages 220–270. Springer, 2007.

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983.

[KS90] P.C. Kanellakis and S.A. Smolka. Ccs expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–65, 1990.

[Lin98] Huimin Lin. ”on-the-fly” instantiation of value-passing processes. In Proceedings of
FORTE’98, volume 135 of IFIP Conference Proceedings, pages 215–230. Kluwer, 1998.

[Low93] G. Lowe. Representing nondeterminism and probabilistic behaviour in reactive pro-
cesses. Technical Report TR-11-93, Computing laboratory, Oxford University, 1993.

[LS91] Kim G. Larsen and Aren Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

[LSV03] N. Lynch, R. Segala, and F.W. Vaandrager. Compositionality for probabilistic au-
tomata. In Proceedings of the 14th International Conference on Concurrency Theory,
volume 2761 of Lecture Notes in Computer Science, pages 204–222. Springer, 2003.

[Mar76] G. Markowsky. Chain-complete p.o. sets and directed sets with applications. Algebra
Universalis, 6:53–68, 1976.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

[Mil89a] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mil89b] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil91] Robin Milner. The polyadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-
180, Department of Computer Science, University of Edingburgh, 1991.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

123

[Mis00] M.W. Mislove. Nondeterminism and probabilistic choice: Obeying the laws. In Proc.
of CONCUR’00, volume 1877 of Lecture Notes in Computer Science, pages 350–364.
Springer, 2000.

[MMSS96] C.C. Morgan, A.K. McIver, K. Seidel, and J.W. Sanders. Refinement-oriented proba-
bility for CSP. Formal Aspects of Computing, 8(6):617–47, 1996.

[MO98] Markus Müller-Olm. Derivation of characteristic formulae. Electronic Notes in Theo-
retical Computer Science, 18:159–170, 1998.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, part
I/II. Information and Computation, 100:1–77, 1992.

[Núñ03] M. Núñez. Algebraic theory of probabilistic processes. Journal of Logic and Algebraic
Programming, 56:117–177, 2003.

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating
processes. Acta Informatica, 23:9–66, 1986.

[Par81] D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings of
5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183.
Springer, 1981.

[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for probabilistic
systems. In Proceedings of the 11th International Conference on Concurrency Theory,
volume 1877 of Lecture Notes in Computer Science, pages 334–349. Springer, 2000.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[Rab63] M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.

[Ros94] W.R. Roscoe. Model-checking CSP. Prentice-Hall, 1994.

[Seg95] Roberto Segala. Modeling and verification of randomized distributed real-time systems.
Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS, 1995.

[Seg96] R. Segala. Testing probabilistic automata. In Proceedings of the 7th International
Conference on Concurrency Theory, volume 1119 of Lecture Notes in Computer Science,
pages 299–314. Springer, 1996.

[Sei95] K. Seidel. Probabilistic communicating processes. Theoretical Computer Science,
152(2):219–249, 1995.

[Sha53] L. Shapley. Stochastic games. In Proc. National Academy of Science, volume 39, pages
1095–1100, 1953.

[SI94] Bernhard Steffen and Anna Ingólfsdóttir. Characteristic formulae for processes with
divergence. Information and Computation, 110:149–163, 1994.

[SL94] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic pro-
cesses. In Proceedings of the 5th International Conference on Concurrency Theory,
volume 836 of Lecture Notes in Computer Science, pages 481–496. Springer, 1994.

[Sti97] Colin Stirling. Bisimulation, model checking and other games, 1997.

[SV03] M.I.A. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic automata.
In Proceedings of the 30th International Colloquium on Automata, Languages and Pro-
gramming, volume 2719 of Lecture Notes in Computer Science, pages 407–18. Springer,
2003.

124

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific Journal
of Mathematics, 5:285–309, 1955.

[TKP05] R. Tix, K. Keimel, and G.D. Plotkin. Semantic domains for combining probability and
non-determinism. Electronic Notes in Theoretical Computer Science, 129:1–104, 2005.

[Var85a] M. Vardi. Automatic verification of probabilistic concurrent finite state programs. In
Proceedings of the 26th Annual Symposium on Foundations of Computer Science, pages
327–338. IEEE Computer Society Press, 1985.

[Var85b] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs.
In Proceedings 26th Annual Symposium on Foundations of Computer Science, pages
327–338, 1985.

[vBW01a] Franck van Breugel and James Worrell. An algorithm for quantitative verification of
probabilistic transition systems. In Proceedings of the 12th International Conference
on Concurrency Theory, volume 2154 of Lecture Notes in Computer Science, pages
336–350. Springer, 2001.

[vBW01b] Franck van Breugel and James Worrell. Towards quantitative verification of prob-
abilistic transition systems. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming, volume 2076 of Lecture Notes in Computer
Science, pages 421–432. Springer, 2001.

[vBW05] Franck van Breugel and James Worrell. A behavioural pseudometric for probabilistic
transition systems. Theoretical Computer Science, 331(1):115–142, 2005.

[vG01] Rob van Glabbeek. The linear time - branching time spectrum I. In Handbook of
Process Algebra, chapter 1, pages 3–99. Elsevier, 2001.

[vGW96] Rob J. van Gabbeek and W. Peter Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43(3):555–600, 1996.

[YL92] Wang Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In
Proceedings of the IFIP TC6/WG6.1 Twelfth International Symposium on Protocol
Specification, Testing and Verification, volume C-8 of IFIP Transactions, pages 47–61.
North-Holland, 1992.

125

Index

Ω-disjoint, 85
η-bisimilarity, 12
σ-algebra, 5

action-based, 55
alpha-conversion, 27
alternating, 92
assignment, 29
axiomatisation, 16

basic types, 30
behavioural equivalence, 8
bisimilarity, 9
bisimulation, 9
bisimulation up to, 9
blocks, 20
bound names, 27
bound output action, 27
bounded, 48
branching simulation, 12

Cauchy sequence, 4
Cauchy closed, 48
channel, 30
channel types, 30
characteristic formula, 56
characteristic test, 85
choice function, 33
cocontinuous, 2
coinduction principle, 2
compactness, 48
complete lattice, 1
complete metric space, 4
completeness, 16
conames, 25
continuous, 2
continuous-time Markov chains, 101
contraction mapping, 4
contravariant, 31
convergent, 3
convex, 48
convex closure, 76
covariant, 31
cylinder set, 98

DCPO, 2

Delay bisimilarity, 12
Derivative lemma, 89
discrete-time Markov chain, 97
divergence, 66

events, 5
execution, 55
expectation, 5
expected value, 33
external choice, 57

failure simulation, 55
failure simulation preorder, 68
field, 5
finitary, 52
fixed point, 1
free names, 27
free output action, 27
fully probabilistic, 46

generative, 92
graph isomorphism, 8

hyperplane, 48

image-finite, 10
inaction, 25
induction principle, 2
inequations, 88
infimum, 1
infinitary, 11
initial distribution, 46
input action, 27
input prefix, 26
internal action, 27
internal choice, 57
invariant, 31

join, 1

labelled transition system, 7
largest element, 1
least element, 1
logical preorder, 56
lower bound, 1

126

measurable space, 5
measure set, 5
meet, 1
metric space, 3
monadic, 28
monotone, 1

names, 25
non-alternating, 92
nondeterministic choice, 25
normal, 48
normal form, 17

object, 27
observational semantics, 8
on-the-fly, 22
operational semantics, 57
output prefix, 26

p-closed, 48
parallel composition, 25, 46
partially ordered set, 1
partition refinement, 20
path, 98
polyadic, 28
post-fixed point, 1
postset, 21
pre-fixed point, 1
prefix, 25
probabilistic computation tree logic, 98
probabilistic acceptance trees, 93
probabilistic automaton, 80
probabilistic choice, 57
probabilistic labelled transition system, 33
probabilistic traces, 93
probability distribution, 5, 33
probability measure, 5
probability space, 5
process, 7
process expressions, 25
process variables, 25
product, 33
pseudometric space, 3

quasi-branching bisimilarity, 12

reactive, 92
recursion, 25
renaming, 25
replicated input, 26
resolution, 46
restriction, 25
results-gathering function, 47
reward tuple, 48

sample space, 5
satisfaction relation, 11, 37
scalar, 55
Semi-branching bisimilarity, 12
Separating Hyperplane Lemma, 48
simulation, 9, 55
simulation preorder, 68
sorting, 29
sorts, 29
soundness, 16
splitter, 20
state-based, 55
static, 51
stuttering property, 13
subject, 27
subject reduction, 31
subtype judgments, 31
subtyping, 31
success action, 55
success actions, 46
success state, 55
success tuple, 46
sum, 25
support, 33
supremum, 1

target value, 85
test, 46
testing, 62

may testing, 62
must testing, 62

tools, 24
trace, 8
trace equivalence, 8
transformation, 22
transition probability matrix, 97
type environment, 29

upper bound, 1

value types, 30
values, 30
vector, 76
vector-based, 55

Weak bisimilarity, 12
weak transitions, 67

127

