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Abstract. Quantum based systems are a relatively new research area
for that different modelling languages including process calculi are cur-
rently under development. Encodings are often used to compare process
calculi. Quality criteria are used then to rule out trivial or meaningless
encodings. In this new context of quantum based systems, it is necessary
to analyse the applicability of these quality criteria and to potentially
extend or adapt them. As a first step, we test the suitability of classical
criteria for encodings between quantum based languages and discuss new
criteria.
Concretely, we present an encoding, from a sublanguage of CQP into
qCCS. We show that this encoding satisfies compositionality, name in-
variance (for channel and qubit names), operational correspondence, di-
vergence reflection, success sensitiveness, and that it preserves the size of
quantum registers. Then we show that there is no encoding from qCCS
into CQP (or its sublanguage) that is compositional, operationally cor-
responding, and success sensitive.

Keywords: Process calculi · Quantum Based Systems · Encodings

1 Introduction

The technological progress turns quantum based systems from theoretical models
to hopefully soon practicable realisations. This progress inspired research on
quantum algorithms and protocols. These algorithms and protocols in turn call
for verification methods that can deal with the new quantum based setting.

Among the various tools for such verifications, also several process calculi
for quantum based systems are developed [8,5,4,18]. To compare the expressive
power and suitability for different application areas, encodings have been widely
used for classical, i.e., not quantum based, systems. To rule out trivial or mean-
ingless encodings, they are required to satisfy quality criteria. In this new context
of quantum based systems, we have to analyse the applicability of these quality
criteria and potentially extend or adapt them.

Therefore, we start by considering a well-known framework of quality crite-
ria introduced by Gorla in [6] for the classical setting. As a case study we want
to compare Communicating Quantum Processes (CQP) introduced in [5] and
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the Algebra of Quantum Processes (qCCS) introduced in [18]. These two pro-
cess calculi are particularly interesting, because they model quantum registers
and the behaviour of quantum based systems in fundamentally different ways.
CQP considers closed systems, where qubits are manipulated by unitary trans-
formations and the behaviour is expressed by a probabilistic transition system.
In contrast, qCCS focuses on open systems and super-operators. Moreover, the
transition system of qCCS is non-probabilistic. (Unitary transformations and
super-operators are discussed in the next section.)

Unfortunately, the languages also differ in classical aspects: CQP has pi-
calculus-like name passing but the CCS based qCCS does not allow to transfer
names; qCCS has operators for choice and recursion but CQP in [5] has not.
Therefore, comparing the languages directly would yield negative results in both
directions, that do not depend on their treatment of qubits. To avoid these obvi-
ous negative results and to concentrate on the treatment of qubits, we consider
CQP−, a sublanguage of CQP that removes name passing and simplifies the
syntax/semantics, but as we claim does treat qubits in the same way as CQP.

We then show that there exists an encoding from CQP− into qCCS that
satisfies the quality criteria of Gorla and thereby that the treatment of qubits
in qCCS is strong enough to emulate the treatment of qubits in CQP−. We also
show that the opposite direction is more difficult, even if we restrict the classical
operators in qCCS. In fact, the counterexample that we use to prove the non-
existence of an encoding considers the treatment of qubits only, i.e., relies on the
application of a specific super-operator that has no unitary equivalent.

These two results show that the quality criteria can still be applied in the
context of quantum based systems and are still meaningful in this setting. They
may, however, not be exhaustive. Therefore, we discuss directions of additional
quality criteria that might be relevant for quantum based systems.

Our encoding satisfies compositionality, name invariance w.r.t. channel names
and qubit names, strong operational correspondence, divergence reflection, suc-
cess sensitiveness, and that the encoding preserves the size of quantum registers.
We also show that there is no encoding from qCCS into CQP that satisfies
compositionality, operational correspondence, and success sensitiveness.
Summary. We need a number of preliminaries: Quantum based systems are
briefly discussed in §2, the considered process calculi are introduced in §3, and
§4 presents the quality criteria of Gorla. §5 introduces the encoding from CQP−

into qCCS and comments on its correctness. The negative result from qCCS
into CQP is presented in §6. In §7 we discuss directions for criteria specific to
quantum based systems. We conclude in §8. The missing proofs are provided by
a technical report in [17].

2 Quantum Based Systems

We briefly introduce the aspects of quantum based systems, which are needed
for the rest of the paper. For more details, we refer to the books by Nielsen and
Chuang [10], Gruska [7], and Rieffel and Polak [16].
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A quantum bit or qubit is a physical system which has the two base states
|0〉, |1〉. These states correspond to one-bit classical values. The general state
of a quantum system is a superposition or linear combination of base states,
concretely |ψ〉 = α|0〉+ β|1〉. Thereby, α and β are complex numbers such that
|α|2 + |β|2 = 1, e.g. |0〉 = 1|0〉 + 0|1〉. Further, a state can be represented by

column vectors |ψ〉 =

(
α
β

)
= α|0〉 + β|1〉, which sometimes for readability will

be written in the format (α, β)T . The vector space of these vectors is a Hilbert
space and is denoted byH. We consider finite-dimensional and countably infinite-
dimensional Hilbert spaces, where the latter are treated as tensor products of
countably infinitely many finite-dimensional Hilbert spaces.

The basis {|0〉, |1〉} is called standard basis or computational basis, but some-
times there are other orthonormal bases of interest, especially the diagonal
or Hadamard basis consisting of the vectors |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 =

1√
2
(|0〉 − |1〉). We assume the standard basis in the following.

The evolution of a closed quantum system can be described by unitary trans-
formations [10]. A unitary transformation U is represented by a complex-valued
matrix such that the effect of U onto a state of a qubit is calculated by matrix
multiplication. It holds that U†U = I, where U† is the adjoint of U and I is the
identity matrix. Thereby, I is one of the Pauli matrices together with X , Y, and
Z. Another important unitary transformation is the Hadamard transformation
H, as it creates the superpositions H|0〉 = |+〉 and H|1〉 = |−〉.

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)
Another key feature of quantum computing is the measurement. Measuring a

qubit q in state |ψ〉 = α|0〉+ β|1〉 results in 0 (leaving it in |0〉) with probability
|α|2 and in 1 (leaving it in |1〉) with probability |β|2.

By combining qubits, we create multi-qubit systems. Therefore the spaces
U and V with bases {u0, . . . , ui, . . .} and {v0, . . . , vj , . . .} are joined using the
tensor product into one space U ⊗ V with basis {u0 ⊗ v0, . . . , ui ⊗ vj , . . .}. So a
system consisting of n qubits has a 2n-dimensional space with standard bases
|00 . . . 0〉 . . . |11 . . . 1〉. Within these systems we can measure a single or multiple
qubits. Unitary transformations can be performed on single or several qubits.

The multi-qubit systems can exhibit entanglement, meaning that states of
qubits are correlated, e.g. 1√

2
(|00〉 + |11〉). A measurement of the first qubit in

the computational basis results in 0 (leaving the state |00〉) with probability 1
2

and in 1 (leaving the state |11〉) with probability 1
2 . In both cases a subsequent

measurement of the second qubit in the same basis gives the same result as
the first measurement with probability 1. The effect also occurs if the entangled
qubits are physically separated. Because of this, states with entangled qubits
cannot be written as a tensor product of single-qubit states.

States of quantum systems can also be described by density matrices. In
contrast to the vector description of states, density matrices allow to describe
the states of open systems. We further discuss density matrices in Section 3.2.
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3 Process Calculi

Assume two countably-infinite sets N of names and V of qubit variables. Let
τ /∈ V∪N . The semantics of a process calculus is given as a structural operational
semantics consisting of inference rules defined on the operators of the language
[14]. Thereby, a (reduction) step, written as C 7−→ C ′, is a single application
of the reduction semantics where C ′ is called derivative. Let C 7−→ denote the
existence of a step from C. We write C 7−→ω if C has an infinite sequence of
steps and Z=⇒ to denote the reflexive and transitive closure of 7−→.

To reason about environments of terms, we use functions on process terms
called contexts. More precisely, a context C([·]1, . . . , [·]n) : Pn → P with n holes
is a function from n terms into one term, i.e., given P1, . . . , Pn ∈ P, the term
C(P1, . . . , Pn) is the result of inserting P1, . . . , Pn in the corresponding order into
the n holes of C.

We use {y/x} to denote the capture avoiding substitution of x by y on
either names or qubits. The definition of substitution on names in the respective
calculi is standard. Substitutions on qubits additionally have to be bijective, i.e.,
cannot translate different qubits to the same qubit, since this might violate the
no-cloning principle. More on substitutions of qubits can be found, e.g., in [18].
We equate terms and configurations modulo alpha conversion on (qubit) names.

For the last criterion of [6] in Section 4, we need a special constant X, called
success(ful termination), in both considered languages. Therefore, we add X to
the grammars of both languages without explicitly mentioning them. Success
is used as a barb, where P↓X if P has an unguarded occurrence of X and
P⇓X = ∃P ′. P Z=⇒ P ′ ∧ P ′↓X, to implement some form of (fair) testing.

3.1 Communicating Quantum Processes

Communicating Quantum Processes (CQP) is introduced in [5]. We need a sub-
language CQP− of CQP without name passing. We simplify the definition of
CQP by removing contexts, the additional layer on expressions in the syntax and
semantics, do not allow to construct channel names from expressions (though we
allow to use the values obtained by measurement as channel names), and by us-
ing a monadic version of communication in that only qubits can be transmitted.
CQP− is a strictly less expressive sublanguage of CQP. We claim, however that
the treatment of qubits, in particular the manipulations of the quantum register
as well as the communication of qubits, is the same as in CQP.

Definition 1 (CQP−). The CQP− terms, denoted by PC , are given by:

P ::= 0 | P | P | c?[x].P | c![q].P | {q̃ ∗= U}.P
| (x := measure q̃).P | (new x)P | (qbit x)P

CQP− configurations CC are given by (σ;φ;P ) or �0≤i<2rpi • (σi;φ;P{i/x}),
where σ, σi have the form q0, . . . , qn−1 = |ψ〉 with |ψ〉 =

∑2n−1
i=0 αi|ψi〉, r ≤ n, φ

is the list of channels in the system, and P ∈ PC .
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(R-MeasureCQP ) (σ;φ; (x := measure q0, . . . qr−1).P )
7−→ �0≤m<2rpm • (σ′m;φ;P{m/x})

(R-TransCQP ) (q0, . . . , qn−1 = |ψ〉;φ; {q0, . . . , qr−1 ∗= U}.P )
7−→

(
q0, . . . , qn−1 = (U ⊗ I{qr,...,qn−1})|ψ〉;φ;P

)
(R-PermCQP ) (q0, . . . , qn−1 = |ψ〉;φ;P ) 7−→

(
qπ(0), . . . , qπ(n−1) =

∏
|ψ〉;φ;Pπ

)
(R-ProbCQP ) �0≤i<2rpi • (σi;φ;P{i/x})

7−→ (σj ;φ;P{j/x}) where pj 6= 0 and r > 0

(R-NewCQP ) (σ;φ; (new x)P ) 7−→ (σ;φ, c;P{c/x}) where c is fresh

(R-QbitCQP ) (q0, . . . , qn−1 = |ψ〉;φ; (qbit x)P )
7−→ (q0, . . . , qn−1, qn = |ψ〉 ⊗ |0〉;φ;P{qn/x})

(R-CommCQP ) (σ;φ; c![q].P | c?[x].Q) 7−→ (σ;φ;P | Q{q/x})

(R-ParCQP )
(σ;φ;P ) 7−→ �0≤i<2rpi • (σ′i;φ

′;P ′{i/x})
(σ;φ;P | Q) 7−→ �0≤i<2rpi • (σ′i;φ

′;P ′{i/x} | Q)

(R-CongCQP )
Q ≡ P (σ;φ;P ) 7−→ �0≤i<2rpi • (σ′i;φ

′;P ′{i/x}) P ′ ≡ Q′

(σ;φ;Q) 7−→ �0≤i<2rpi • (σ′i;φ
′;Q′{i/x})

Fig. 1. Semantics of CQP−

The syntax of CQP− is pi-calculus like. It adds the term {q̃ ∗= U}.P to
apply the unitary transformation U to the qubits in sequence q̃ and the term
(qbit x)P to create a fresh qubit qn (for σ = q0, . . . , qn−1) which then proceeds as
P{qn/x}. The process (x := measure q̃).P measures the qubits in q̃ with |q̃| > 0
and saves the result in x. The configuration �0≤i<2rpi • Ci denotes a probabil-
ity distribution over configurations Ci = (σi;φ;P{i/x}), where

∑
i pi = 1 and

where the terms within the configurations Ci may differ only by instantiating
channel name x by i. It results from measuring the first r qubits, where pi is
the probability of obtaining result i from measuring the qubits q0, . . . , qr−1 and
Ci is the configuration of case i after the measurement. We may also write a
distribution as p1 •C1 � . . .� pj •Cj with j = 2r − 1. We equate (σ0;φ;P ) and
�0≤i<201 • (σi;φ;P{i/x}), i.e., if |q̃| = 0 then we assume that x is not free in P .
We naturally extend the definition of contexts to configurations, i.e., consider
also contexts C([·]1, . . . , [·]n) : Pn → C.

The variable x is bound in P by c?[x].P , (x := measure q̃).P , (new x)P , and
(qbit x)P . A variable is free if it is not bound. Let fq(P ) and fc(P ) denote the
sets of free qubits and free channels in P .

The state σ is represented by a list of qubits q0, . . . , qn−1 as well as a lin-

ear combination |ψ〉 =
∑2n−1
i=0 αi|ψi〉 which can also be rewritten by a vector

(α0, α1, . . . , α2n−1)T . As done in [5], we sometimes write as an abbreviated form
σ = q0, . . . , qn−1 or σ = |ψ〉.

The semantics of CQP− is defined by the reduction rules in Figure 1. Rule (R-
MeasureCQP ) measures the first r qubits of σ, where σ = α0|ψ0〉 + · · · +

α2n−1|ψ2n−1〉, σ′m =
αlm√
pm
|ψlm〉+· · ·+

αum√
pm
|ψum〉, lm = 2n−rm, um = 2n−r(m+

1) − 1, and pm = |αlm |2 + · · · + |αum
|2. As a result a probability distribution

over the possible base vectors is generated, where σ′m is the accordingly updated
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qubit vector. Rule (R-TransCQP ) applies the unitary operator U on the first r
qubits. In contrast to [5], we explicitly list in the subscript of I the qubits it is
applied to. As the rules (R-MeasureCQP ) and (R-TransCQP ) operate on the
first r qubits within σ, Rule (R-PermCQP ) allows to permute the qubits in σ.
Thereby, π is a permutation and

∏
is the corresponding unitary operator.

The Rule (R-ProbCQP ) reduces a probability distribution with r > 0 to
a single of its configurations (σj ;φ;P{j/x}) with non-zero probability pj . The
rules (R-NewCQP ) and (R-QbitCQP ) create new channels and qubits and up-
date the list of channel names or the qubit vector. Thereby, a new qubit is
initialised to |0〉 and |ψ〉 ⊗ |0〉 is reshaped into a

(
2n+1

)
-vector. The remaining

rules are standard pi-calculus rules and also structural congruence ≡ is standard.

We inherit the type system from [5]. It ensures that two parallel components
cannot share qubits, which is the realisation of the no-cloning property of qubits.
To illustrate this type system, we present the rules for parallel composition,
input, and output from [5]:

(T-Par)
Γ1 ` P Γ2 ` Q
Γ1 + Γ2 ` P | Q

(T-In)
Γ ` x : [̂T̃ ] Γ, ỹ : T̃ ` P

Γ ` x?[ỹ : T̃ ].P

(T-Out)
Γ ` x : [̂T̃ , Q̃bit] ∀i. Ti 6= Qbit ∀i. Γ ` yi : Ti zi distinct Γ ` P

Γ, z̃ : Q̃bit ` x![ỹ, z̃].P

Rule (T-Par) ensures that parallel components cannot share qubits, where Γ1+Γ2

implies that Γ1 and Γ2 do not share assignments for the same qubit. Rule (T-In)
adds the types of the received values and qubits to the type environment for the
continuation P such that P can use the received qubits. Therefore, Rule (T-Out)
removes the transmitted qubits from the type environment of the continuation
such that these qubits can no longer be used by the continuation. For the re-
maining rules of the type system we refer to [5]. These rules straightforwardly
implement the idea that parallel components cannot share qubits. To adapt this
type system to CQP− it suffices to adapt the multiplicity in communication to
the monadic case, where the message is always of type Qbit for qubits.

As an example for a CQP− configuration and the application of the rules
in Figure 1 consider Example 1. This example contains an implementation of
the quantum teleportation protocol as given in [1]. The quantum teleportation
protocol is a procedure for transmitting a quantum state via a non-quantum
medium. This protocol is particularly important: not only is it a fundamental
component of several more complex protocols, but it is likely to be a key enabling
technology for the development of the quantum repeaters [15] which will be
necessary in large-scale quantum communication networks.



Encodability Criteria for Quantum Based Systems 7

Example 1. Consider the CQP−-configuration S

S =

(
q0, q1, q2 =

1√
2
|100〉+

1√
2
|111〉; ∅;System (0, 1, 2, 3, q0, q1, q2)

)
where

System (0, 1, 2, 3, q0, q1, q2) =

(new 0)(new 1)(new 2)(new 3)(Alice (q0, q1, 0, 1, 2, 3) | Bob (q2, 0, 1, 2, 3))

Alice (q0, q1, 0, 1, 2, 3) =

{q0, q1 ∗= CNOT}.{q0 ∗= H}.(x := measure q0, q1).x![a].0

Bob (q2, 0, 1, 2, 3) = (0?[y].{q2 ∗= I}.X) | (1?[y].{q2 ∗= X}.X) |
(2?[y].{q2 ∗= Z}.X) | (3?[y].{q2 ∗= Y}.X)

Alice and Bob each possess one qubit (q1 for Alice and q2 for Bob) of an entangled
pair in state 1√

2
|00〉+ 1√

2
|11〉. q0 is the second qubit owned by Alice. Within this

example it is in state |0〉, but in general it can be in an arbitrary state. It is the
qubit whose state will be teleported to q2 and therefore to Bob.

By Figure 1, S can do the following steps

S 7−→4(|ψ0〉; 0, 1, 2, 3; (Alice (q0, 0, 1, 2, 3, q2) | Bob (q1, 0, 1, 2, 3)))

7−→(|ψ1〉; 0, 1, 2, 3; ({q0 ∗= H}.(x := measure q0, q1).x![a].0 |
Bob (q2, 0, 1, 2, 3)))

7−→(|ψ2〉; 0, 1, 2, 3; ((x := measure q0, q1).x![a].0 | Bob (q2, 0, 1, 2, 3)))

7−→1

4
• (q0, q1, q2 = |001〉; 0, 1, 2, 3; (0![a].0 | Bob (q2, 0, 1, 2, 3)))�

1

4
• (q0, q1, q2 = |010〉; 0, 1, 2, 3; (1![a].0 | Bob (q2, 0, 1, 2, 3)))�

1

4
• (q0, q1, q2 = |101〉; 0, 1, 2, 3; (2![a].0 | Bob (q2, 0, 1, 2, 3)))�

1

4
• (q0, q1, q2 = |110〉; 0, 1, 2, 3; (3![a].0 | Bob (q2, 0, 1, 2, 3))) = S∗,

with |ψ0〉 = q0, q1, q2 = 1√
2
|100〉+ 1√

2
|111〉, |ψ1〉 = q0, q1, q2 = 1√

2
|110〉+ 1√

2
|101〉,

and |ψ2〉 = q0, q1, q2 = 1
2 |001〉+ 1

2 |010〉 − 1
2 |101〉 − 1

2 |110〉.
All configurations within the probability distribution in S∗ have the same

probability. We can e.g. choose the first one by using Rule (R-ProbCQP ).

S∗ 7−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0![a].0 | (0?[y].{q2 ∗= I}.X) |
(1?[y].{q2 ∗= X}.X) | (2?[y].{q2 ∗= Z}.X) | (3?[y].{q2 ∗= Y}.X)))

7−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0 | ({q2 ∗= I}.X) |
(1?[y].{q2 ∗= X}.X) | (2?[y].{q2 ∗= Z}.X) | (3?[y].{q2 ∗= Y}.X)))

7−→(q0, q1, q2 = |001〉; 0, 1, 2, 3; (0 | X |
(1?[y].{q2 ∗= X}.X) | (2?[y].{q2 ∗= Z}.X) | (3?[y].{q2 ∗= Y}.X)))

ut



8 A. Schmitt, K. Peters, Y. Deng

3.2 An Algebra of Quantum Processes

The algebra of quantum processes (qCCS) is introduced in [18,3] as a process
calculus for quantum based systems. As qCCS is designed to model open systems,
its states are described by density matrices or operators. A density operator in a
Hilbert space H is a linear operator ρ on it, such that |ψ〉†ρ|ψ〉 ≥ 0 for all |ψ〉 and
tr(ρ) = 1, where tr(ρ) is the sum of elements on the main diagonal of the matrix ρ.
A positive operator ρ is called a partial density operator if tr(ρ) ≤ 1. By slightly
abusing notation, we use V to denote the current set of qubit names of a given
density matrix ρ. We write D(H) for the set of partial density operators on H.
Every density matrix can be represented as

∑
i pi|ψi〉〈ψi|, i.e., by an ensemble of

pure states |ψi〉 with their probabilities pi ≥ 0. Accordingly, the density matrix
of a pure state |ψ〉 is |ψ〉〈ψ|.

The dynamics of open quantum systems cannot be described solely by unitary
transformations. Instead super-operators are used. Unitary transformations as
well as measurement can be transformed to super-operators on density matrices.
We illustrate this with the Hadamard transformation and measurement.

Example 2. LetX ⊆ V. The super-operator that represents the Hadamard trans-
formation on X is denoted as H[X], where its application to ρ is defined as
HX(ρ) = (H⊗ IV−X) · ρ · (H⊗ IV−X)†.

The super-operator to measure the qubits in X with the result of measure-
ment unknown is denoted as M[X]. Its application to ρ is defined as MX(ρ) =∑
m(Pm⊗IV−X)ρ(Pm⊗IV−X)†, where Pm is the outer product of m as a base

vector.
The super-operator to measure the qubits in X with the expected result i is

denoted as Ei[X]. Its application to ρ is defined as Ei,X(ρ) = (Pi⊗IV−X)ρ(Pi⊗
IV−X)†. If X is empty, then Ei[X] is the identity operator IV . ut

Super-operators that go beyond the expressive power of unitary transformations
are e.g. the super-operators that are used to model the noise in quantum com-
munication. Intuitively, noise is a form of partial entanglement with an unkown
environment. Note that, as in CQP, the channels that are used to transfer qubit-
systems in qCCS, are modelled as noise-free channels, i.e., noise has to be added
explicitly by respective super-operators as discussed in [18].

Definition 2 (Super-Operator). Let X ⊆ V. A super-operator E [X] on a
Hilbert space H is a linear operator E (from the space of linear operators on
H into itself) which is defined as EX = E ⊗ IV−X and therefore EX(ρ) =
(E ⊗ IV−X) · ρ · (E ⊗ IV−X)†. Further, E is required to be completely positive
and satisfies tr(EX(ρ)) ≤ tr(ρ). For any extra Hilbert space HR, (IR ⊗ E) (A) is
positive provided A is a positive operator on HR ⊗ H, where IR is the identity
operation on HR.

The syntax of qCCS adds an operator to standard CCS to apply super-
operators and a standard conditional, where P is executed if b is true. Further,
it alters the communication prefixes such that only qubits can be transmitted
via standard channels ([18,3]).
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(InputqCCS) 〈c?x.P, ρ〉
c?q−−→ 〈P{q/x}, ρ〉 q /∈ fq(c?x.P )

(OutputqCCS) 〈c!q.P, ρ〉
c!q−−→ 〈P, ρ〉 (OperqCCS) 〈E [X].P, ρ〉 τ−−→ 〈P, EX(ρ)〉

(CommqCCS)
〈P, ρ〉 c?q−−→ 〈P ′, ρ〉 〈Q, ρ〉 c!q−−→ 〈Q′, ρ〉

〈P ‖ Q, ρ〉 τ−−→ 〈P ′ ‖ Q′, ρ〉
(TauqCCS) 〈τ.P, ρ〉

τ−−→ 〈P, ρ〉

(ChoiceqCCS)
〈P, ρ〉 α−−→ 〈P ′, ρ′〉

〈P +Q, ρ〉 α−−→ 〈P ′, ρ′〉
(IfThenqCCS)

〈P, ρ〉 α−−→ 〈P ′, ρ′〉 b = true

〈if b then P, ρ〉 α−−→ 〈P ′, ρ′〉

(DefqCCS)
〈P{q̃/x̃}, ρ〉 α−−→ 〈P ′, ρ′〉
〈A(q̃), ρ〉 α−−→ 〈P ′, ρ′〉

A(x̃)
def
= P (CloseqCCS)

〈P, ρ〉 τ−−→ 〈P ′, ρ′〉
〈P, ρ〉 7−→ 〈P ′, ρ′〉

(IntlqCCS)
〈P, ρ〉 α−−→ 〈P ′, ρ′〉

〈P ‖ Q, ρ〉 α−−→ 〈P ′ ‖ Q, ρ′〉
if α = c?q then q /∈ fq(Q)

(ResqCCS)
〈P, ρ〉 α−−→ 〈P ′, ρ′〉

〈P \ L, ρ〉 α−−→ 〈P ′ \ L, ρ′〉
cn(α) ∩ L = ∅

Fig. 2. Semantics of qCCS

Definition 3 (qCCS). The qCCS terms, denoted by Pq, are given by:

P ::= A(q̃) | nil | τ.P | E [X].P | c?x.P | c!q.P

| P + P | P ‖ P | P \ L | if b then P

The qCCS configurations Cq are given by 〈P, ρ〉, where P ∈ Pq and ρ ∈ D(H).

The variable x is bound in P by c?x.P and the channels in L are bound in
P by P \ L. A variable/channel is free if it is not bound. Let fc(P ) and fq(P )
denote the sets of free channels and free qubits in P , respectively. For each

process constant scheme A, a defining equation A(x̃)
def
= P with P ∈ Pq and

fq(P ) ⊆ x̃ is assumed. As done in [18], we require the following two conditions:

c!q.P ∈ PqCCS implies q /∈ fq(P ) (Cond1)

P ‖ Q ∈ PqCCS implies fq(P ) ∩ fq(Q) = ∅ (Cond2)

These conditions ensure the no-cloning principle of qubits within qCCS.
The semantics of qCCS is defined by the inference rules given in Figure 2.

We start with a labelled variant of the semantics from [18] and then add the
Rule (CloseqCCS) to obtain a reduction semantics. We omit the symmetric
forms of the rules (ChoiceqCCS), (IntlqCCS), and (CommqCCS). Let cn(α) re-
turn the possibly empty set of channels in the label α.

Rule (OperqCCS) implements the application of a super-operator. It updates
the state of the configuration as defined in Definition 2. To simplify the definition
of a reduction semantics, we use (in contrast to [18]) the label τ .

Rule (InputqCCS) ensures that the received qubits are fresh in the continua-
tion of the input. The rules (IntlqCCS) and (IntrqCCS) forbid to receive qubits
within parallel contexts that do posses this qubit. Rule (ResqCCS) allows to do
a step under a restriction. The other rules are self-explanatory.
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4 Encodings and Quality Criteria

Let LS = 〈CS, 7−→S〉 and LT = 〈CT, 7−→T〉 be two process calculi, denoted as
source and target language. An encoding from LS into LT is a function J·K : CS →
CT. We often use S, S′, . . . and T, T ′, . . . to range over CS and CT, respectively.

To analyse the quality of encodings and to rule out trivial or meaningless
encodings, they are augmented with a set of quality criteria. In order to provide
a general framework, Gorla in [6] suggests five criteria well suited for language
comparison. We start with these criteria for classical systems, which are de-
scribed in more detail in [17].

Definition 4 (Quality Criteria, [6]). The encoding J·K is good, if it is
compositional: For every operator op with arity n of LS and for every sub-

set of names N , there exists a context CNop([·]1, . . . , [·]n) such that, for all
S1, . . . , Sn with fv(S1) ∪ . . . ∪ fv(Sn) = N , it holds that Jop (S1, . . . , Sn)K =
CNop(JS1K, . . . , JSnK).

name invariant: For every S ∈ CS and every substitution γ on names, it holds
that JSγK = JSKγ.

operational corresponding w.r.t. �:
Complete: For all S Z=⇒ S′, there is T such that JSK Z=⇒ T and JS′K � T .
Sound: For all JSK Z=⇒ T , there is S′, T ′ such that S Z=⇒ S′, T Z=⇒ T ′,

and JS′K � T ′.
divergence reflecting: For every S, JSK 7−→ω implies S 7−→ω.
success sensitive: For every S, S⇓X iff JSK⇓X.

We use here a stricter variant of name invariance compared to [6], since
we translate names by themselves in our encoding. Operational correspondence
consists of a soundness and a completeness condition. Completeness requires
that every computation of a source term can be emulated by its translation.
Soundness requires that every computation of a target term corresponds to some
computation of the corresponding source term.

Note that a behavioural relation � on the target is assumed for operational
correspondence. Moreover, � needs to be success sensitive, i.e., T1 � T2 implies
T1⇓X iff T2⇓X. As discussed in [12], we pair operational correspondence as of [6]
with correspondence simulation.

Definition 5 (Correspondence Simulation, [12]). A relation R is a (weak)
labelled correspondence simulation if for each (T1, T2) ∈ R:

– For all T1
α−−→ T ′1, there exists T ′2 such that T2

α−−→ T ′2 and (T ′1, T
′
2) ∈ R.

– For all T2
α−−→ T ′2, there exists T ′′1 , T

′′
2 such that T1 Z=⇒ α−−→ T ′′1 , T ′2 Z=⇒ T ′′2 ,

and (T ′′1 , T
′′
2 ) ∈ R.

– T1⇓X iff T2⇓X.
T1 and T2 are correspondence similar, denoted as T1 � T2, if a correspondence
simulation relates them.

There are several other criteria for classical systems that we could have con-
sidered (cf. [11]). Since CQP− is a typed language, we may consider a criterion
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for types as discussed e.g. in [9]. As only one language is typed, it suffices to re-
quire that the encoding is defined for all terms of the source language. We could
also consider a criterion for the preservation of distributability as discussed e.g.
in [13], since distribution and communication between distributed locations is of
interest. Indeed our encoding satisfies this criterion, because it translates the par-
allel operator homomorphically. However, already the basic framework of Gorla,
on that we rely here, suffices to observe principal design principles of quantum
based systems as we discuss with the no-cloning property in Section 7.

5 Encoding Quantum Based Systems

Our encoding, from well-typed CQP− configurations into qCCS-configurations
that satisfy the conditions Cond1 and Cond2, is given by Definition 6.

Definition 6 (Encoding J·K from CQP− into qCCS).
J(σ;φ;P )K = 〈JP K \ φ, ρσ〉
J�0≤i<2rpi • (σi;φ;P{i/x})K = 〈D(q0, . . . , qr−1;x; JP K) \ φ, ρ�〉
J0K = nil
JP | QK = JP K ‖ JQK
Jc?[x].P K = c?x.JP K
Jc![q].P K = c!q.JP K
J{q̃ ∗= U}.P K = U [q̃].JP K
J(x := measure q̃).P K =M[q̃].D(q̃;x; JP K)
J(new x)P K = τ.(JP K \ {x})
J(qbit x)P K = E|0〉[V].

(
JP K{q|V|/x}

)
JXK = X
where ρσ = |ψ〉〈ψ| for σ = |ψ〉, ρ� =

∑
i pi|ψi〉〈ψi| for σi = |ψi〉,

D(q̃;x;Q) = if tr(E0[q̃]) 6= 0 then E0[q̃].Q{0/x}+ . . .+

if tr(E2|q̃|−1[q̃]) 6= 0 then E2|q̃|−1[q̃].Q{2|q̃| − 1/x},

E|0〉[V] adds a new qubit q|V| initialised with 0 to the current state ρ, M is mea-
surement with the result unkown, and the super-operator Ei[Y ] is measurement
of Y with the expected result i.

The translation of configurations maps the vector σ to the density matrix ρσ
(obtained by the outer product) and restricts all names in φ to the translation of
the sub-term. In the translation of probability distributions, the state ρ� is the
sum of the density matrices obtained from the σi multiplied with their respective
probability. Again, the names in φ are restricted in the translation. The nonde-
terminism in choosing one of the possible branches of the probability distribu-
tion in CQP− by (R-ProbCQP ) is translated into the qCCS-choice D(q̃;x; JP K)
with q̃ = q0, . . . , qr−1, where each case is guarded by a conditional which checks
whether the result of measurement is not zero, i.e., whether the respective case
occurs with a non-zero probability, followed by a super-operator that adjusts
the state to the respective result of measurement. Note that, the translation of
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a configuration (σ;φ;P ) is a special case of the second line with an additional
step to resolve the conditional, since |ψ〉〈ψ| =

∑
1|ψ〉〈ψ|, r = 0 implies that

q̃ = q0, . . . , qr−1 is empty, and thus D(q̃;x; JP K) = if tr(I[V]) 6= 0 then I[V].JP K.
An encoding example using such a qCCS-choice is given in Example 5.

The application of unitary transformations and the creation of new qubits
are translated to the corresponding super-operators. Measurement is translated
into the super-operator for measurement with unkown result followed by the
choice D(q̃;x; JP K) over the branches of the possible outcomes of measurement,
i.e., after the first measurement the translation is similar to the translation of a
probability distribution in the second case. Note that we combine two kinds of
measurement in this translation. The outer measurement w.r.t. an unkown result
dissolves entanglement on the measured qubits and ensures that the density
matrix after this first measurement is the sum of the density matrices of the
respective cases in the distribution (compare with ρ� and Example 3). The
measurements w.r.t. 0 ≤ i < 2r within D(q̃;x; JP K) then check whether the
respective case i occurs with non-zero probability and adjust the density matrix
to this result of measurement if case i is picked. The creation of new channel
names is translated to restriction, where a τ -guard simulates the step that is
necessary in CQP− to create a new channel. The restriction ensures that this
new name cannot be confused with any other translated source term name. Since
in the derivative of a source term step creating a new channel the new channel
is added to φ in the configuration, we restrict all channels in φ. The remaining
translations are homomorphic.

Example 3. Consider S = (σ;φ; (x := measure q0).P ), where σ = q0, q1 =
1√
2
|00〉 + 1√

2
|11〉 = |ψ〉 consists of two entangled qubits. By Figure 1, S 7−→

S′ = 1
2 • (σ = q0, q1 = |00〉;φ;P{0/x}) � 1

2 • (σ = q0, q1 = |11〉;φ;P{1/x}). By
Definition 6, JSK = 〈(M[q0].D(q0;x; JP K)) \ φ, ρ〉 with ρ = |ψ〉〈ψ|. By Figure 2,
then JSK 7−→ T = 〈D(q0;x; JP K) \ φ,Mq0(ρ)〉. Accordingly, the probability dis-
tribution in S′ is mapped on a choice in T . The outer measurement M[q0]
resolves the entanglement and yields a density matrix that is the sum of the
density matrices of the choice branches, i.e., Mq0(ρ) = (|0〉〈0| ⊗ Iq1)ρ(|0〉〈0| ⊗
Iq1)† + (|1〉〈1| ⊗ Iq1)ρ(|1〉〈1| ⊗ Iq1)†. ut

By analysing the encoding function, we observe that for all source terms the
type system of CQP− ensures that their literal translation satisfies the condi-
tions Cond1 and Cond2. Hence, the encoding is defined on all source terms.

Corollary 1. For all S ∈ CC the term JSK is defined.

Considering Figure 1, we observe that in CQP− we have to permute the
matrix σ, in order to apply unitary transformations or measure qubits in the
middle of σ. Such permutations are not necessary in qCCS. More precisely, since
these steps only reorder qubits in σ, they do not change the state of the translated
system modulo correspondence simulation.

Lemma 1. If S 7−→ S′ is by (R-PermCQP ), then JSK � JS′K and JS′K � JSK.
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In the literature, operational correspondence is often considered w.r.t. a
bisimulation on the target; simply because bisimilarity is a standard behavioural
equivalence in process calculi, whereas correspondence simulation is not. For our
encoding, we cannot use bisimilarity.

Example 4. Consider S = (σ; ∅; (x := measure q).P | Q), where S is a 1-qubit
system with σ = q = |+〉 and P,Q ∈ PC with fc(P ) ⊆ {x} and fc(Q) = ∅. By
the rules (R-MeasureCQP ) and (R-ParCQP ) of Figure 1,

S 7−→ S′ =
1

2
• (σ = q = |0〉; ∅;P{0/x} | Q)�

1

2
• (σ = q = |1〉; ∅;P{1/x} | Q),

i.e., (R-ParCQP ) pulls the parallel component Q into the probability distribu-
tion that results from measuring q. Since our encoding is compositional—and
indeed we require compositionality, the translation JSK behaves slightly differ-
ently. By Definition 6, JSK = 〈M[q].D(q;x; JP K) ‖ JQK, ρ〉, where D(q;x; JP K) =
if tr(E0[q]) 6= 0 then E0[q].JP K{0/x} + if tr(E1[q]) 6= 0 then E1[q].JP K{1/x} and
ρ = |+〉〈+|, and JS′K = 〈D(q;x; JP K ‖ JQK), ρ′〉 with ρ′ = 1

2 |0〉〈0| +
1
2 |1〉〈1|. By

Figure 2, JSK 7−→ T = 〈D(q;x; JP K) ‖ JQK, ρ′〉, because Mq(ρ) = ρ′. Unfortu-
nately, JS′K and T are not bisimilar. As a counterexample consider P = x![q].0
and Q = (new y)0?[z].X. The problem is, that a step on JQK in JS′K forces us
to immediately pick a case and resolve the choice, whereas after performing the
same step on JQK in T all cases of the choice remain available. After emulat-
ing the first step of JQK in JS′K, either we reach a configuration that has to
reach success eventually or we reach a configuration that cannot reach success;
whereas there is just one way to do the respective step in T and in the resulting
configuration success may or may not be reached depending on the next step.
Fortunately, JS′K and T are correspondence similar. ut

We also present the translation of the quantum teleportation protocol in
Example 1.

Example 5. By Definition 6

JSK = 〈(τ.(τ.(τ.(P ) \ 3) \ 2) \ 1) \ 0, ρ0〉, where

P = JAlice (q0, q1, 0, 1, 2, 3)K ‖ JBob (q2, 0, 1, 2, 3)K,
JAlice (q0, q1, 0, 1, 2, 3)K = CNOT[q0, q1].H[q0].M[q0, q1].D(q0, q1;x;x!a.nil),

JBob (q2, 0, 1, 2, 3)K =

(0?y.I[q2].X) ‖ (1?y.X [q2].X) ‖ (2?y.Z[q2].X) ‖ (3?y.Y[q2].X) , and

ρ0 = |ψ0〉〈ψ0|.

By Figure 2, JSK can do the following steps

JSK 7−→4 〈((((P ) \ 3) \ 2) \ 1) \ 0, ρ0〉
7−→ 〈(H[q0].M[q0, q1].D(q0, q1;x;x!a.nil)) ‖ JBob (q2, 0, 1, 2, 3)K, ρ1〉
7−→ 〈(M[q0, q1].D(q0, q1;x;x!a.nil)) ‖ JBob (q2, 0, 1, 2, 3)K, ρ2〉
7−→ 〈D(q0, q1;x;x!a.nil) ‖ JBob (q2, 0, 1, 2, 3)K, ρ3〉 = T ∗,
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with ρ1 = CNOT q0,q1(ρ0), ρ2 = Hq0(ρ1), ρ3 =Mq0,q1(ρ2), and where the qCCS-
choice D(q0, q1;x;x!a.nil) is given by

D(q0, q1;x;x!a.nil) = if tr(E0[q0, q1]) 6= 0 then E0[q0, q1]. ((x!a.nil) {0/x}) +

if tr(E1[q0, q1]) 6= 0 then E1[q0, q1]. ((x!a.nil) {1/x}) +

if tr(E2[q0, q1]) 6= 0 then E2[q0, q1]. ((x!a.nil) {2/x}) +

if tr(E3[q0, q1]) 6= 0 then E3[q0, q1]. ((x!a.nil) {3/x}) .

To emulate the behaviour of S we choose again the first branch within
D(q0, q1;x;x!a.nil).

T ∗ 7−→〈(0!a.nil) ‖ JBob (q2, 0, 1, 2, 3)K, ρ4〉
7−→〈nil ‖ (I[q2].X) ‖ (1?y.X [q2].X) ‖ (2?y.Z[q2].X) ‖ (3?y.Y[q2].X) , ρ4〉
7−→〈nil ‖ X ‖ (1?y.X [q2].X) ‖ (2?y.Z[q2].X) ‖ (3?y.Y[q2].X) , ρ4〉,

with ρ4 = E0,q0,q1(ρ3). ut
Except for permutation, a source term step is translated by the encoding J·K

into exactly one target term step. In the other direction, every target term step
is translated by exactly one source term step possibly surrounded by two steps
on (R-PermCQP ) to permute qubits and put them back in the original order.
From that, we obtain operational correspondence. Compositionality holds by
definition and name invariance is trivially satisfied, because names are translated
by themselves and the encoding does not use names for any other purpose.
Divergence reflection results from operational soundness, since all source term
steps are translated to a finite number of target term steps. Finally, operational
correspondence and the homomorphic translation of success ensure that J·K is
success sensitive. With that, J·K satisfies all the criteria that we discussed in
Section 4. The corresponding proofs can be found in [17].

Theorem 1. The encoding J·K is good.

By [12], Theorem 1 implies that there is a correspondence simulation that
relates source terms S and their literal translations JSK. To refer to a more stan-
dard equivalence, this also implies that S and JSK are coupled similar (for the
relevance of coupled similarity see e.g. [2]). Proving operational correspondence
w.r.t. a bisimulation would not significantly tighten the connection between the
source and the target. To really tighten the connection such that S and JSK
are bisimilar, we need a stricter variant of operational correspondence and for
that a more direct translation of probability distributions to avoid the problem
discussed in Example 4. Indeed [3] introduces probability distributions to qCCS
and a corresponding alternative of measurement that allows to translate this
operator homomorphically. However, in this study we are more concerned about
the quality criteria. Hence using them to compare languages that treat qubits
fundamentally differently is more interesting here. Moreover, to tighten the con-
nection we would need a probabilistic version of operational correspondence and
accordingly a probabilistic version of bisimulation. We leave the study of these
probabilistic versions for future research.
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6 Separating Quantum Based Systems

Since super-operators are more expressive than unitary transformations, an en-
coding from qCCS into CQP is more difficult.

Example 6. Consider the super-operator Qq(ρ) =

(
1 0
0
√

1 + p

)
ρ

(
1 0
0
√

1 + p

)
−(

0
√
p

0 0

)
ρ

(
0 0√
p 0

)
where p is a probability. With p = 1 we obtain Qq(ρ) =(

ρ00 − ρ11
√

2ρ01√
2ρ10 2ρ11

)
that sometimes behaves as identity, i.e., Qq(|0〉〈0|) = |0〉〈0|,

and sometimes changes the qubit, e.g. Qq(|1〉〈1|) =

(
−1 0
0 2

)
, Qq(|+〉〈+|) =(

0
√
2
2√

2
2 1

)
, and Qq(|−〉〈−|) =

(
0 −

√
2
2

−
√
2
2 1

)
. To observe this strange behaviour

of Q[q], we measure the resulting qubit using the qCCS-configuration

Sce(ρ) = 〈Q[q].if tr(E0[q]) 6= 0 then τ.X+ if tr(E1[q]) 6= 0 then τ.nil, ρ〉

for the 1-qubit system ρ = q, where the choice allows to unguard success if 0
can be measured. We observe that Sce(|0〉〈0|) must reach success, Sce(|1〉〈1|) may
but not must reach success, and Sce(|+〉〈+|) as well as Sce(|−〉〈−|) cannot reach
success. ut

An encoding from qCCS into CQP needs to emulate the behaviour of Q[q],
which is inspired by an operator used for amplitude-damping (see e.g. [10]). Since
there is no unitary transformation with this behaviour and also measurement or
additional qubits do not help to emulate this behaviour on the state of the qubit
(see the proof of Theorem 2), there is no encoding from qCCS into CQP that
satisfies compositionality, operational correspondence, and success sensitiveness,
i.e., we can use Example 6 as a counterexample to prove that there is no good
encoding from qCCS into CQP. The proof of Theorem 2 is given in [17]. Note
that we reason here about CQP instead of CQP−, since even the full expressive
power of CQP does not help to correctly emulate this super-operator.

Theorem 2. There is no encoding from qCCS into CQP that satisfies compo-
sitionality, operational correspondence, and success sensitiveness.

7 Quality Criteria for Quantum Based Systems

Sections 5 and 6 show that the quality criteria of Gorla in [6] can be applied
to quantum based systems and are still meaningful in this setting. They might,
however, not be exhaustive, i.e., there might be aspects of quantum based sys-
tems that are relevant but not sufficiently covered by this set of criteria. To
obtain these criteria, Gorla studied a large number of encodings, i.e., this set
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of critria was built upon the experience of many researchers and years of work.
Accordingly, we do not expect to answer the question ’what are good quality
criteria for quantum based systems’ now, but rather want to start the discussion.

A closer look at the criteria in Section 4 reveals a first candidate for an ad-
ditional quality criterion. Name invariance ensures that encodings cannot cheat
by treating names differently. It requires that good encodings preserve substitu-
tions to some extend. CQP and qCCS model the dynamics of quantum registers
in fundamentally different ways, but both languages address qubits by qubit
names. It seems natural to extend name invariance to also cover qubit names.

As in [6], we let our definition of qubit invariance depend on a renaming
policy ϕ, where this renaming policy is for qubit names. The renaming policy
translates qubit names of the source to tuples of qubit names in the target, i.e.,
ϕ : V → Vn, where we require that ϕ(q) ∩ ϕ(q′) = ∅ whenever q 6= q′.

The new criterion qubit invariance, then requires that encodings preserve and
reflect substitutions on qubits modulo the renaming policy on qubits.

Definition 7 (Qubit Invariance). The encoding J·K is qubit invariant if, for
every S ∈ CS and every substitution γ on qubit names, it holds that JSγK = JSKγ′,
where ϕ(γ(q)) = γ′(ϕ(q)) for every q ∈ V.

In [6], name invariance allows the slightly weaker condition JSγK � JSKγ′
for non-injective substitutions. In contrast, substitutions on qubits always have
to be injective such that they cannot violate the no-cloning principle. Since J·K
translates qubit names to themselves and introduces no other qubit names, it
satisfies qubit invariance for ϕ being the identity and γ′ = γ. The corresponding
proof is given in [17].

Lemma 2. The encoding J·K is qubit invariant.

Note that the qubits discussed so far are so-called logical qubits, i.e., they
are abstractions of the physical qubits. To implement a single logical qubit as
of today several physical qubits are necessary. These additional physical qubits
are used to ensure stability and fault-tolerance in the implementation of logical
qubits. Since the number of necessary physical qubits can be much larger than
the number of logical qubits, already a small increase in the number of logical
qubits might seriously limit the practicability of a system. Accordingly, one may
require that encodings preserve the number of logical qubits.

Definition 8 (Size of Quantum Registers). An encoding J·K preserves the
size of quantum registers, if for all S ∈ CS, the number of qubits in JSK is not
greater than in S.

Again, the encoding J·K in Definition 6 satisfies this criterion, which can be
verified easily by inspection of the encoding function. The full proof can be found
[17].

Lemma 3. The encoding J·K preserves the size of quantum registers.
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Similarly to success sensitiveness, requiring the preservation of the size of
quantum registers on literal encodings is not enough. To ensure that all reachable
target terms preserve the size of quantum registers, we again link this criterion
with the target term relation �. More precisely, we require that � is sensible to
the size of quantum registers, i.e., T1 � T2 implies that the quantum registers
in T1 and T2 have the same size. The correspondence simulation � that we
used as target relation for the encoding J·K is not sensible to the size of quantum
registers, but we can easily turn it into such a relation. Therefore, we simply add
the condition that |ρ| = |σ| whenever 〈P, ρ〉R〈Q, σ〉 to Definition 5. Fortunately,
all of the already shown results remain valid for the altered version of �.

In contrast to CQP−, the semantics of qCCS yields a non-probabilistic tran-
sition system, where probabilities are captured in the density matrices. The
encoding J·K translates probability distributions into non-deterministic choices.
Thereby, branches with zero probability are correctly eliminated, but all remain-
ing branches are treated similarly and their probabilities are forgotten. To check
also the probabilities of branches, we can strengthen operational correspondence
to a labelled variant, where labels capture the probability of a step. The chal-
lenge here is to create a meaningful criterion that correctly accumulates the
probabilities in sequences of steps as e.g. a single source term step might be
translated into a sequence of target term steps, but the product of the probabil-
ities contained in the sequence has to be equal to the probability of the single
source term step. We leave the derivation of a suitable probabilistic version of
operational correspondence to future work.

Another important aspect is in how far the quality criteria capture the fun-
damental principles of quantum based systems such as the no-cloning principle:
By the laws of quantum mechanics, it is not possible to exactly copy a qubit.
Technically, such a copying would require some form of interaction with the
qubit and this interaction would destroy its superposition, i.e., alter its state.
Interestingly, the criteria of Gorla are even strong enough to observe a violation
of this principle in the encoding from CQP− into qCCS, i.e., if we allow CQP− to
violate this principle but require that qCCS respects it, then we obtain a nega-
tive result. Therefore, we remove the type system from CQP−. Without this type
system, we can use the same qubit at different locations, violating the no-cloning
principle. As an example, consider S = (σ;φ; c![q].0 | c![q].0). Then the encoding
J·K in Definition 6 is not valid any more, because JSK = 〈(c!q.nil ‖ c!q.nil) \ φ, ρ〉
violates condition Cond2. Using S as counterexample, it should be possible to
show that there exists no encoding that satisfies compositionality, operational
correspondence, and success sensitiveness.

Of course, even if we succeed with this proof, this does not imply that the
criteria are strong enough to sufficiently capture the no-cloning principle. Indeed,
the other direction is more interesting, i.e., criteria that rule out encodings such
that the source language respects the no-cloning principle but not all literal
translations or their derivatives respect it. We believe that capturing the no-
cloning principle and the other fundamental principles of quantum based systems
is an interesting research challenge.
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8 Conclusions

We proved that CQP− can be encoded by qCCS w.r.t. the quality criteria com-
positionality, name invariance, operational correspondence, divergence reflection,
and success sensitiveness. Additionally, this encoding satisfies two new, quantum
specific criteria: it is invariant to qubit names and preserves the size of quantum
registers. We think that these new criteria are relevant for translations between
quantum based systems.

The encoding proves that the way in that qCCS treats qubits—using density
matrices and super-operators—can emulate the way in that CQP− treats qubits.
The other direction is more difficult. We showed that there exists no encoding
from qCCS into CQP that satisfies compositionality, operational correspondence,
and success sensitiveness.

The results themselves may not necessarily be very surprising. The unitary
transformations used in CQP−/CQP are a subset of the super-operators used
in qCCS and also density matrices can express more than the vectors used in
CQP−/CQP. What our case study proves is that the quality criteria that were
originally designed for classical systems are still meaningful in this quantum
based setting. They may, however, not be exhaustive. Accordingly, in Section 7
we start the discussion on quality criteria for this new setting of quantum based
systems. The first two candidate criteria that we propose, namely qubit invari-
ance and preservation of quantum register sizes, are relevant, but rather basic.
Since the semantics of quantum based systems is often probabilistic, a variant of
operational correspondence that requires the preservation and reflection of prob-
abilities in the respective traces might be meaningful. Such a criterion would rule
out the encoding J·K presented above. More difficult and thus also more inter-
esting are criteria that capture the fundamental principles of quantum based
systems such as the no-cloning principle. Hereby, we pose the task of identifying
such criteria as research challenge.

As, to the best of our knowledge, there are no well-accepted probabilistic
versions of operational correspondence. As a first step we will study probabilistic
versions of operational correspondence and the nature of the relation between
source and target they imply.
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1. Bennett, C.H., Brassard, G., Crépeau, C., RichardJozsa, Peres, A., Woot-
ters, W.K.: Teleporting an unknown quantum state via dual classi-
cal and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899
(Mar 1993). https://doi.org/10.1103/PhysRevLett.70.1895, https://link.aps.

org/doi/10.1103/PhysRevLett.70.1895

2. Bisping, B., Nestmann, U., Peters, K.: Coupled similarity: the first 32 years. Acta
Informatica 57(3–5), 439–463 (2020). https://doi.org/10.1007/s00236-019-00356-4

3. Feng, Y., Duan, R., Ying, M.: Bisimulation for quantum processes. ACM Trans.
Program. Lang. Syst. 34(4) (Dec 2012). https://doi.org/10.1145/2400676.2400680,
https://doi.org/10.1145/2400676.2400680

https://doi.org/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://link.aps.org/doi/10.1103/PhysRevLett.70.1895
https://doi.org/10.1007/s00236-019-00356-4
https://doi.org/10.1145/2400676.2400680
https://doi.org/10.1145/2400676.2400680


Encodability Criteria for Quantum Based Systems 19

4. Gay, S.J.: Quantum programming languages: survey and bibliography.
Mathematical Structures of Computer Science 16(4), 581 – 600 (2006).
https://doi.org/10.1017/S0960129506005378

5. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In:
Proceedings of SIGPLAN-SIGACT (ACM). pp. 145–157 (2005).
https://doi.org/10.1145/1040305.1040318

6. Gorla, D.: Towards a Unified Approach to Encodability and Separation Results
for Process Calculi. Information and Computation 208(9), 1031–1053 (2010).
https://doi.org/10.1016/j.ic.2010.05.002

7. Gruska, J.: Quantum Computing. In: Wiley Encyclopedia of Com-
puter Science and Engineering. John Wiley & Sons, Inc. (2008).
https://doi.org/10.1002/9780470050118.ecse720

8. Jorrand, P., Lalire, M.: Toward a Quantum Process Algebra. In: Proceedings of
CF. pp. 111–119 (2004). https://doi.org/10.1145/977091.977108
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