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Abstract. Verifying the functional correctness of programs with both
classical and quantum constructs is a challenging task. The presence
of probabilistic behaviour entailed by quantum measurements and un-
bounded while loops complicate the verification task greatly. We pro-
pose a new quantum Hoare logic for local reasoning about probabilistic
behaviour by introducing distribution formulas to specify probabilistic
properties. We show that the proof rules in the logic are sound with
respect to a denotational semantics. To demonstrate the effectiveness
of the logic, we formally verify the correctness of non-trivial quantum
algorithms including the HHL and Shor’s algorithms.
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1 Introduction

Programming is an error-prone activity, and the situation is even worse for quan-
tum programming, which is far less intuitive than classical computing. Therefore,
developing verification and analysis techniques to ensure the correctness of quan-
tum programs is an even more important task than that for classical programs.

Hoare logic [12] is probably the most widely used program logic to verify
the correctness of programs. It is useful for reasoning about deterministic and
probabilistic programs. A lot of efforts have been made to reuse the nice idea
to verify quantum programs. Ying [28,29] was the first to establish a sound and
relatively complete quantum Hoare logic to reason about pure quantum pro-
grams, i.e., quantum programs without classical variables. This work triggered
a series of research in this direction. For example, Zhou et al. [34] proposed
an applied quantum Hoare logic by only using projections as preconditions and
postconditions, which makes the practical use of quantum Hoare logic much eas-
ier. Barthe et al. [2] extended quantum Hoare logic to relational verification by
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introducing a quantum analogue of probabilistic couplings. Li and Unruh [16]
defined a quantum relational Hoare logic with expectations in pre- and post-
conditions. Formalization of quantum Hoare logic in proof assistants such as
Isabelle/HOL [20] and Coq [4] was accomplished in [17] and [33], respectively.
Ying et al. [31] defined a class of disjoint parallel quantum programs and gen-
eralised the logic in [28] to this setting. As an extension of Hoare logic, sepa-
ration logic turns out to be useful for verifying deterministic, concurrent, and
probabilistic programs [22,21,5,25,3,1,15]. Zhou et al. [32] developed a quantum
separation logic for local reasoning about quantum programs. However, all the
work mentioned above cannot deal with programs that have both classical and
quantum data.

In order to verify quantum programs found in almost all practical quan-
tum programming frameworks such as Qiskit1, Q#2, Cirq3, etc., we have to
explicitly consider programs with both classical and quantum constructs. Ver-
ification techniques for this kind of hybrid programs have been put forward in
the literature [6,13,26,27,10,7,9,14]. For example, Chadha et al. [6] proposed an
ensemble exogenous quantum propositional logic for a simple quantum language
with bounded iteration. The expressiveness of the language is very limited, and
algorithms involving unbounded while loops such as the HHL and Shor’s algo-
rithms [11,24] cannot be described. Kakutani [13] presented a quantum Hoare
logic for an imperative language with while loops, but the rule for them has no
invariance condition. Instead, an infinite sequence of assertions has to be used.
Unruh introduced a quantum Hoare logic with ghost variables to express prop-
erties such as that a quantum variable is disentangled with others [26] and a
relational Hoare logic [27] for security analysis of post-quantum cryptography
and quantum protocols. Deng and Feng [7] provided an abstract and a concrete
proof system for classical–quantum programs, with the former being sound and
relatively complete, while the latter being sound. Feng and Ying [10] introduced
classical–quantum assertions, which are a class of mappings from classical states
to quantum predicates, to analyse both classical and quantum properties. The
approach was extended to verify distributed quantum programs in [9]. However,
except for [14], all the work above offers no support for local reasoning, which
is an obvious drawback. In the case that we have a large quantum register but
only a few qubits are modified, it is awkward to always reason about the global
states of the quantum register. Based on this observation, Le et al. [14] provided
an interesting quantum interpretation of the separating conjunction, so to infuse
separation logic into a Hoare-style framework and thus support local reasoning.
However, a weakness of their approach is that it cannot handle probabilistic
behaviour, which exists inherently in quantum programs, in a satisfactory way.
Let us illustrate this with a simple example.

Example 1. The program addM defined below first initialises two qubits q0
and q1, and then applies the Hadamard gate H to each of them. By measuring

1 https://qiskit.org
2 https://github.com/microsoft/qsharp-language
3 https://github.com/quantumlib/Cirq
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them with the measurement operators |0⟩⟨0| and |1⟩⟨1|, we add the measurement
results and assign the sum to the variable v.

addM ≜ q0 := |0⟩ ; H[q0];

q1 := |0⟩ ; H[q1];

v0 :=M [q0];

v1 :=M [q1];

v := v0 + v1

Since the classical variable v0 takes either 0 or 1 with equal chance, and similarly
for v1, the probability that variable v is assigned to 1 should be exactly 1

2 .
However, in the program logic in [14], this property cannot be specified. ⊓⊔

We propose a novel quantum Hoare logic for a classical–quantum language.
Two distribution formulas⊕i∈Ipi·Fi and⊕i∈IFi are introduced. A program state
µ, which is a partial density operator valued distribution (POVD) [7], satisfies
the formula ⊕i∈Ipi ·Fi if µ can be split into the weighted sum of i parts called µi

and each µi satisfies the formula Fi. A state µ satisfies the formula ⊕i∈IFi if there
exists a collection of probabilities {pi}i∈I with

∑
i∈I pi = 1 such that ⊕i∈Ipi ·Fi

can be satisfied. In other words, the splitting of µ does not necessarily follow
a fixed set of weights. With distribution formulas, we can conveniently reason
about the probabilistic behaviour mentioned in Example 1 (more details will be
discussed in Example 2), and give an invariance condition in the proof rule for
while loops. In addition, we adopt the labelled Dirac notation emphasised in [33]
to facilitate local reasoning. Our program logic is shown to be sound and can be
used to prove the correctness of non-trivial quantum algorithms including the
HHL and Shor’s algorithms. Therefore, the main contributions of the current
work include the following aspects:

– We propose to use distribution formulas in a new quantum Hoare logic to
specify the probabilistic behaviour of classical–quantum programs. Distribu-
tion formulas are useful to give an invariance condition in the proof rule for
while loops, so to avoid an infinite sequence of assertions in the rule.

– We prove the soundness of our logic that allows for local reasoning in the
spirit of separation logic.

– We demonstrate the effectiveness of the logic by proving the correctness of
the HHL and Shor’s algorithms.

The rest of the paper is structured as follows. In Section 2 we recall some
basic notations about quantum computing. In Section 3 we review the syntax and
denotational semantics of a classical–quantum imperative language considered
in [7]. In Section 4 we define an assertion language and propose a proof system
for local reasoning about quantum programs. We also prove the soundness of
the system. In Section 5 we apply our framework to verify the HHL and Shor’s
algorithms. Finally, we conclude in Section 6 and discuss possible future work.
Missing proofs are given in [8].
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2 Preliminaries

We briefly recall some basic notations from linear algebra and quantum mechan-
ics which are needed in this paper. For more details, we refer to [19].

A Hilbert space H is a complete vector space with an inner product ⟨·|·⟩ :
H×H → C such that

1. ⟨ψ|ψ⟩ ≥ 0 for any |ψ⟩ ∈ H, with equality if and only if |ψ⟩ = 0,

2. ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗,
3. ⟨ϕ|

∑
i ci|ψi⟩ =

∑
i ci⟨ϕ|ψi⟩,

where C is the set of complex numbers, and for each c ∈ C, c∗ stands for the
complex conjugate of c. For any vector |ψ⟩ ∈ H, its length ∥|ψ⟩∥ is defined to
be
√
⟨ψ|ψ⟩, and it is said to be normalised if ∥|ψ⟩∥ = 1. Two vectors |ψ⟩ and

|ϕ⟩ are orthogonal if ⟨ψ|ϕ⟩ = 0. An orthonormal basis of a Hilbert space H is a
basis {|i⟩} where each |i⟩ is normalised and any pair of them are orthogonal.

Let L(H) be the set of linear operators on H. For any A ∈ L(H), A is
Hermitian if A† = A where A† is the adjoint operator of A such that ⟨ψ|A†|ϕ⟩ =
⟨ϕ|A|ψ⟩∗ for any |ψ⟩, |ϕ⟩ ∈ H. A linear operator A ∈ L(H) is unitary if A†A =
AA† = IH where IH is the identity operator on H. The trace of A is defined as
tr(A) =

∑
i⟨i|A|i⟩ for some given orthonormal basis {|i⟩} of H. A linear operator

A ∈ L(H) is positive if ⟨ϕ|A|ϕ⟩ ≥ 0 for any vector |ϕ⟩ ∈ H. The Löwner order ⊑
on the set of Hermitian operators on H is defined by letting A ⊑ B if and only
if B −A is positive.

Let H1 and H2 be two Hilbert spaces. Their tensor product H1 ⊗ H2 is
defined as a vector space consisting of linear combinations of the vectors |ψ1ψ2⟩ =
|ψ1⟩|ψ2⟩ = |ψ1⟩ ⊗ |ψ2⟩ with |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2. Here the tensor product
of two vectors is defined by a new vector such that(∑

i

λi|ψi⟩

)
⊗

∑
j

µj |ϕj⟩

 =
∑
i,j

λiµj |ψi⟩ ⊗ |ϕj⟩.

Then H1 ⊗H2 is also a Hilbert space where the inner product is defined as the
following: for any |ψ1⟩, |ϕ1⟩ ∈ H1 and |ψ2⟩, |ϕ2⟩ ∈ H2,

⟨ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2⟩ = ⟨ψ1|ϕ1⟩H1
⟨ψ2|ϕ2⟩H2

where ⟨·|·⟩Hi
is the inner product of Hi. Given H1 and H2, the partial trace with

respect to H2, written trH2
, is a linear mapping from L(H1⊗H2) to L(H1) such

that for any |ψ1⟩, |ϕ1⟩ ∈ H1 and |ψ2⟩, |ϕ2⟩ ∈ H2,

trH2
(|ψ1⟩⟨ϕ1| ⊗ |ψ2⟩⟨ϕ2|) = ⟨ψ2|ϕ2⟩|ψ1⟩⟨ϕ1|.

By applying quantum gates to qubits, we can change their states. For ex-
ample, the Hadamard gate (H gate) can be applied on a single qubit, while the
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controlled-NOT gate (CNOT gate) can be applied on two qubits. Their repre-
sentations in terms of matrices are given as

H = 1√
2

(
1 1
1 −1

)
and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

According to von Neumann’s formalism of quantum mechanics [18], an iso-
lated physical system is associated with a Hilbert space which is called the state
space of the system. A pure state of a quantum system is a normalised vector
in its state space, and a mixed state is represented by a density operator on the
state space. Here a density operator ρ on Hilbert space H is a positive linear
operator such that tr(ρ) = 1. A partial density operator ρ is a positive linear
operator with tr(ρ) ≤ 1.

The evolution of a closed quantum system is described by a unitary operator
on its state space: if the states of the system at times t1 and t2 are ρ1 and ρ2,
respectively, then ρ2 = Uρ1U

† for some unitary operator U which depends only
on t1 and t2.

A quantum measurement is described by a collection {Mm} of positive op-
erators, called measurement operators, where the indices m refer to the mea-
surement outcomes. It is required that the measurement operators satisfy the
completeness equation

∑
mM†

mMm = IH. If the system is in state ρ, then the
probability that measurement result m occurs is given by

p(m) = tr(M†
mMmρ),

and the state of the post-measurement system is MmρM
†
m/p(m).

3 A Classical–Quantum Language

We recall the simple classical–quantum imperative language QIMP as defined
in [7]. It is essentially similar to a few imperative languages considered in the
literature [23,30,27,10]. We introduce its syntax and denotational semantics.

3.1 Syntax

We assume three types of data in our language: Bool for booleans, Int for inte-
gers, and Qbt for quantum bits (qubits). Let Z be the set of integer constants,
ranged over by n. Let Cvar, ranged over by x, y, ..., be the set of classical vari-
ables, and Qvar, ranged over by q, q′, ..., the set of quantum variables. It is
assumed that both Cvar and Qvar are countable. We assume a set Aexp of
arithmetic expressions over Int, which includes Cvar as a subset and is ranged
over by a, a′, ..., and a set of boolean-valued expressions Bexp, ranged over by
b, b′, ..., with the usual boolean constants true, false and boolean connectives
such as ¬,∧ and ∨. We assume a set of arithmetic functions (e.g. +, −, ∗, etc.)
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(Aexp) a ::= n | x, y, ... | fm(a, ..., a)

(Bexp) b ::= true | false | Pm(a, ..., a) | b ∧ b | ¬b | ∀x.b
(Com) c ::= skip | abort | x := a | c; c

| if b then c else c fi | while b do c od

| q := |0⟩ | U [q] | x := M [q]

Table 1. Syntax of quantum programs

ranged over by the symbol fm, and a set of boolean predicates (e.g. =, ≤, ≥,
etc.) ranged over by Pm, where m indicates the number of variables involved. We
further assume that only classical variables can occur freely in both arithmetic
and boolean expressions.

We let U range over unitary operators, which can be user-defined matrices or
built in if the language is implemented. For example, a concrete U could be the
1-qubit Hadamard operator H, or the 2-qubit controlled-NOT operator CNOT,
etc. Similarly, we writeM for the measurement described by a collection {Mi} of
measurement operators, with each index i representing a measurement outcome.
For example, to describe the measurement of the qubit referred to by variable q
in the computational basis, we can write M := {M0,M1}, where M0 = |0⟩q⟨0|
and M1 = |1⟩q⟨1|.

Sometimes, we use metavariables which are primed or subscripted, e.g. x′, x0
for classical variables. We abbreviate a tuple of quantum variables ⟨q1, ..., qn⟩ as
q̄ if the length n of the tuple is not important. If two tuples of quantum vari-
ables q and q′ are disjoint, where q=⟨q1, ..., qn⟩ and q′ = ⟨qn+1, qn+2, ..., qn+m⟩,
then their concatenation is a larger tuple qq′=⟨q1, ..., qn, qn+1, ..., qn+m⟩. If no
confusion arises, we occasionally use a tuple to stand for a set.

The formation rules for arithmetic and boolean expressions as well as com-
mands are defined in Table 1. An arithmetic expression can be an integer, a
variable, or built from other arithmetic expressions by some arithmetic func-
tions. A boolean expression can be a boolean constant, built from arithmetic
expressions by some boolean predicates or formed by using the usual boolean
operations. A command can be a skip statement, an abort statement, a classical
assignment, a conditional statement, or a while-loop, as in many classical imper-
ative languages. The command abort represents the unsuccessful termination
of programs. In addition, there are three commands that involve quantum data.
The command q := |0⟩ initialises the qubit referred to by variable q to be the
basis state |0⟩. The command U [q̄] applies the unitary operator U to the quan-
tum system referred to by q̄. The command x :=M [q̄] performs a measurement
M on q̄ and assigns the measurement outcome to x. It differs from a classical
assignment because the measurement M may change the quantum state of q̄,
besides the fact that the value of x is updated.

For convenience, we further define the following syntactic sugar for the ini-
tialization of a sequence of quantum variables: q = |0⟩⊗n

, where q = ⟨q1, ..., qn⟩,



Local Reasoning for Classical–Quantum Programs 7

is an abbreviation of the commands:

q1 = |0⟩ ; q2 = |0⟩ ; . . . ; qn := |0⟩ .

3.2 Denotational Semantics

In the presence of classical and quantum variables, the execution of a QIMP
program involves two types of states: classical states and quantum states.

As usual, a classical state is a function σ : Cvar → Z from classical variables
to integers, where σ(x) represents the value of classical variable x. For each
quantum variable q ∈ Qvar, we assume a 2-dimensional Hilbert space Hq to be
the state space of the q-system. For any finite subset V of Qvar, we denote

HV =
⊗
q∈V

Hq.

That is, HV is the Hilbert space spanned by tensor products of the individual
state spaces of the quantum variables in V . Throughout the paper, when we
refer to a subset of Qvar, it is assumed to be finite. Given V ⊆ Qvar, the set of
quantum states consists of all partial density operators in the space HV , denoted
by D−(HV ). A machine state is a pair ⟨σ, ρ⟩ where σ is a classical state and ρ a
quantum state. In the presence of measurements, we often need to consider an
ensemble of states. For that purpose, we introduce a notion of distribution.

Definition 1. [7] Suppose V ⊆ Qvar and Σ is the set of classical states, i.e.,
the set of functions of type Cvar → Z. A partial density operator valued distri-
bution (POVD) is a function µ : Σ → D−(HV ) with

∑
σ∈Σ tr(µ(σ)) ≤ 1.

Intuitively, a POVD µ represents a collection of machine states where each clas-
sical state σ is associated with a quantum state µ(σ). The notation of POVD
is called classical–quantum state in [10]. If the collection has only one element
σ, we explicitly write (σ, µ(σ)) for µ. The support of µ, written ⌈µ⌉, is the set
{σ ∈ Σ | µ(σ) ̸= 0}. We can also define the addition of two distributions by
letting (µ1 + µ2)(σ) = µ1(σ) + µ2(σ).

We interpret programs as POVD transformers. We write POVD for the
set of POVDs called distribution states. Given an expression e, we denote its
interpretation with respect to machine state (σ, ρ) by [[e]](σ,ρ). The denota-
tional semantics of commands is displayed in Table 2, where we omit the de-
notational semantics of arithmetic and boolean expressions such as [[a]]σ and
[[b]]σ, which is almost the same as in the classical setting because the quan-
tum part plays no role for those expressions. A state evolves into a POVD
after some quantum qubits are measured, with the measurement outcomes as-
signed to a classical variable. Two other quantum commands, initialisation of
qubits and unitary operations, are deterministic and only affect the quantum
part of a state. As usual, we define the semantics of a loop (while b do c od)
as the limit of its lower approximations, where the n-th lower approximation
of [[while b do c od]](σ,ρ) is [[(if b then c fi)n; if b then abort fi]](σ,ρ), where
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[[skip]](σ,ρ) = (σ, ρ)

[[abort]](σ,ρ) = ε

[[x := a]](σ,ρ) = (σ[[[a]]σ/x], ρ)

[[c0; c1]](σ,ρ) = [[c1]][[c0]](σ,ρ)

[[if b then c0 else c1 fi]](σ,ρ) =

{
[[c0]](σ,ρ) if [[b]]σ = true
[[c1]](σ,ρ) if [[b]]σ = false

[[while b do c od]](σ,ρ) = limn→∞[[(if b then c fi)n; if b then abort fi]](σ,ρ)

[[q := |0⟩]](σ,ρ) = (σ, ρ′)
where ρ′ := |0⟩q⟨0|ρ|0⟩q⟨0|+ |0⟩q⟨1|ρ|1⟩q⟨0|

[[U [q̄]]](σ,ρ) = (σ, UρU†)

[[x := M [q̄]]](σ,ρ) = µ

where M = {Mi}i∈I and

µ(σ′) =
∑

i{MiρM
†
i | σ[i/x] = σ′}

[[c]]µ =
∑

σ∈⌈µ⌉[[c]](σ,µ(σ)).

Table 2. Denotational semantics of commands

(if b then c fi) is shorthand for (if b then c else skip fi) and cn is the com-
mand c iterated n times with c0 ≡ skip. The limit exists because the sequence
([[(if b then c fi)n; if b then abort fi]](σ,ρ))n∈N is increasing and bounded with
respect to the Löwner order [7, Lemma 3.2]. We write ε for the special POVD
whose support is the empty set.

We remark that the semantics [[c]](σ,ρ) of a command c in initial state (σ, ρ)
is a POVD. The lifted semantics [[c]]µ of a command c in initial POVD µ is also
a POVD. Furthermore, the function [[c]] is linear in the sense that

[[c]]p0µ0+p1µ1 = p0[[c]]µ0 + p1[[c]]µ1

where we write pµ for the POVD defined by (pµ)(σ) = p · µ(σ).

Similarly as in [14], we take advantage of the labelled Dirac notation through-
out the paper with subscripts identifying the subsystem where a ket/bra/operator
lies or operates. For example, the subscript in |a⟩q indicates the Hilbert space Hq

where the state |a⟩ lies. The notation |a⟩ |a⟩ and |a⟩q|a⟩q are the abbreviations
of |a⟩⊗ |a⟩ and |a⟩q⊗|a⟩q respectively. We also use operators with subscripts like
Aq to identify the Hilbert space Hq where the operator A is applied.
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(Classical expression) e ::= n | x, y, ... | fm(e, ..., e)

(Classical formula) P ::= true | false | Pm(e, ..., e) | P ∧ P | ¬P | ∀x.P (x)

(Quantum expression) |s⟩ ::= |a⟩q | |s⟩ ⊗ |s⟩

(State formula) F ::= P | |s⟩ | F ⊙ F | F ∧ F | ¬F
(Distribution formula) D ::= ⊕i∈I pi · Fi | ⊕i∈I Fi

Table 3. Syntax of assertion languages

4 Proof System

In this section we present a proof system for local reasoning about probabilistic
behaviour of quantum programs. We first define an assertion language, then pro-
pose a Hoare-style proof system, and finally prove the soundness of the system.

4.1 Assertion Language

We now introduce an assertion language for our programs, whose syntax is
given in Table 3. Classical expressions are arithmetic expressions with integer
constants, ranged over by e. Classical formulas, ranged over by P , include the
boolean constants true and false, boolean predicates in the form Pm and any
P connected by boolean operators such as negation, conjunction, and universal
quantification. They are intended to capture properties of classical states. Quan-
tum expressions, ranged over by |s⟩, include quantum states of the form |a⟩p and
the tensor product |s⟩ ⊗ |s⟩ which we abbreviate as |s⟩ |s⟩. Here |a⟩p can be any
computational basis or their linear combinations in the Hilbert space Hp. State
formulas, ranged over by F , are used to express properties on both classical and
quantum states, which include the classical formula P , the quantum expression
|s⟩ and any expression connected by boolean operators such as negation and con-
junction. In addition, we introduce a new connective ⊙ to express an assertion of
two separable systems. Following [14], we use free(F ) to denote the set of all free
classical and quantum variables in F . For example, free(|a1⟩q1 ⊗ |a2⟩q2) = q1q2.
Moreover, we use qfree(F ) to denote the set of all quantum variables in F . For
the formula F1 ⊙ F2 to be well defined, we impose the syntactical restriction
that free(F1) ∩ free(F2) = ∅. Intuitively, a quantum state satisfies F1 ⊙ F2 if
the state mentions two disjoint subsystems whose states satisfy F1 and F2 re-
spectively. Distribution formulas consist of some state formulas Fi connected by
the connective ⊕ with the weights given by pi satisfying

∑
i∈I pi = 1 as well

as the non-probabilistic formula ⊕i∈IFi. If there is a collection of distribution
formulas Di = ⊕jpij · Fij and a collection of probabilities pi with

∑
i∈I pi = 1,

we sometimes write ⊕ipi ·Di to mean the formula ⊕ijpipij · Fij .
We use the notation µ |= F to indicate that the state µ satisfies the assertion

F . The satisfaction relation |= is defined in Table 4. When writing (σ, ρ) |= F ,
we mean that (σ, ρ) is a machine state and ρ is its quantum part representing
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(σ, ρ) |= P if [[P ]]σ = true

(σ, ρ) |= |s⟩ if ρ
tr(ρ)

|q = |s⟩⟨s| where q = free(|s⟩)

(σ, ρ) |= F1 ∧ F2 if (σ, ρ) |= F1 ∧ (σ, ρ) |= F2

(σ, ρ) |= ¬F if (σ, ρ) ̸|= F

(σ, ρ) |= F1 ⊙ F2 if (σ, ρ|qfree(F1)
) |= F1 ∧ (σ, ρ|qfree(F2)

) |= F2

µ |= F if ∀σ ∈ ⌈µ⌉. (σ, µ(σ)) |= F

µ |= ⊕i∈Ipi · Fi if ∃µ1 · · · ∃µm. [(
∧

i∈I µi |= Fi) ∧ µ =
∑

i∈I pi · µi]
for I = {1, . . . ,m}

µ |= ⊕i∈IFi if ∃ p1 · · · ∃pm. [(
∧

i∈I pi ≥ 0) ∧ µ |= ⊕i∈Ipi · Fi]
for I = {1, . . . ,m}

Table 4. Semantics of assertions

the status of the whole quantum system in a program under consideration. We
use [[P ]]σ to denote the evaluation of the classical predicate P with respect to
the classical state σ. If V is set of quantum variables and V ′ ⊆ V , we write
ρ|V ′ for the reduced density operator trV \V ′(ρ) obtained by restricting ρ to V ′.
A machine state (σ, ρ) satisfies the formula |s⟩ if the reduced density operator
obtained by first normalising ρ and then restricting it to free(|s⟩) becomes |s⟩⟨s|.
The state (σ, ρ) satisfies the formula F1⊙F2 if free(F1) and free(F2) are disjoint
and the restrictions of ρ to qfree(F1) and qfree(F2) satisfy the two sub-formulas
F1 and F2. The assertion F holds on a distribution µ when F holds on each
pure state in the support of µ. A distribution state µ satisfies the distribution
formula ⊕i∈Ipi · Fi if µ is a linear combination of some µi with weights pi and
each µi satisfies Fi. In the special case that µ is a pure state, we have that
(σ, ρ) |= ⊕i∈Ipi · Fi means (σ, ρ) |= Fi for every i ∈ I. The formula ⊕i∈IFi is
a nondeterministic version of the distribution formulas in the form ⊕i∈Ipi · Fi

without fixing the weights pi, so the weights can be arbitrarily chosen as long as
their sum is 1. For other assertions, the semantics should be self-explanatory.

From the relation |=, we can derive a quantitative definition of satisfaction,
where a state satisfies a predicate only to certain degree.

Definition 2. Let F be an assertion and p ∈ [0, 1] a real number. We say that
the probability of a state µ satisfying F is p, written by

Pµ(F ) = p,

if there exist two states µ1and µ2 such that µ = pµ1 + (1 − p)µ2, µ1 |= F
and µ2 |= ¬F , and moreover, p is the maximum probability for this kind of
decomposition of µ.

In [14], assertions with disjunctions are used as the postconditions of mea-
surement statements. However, this approach is awkward when reasoning about
probabilities. Let us take a close look at the problem in Example 2.
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Example 2. We revisit the program addM discussed in Example 1, which mea-
sures the variables q0 and q1, both in the state |+⟩⟨+|, and subsequently adds
their results of measurements. HereM is a projective measurement {|0⟩⟨0|, |1⟩⟨1|}.

addM ≜ q0 := |0⟩ ;H[q0];

q1 := |0⟩ ;H[q1];

v0 :=M [q0];

v1 :=M [q1];

v := v0 + v1

After the measurements on q0 and q1, the classical variables v0 and v1 are as-
signed to either 0 or 1 with equal probability. By executing the last command,
we assign the sum of v0 and v1 to v, and obtain the following POVD µ.

v0v1v q0q1
000 7→ 1

4 |00⟩⟨00|
µ : 011 7→ 1

4 |01⟩⟨01|
101 7→ 1

4 |10⟩⟨10|
112 7→ 1

4 |11⟩⟨11|

The second column represents the four classical states while the last column
shows the four quantum states. For example, we have σ1(v0v1v) = 000 and
ρ1 = |00⟩⟨00|. Let µi = (σi, ρi) for 1 ≤ i ≤ 4. Then µ = 1

2µ14 + 1
2µ23, where

µ14 = 1
2µ1 +

1
2µ4 and µ23=

1
2µ2 +

1
2µ3. Since µi |= (v = 1) for i = 2, 3, it follows

that µ23 |= (v = 1). On the other hand, we have µ14 |= (v ̸= 1). Therefore, it
follows that Pµ(v = 1) = 1

2 . That is, the probability for µ to satisfy the assertion
v = 1 is 1

2 .
Alternatively, we can express the above property as a distribution formula.

Let D = 1
2 · (v = 1) ⊕ 1

2 · (v ̸= 1). We see that µ |= D due to the fact that
µ = 1

2µ23 +
1
2µ14, µ23 |= (v = 1) and µ14 |= (v ̸= 1).

In [14], there is no distribution formula. The best we can do is to use a
disjunctive assertion to describe the postcondition of the above program.

F ≜ 1
4 · (v = 0 ∧ |00⟩q0q1) ∨

1
4 · (v = 1 ∧ |01⟩q0q1) ∨

1
4 · (v = 1 ∧ |10⟩q0q1) ∨

1
4 · (v = 2 ∧ |11⟩q0q1).

This assertion does not take the mutually exclusive correlations between different
branches into account. For example, it is too weak for us to prove that P(v =
1) = 1

4 + 1
4 = 1

2 , as discussed in more details in [14]. From this example, we
see that distribution formulas give us a more accurate way of describing the
behaviour of measurement statements than disjunctive assertions. ⊓⊔

4.2 Proof System

In this subsection, we present a series of inference rules for classical–quantum
programs, which will be proved to be sound in the next section. As usual, we
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{D} skip {D} [Skip] {D} abort {false} [Abort]

{D[a/x]} x := a {D} [Assgn]
{D0} c0 {D1} {D1} c1 {D2}

{D0} c0; c1{D2}
[Seq]

{F1 ∧ b} c1 {F ′
1} {F2 ∧ ¬b} c2 {F ′

2}
{p(F1 ∧ b)⊕ (1− p)(F2 ∧ ¬b)} if b then c1 else c2 fi {pF ′

1 ⊕ (1− p)F ′
2}

[Cond]

{false} c {D} [Absurd]
D0 ⇒ D1 {D1} c {D2} D2 ⇒ D3

{D0} c {D3}
[Conseq]

D = (F0 ∧ b)⊕ (F1 ∧ ¬b) {F0 ∧ b} c {D}
{D} while b do c od {F1 ∧ ¬b} [While]

{F1} c {F ′
1} {F2} c {F ′

2}
{F1 ∧ F2} c {F ′

1 ∧ F ′
2}

[Conj]

{F1} c {F2} free(F3) ∩mod(c) = ∅
{F1 ⊙ F3} c {F2 ⊙ F3}

[QFrame]

∀i ∈ I. {Di} c {D′
i}

∑
i∈I pi = 1

{⊕i∈Ipi ·Di} c {⊕i∈Ipi ·D′
i}

[Sum]

Table 5. Inference rules for classical statements

{true} q := |0⟩ {|0⟩q}
[QInit]

{U†
qF} U [q] {F}

[QUnit]

M = {Mi}i∈I pi = ∥Miq |v⟩ ∥2

{∧i(Pi[i/x] ∧ |v⟩qq′)} x := M [q] {⊕ipi · ((Pi ∧Miq |v⟩qq′ /
√
pi))}

[QMeas]

Table 6. Inference rules for quantum statements

use the Hoare triple {D1} S {D2} to express the correctness of our programs,
where S is a program and D1, D2 are the assertions specified in Table 3.

Table 5 lists the rules for classical statements, with most of them being
standard and thus self-explanatory. The assertion D [a/x] is the same asD except
that all the free occurrences of variable x in D are replaced by a. The assertion
D1⇒D2 indicates thatD1 logically impliesD2. The quantum frame rule [QFrame]
in Table 5 is introduced for local reasoning, which allows us to add assertion
F3 to the pre/post-conditions of the local proof {F1} S {F2}. We use mod(c)
to denote the set of all classical and quantum variables modified by c. Then
free(F3)∩mod(c) = ∅ indicates that all the free classical and quantum variables
in F3 are not modified by program c. Note that when F3 is a classical assertion,
⊙ can be replaced by ∧. The rule [Sum] allows us to reason about a probability
distribution by considering each pure state individually.

Table 6 displays the inference rules for quantum statements. In rule [QInit]
we see that the execution of the command q := |0⟩q sets the quantum system q
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F ⊢ true
[PT]

F ⊙ true ⊣⊢ F
[OdotE]

F1 ⊙ F2 ⊣⊢ F2 ⊙ F1
[OcotC]

F1 ⊙ (F2 ⊙ F3) ⊣⊢ (F1 ⊙ F2)⊙ F3
[OdotA]

P1 ⊙ P2 ⊣⊢ P1 ∧ P2
[OdotO]

P ⊙ F ⊣⊢ P ∧ F
[OdotOP]

P ∧ (F1 ⊙ F2) ⊣⊢ (P ∧ F1)⊙ F2
[OdotOA]

F1 ⊙ (F2 ∧ F3) ⊣⊢ (F1 ⊙ F2) ∧ (F1 ⊙ F3)
[OdotOC]

|u⟩p |v⟩q ⊣⊢ |v⟩q |u⟩p
[ReArr] |u⟩p |v⟩q ⊣⊢ |u⊗ v⟩pq

[Separ]

|u⟩p |v⟩q ⊣⊢ |u⟩p ⊙ |v⟩q
[OdotT]

p0 · F ⊕ p1 · F ⊕ p2 · F ′ ⊣⊢ (p0 + p1) · F ⊕ p2 · F ′ [OMerg]

⊕i∈Ipi · Fi ⊢ ⊕i∈IFi
[Oplus]

∀i ∈ I, Fi ⊢ F ′
i

⊕i∈Ipi · Fi ⊢ ⊕i∈Ipi · F ′
i

[OCon]

Table 7. Inference rules for entailment reasoning

to |0⟩, no matter what is the initial state. In rule [QUnit], for the postcondition

F we have the precondition U†
qF . Here U†

q distributes over those connectives
of state formulas and eventually applies to quantum expressions. For example,
if F = |v⟩qq′ ∧ P , then U†

qF = U†
q (|v⟩qq′) ∧ P and U†

q (¬F ) = ¬(U†
qF ). In

rule [QMeas], the combined state of the variables qq′ is specified because there
may be an entanglement between the subsystems for q and q′. In that rule,
we write Pi[i/x] for the assertion obtained from Pi by replacing the variable x
with value i. The postcondition is a distribution formula, with each assertion
Pi ∧ (Mi[q] |v⟩ /

√
pi) assigned probability pi, i.e., the probability of obtaining

outcome i after the measurement M .

Table 7 presents several rules for entailment reasoning about quantum pred-
icates. The notation D1 ⊢ D2 says that D1 proves D2. Intuitively, it means
that any state satisfying D1 also satisfies D2. We write D1 ⊣⊢ D2 if the other
direction also holds.

The connective ⊙ is commutative and associative, according to the rules
[OdotC] and [OdotA]. If one or two assertions are classical, the rules [OdotO]
and [OdotOP] replace ⊙ with ∧. The rule [OdotOA] replaces P ∧ (F1 ⊙ F2)
with (P ∧ F1) ⊙ F2 and vice versa. The rule [OdotOC] assists us to distribute
⊙ into conjunctive assertions. The rule [ReArr] allows us to rearrange quantum
expressions while [Separ] allows us to split/join the quantum expressions, given
that p and q are not entangled with each other. The rules [ReArr] and [Separ] can
be obtained naturally via the properties of tensor products. The rule [OdotT]
replaces the ⊙ connective with ⊗ when both assertions are state expressions.
The rule [OMerg] allows us to merge the probabilities of two branches in a
distribution formula if the two branches are the same. The rule [Oplus] is easy
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to be understood as ⊕i∈IFi is essentially a relaxed form of ⊕i∈Ipi · Fi. The rule
[OCon] says that if each Fi entails F

′
i , then the entailment relation is preserved

between the combinations ⊕i∈Ipi · Fi and ⊕i∈Ipi · F ′
i .

We use the notation ⊢ {D1} c {D2} to mean that the Hoare triple {D1} c {D2}
is provable by applying the rules in Tables 5–7.

Example 3. Suppose there are two separable systems q̄ and q̄′. They satisfy the
precondition 1

2 |u1⟩q̄ |v1⟩q̄′ ⊕
1
2 |u2⟩q̄ |v2⟩q̄′ . After applying the operator U [q̄], they

satisfy the postcondition 1
2 (Uq̄ |u1⟩q̄) |v1⟩q̄′ ⊕

1
2 (Uq̄ |u2⟩q̄) |v2⟩q̄′ . In other words,

the following Hoare triple holds.

⊢ { 1
2 |u1⟩q̄ |v1⟩q̄′ ⊕

1
2 |u2⟩q̄ |v2⟩q̄′}

U [q̄]

{ 1
2 (Uq̄ |u1⟩q̄) |v1⟩q̄′ ⊕

1
2 (Uq̄ |u2⟩q̄) |v2⟩q̄′}

(1)

This Hoare triple can be proved as follows. Firstly, we apply the rule [QUnit] to
obtain

⊢ {|u1⟩q} U [q] {|Uq|u1⟩q}. (2)

Then we use the rules [QFrame] and [OdotT] to get

⊢ {|u1⟩q|v1⟩q′} U [q] {|Uq|u1⟩q|v1⟩q′}. (3)

Similarly, we have

⊢ {|u2⟩q|v2⟩q′} U [q] {|Uq|u2⟩q|v2⟩q′}. (4)

Combining (3) with (4) by rule [Sum], we obtain the Hoare triple in (1). ⊓⊔

Example 4. Let us consider the program addM and the distribution formula
D = 1

2 · (v = 1)⊕ 1
2 · (v ̸= 1) discussed in Example 2. It can be formally proved

that
{true} addM {D} .

A proof outline is given in [8]. Following [14], we use the following notations to
highlight the application of the frame rule [QFrame]:

⇐⇒ { F1 } c { F2 } or equivalently
=⇒ { F1 }

c
⇐= { F2 }

Both notations indicate that {F1}c{F2} is a local proof for c and is useful for
long proofs. The frame assertion F3 can be deduced from the assertions before
F1 or after F2. ⊓⊔

Our inference system is sound in the following sense: any Hoare triple in
the form {D1} c {D2} derived from the inference system is valid, denoted by
⊨ {D1}c{D2}, meaning that for any state µ we have µ |= D1 implies [[c]]µ |= D2.

Theorem 1 (Soundness). If ⊢ {D1} c {D2} then ⊨ {D1} c {D2}.
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5 Examples

We apply the proof system to verify the functional correctness of two non-trivial
algorithms: the HHL and Shor’s algorithms in Subsections 5.1 and 5.2, respec-
tively.

Notice that the correctness of the HHL algorithm was verified in [34] where
projections are used as assertions. The Shor’s algorithm was verified in [10] with
a quantitative interpretation of assertions. As we will see, our verification for
both algorithms employs a qualitative reasoning, which is more in the style of
the classical Hoare logic.

5.1 HHL Algorithm

The HHL algorithm [11] aims to obtain a vector x such that Ax = b, where A is a
given Hermitian operator and b is a given vector. Suppose that A has the spectral
decomposition A=Σjλj |j⟩ ⟨j|, where each λj is an eigenvalue and |j⟩ is the cor-
responding eigenvector of A. On the basis {|j⟩}j∈J , we have A

−1 = Σjλ
−1
j |j⟩ ⟨j|

and |b⟩=Σjbj |j⟩. Then the vector x can be expressed as |x⟩=A−1 |b⟩ =Σjλ
−1
j bj |j⟩.

Here we require that |j⟩ , |b⟩ and |x⟩ are all normalized vectors. Hence, we have∑
j

|λ−1
j bj |2 = 1. (5)

A quantum program implementing the HHL algorithm is presented in Ta-
ble 8. The n-qubit subsystem p is used as a control system in the phase estimation
step with N = 2n. The m-qubit subsystem q stores the vector |b⟩ =

∑
i bi |i⟩.

The one-qubit subsystem r is used to control the while loop. The measurement
M = {M0,M1} in the loop is the simplest two-value measurement: M0 = |0⟩r ⟨0|
and M1 = |1⟩r ⟨1|. The results of measurements will be assigned to the classical
variable v , which is initialized to be 0. If the value of v is 0, then the while loop
is repeated until it is 1. The unitary operator Ub is assumed to map |0⟩⊗m

to |b⟩ .
The controlled unitary operator Uf has a control system p and a target system
q, that is,

Uf =

N−1∑
τ=0

|τ⟩p ⟨τ | ⊗ Uτ ,

where U = eiAt. Equivalently, we have U |j⟩=eiλjt |j⟩. We denote ϕj=
λjt
2π and

ϕ̃j=ϕj ·N , then we have U |j⟩=e2πiϕj |j⟩. A given controlled unitary operator Uc

has control system p and target system r, more precisely,

Uc |0⟩p |0⟩r = |0⟩p |0⟩r , Uc |j⟩p |0⟩r = |j⟩p (
√

1− C2

j2 |0⟩+ C
j |1⟩)r,

where 1 ≤ j ≤ N − 1 and C is a given parameter.
The symbol H⊗n represents n Hadamard gates applied to the variables q;

QFT and QFT−1 are the quantum Fourier transform and the inverse quantum
Fourier transform acting on the variables in p.
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HHL ≜

1 : v := 0

2 : while v = 0 do

3 : p := |0⟩⊗n ;

4 : q := |0⟩⊗m ;

5 : r := |0⟩ ;
6 : Ub[q];

7 : H⊗n[p];

8 : Uf [pq];

9 : QFT−1[p];

10 : Uc[pr];

11 : QFT[p];

12 : U†
f [pq];

13 : H⊗n[p];

14 : v := M [r] od

Table 8. A quantum program for the HHL algorithm

The correctness of the HHL algorithm can be specified by the Hoare triple:

{ true } HHL { |x⟩q } .

Now let D ≜ (v = 0) ⊕ ((|0⟩⊗n
p |x⟩q |1⟩r) ∧ (v = 1)), and S the body of the

while loop of the HHL algorithm. The following Hoare triple can be proved.

{ v = 0 } S { D } .

SoD is an invariant of the while loop of the HHL algorithm. Then by rule [While]
we obtain that

{ D } while (v = 0) do S od { |0⟩⊗n
p |x⟩q |1⟩r ∧ (v = 1) } .

Finally, we can establish the correctness of the HHL algorithm as given in Ta-
ble 9, where we highlight the invariant of the while loop in red.

5.2 Shor’s Algorithm

Shor’s algorithm relies on the order-finding algorithm [24]. So we first verify
the correctness of the latter. Given two co-prime positive integers x and N , the
smallest positive integer r that satisfies the equation xr = 1(mod)N is called
the order of x modulo N , denoted by ord(x,N). The problem of order-finding is
to find the order r defined above, which is solved by the program presented in
Table 10. Let L ≜ ⌜log(N)⌝, ϵ ∈ (0, 1) and t ≜ 2L + 1 + ⌜log(2 + 1/2ϵ)⌝. The
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{ true }
{ (v = 0)[0/v] } by rule [Conseq]

v := 0;

{ v = 0 } by rule [Assgn]

{ (v = 0)⊕ (|0⟩⊗n
p |x⟩q |1⟩r ∧ (v = 1)) } by rule [Oplus]

while v = 0 do

{ v = 0 }
S

{ (v = 0)⊕ (|0⟩⊗n
p |x⟩q |1⟩r ∧ (v = 1)) }

od

{ |0⟩⊗n
p |x⟩q |1⟩r ∧ (v = 1) } by rule [While]

{ |0⟩⊗n
p |x⟩q |1⟩r } by rule [Conseq]

{ |0⟩⊗n
p ⊙ |x⟩q ⊙ |1⟩r } by rule [OdotT]

{ true⊙ |x⟩q ⊙ true } by rule [PT]

{ |x⟩q } by rule [OdotE]

Table 9. Proof outline of the HHL algorithm

order-finding algorithm can successfully obtain the order of x with probability
at least (1− ϵ)/2 log(N), by using O(L3) operations as discussed in [19].

The variables in q correspond to a t-qubit subsystem while p represents an L-
qubit subsystem. We introduce the variable z to store the order computed by the
program OF, and initialize it to 1. The unitary operator U+ maps |0⟩ to |1⟩, that
is U+ |0⟩ = |1⟩. The notation H⊗t means t Hadamard gates applied to the system
p and QFT−1 is the inverse quantum Fourier transform. The function f (x) stands
for the continued fraction algorithm which returns the minimal denomination
n of all convergents m/n of the continued fraction for x with |m/n − x| <
1/(2n2) [10]. The unitary operator CU is the controlled-U , with q being the
control system and p the target system, that is CU |i⟩q|j⟩p = |i⟩q U i |j⟩p, where
for each 0 ≤ y ≤ 2L,

U |y⟩ =

{
|xy mod N⟩ if y ≤ N

|y⟩ otherwise.

Note that the states defined by

|us⟩ ≜
1√
r

r−1∑
k=0

e−2πisk/r |xk mod N⟩

for integer 0 ≤ s ≤ r − 1 are eigenstates of U and 1√
r

∑r−1
s=0 |us⟩ = 1.

The variable b stores the value of (xz mod N), and the operator (a mod b)
computes the modulo of a divided by b. If the value of b is not equal to 1, which
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OF(x,N) :≡
1 :z := 1;

2 :b := xz (mod N);

3 :while (b ̸= 1) do

4 : q := |0⟩⊗t ;

5 : p = |0⟩⊗L ;

6 : H⊗t[q];

7 : U+[p];

8 : CU[qp];

9 : QFT−1[q];

10 : z′ := M [q];

11 : z := f(
z′

2t
);

12 : b := xz (mod N) od

Table 10. A quantum program for the order-finding algorithm

means that the value of z computed by OF is not equal to the actual order of x
modulo N , then the program will repeat the body of the while loop until b = 1.
The while loop in the OF program exhibits probabilistic behaviour due to a
measurement in the loop body.

The correctness of the order-finding algorithm can be specified as

{ 2 ≤ x ≤ N − 1 ∧ gcd(x,N) = 1 ∧N mod 2 ̸= 0 } OF { z = r } .

Now let D ′ ≜ (z = r ∧ b = 1)⊕ (z ̸= r ∧ b ̸= 1), and S ′ the body of the while
loop OF. We can establish the correctness of S′ as follows:

{ z ̸= r ∧ b ̸= 1 } S′ { D ′ } .

So the invariant of the while loop of OF can be D ′, and by rule [While] we have

{ D ′ } while (b ̸= 1) do S ′ od { z = r ∧ b = 1 } .

Finally, a proof outline of OF is given in Table 11 .
Then we introduce Shor’s algorithm in Table 12. The function random(a,b)

is used to randomly generate a number between a and b. The function gcd(a,b)
returns the greatest common divisor of a and b. The operator ≡N represents
identity modulo N . OF(x,N) is the order-finding algorithm given before, which
will return the order of x modulo N and assign the order to the classical variable
z. The classical variable y stores one of the divisors of N and we use y|N to
represent that N is divisible by y.
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{2 ≤ x ≤ N − 1}
=⇒{(z = 1)[1/z]}
z := 1;

⇐={z = 1} by rule [Assgn]

=⇒{(z = 1 ∧ b = x1 mod N)[(xz mod N)/b]}
b := xz mod N ;

⇐={z = 1 ∧ b = x1 mod N} by rule [Assgn]

=⇒{z ̸= ord(x,N) ∧ b ̸= 1} by rule [Conseq]

{(z = ord(x,N) ∧ b = 1)⊕ (z ̸= ord(x,N) ∧ b ̸= 1)} by rule [Conseq]

while (b ̸= 1) do

{z ̸= ord(x,N) ∧ b ̸= 1}
S ′

{(z = ord(x,N) ∧ b = 1)⊕ (z ̸= ord(x,N) ∧ b ̸= 1)}
od

⇐={z = ord(x,N) ∧ b = 1} by rule [While]

{2 ≤ x ≤ N − 1 ∧ z = ord(x,N)} by rule [Conseq]

Table 11. Proof outline of the OF program

The correctness of Shor’s algorithm can be specified by the Hoare triple:

{ cmp(N) } Shor { y|N ∧ y ̸= 1 ∧ y ̸= N }

where cmp(N) is a predicate stating that N is a composite number greater than
0. The invariant of the while loop in Shor’s algorithm can be

y|N ∧ y ̸= N .

A proof outline for the correctness of the algorithm is given in [8].

6 Conclusion and Future Work

We have presented a new quantum Hoare logic for classical–quantum programs.
It includes distribution formulas for specifying probabilistic properties of classical
assertions naturally, and at the same time allows for local reasoning. We have
proved the soundness of the logic with respect to a denotational semantics and
exhibited its usefulness in reasoning about the functional correctness of the HHL
and Shor’s algorithms, which are non-trivial algorithms involving probabilistic
behaviour due to quantum measurements and unbounded while loops.

We have not yet precisely delimited the expressiveness of our logic. It is
unclear whether the logic is relatively complete, which is an interesting future
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1: if 2 | N then
2: y := 2;
3: else
4: x := random(2, N − 1);
5: y := gcd(x,N);
6: while y = 1 do
7: z := OF (x,N);

8: if 2 | z and xz/2 ̸≡N −1 then

9: y′ := gcd(xz/2 − 1, N);
10: if 1 < y′ < N then
11: y := y′;
12: else

13: y := gcd(xz/2 + 1, N);
14: fi
15: else
16: x := random(2, N − 1);
17: y := gcd(x,N);
18: fi
19: od
20: fi

Table 12. A program for Shor’s algorithm

work to consider. We would also like to embed the logic into a proof assistant so
to alleviate the burden of manually reasoning about quantum programs as done
in Section 5.

Usually there are two categories of program logics when dealing with proba-
bilistic behaviour: satisfaction-based or expectation-based [7]. Our logic belongs
to the first category. In an expectation-based logic, e.g. the logic in [28,29], the
Hore triple {P}c{Q} is valid in the sense that the expectation of an initial state
satisfying P is a lower bound of the expectation of the final state satisfying Q.
It would be interesting to explore local reasoning in expectation-based logics for
classical–quantum programs such as those proposed in [10,9].
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