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Abstract

For the model of probabilistic labelled transition systems that
allow for the co-existence of nondeterminism and probabilities, we
present two notions of bisimulation metrics: one is state-based and the
other is distribution-based. We provide a sound and complete modal
characterisation for each of them, using real-valued modal logics based
on Hennessy-Milner logic. The logic for characterising the state-based
metric is much simpler than an earlier logic proposed by Desharnais et
al. as it uses only two non-expansive operators rather than the general
class of non-expansive operators. For the kernels of the two metrics,
which correspond to two notions of bisimilarity, we give a comprehensive
comparison with some typical distribution-based bisimilarities in the
literature.

Keywords: Probabilistic labelled transition systems; Behavioral pseu-
dometrics; Real-valued modal logics

1 Introduction

Bisimulation is an important proof technique for establishing behavioural
equivalences of concurrent systems. In probabilistic concurrency theory,
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there are roughly two kinds of bisimulations: one is state-based that is
directly defined over states and then lifted to distributions, and the other is
distribution-based as it is a relation between distributions. The former is
originally defined in [37] to represent a branching time semantics; the latter,
as defined in [31, 24, 14], represents a linear time semantics.

In correspondence with those bisimulations, there are two notions of
behavioural pseudometrics (simply called metrics in the current work). They
are more robust ways of formalising behavioural similarity between formal
systems than bisimulations because, particularly in the probabilistic setting,
bisimulations are too sensitive to probabilities (a very small perturbation of
the probabilities would render two systems non-bisimilar). A metric gives a
quantitative measure of the distance between two systems and distance 0
usually means that the two systems are bisimilar. A logical characterisation
of the state-based bisimulation metric for labelled Markov processes is given
in [17]. For a more general model of labelled concurrent Markov chains
(LCMCs) that allow for the co-existence of nondeterminism and probabilities,
a weak bisimulation metric is proposed in [18]. Its logical characterisation
uses formulae like h ◦ f , which is the composition of formula f with any
non-expansive operator h on the interval [0, 1], i.e. |h(x)− h(y)| ≤ |x− y|
for any x, y ∈ [0, 1]. A natural question then arises: instead of the general
class of non-expansive operators, is it possible to use only a few simple
non-expansive operators without losing the capability of characterising the
bisimulation metric?

In the current work, we give a positive answer to the above question.
For simplicity of presentation, we focus on strong bisimulation metrics. But
the proof idea can be generalised to the weak case. We work in the framework
of probabilistic labelled transition systems (pLTSs) that are essentially the
same as LCMCs, so the interplay of nondeterminism and probabilities is
allowed. We provide a modal characterisation of the state-based bisimulation
metric closely in line with the classical Hennessy-Milner logic (HML) [30].
Our variant of HML makes use of state formulae and distribution formulae,
which are formulae evaluated at states and distributions, respectively, and
yield success probabilities. We use merely two non-expansive operators:
negation (¬ϕ) and testing (ϕ ⊖ p). Negation is self-explanatory and the
testing operator checks if a state satisfies a property with certain threshold
probability. More precisely, if state s satisfies formula ϕ with probability q,
then it satisfies ¬ϕ with probability 1− q, and satisfies ϕ⊖p with probability
q − p if q > p and 0 otherwise. In other words, we do not need the general
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class of non-expansive operators because negation and testing, together with
other modalities inherited from the classical HML, are expressive enough
to characterise bisimulation metrics4. As regards to the characterisation
of distribution-based bisimulation metric, we drop state formulae and use
distribution formulae only. In addition, we show that the distribution-based
metric is a lower bound of the state-based metric when the latter is lifted to
distributions.

The kernels of the two metrics generate two notions of bisimilarity:
one is state-based and the other is distribution-based. The state-based
bisimilarity is widely accepted by the community of probabilistic concurrency
theory, and it admits elegant characterisations from metric, logical, and
algorithmic perspectives [11]. On the contrary, there is no general agreement
on what is a good notion of distribution-based bisimilarity. We compare
the two bisimilarities induced by our metrics with some typical notions of
distribution-based bisimilarities proposed in the literature. Our distribution-
based bisimilarity turns out to coincide with the one defined in [24] and they
constitute the coarsest bisimilarity for distributions.

The rest of this paper is organised as follows. Section 2 provides some
basic concepts on pLTSs. Section 3 defines a two-sorted modal logic that
leads to a sound and complete characterisation of the state-based bisimulation
metric. Section 4 gives a similar characterisation for the distribution-based
bisimulation metric. In Section 5 we compare the two metrics discussed in
the previous two sections. In Section 6 we compare the two bisimilarities
generated by the two metrics with some distribution-based bisimilarities
that appeared in the literature. In Section 7 we review some related work.
Finally, we conclude in Section 8.

An extended abstract of this paper has appeared as [19]. All the proofs
omitted there are now given in great detail.

2 Preliminaries

Let S be a countable set. A (discrete) probability subdistribution over S is
a function ∆ : S → [0, 1] with

∑
s∈S∆(s) ≤ 1. It is a (full) distribution if∑

s∈S∆(s) = 1. Its support, written ⌈∆⌉, is defined to be the set {s ∈ S |

4Notice that we do not claim that negation and testing operators, plus some constant
functions, suffice to approximate all the non-expansive operators on the unit interval. That
claim is too strong to be true. For example, the operator f(x) = 1

2
x cannot be represented

by those operators.
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∆(s) > 0}. Let Dsub(S) (resp. D(S)) denote the set of all subdistributions
(resp. distributions) over S. We use ε to stand for the empty subdistribution,
that is ε(s) = 0 for any s ∈ S. We write s for the point distribution, satisfying
s(t) = 1 if t = s, and 0 otherwise. The total mass of subdistribution ∆,
written |∆|, is defined as

∑
s∈S ∆(s). A weight function5 ω ∈ D(S × S) for

(∆,Θ) ∈ D(S)×D(S) is given if it satisfies the two conditions:
∑

t∈S ω(s, t) =
∆(s) and

∑
s∈S ω(s, t) = Θ(t) for all s, t ∈ S. We denote the set of all

weight functions for (∆,Θ) by Ω(∆,Θ). If {∆i}i∈I is a finite collection of
subdistributions and {pi}i∈I is a collection of probabilities with

∑
i∈I pi ≤ 1,

then
∑

i∈I pi ·∆i is also a subdistribution with (
∑

i∈I pi ·∆i)(s) =
∑

i∈I pi ·
∆i(s) for any s ∈ S.

A metric d over a space S is a distance function d : S × S → R≥0

satisfying: (i) d(s, t) = 0 iff s = t (isolation), (ii) d(s, t) = d(t, s) (symmetry),
(iii) d(s, t) ≤ d(s, u) + d(u, t) (triangle inequality), for any s, t, u ∈ S. If we
replace (i) with d(s, s) = 0, we obtain a pseudometric. In this article we
are interested in pseudometrics because two distinct states can still be at
distance zero if their behaviour is similar. But for simplicity, we often use
the term metrics though we really mean pseudometrics. Let c ∈ R≥0 be a
positive real number. A metric d over S is c-bounded if d(s, t) ≤ c for any
s, t ∈ S. In the rest of this article, we restrict ourselves to 1-bounded metrics.

Let d : S× S → [0, 1] be a metric over S. We can lift it to be a metric
over D(S) by using the Kantorowich metric [34] K (d) : D(S)×D(S) → [0, 1]
defined via a linear programming problem as follows:

K (d)(∆,Θ) = min
ω∈Ω(∆,Θ)

∑
s,t∈S

d(s, t) · ω(s, t) (1)

for ∆,Θ ∈ D(S). The dual of the above linear programming problem is the
following

max
∑

s∈S(∆(s)−Θ(s))xs, subject to 0 ≤ xs ≤ 1
∀s, t ∈ S : xs − xt ≤ d(s, t) .

(2)
The duality theorem in linear programming guarantees that both problems
have the same optimal value.

Let d̂ : D(S)×D(S) → [0, 1] be a metric over D(S). We can lift it to be
a metric over the powerset of D(S), written P(D(S)), in the standard way
by using the Hausdorff metric H (d̂) : P(D(S))×P(D(S)) → [0, 1] given as

5A weight function is also known as a coupling in some literature [46].
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follows

H (d̂)(Π1,Π2) = max{ sup
∆∈Π1

inf
Θ∈Π2

d̂(∆,Θ), sup
Θ∈Π2

inf
∆∈Π1

d̂(Θ,∆)}

for all Π1,Π2 ⊆ D(S), whereby inf ∅ = 1 and sup ∅ = 0.

Probabilistic labelled transition systems (pLTSs) generalise labelled
transition systems by allowing for probabilistic choices in the transitions.
They are essentially simple probabilistic automata [42] without initial states.

Definition 2.1 A probabilistic labelled transition system is a triple (S,A,−→),
where S is a countable set of states, A is a countable set of actions, and the
relation −→ ⊆ S ×A×D(S) is a transition relation.

We write s
a−→ ∆ for (s, a,∆) ∈ −→ and s ̸ a−→ if there is no ∆ satisfying s

a−→ ∆.
Let der(s, a) = {∆ | s a−→ ∆} be the set of all a-successor distributions of s.
A pLTS is image-finite (resp. deterministic or reactive) if for any state s
and action a the set der(s, a) is finite (resp. has at most one element). In
the current work, we focus on image-finite pLTSs with finitely many states.

3 State-Based Bisimulation Metrics

We consider the complete lattice ([0, 1]S×S ,⊑) defined by d ⊑ d′ iff d(s, t) ≤
d′(s, t), for all s, t ∈ S. For any D ⊆ [0, 1]S×S the least upper bound is given
by (

⊔
D)(s, t) = supd∈D d(s, t), and the greatest lower bound is given by

(
d
D)(s, t) = infd∈D d(s, t) for all s, t ∈ S. The bottom element 0 is the

constant zero function 0(s, t) = 0 and the top element 1 is the constant one
function 1(s, t) = 1 for all s, t ∈ S.

Definition 3.1 A 1-bounded metric d on S is a state-based bisimulation
metric if for all s, t ∈ S with d(s, t) < 1, whenever s

a−→ ∆ then there exists
some t

a−→ ∆′ with K (d)(∆,∆′) ≤ d(s, t).

The smallest (wrt. ⊑) state-based bisimulation metric, denoted by ds , is
called state-based bisimilarity metric. Its kernel is the state-based bisimilarity
as defined in [37, 42]. Note that 0 does not satisfy Definition 3.1 for general
pLTSs, thus is not a state-based bisimulation metric in general.

Example 3.1 Let us calculate the distance between states s and t in Figure 1.
Firstly, it is clear that ds(s4, t5) = 0 because both s4 and t5 are deadlock
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Figure 1: ds(s, t) =
1
2

states. It follows that ds(s2, t3) = 0 because s2 has a unique c-transition to s4
and t3 has a unique c-transition to t5. On the contrary, ds(s3, t3) = 1 because
the two states s3 and t3 perform completely different actions. Secondly, let
∆ = 1

2s2 +
1
2s3 and Θ = t3. We see that

K (ds)(∆,Θ) = minω∈Ω(∆,Θ) ds(s2, t3) · ω(s2, t3) + ds(s3, t3) · ω(s3, t3)
= minω∈Ω(∆,Θ) 0 · ω(s2, t3) + 1 · ω(s3, t3)
= 0 · 1

2 + 1 · 1
2

= 1
2

Here the only weight function is ω with ω(s2, t3) = ω(s3, t3) =
1
2 . It follows

that ds(s1, t1) =
1
2 . Similarly, we get ds(s1, t2) =

1
2 . Then it is not difficult

to see that

K (ds)(s1,
1

2
t1 +

1

2
t2) = ds(s1, t1) ·

1

2
+ ds(s1, t2) ·

1

2
=

1

2

from which we finally obtain ds(s, t) =
1
2 .

The above coinductively defined bisimilarity metric can be reformulated
as a fixed point of a monotone functional operator. Let us define the
functional operator F s : [0, 1]

S×S → [0, 1]S×S for d : S × S → [0, 1] and
s, t ∈ S by

F s(d)(s, t) = sup
a∈A

{H (K (d))(der(s, a), der(t, a))} . (3)
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It can be shown that F s is monotone and its least fixed point is given by⊔
di, where d0 = 0 and di+1 = F s(di) for all i ∈ N.

Proposition 3.1 ds is the least fixed point of F s. 2

Essentially the same property as Proposition 3.1 has appeared in [18].
Now we proceed by defining a real-valued modal logic based on Hennessy-

Milner logic [30], called metric HML, to characterise the bisimilarity metric.
It is motivated by [33, 17, 18, 5].

Definition 3.2 Our metric HML is two-sorted and has the following syntax:

φ ::= ⊤ | ¬φ | φ⊖ p | φ1 ∧ φ2 | ⟨a⟩ψ
ψ ::= [φ] | ¬ψ | ψ ⊖ p | ψ1 ∧ ψ2

with a ∈ A and p ∈ [0, 1].

Let L denote the set of all metric HML formulae, φ range over the set of
all state formulae LS, and ψ range over the set of all distribution formulae
LD. The two kinds of formulae are defined simultaneously. The operator
φ ⊖ p tests if a state passes φ with probability at least p. Each state
formula φ immediately induces a distribution formula [φ]. Sometimes we
abbreviate ⟨a⟩[φ] as ⟨a⟩φ. Other operators such as negation, conjunction,
and the diamond operator come from the classical HML, but will be given a
quantitative interpretation.

Definition 3.3 A state formula φ ∈ LS evaluates in s ∈ S as follows:

J⊤K(s) = 1
J¬φK(s) = 1− JφK(s)

Jφ⊖ pK(s) = max(JφK(s)− p, 0)
Jφ1 ∧ φ2K(s) = min(Jφ1K(s), Jφ2K(s))

J⟨a⟩ψK(s) = max
s

a−→∆
JψK(∆)

with max ∅ = 0 and a distribution formula ψ ∈ LD evaluates in ∆ ∈ D(S)
as follows:

J[φ]K(∆) =
∑

s∈S ∆(s) · JφK(s)
J¬ψK(∆) = 1− JψK(∆)

Jψ ⊖ pK(∆) = max(JψK(∆)− p, 0)
Jψ1 ∧ ψ2K(∆) = min(Jψ1K(∆), Jψ2K(∆)).
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We often use constant formulae e.g. p for any p ∈ [0, 1] with the
semantics JpK(s) = p, which is derivable in the above logic by letting p =
⊤⊖ (1− p). Moreover, we write φ⊕ p for ¬((¬φ)⊖ p) with the semantics
Jφ⊕ pK(s) = min(JφK(s)+p, 1) = 1−max(1−JφK(s)−p, 0). In the presence
of negation and conjunction we can derive disjunction by letting φ1 ∨ φ2

be ¬(¬φ1 ∧ ¬φ2). Intuitively, [[φ]](s) measures the degree that formula
φ is satisfied by state s; similarly for distribution formulae. Therefore,
negation is naturally interpreted as complement, conjunction as minimum
and disjunction as maximum6. The formula ⟨a⟩ψ specifies the property for
a state to perform action a and result in a possible distribution to satisfy
ψ. In the presence of nondeterminism, from state s there may be several
outgoing transitions labelled by the same action a, e.g. s

a−→ ∆i with i ∈ I.
We take the optimal case by taking [[⟨a⟩ψ]](s) to be the maximal [[ψ]](∆i)
when i ranges over I.

The above metric HML induces two natural logical metrics dls
s and dld

s

on states and distributions respectively, by letting

dls
s (s, t) = supφ∈LS |JφK(s)− JφK(t)|

dld
s (∆,Θ) = supψ∈LD |JψK(∆)− JψK(Θ)|.

Remark 3.1 In the above definition, we can also write

dls
s (s, t) = sup

φ∈LS

(JφK(s)− JφK(t)) (4)

because if JφK(s) < JφK(t) then we can take the negation of φ so as to obtain
|JφK(s)− JφK(t)|.

J¬φK(s)− J¬φK(t) = (1− JφK(s))− (1− JφK(t)) = |JφK(s)− JφK(t)| .

However, this heavily relies on our semantic interpretation of the negation
operator, and we decide not to use (4) as a definition. Similarly for dld

s (∆,Θ).

Example 3.2 Consider the two probabilistic systems depicted in Figure 2.
We have the formula φ = ⟨a⟩ψ where ψ = [⟨a⟩⊤] ∧ [⟨b⟩⊤] and would like to
know the difference between s and t given by φ. Let

∆1 = 0.2 · s1 + 0.8 · s2
∆2 = 0.8 · s5 + 0.2 · s6
∆3 = 0.5 · s3 + 0.5 · s4

6Since we will compare our logic with that in [18], it is better for our semantic
interpretation to be consistent with that in the aforementioned work. In the literature,
there are also other ways of interpreting conjunction and disjunction in probabilistic
settings, see e.g. [32, 4].
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Figure 2: dls
s (s, t) = 0.3

Note that J⟨a⟩⊤K(s1) = 1 and J⟨a⟩⊤K(s2) = 0. Then

J[⟨a⟩⊤]K(∆1) = 0.2 · J⟨a⟩⊤K(s1) + 0.8 · J⟨a⟩⊤K(s2) = 0.2.

Similarly, J[⟨b⟩⊤]K(∆1) = 0.8. It follows that

JψK(∆1) = min(J[⟨a⟩⊤]K(∆1), J[⟨b⟩⊤]K(∆1)) = 0.2.

With similar arguments, we see that JψK(∆2) = 0.2 and JψK(∆3) = 0.5.
Therefore, we can calculate that

JφK(s) = max(JψK(∆1), JψK(∆2)) = 0.2
JφK(t) = max(JψK(∆1), JψK(∆2), JψK(∆3)) = 0.5.

So the difference between s and t with respect to φ is |JφK(s)− JφK(t)| = 0.3.
In fact we also have dls

s (s, t) = 0.3.

In the presence of testing operators in state formulae, one might wonder
if the testing operators in distribution formulae can be removed. Unfortu-
nately, this is not the case, as indicated by the following example.
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Example 3.3 At first sight the following two equations seem to be sound.

J[φ]⊖ pK(∆) = J[φ⊖ p]K(∆) and JψK(
∑
i

pi∆i) =
∑
i

pi(JψK(∆i))

However, in general they do not hold, as witnessed by the counterexamples
below. Let φ = ⟨b⟩⊤, ψ = [φ]⊖ 0.5 and the distribution ∆1 be the same as
in Example 3.2. Then we have

J[φ]⊖ 0.5K(∆1) = max(J[φ]K(∆1)− 0.5, 0)
= max(0.2J[⟨b⟩⊤]K(s1) + 0.8J[⟨b⟩⊤]K(s2)− 0.5, 0)
= max(0.2 · 0 + 0.8 · 1− 0.5, 0)
= 0.3

J[φ⊖ 0.5]K(∆1) = 0.2Jφ⊖ 0.5K(s1) + 0.8Jφ⊖ 0.5K(s2)
= 0.2max(JφK(s1)− 0.5, 0)
+ 0.8max(JφK(s2)− 0.5, 0)
= 0.2max(0− 0.5, 0) + 0.8max(1− 0.5, 0)
= 0.4

0.2JψK(s1) + 0.8JψK(s2) = 0.2J[φ]⊖ 0.5K(s1) + 0.8J[φ]⊖ 0.5K(s2)
= 0.2max(J[φ]K(s1)− 0.5, 0)
+ 0.8max(J[φ]K(s2)− 0.5, 0)
= 0.2max(0− 0.5, 0) + 0.8max(1− 0.5, 0)
= 0.4

So we see that J[φ]⊖ 0.5K(∆1) ̸= J[φ⊖ 0.5]K(∆1) and JψK(∆1) ̸= 0.2JψK(s1)+
0.8JψK(s2).

It turns out that the logic L precisely captures the bisimilarity metric ds :
the metric dls

s defined by state formulae coincides with ds and the metric dld
s

defined by distribution formulae coincides with K (ds), the lifted form of ds .

Theorem 3.1 ds = dls
s and K (ds) = dld

s

The two properties in Theorem 3.1 are coupled and should be proved si-
multaneously because state formulae and distribution formulae are defined
reciprocally. The proof is carried out in three steps:

(i) We show dls
s ⊑ ds and dld

s ⊑ K (ds) simultaneously by structural
induction on formulae.
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(ii) We establish K (dls
s ) ⊑ dld

s by exploiting the dual form of the Kan-
torovich metric in (2). Here it is crucial to require the state space
of the pLTS under consideration to be finite in order to use binary
conjunctions rather than infinitary conjunctions. The negation and
testing operators in state formulae play an important role in the proof.

(iii) We verify that dls
s is a state-based bisimulation metric and so obtain

ds ⊑ dls
s . This part is based on (ii) and requires the pLTS to be

image-finite. Its proof makes use of the negation and testing operators
in distribution formulae.

We follow the above guideline and decompose Theorem 3.1 into three
technical lemmas.

Lemma 3.1 1. dls
s ⊑ ds

2. dld
s ⊑ K (ds)

Proof: We show the two statements simultaneously by structural induction
on formulae. For any two states s, t ∈ S and distributions ∆1,∆2 ∈ D(S),
we prove that

(i) |JφK(s)− JφK(t)| ≤ ds(s, t) for all φ ∈ LS;

(ii) |JψK(∆1)− JψK(∆2)| ≤ K (ds)(∆1,∆2) for all ψ ∈ LD.

We first analyze the structure of φ in (i).

• φ ≡ ⊤. Then it is trivial to see that |JφK(s)− JφK(t)| = |1− 1| = 0 ≤
ds(s, t).

• φ ≡ ¬φ′. Then |JφK(s)− JφK(t)| = |Jφ′K(t)− Jφ′K(s)| ≤ ds(s, t) where
the inequality holds by induction.

• φ ≡ φ′ ⊖ p. There are four subcases and we consider one of them.
Suppose Jφ′K(s) > p and Jφ′K(t) ≤ p, then |JφK(s)−JφK(t)| = |Jφ′K(s)−
p| ≤ |Jφ′K(s)− Jφ′K(t)| ≤ ds(s, t) by induction.

• φ ≡ φ1∧φ2. Without loss of generality we assume that JφK(s) ≥ JφK(t).
There are two possibilities:

– If Jφ1K(t) ≤ Jφ2K(t), then JφK(s) − JφK(t) ≤ Jφ1K(s) − Jφ1K(t) ≤
ds(s, t), where the last inequality holds by induction.
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– Symmetrically, if Jφ2K(t) ≤ Jφ1K(t), then JφK(s) − JφK(t) ≤
Jφ2K(s)− Jφ2K(t) ≤ ds(s, t).

• φ ≡ ⟨a⟩ψ. If either s or t cannot perform action a, the expected result
is straightforward. So we consider the non-trivial case that both s and t
can perform action a. Let ∆1 be a distribution such that s

a−→ ∆1 and
J⟨a⟩ψK(s) = JψK(∆1). Since ds is a state-based bisimulation metric, by
definition there exists some ∆2 such that t

a−→ ∆2 and

K (ds)(∆1,∆2) ≤ ds(s, t) . (5)

Without loss of generality we assume that JφK(s) ≥ JφK(t). It follows
that

JφK(s)− JφK(t)
= JψK(∆1)−max

s
a−→∆′JψK(∆′)

≤ JψK(∆1)− JψK(∆2)
≤ K (ds)(∆1,∆2) by induction on ψ
≤ ds(s, t) by (5)

Then we analyze the structure of ψ in (ii).

• ψ ≡ [φ] for some φ ∈ LS. Without loss of generality we assume that
JψK(∆1) ≥ JψK(∆2). We infer that

JψK(∆1)− JψK(∆2)
= J[φ]K(∆1)− J[φ]K(∆2)
=

∑
u∈S(∆1(u)−∆2(u))JφK(u)

≤ max{
∑

u∈S(∆1(u)−∆2(u))xu |xu, xu′ ∈ [0, 1]∧xu−xu′ ≤ds(u, u
′)}

= K (ds)(∆1,∆2)

where the last equality holds because of the Kantorovich-Rubinstein
duality theorem [34, 48] and the last inequality holds because for any
states u, u′ ∈ S we have JφK(u), JφK(u′) ∈ [0, 1] and |JφK(u)−JφK(u′)| ≤
ds(u, u

′) by induction.

• ψ = ψ1 ∧ ψ2. Without loss of generality we assume that JψK(∆1) ≥
JψK(∆2). There are two possibilities:

– If Jψ1K(∆2) ≤ Jψ2K(∆2), then JψK(∆1) − JψK(∆2) ≤ Jψ1K(∆1) −
Jψ1K(∆2) ≤ K (ds)(∆1,∆2), where the last inequality holds by
induction.
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– Symmetrically, if Jψ2K(∆2) ≤ Jψ1K(∆2), then JψK(∆1)−JψK(∆2) ≤
Jψ2K(∆1)− Jψ2K(∆2) ≤ K (ds)(∆1,∆2).

• ψ ≡ ¬ψ′ or ψ′ ⊖ p. Similar to the proof by induction of the last case.

2

Lemma 3.2 K (dls
s ) ⊑ dld

s

Proof: Let ∆1,∆2 be any two distributions in D(S). We aim to show
that

K (dls
s )(∆1,∆2) ≤ sup

ψ∈LD

|JψK(∆1)− JψK(∆2)| . (6)

Let L(∆1,∆2) be the optimal value of the following linear program

max
∑

s∈S(∆1(s)−∆2(s))xs,
subject to 0 ≤ xs ≤ 1

∀s, t ∈ S : xs − xt ≤ dls
s (s, t)

(7)

Let {ks}s∈S be a set of real numbers in the interval [0, 1] that maximize
the above linear program to reach L(∆1,∆2). We first consider the special
case that ks = 1 for all s ∈ S. Then the maximum value of the linear
program in (7) is∑

s∈S
(∆1(s)−∆2(s)) · 1 =

∑
s∈S

∆1(s)−
∑
s∈S

∆2(s) = 1− 1 = 0 .

It follows that K (dls
s )(∆1,∆2) = 0 and this immediately implies (6).

Now consider the general case that ks < 1 for at least one s ∈ S. We
are going to show (6) by using an idea inspired by [18]. Let

e = min{1− kt | kt < 1 and t ∈ S}

and ϵ > 0 be any positive real number smaller than e. Hence, if t ∈ S and
kt < 1 then

kt + ϵ < 1. (8)

We construct some formula ψ such that

L(∆1,∆2)− ϵ < JψK(∆1)− JψK(∆2). (9)

For any s, t ∈ S, we distinguish two cases:
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1. If ks > kt, then 0 < ks − kt ≤ dls
s (s, t). It is easy to see that there

exists some formula φst such that

ks − kt < JφstK(s)− JφstK(t) + ϵ. (10)

or equivalently JφstK(t) − JφstK(s) + ks < kt + ϵ. We define a new
formula

φ′
st =

{
φst ⊖ (JφstK(s)− ks) if JφstK(s) > ks
φst ⊕ (ks − JφstK(s)) otherwise.

Let us compare Jφ′
stK(t) with kt.

(a) If JφstK(s) > ks, then

Jφ′
stK(t) = max(JφstK(t)− JφstK(s) + ks, 0)

< max(kt + ϵ, 0) by (10)
= kt + ϵ

(b) Otherwise, we have Jφ′
stK(t) = min(JφstK(t) + ks − JφstK(s), 1) by

definition. By (10) we infer the inequality that JφstK(t) + ks −
JφstK(s) < kt + ϵ. It follows that Jφ′

stK(t) < kt + ϵ.

In both (a) and (b) we have Jφ′
stK(t) < kt + ϵ, and it is also easy to see

that Jφ′
stK(s) = ks.

2. If ks ≤ kt, then we simply set φ′
st to be the formula ks. As in the last

case, we have Jφ′
stK(s) = ks and Jφ′

stK(t) = ks ≤ kt < kt + ϵ.

In summary, the above reasoning says that for any s, t ∈ S we can
construct a formula φ′

st such that Jφ′
stK(s) = ks and Jφ′

stK(t) < kt + ϵ. Now
let us define φ′

s =
∧
t∈S φ

′
st. It is easy to see that Jφ′

sK(s) = ks and Jφ′
sK(t) <

kt+ ϵ for all t ∈ S. The latter implies max{Jφ′
sK(t) | s, t ∈ S} < kt+ ϵ. Then

define φ =
∨
s∈S φ

′
s. For all t ∈ S, we have

kt = Jφ′
tK(t) ≤ JφK(t) = max{Jφ′

sK(t) | s, t ∈ S} < kt + ϵ.

Finally, we define ψ = [φ]. It follows that

JψK(∆1)− JψK(∆2) = J[φ]K(∆1)− J[φ]K(∆2)
=

∑
t∈S ∆1(t) · JφK(t)−

∑
t∈S ∆2(t) · JφK(t)

≥
∑

t∈S ∆1(t) · kt −
∑

t∈S ∆2(t) · JφK(t)
>

∑
t∈S ∆1(t) · kt −

∑
t∈S ∆2(t) · (kt + ϵ)

=
∑

t∈S(∆1(t)−∆2(t)) · kt −
∑

t∈S ∆2(t) · ϵ
= L(∆1,∆2)− ϵ
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as required in (9). 2

The above property will be used to prove the following lemma.

Lemma 3.3 ds ⊑ dls
s

Proof: We show that dls
s is a state-based bisimulation metric. Let

s, t be any two states in S and ϵ be any real number in the interval [0, 1)
with dls

s (s, t) ≤ ϵ. Assume that s
a−→ ∆1 is an arbitrarily chosen transition

from s. Then state t must be able to perform action a too. Otherwise
it is easy to see that dls

s (s, t) = 1 > ϵ, which contradicts our assumption
above. We need to show that there exists some transition t

a−→ ∆2 with
K (dls

s )(∆1,∆2) ≤ ϵ. Suppose for a contradiction that no a-transition from t
satisfies this condition. In other words, for each ∆i

2 with t
a−→ ∆i

2 we have
K (dls

s )(∆1,∆
i
2) > ϵ. By Lemma 3.2, this means dld

s (∆1,∆
i
2) > ϵ. Then

there must exist some formula ψi2 ∈ LD such that |Jψi2K(∆1)− Jψi2K(∆
i
2)| > ϵ.

Furthermore, we can strengthen this condition to the following one

Jψi2K(∆1)− Jψi2K(∆
i
2) > ϵ (11)

because we can take the formula ¬ψi2 in place of ψi2 in the case that
Jψi2K(∆1) < Jψi2K(∆2). Let

φ = ⟨a⟩
∧
i

(ψi2 ⊖ Jψi2K(∆
i
2)) .

We infer that

JφK(s) = max
s

a−→∆
J
∧
i ψ

i
2 ⊖ Jψi2K(∆

i
2)K(∆)

≥ J
∧
i(ψ

i
2 ⊖ Jψi2K(∆

i
2))K(∆1)

= miniJψi2 ⊖ Jψi2K(∆
i
2)K(∆1)

= Jψk2 ⊖ Jψk2K(∆
k
2)K(∆1) for some k

= max(Jψk2K(∆1)− Jψk2K(∆
k
2), 0)

> ϵ by (11)

On the other hand, we have

JφK(t) = max
t

a−→∆i
2

J
∧
j(ψ

j
2 ⊖ Jψj2K(∆

j
2))K(∆

i
2)

= max
t

a−→∆i
2

minjJψ
j
2 ⊖ Jψj2K(∆

j
2)K(∆

i
2)

= max
t

a−→∆i
2

minj max((Jψj2K(∆
i
2)− Jψj2K(∆

j
2)), 0)

= 0
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It follows that dls
s (s, t) ≥ JφK(s)− JφK(t) > ϵ, which gives rise to a contra-

diction. 2

Finally, we obtain a proof of Theorem 3.1.
Proof: By combining the last three technical lemmas. 2

Remark 3.2 In the proof of Lemma 3.3 we have constructed the formula

φ = ⟨a⟩
∧
i

(ψi2 ⊖ Jψi2K(∆
i
2)) (12)

by making use of conjunction and minus connectives for distribution formu-
lae. This happens because in the presence of non-determinism state t may
perform action a and then evolves into one of several successor distributions
∆i

2. If we confine ourselves to deterministic pLTSs, then state t will have
a unique successor distribution ∆i

2 and therefore (12) can be simplified as
φ = ⟨a⟩ψi2. In this case, there is no need of conjunction and minus con-
nectives for distribution formulae. That is, distribution formulae are in
the form [φ] or ¬[φ]. Furthermore, if we fold them into state formulae in
Definition 3.2, distribution formulae can be completely dropped. In other
words, for deterministic pLTSs, the state-based bisimilarity metric can be
characterised by the following one-sorted metric logic

φ ::= ⊤ | ¬φ | φ⊖ p | φ1 ∧ φ2 | ⟨a⟩φ . (13)

Therefore, for deterministic pLTSs, the two-sorted logic in Definition 3.2
degenerates into the logic considered in [17, 50, 26], as expected. In the
one-sorted logic, the formula ⟨a⟩(φ⊖ p) will be interpreted the same as the
formula ⟨a⟩[φ ⊖ p] in LS, but no formula has the same interpretation as
⟨a⟩([φ]⊖ p) in LS; the subtlety has already been discussed in Example 3.3.

In [8, 3] a bisimulation metric for game structures is characterised by a
quantitative µ-calculus where formulae are evaluated also on states and no
distribution formula is needed. This is not surprising because the considered
2-player games are deterministic: at any state s, if two players have chosen
their moves, say a1 and a2, then there is a unique distribution δ(s, a1, a2) to
determine the probabilities of arriving at a set of destination states.

4 Distribution-Based Bisimulation Metric

The bisimilarity metric given in Definition 3.1 measures the distance between
two states. Alternatively, it is possible to directly define a metric that
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measures subdistributions. In order to do so, we first define a transition
relation between subdistributions.

Definition 4.1 With a slight abuse of notation, we also use the notation
a−→ to stand for the transition relation between subdistributions, which is the
smallest relation satisfying the three rules given in Figure 3.

s
a−→ ∆

s
a−→ ∆

s ̸ a−→

s
a−→ ε

∀i ∈ I. pi > 0 ∧∆i
a−→ Θi I is finite

∑
i∈I

pi ≤ 1

(
∑
i∈I

pi ·∆i)
a−→ (

∑
i∈I

pi ·Θi)

Figure 3: Rules for transitions between subdistributions

Note that if ∆
a−→ ∆′ then not necessarily all the states in the support

of ∆ can perform action a. For example, consider the two states s2 and s3 in
Figure 1. Since s2

c−→ s4 and s3 cannot perform action c, the distribution ∆ =
1
2s2+

1
2s3 can make the transition ∆

c−→ 1
2s4 to reach the subdistribution 1

2s4.

Lemma 4.1 For any subdistribution ∆ ∈ Dsub(S) and action a, if ∆
a−→ ∆′

then there exisits some subdistributions ∆s such that

1. ∆′ =
∑

s∈⌈∆⌉∆(s) ·∆s;

2. s
a−→ ∆s for each s ∈ ⌈∆⌉;

3. if s ̸ a−→ then ∆s = ε.

Proof: By induction on the rules of inferring ∆
a−→ ∆′. As displayed

in Figure 3, there are three rules. The first two are straightforward, so we
assume that ∆

a−→ ∆′ is derived from the last one. Suppose ∆ =
∑

i∈I pi ·∆i,

∆′ =
∑

i∈I pi · ∆′
i,

∑
i∈I pi ≤ 1 and for all i ∈ I we have ∆i

a−→ ∆′
i.

By induction hypothesis, for each i ∈ I, the subdistribution ∆′
i can be

decomposed as ∆′
i =

∑
s∈⌈∆i⌉∆i(s) ·∆is with s

a−→ ∆is for each s ∈ ⌈∆i⌉,
and ∆is = ε if s ̸ a−→. Note that ∆(s) =

∑
i∈I pi ·∆i(s). It follows that

s =
∑
i∈I

pi∆i(s)

∆(s)
· s a−→

∑
i∈I

pi∆i(s)

∆(s)
·∆is
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Now let ∆s =
∑

i∈I
pi∆i(s)
∆(s) · ∆is. The above transition can be written as

s
a−→ ∆s. We also observe that

∆′ =
∑
i∈I

pi ·
∑

s∈⌈∆i⌉

∆i(s) ·∆is =
∑
s∈⌈∆⌉

∑
i∈I

pi∆i(s) ·∆is =
∑
s∈⌈∆⌉

∆(s) ·∆s

Moreover, if s ̸ a−→ then ∆is = ε and thus ∆s = ε as required. 2

Definition 4.2 A 1-bounded pseudometric d on Dsub(S) is a distribution-
based bisimulation metric if, for all ∆1,∆2 ∈ Dsub(S), the following two
conditions are satisfied:

1. | |∆1| − |∆2| | ≤ d(∆1,∆2);

2. whenever d(∆1,∆2) < 1 and ∆1
a−→ ∆′

1 then there is some transition

∆2
a−→ ∆′

2 such that d(∆′
1,∆

′
2) ≤ d(∆1,∆2).

The condition | |∆1| − |∆2| | ≤ d(∆1,∆2) says that the distance between
two subdistributions should be at least the difference between their total
masses. The smallest (wrt. ⊑) distribution-based bisimulation metric, nota-
tion dd , is called distribution-based bisimilarity metric. Distribution-based
bisimilarity [14] is the kernel of the distribution-based bisimilarity metric.

Let der(∆, a) = {∆′ | ∆ a−→ ∆′}. We define the functional operator

F d : [0, 1]
Dsub(S)×Dsub(S) → [0, 1]Dsub(S)×Dsub(S)

for d : Dsub(S)×Dsub(S) → [0, 1] and ∆,Θ ∈ Dsub(S) by

F d(d)(∆,Θ) = max(sup
a∈A

{H (d)(der(∆, a), der(Θ, a))}, | |∆| − |Θ| |) . (14)

It can be shown that F d is monotone and its least fixed point is given by
⊔
di,

where d0(∆,Θ) = | |∆| − |Θ| | for any ∆,Θ ∈ Dsub(S) and di+1 = F d(di) for
all i ∈ N. The property below is analogous to Proposition 3.1.

Proposition 4.1 dd is the least fixed point of F d. 2

It is not difficult to see that ds is different from dd , as witnessed by the
following example. A more accurate comparison is given in Section 5.
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Example 4.1 Consider the states in Figure 1. We first observe that
dd(s2, t3) = 0 because s2 and t3 can match each other’s action exactly.
Similarly, we have dd(s3, t4) = 0. Then it is straightforward to see that

dd (
1
2s2+

1
2s3,

1
2 t3+

1
2 t4) = 0. Since s1

b−→ 1
2s2+

1
2s3 and 1

2 t1+
1
2 t2

b−→ 1
2 t3+

1
2 t4,

we infer that dd (s1,
1
2 t1 +

1
2 t2) = 0. This, in turn, implies dd (s, t) = 0. We

have already seen in Example 3.1 that ds(s, t) = 1
2 . Therefore, the two

distance functions ds and dd are indeed different.

We now turn to the logical characterisation of dd . Consider the metric
logic LD∗ whose formulae are defined below:

ψ ::= ⊤ | ¬ψ | ψ ⊖ p | ψ1 ∧ ψ2 | ⟨a⟩ψ . (15)

This logic is the same as that defined in (13) except that now we only have
distribution formulae. The semantic interpretation of formulae comes with
no surprise.

Definition 4.3 A formula ψ ∈ LD∗ evaluates in ∆ ∈ Dsub(S) as follows:

J⊤K(∆) = |∆|
J¬ψK(∆) = 1− JψK(ψ)

Jψ ⊖ pK(∆) = max(JψK(∆)− p, 0)
Jψ1 ∧ ψ2K(∆) = min(Jψ1K(∆), Jψ2K(∆))

J⟨a⟩ψK(∆) = max
∆

a−→∆′JψK(∆′).

This induces a natural logical metric dld
d over subdistributions defined by

dld
d (∆,Θ) = sup

ψ∈LD∗
|[[ψ]](∆)− [[ψ]](Θ)|

It turns out that dld
d coincides with dd . Below we show that one metric is

dominated by the other and vice versa.

Lemma 4.2 dld
d ⊑ dd

Proof: Similar to the proof of Lemma 3.1. We proceed by structural
induction on formulae. For any two subdistributions ∆1,∆2 ∈ D(S), we
prove that

|JψK(∆1)− JψK(∆2)| ≤ dd (∆1,∆2)

for all ψ ∈ LD∗.
Let us analyze the structure of ψ.
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• ψ ≡ ⊤. Then it is trivial to see that |JψK(∆1) − JψK(∆2)| = | |∆1| −
|∆2| | ≤ dd (∆1,∆2).

• ψ ≡ ¬ψ′. Then |JψK(∆1) − JψK(∆2)| = |Jψ′K(∆2) − Jψ′K(∆1)| ≤
dd (∆1,∆2) where the inequality holds by induction.

• ψ ≡ ψ′ ⊖ p. There are four subcases and we consider one of them.
Suppose Jψ′K(∆1) > p and Jψ′K(∆2) ≤ p, then |JψK(∆1)− JψK(∆2)| =
|Jψ′K(∆1)− p| ≤ |Jψ′K(∆1)− Jψ′K(∆2)| ≤ dd (∆1,∆2) by induction.

• ψ ≡ ψ1 ∧ ψ2. Without loss of generality we assume that JψK(∆1) ≥
JψK(∆2). There are two possibilities:

– If Jψ1K(∆2) ≤ Jψ2K(∆2), then JψK(∆1) − JψK(∆2) ≤ Jψ1K(∆1) −
Jψ1K(∆2) ≤ dd (∆1,∆2), where the last inequality holds by induc-
tion.

– Symmetrically, if Jψ2K(∆2) ≤ Jψ1K(∆2), then JψK(∆1)−JψK(∆2) ≤
Jψ2K(∆1)− Jψ2K(∆2) ≤ dd (∆1,∆2).

• ψ ≡ ⟨a⟩ψ′. Let ∆′
1 be a distribution such that ∆1

a−→ ∆′
1 and

J⟨a⟩ψ′K(∆1) = Jψ′K(∆′
1). Since dd is a distribution-based bisimulation

metric, by definition there exists some ∆′
2 such that ∆2

a−→ ∆′
2 and

dd (∆
′
1,∆

′
2) ≤ dd (∆1,∆2). Without loss of generality we assume that

JψK(∆1) ≥ JψK(∆2). It follows that

JψK(∆1)− JψK(∆2)
= Jψ′K(∆′

1)−max
∆2

a−→∆′′
2

Jψ′K(∆′′
2)

≤ Jψ′K(∆′
1)− Jψ′K(∆′

2)
≤ dd (∆

′
1,∆

′
2) by induction on ψ′

≤ dd (∆1,∆2)

2

Lemma 4.3 dd ⊑ dld
d

Proof: The proof is similar to that of Lemma 3.3, so we omit it. 2

By combining the previous two lemmas, we obtain the logical charac-
terisation of dd .

Theorem 4.1 dd = dld
d 2
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5 Comparison of the Bisimilarity Metrics

In this section, we compare the state-based bisimilarity metric ds with the
distribution-based bisimilarity metric dd . More precisely, we show that dd is
a lower bound of K (ds) when measuring full distributions7. The proof makes
use of fully enabled pLTSs as a stepping stone. Let us first fix an overall set
of actions Act and a special action ⊥ ̸∈ Act. Let EA(s) = {a | ∃∆. s a−→ ∆}
be the set of actions that are enabled at state s. We also use ⊥ to stand for
a special state when there is no confusion.

Definition 5.1 A pLTS with state set S is fully enabled if for any state
s ∈ S\{⊥} we have EA(s) = Act. Given any pLTS A = (S,A,−→) with A ⊆
Act, we can convert it into a fully enabled pLTS A⊥ = (S⊥, Act ∪ {⊥},−→⊥)
as follows:

S⊥ = {s⊥|s ∈ S} ∪ {⊥}
−→⊥ = {(s⊥, a,∆⊥) | (s, a,∆) ∈−→}

∪{(s⊥, a,⊥) | s ̸ a−→ and a ∈ Act}
∪{(⊥, a,⊥) | a ∈ Act ∪ {⊥}}.

where ∆⊥(s⊥) = ∆(s) for each s ∈ S and ∆⊥(⊥) = 1− |∆|. In other words,
each state s in A corresponds to a state s⊥ in A⊥ such that s⊥ keeps all the
transitions of s and can evolve into the absorbing state ⊥ by performing any
action in Act not enabled by s. As a consequence, each subdistribution ∆
on the states of A has a corresponding full distribution ∆⊥ on the states
of A⊥.

For any pLTS, let s, t be two states and ∆,Θ two subdistributions.
It can be shown that ds(s, t) = ds(s

⊥, t⊥) and dd(∆,Θ) = dd(∆
⊥,Θ⊥).

Moreover, for fully enabled pLTSs, the metric dd turns out to be a lower
bound of K (ds) as far as distributions are concerned. Before proving those
properties, we first present the following technical lemma.

Lemma 5.1 For any subdistribution ∆ on A and any a ∈ Act,

∆
a−→ ∆1 iff ∆⊥ a−→ ∆⊥

1 .

Proof: (⇒) Suppose ∆ is a subdistribution on A and ∆
a−→ ∆1 for some

a ∈ Act and subdistribution ∆1. By Lemma 4.1 we can decompose ∆1 such

7Although dd can measure the distance between two subdistributions, the Kantorovich
lifting of ds can only measure the distance between full distributions or subdistributions
of equal mass, which can easily be normalized to full distributions.
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that ∆1 =
∑

s∈⌈∆⌉∆(s) ·∆s, s
a−→ ∆s for each s ∈ S′, where S′ is the set of

states in the support of ∆ that can enable action a, and ∆s = ε if s ̸∈ S′.
For each s ∈ S′, the state s⊥ keeps all the transitions of s, so we have some
distribution ∆⊥

s with s⊥
a−→ ∆⊥

s . For each s ̸∈ S′, we have s⊥
a−→ ⊥. It

follows that

∆⊥ a−→ (
∑
s∈S′

∆(s) ·∆⊥
s +

∑
s∈⌈∆⌉\S′

∆(s) · ⊥+ (1− |∆|) · ⊥) = ∆⊥
1 .

(⇐) Suppose ∆⊥ a−→ ∆⊥
1 for some subdistribution ∆ on A and some

action a ∈ Act. We have that ∆⊥ =
∑

s∈⌈∆⌉∆(s) · s⊥ + (1 − |∆|) · ⊥. By

Lemma 4.1 we have that ∆⊥
1 = (

∑
s∈⌈∆⌉∆(s) · Θs) + (1 − |∆|) · ⊥, where

Θs = ∆⊥
s if s enables a and s

a−→ ∆s for some distribution ∆s, or Θs = ⊥
if s cannot enable action a. Let S′ be the set of states in the support of ∆
that can enable action a. We have that

∆⊥
1 = (

∑
s∈S′

∆(s) ·∆⊥
s ) + (1−

∑
s∈S′

∆(s)) · ⊥ = (
∑
s∈S′

∆(s) ·∆s)
⊥ .

By setting ∆1 =
∑

s∈S′ ∆(s) ·∆s, we indeed have that ∆
a−→ ∆1. 2

Lemma 5.2 1. Let s, t be any two states of A. Then ds(s, t) = ds(s
⊥, t⊥)

2. Let ∆,Θ be two distributions on A. Then K (ds)(∆,Θ)=K (ds)(∆
⊥,Θ⊥).

3. Let ∆,Θ be two subdistributions on A. Then dd (∆,Θ) = dd (∆
⊥,Θ⊥).

Proof:

1. By Proposition 3.1 we see that ds =
⊔
di, where d0 = 0 and di+1 =

F s(di) for all i ∈ N. We show by induction on i that di(s, t) = di(s
⊥, t⊥)

for all i ∈ N. The base case is trivial. Let us consider the inductive
step.

di+1(s, t) = supa∈Act{H (K (di))(der(s, a), der(t, a))}
di+1(s

⊥, t⊥) = supa∈Act∪{⊥}{H (K (di))(der(s
⊥, a), der(t⊥, a))}

If X = {∆1, ...,∆n} is a set of distributions on A, we denote by (X)⊥

the set {∆⊥
1 , ...,∆

⊥
n }. For any a ∈ Act, we distinguish four cases:
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(a) Both s and t can enable action a in A. That is, neither der(s, a)
nor der(t, a) is empty. Then s

a−→ ∆ iff s⊥
a−→ ∆⊥. That is,

each a-successor distribution of s, say ∆, has a corresponding
a-successor distribution of s⊥, say ∆⊥, and vice-versa. Similarly,
for each Θ ∈ der(t, a), we have Θ⊥ ∈ der(t⊥, a). This means
that der(s⊥, a) = (der(s, a))⊥ and der(t⊥, a) = (der(t, a))⊥. By
induction, we have that di(u, v) = di(u

⊥, v⊥) for any u, v ∈ S. It
follows that

K (di)(∆,Θ) = K (di)(∆
⊥,Θ⊥)

and moreover,

H (K (di))(der(s, a), der(t, a)) = H (K (di))(der(s
⊥, a), der(t⊥, a)) .

(b) State s cannot enable action a but state t can enable action a.
Then der(s, a) = ∅, der(s⊥, a) = {⊥}, der(t, a) ̸= ∅ and ⊥ ̸∈
der(t⊥, a). Clearly, K (di)(⊥,Θ⊥) = 1 for any Θ⊥ ∈ der(t⊥, a)

because here Θ is a full distribution and t′ ̸ ⊥−→ for any t′ ∈ ⌈Θ⌉.
It follows that

H (K (di))(der(s, a), der(t, a)) = 1 = H (K (di))(der(s
⊥, a), der(t⊥, a)) .

(c) The symmetric case of (b) by exchanging the rules of s and t. We
also have

H (K (di))(der(s, a), der(t, a)) = 1 = H (K (di))(der(s
⊥, a), der(t⊥, a)) .

(d) Neither s nor t can enable action a. Then der(s, a) = der(t, a) = ∅
and der(s⊥, a) = der(t⊥, a) = {⊥}. It follows that

H (K (di))(der(s, a), der(t, a)) = 0 = H (K (di))(der(s
⊥, a), der(t⊥, a)) .

In all the cases above, we always have the following equation

H (K (di))(der(s, a), der(t, a)) = H (K (di))(der(s
⊥, a), der(t⊥, a))

(16)
for any a ∈ Act. For the action ⊥, we have der(s⊥,⊥)=der(t⊥,⊥)=∅.
Hence,

H (K (di))(der(s
⊥,⊥), der(t⊥,⊥)) = 0 . (17)
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By using (16) and (17), we can reason that

di+1(s, t) = supa∈Act{H (K (di))(der(s, a), der(t, a))}
= supa∈Act{H (K (di))(der(s

⊥, a), der(t⊥, a))
= supa∈Act∪{⊥}{H (K (di))(der(s

⊥, a), der(t⊥, a))

= di+1(s
⊥, t⊥) .

2. Since ∆ and Θ are full distributions, then so are ∆⊥ and Θ⊥. Then
Clause 2 follows from Clause 1 immediately.

3. The proof is similar to that of Clause 1. By Proposition 4.1 we see
that dd =

⊔
di, where d0 = 0 and di+1 = F d(di) for all i ∈ N. For

distributions on A⊥, we need to consider the special action ⊥ too. We
show by induction on i that di(∆,Θ) = di(∆

⊥,Θ⊥) for all i ∈ N. The
base case is trivial. Let us consider the inductive step.

di+1(∆,Θ) = max( sup
a∈Act

{H (di)(der(∆, a), der(Θ, a))}, | |∆| − |Θ| |) .

Since ∆⊥ and Θ⊥ are full distributions, there is no need of comparing
their masses. Hence,

di+1(∆
⊥,Θ⊥) = sup

a∈Act∪{⊥}
{H (di)(der(∆

⊥, a), der(Θ⊥, a))} .

By Lemma 5.1, for any ∆ on A and a ∈ A, we have the correspondence
of transitions ∆

a−→ ∆1 iff ∆⊥ a−→ ∆⊥
1 . Similarly, for each Θ1 ∈

der(Θ, a), we have Θ⊥
1 ∈ der(Θ⊥, a), and vice-versa. This means

that der(∆⊥, a) = (der(∆, a))⊥ and der(Θ⊥, a) = (der(Θ, a))⊥. By
induction, di(∆1,Θ1) = di(∆

⊥
1 ,Θ

⊥
1 ) for any ∆1,Θ1 ∈ Dsub(S). It

follows that

H (di)(der(∆, a), der(Θ, a)) = H (di)(der(∆
⊥, a), der(Θ⊥, a)) .

Therefore,

sup
a∈A

{H (di)(der(∆, a), der(Θ, a))} = sup
a∈A

{H (di)(der(∆
⊥, a), der(Θ⊥, a))} .

Observe that in ∆⊥ no state except for ⊥ can enable action ⊥, which
means that the following equality holds: der(∆⊥,⊥) = {(1− |∆|) · ⊥}.
Similarly, der(Θ⊥,⊥) = {(1− |Θ|) · ⊥}. We then have that

H (di)(der(∆
⊥,⊥), der(Θ⊥,⊥))} = di((1− |∆|) · ⊥, (1− |Θ|) · ⊥)

= | (1− |∆|)− (1− |Θ|) |
= | |∆| − |Θ| |
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Now it is easy to see that di+1(∆,Θ) = di+1(∆
⊥,Θ⊥) as required. 2

Theorem 5.1 Let ∆,Θ be two distributions on a fully enabled pLTS. Then

dd (∆,Θ) ≤ K (ds)(∆,Θ).

Proof: We will prove that K (ds) is a distribution-based bisimulation
metric for fully enabled pLTSs. Since dd is the smallest distribution-based
bisimulation metric, it follows that dd (∆,Θ) ≤ K (ds)(∆,Θ).

By assumption, both ∆ and Θ are distributions. It is trivial to see that

| |∆| − |Θ| | = 0 ≤ K (ds)(∆,Θ).

Suppose K (ds)(∆,Θ) < 1 and ∆
a−→ ∆′. Then for any s ∈ ⌈∆⌉, there

exists some ∆s such that s
a−→ ∆s and ∆′ =

∑
s∈⌈∆⌉∆(s) · ∆s because

the pLTS under consideration is fully enabled. Let S be the state set of
the pLTS excluding the special state ⊥. For any t ∈ S, we observe that
ds(s, t) < 1 because in a fully enabled pLTS no two states different from ⊥
have distance 1. So by the definition of ds , there exists some Θt such that
t

a−→ Θt and K (ds)(∆s,Θt) ≤ ds(s, t). We define Θ′ =
∑

t∈S Θ(t) ·Θt and

it is easy to see that Θ
a−→ Θ′.

Let ω ∈ Ω(∆,Θ) be a weight function satisfying

K (ds)(∆,Θ) =
∑
s,t∈S

ω(s, t) · ds(s, t).

Similarly, let ωs,t ∈ Ω(∆s,Θt) be a weight function satisfying

K (ds)(∆s,Θt) =
∑
u,v∈S

ωs,t(u, v) · ds(u, v).

Define ω′ ∈ D(S × S) as follows:

ω′(u, v) =
∑
s,t∈S

ω(s, t) · ωs,t(u, v)

for any u, v ∈ S. We check that ω′ is a weight function for ∆′ and Θ′.∑
u∈S ω

′(u, v) =
∑

u∈S
∑

s,t∈S ω(s, t) · ωs,t(u, v)
=

∑
s,t∈S ω(s, t)

∑
u∈S ωs,t(u, v)

=
∑

s,t∈S ω(s, t) ·Θt(v)

=
∑

t∈S Θ(t) ·Θt(v)
= Θ′(v)
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for any v ∈ S. Similarly, we can infer that
∑

v∈S ω
′(u, v) = ∆′(u) for any

u ∈ S. Therefore, we have ω′ ∈ Ω(∆′,Θ′), from which we can do the
following reasoning:

K (ds)(∆
′,Θ′) ≤

∑
u,v∈S ω

′(u, v) · ds(u, v)

=
∑

u,v∈S
∑

s,t∈S ω(s, t) · ωs,t(u, v) · ds(u, v)

=
∑

s,t∈S ω(s, t)
∑

u,v∈S ωs,t(u, v) · ds(u, v)

=
∑

s,t∈S ω(s, t)K (ds)(∆s,Θt)

≤
∑

s,t∈S ω(s, t)ds(s, t)

= K (ds)(∆,Θ).

In summary, we have shown that K (ds) is a distribution-based bisimulation
metric. This completes the proof. 2

Then we arrive at the following theorem.

Theorem 5.2 Let ∆,Θ be two distributions on a pLTS. Then dd (∆,Θ) ≤
K (ds)(∆,Θ).

Proof: Let ∆,Θ be two distributions on a pLTS A. Let ∆⊥,Θ⊥ be the
corresponding distributions on the fully enabled pLTS A⊥. It follows from
Lemma 5.2(2)-(3) and Theorem 5.1 that

dd (∆,Θ) = dd (∆
⊥,Θ⊥) ≤ K (ds)(∆

⊥,Θ⊥) = K (ds)(∆,Θ).

2

6 Bisimulations

The kernel of ds (resp. dd) is the state-based (resp. distribution-based)
bisimilarity, denoted by ∼s (resp. ∼d). They can be defined in a more
direct way. The definition of ∼s requires us to lift a relation on states to
be a relation on distributions. There are several different but equivalent
formulations of the lifting operation, and they are closely related to the
Kantorovich metric; see [11] for more details. The following one is taken
from [16].

Definition 6.1 Given two sets S, T and a binary relation R⊆ S × T , we
define the lifted binary relation R†⊆ Dsub(S) × Dsub(T ) as the smallest
relation satisfying the following two rules:

1. s R t implies s R† t;
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2. ∆i R† Θi for all i ∈ I implies (
∑

i∈I pi ·∆i) R† (
∑

i∈I pi ·Θi), where
I is a finite index set and

∑
i∈I pi ≤ 1.

The state-based bisimilarity ∼s is essentially Larsen and Skou’s proba-
bilistic bisimilarity [37], which is originally defined for deterministic systems.

Definition 6.2 Let ∼s⊆ S × S be the largest symmetric relation such that
if s ∼s t and s

a−→ ∆ then there exists some t
a−→ Θ with ∆ (∼s)

† Θ.

The distribution-based bisimilarity ∼d is proposed in [14] as a sound
and complete coinductive proof technique for linear contextual equivalence,
a natural extensional behavioural equivalence for functional programs.

Definition 6.3 Let ∼d⊆ Dsub(S)×Dsub(S) be the largest symmetric relation
such that if ∆ ∼d Θ then |∆| = |Θ| and ∆

a−→ ∆′ implies the existence of
some Θ′ such that Θ

a−→ Θ′ and ∆′ ∼d Θ
′.

Notice that, for any states s, t ∈ S, the following three statements are
equivalent:

(i) s ∼s t;

(ii) ds(s, t) = 0;

(iii) [[φ]](s) = [[φ]](t) for any formula φ ∈ LS.

Similarly, for any subdistributions ∆,Θ ∈ Dsub(S), the following three
statements are equivalent:

(i) ∆ ∼d Θ;

(ii) dd (∆,Θ) = 0;

(iii) [[ψ]](∆) = [[ψ]](Θ) for any formula ψ ∈ LD∗.

Although the state-based bisimilarity is widely accepted, there is no general
agreement on what is a good notion of distribution-based bisimilarity. In
the literature [29, 15, 24, 20, 23, 31], several variations of distribution-based
bisimulations have been proposed. Some of them are defined for pLTSs with
states labelled by atomic propositions. We adapt them to our setting so as
to compare them with ∼d.

In a pLTS (S,L,−→), a transition goes from a state to a distribution,
e.g. s

a−→ ∆. In order to lift −→ to be a relation between distributions, e.g.
∆

a−→ Θ, usually we need to decide whether



238 Wenjie Du, Yuxin Deng, and Daniel Gebler

(i) to require all the states in the support of ∆ to perform action a;

(ii) to combine transitions with the same label, which we explain below.

In [24, 20, 23] both (i) and (ii) are imposed, while in [31] and also in our
definition of ∼d (i) is not used. The condition (ii) is built in Definition 4.1
but partially used in [31], as we will see in the sequel. Let {s a−→ ∆i}i∈I be
a collection of transitions, and {pi}i∈I be a collection of probabilities with∑

i∈I pi = 1. Then s
a−→C (

∑
i∈I pi ·∆i) is called a combined transition [43].

Let us write ∆
a−→CΘ if s

a−→C ∆s for each s ∈ ⌈∆⌉ and Θ =
∑

s∈⌈∆⌉∆(s)·∆s.

Remark 6.1 An equivalent way of defining combined transitions is to use
Definition 4.1. We have that s

a−→C ∆ iff s
a−→ ∆ and |∆| = 1; ∆

a−→C Θ iff
∆

a−→ Θ and |∆| = |Θ|.

Note that a simple way of comparing subdistributions is to lift the
state-based bisimilarity and use the relation (∼s)

†. That relation can be
slightly weakened by using the combined transition t

a−→C Θ in place of
t
a−→ Θ in Definition 6.2 to get a coarser notion of state-based bisimilarity

called strong probabilistic bisimulation in [43], written ∼′
s, and then lifting

it to subdistributions to finally obtain (∼′
s)

†. This is essentially the relation
investigated in [29]. However, most distribution-based bisimilarities proposed
in the literature directly compare the transitions between (sub)distributions,
so there is no need of defining certain relations on states and then lift them
to subdistributions. Below we recall four typical proposals.

Firstly, we adapt the bisimulation of [24] to our setting. Let (S,A,−→)
be a pLTS, we extend it to be a fully enabled pLTS (S⊥, Act ∪ {⊥},−→⊥)
according to Definition 5.1.

Definition 6.4 Let ∼1⊆ D(S⊥)×D(S⊥) be the largest symmetric relation
such that ∆ ∼1 Θ implies

1. ∆(S) = Θ(S),

2. for each a ∈ A, whenever ∆
a−→C ∆′, there exists Θ′ with Θ

a−→C Θ′

and ∆′ ∼1 Θ
′.

Secondly, we adapt the bisimulation in [29, 15] for subdistributions.

Definition 6.5 Let ∼2⊆ Dsub(S)×Dsub(S) be the largest symmetric relation
such that ∆ ∼2 Θ implies, for all finite sets of probabilities {pi | i ∈ I}
satisfying

∑
i∈I pi ≤ 1,
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1. |∆| = |Θ|,

2. whenever ∆
a−→C ∆′, there exists Θ′ with Θ

a−→C Θ′ and ∆′ ∼2 Θ
′,

3. whenever ∆ =
∑

i∈I pi ·∆i, for any subdistributions ∆i, there are some
subdistributions Θi such that Θ =

∑
i∈I pi ·Θi and ∆i ∼2 Θi for each

i ∈ I.

Thirdly, we adapt the bisimulation given in [20] to pLTSs. A subdistri-
bution is consistent, if EA(s) = EA(t) for any s, t ∈ ⌈∆⌉. That is, all the
states in the support of ∆ have the same set of enabled actions.

Definition 6.6 Let ∼3⊆ Dsub(S)×Dsub(S) be the largest symmetric relation
such that ∆ ∼3 Θ implies

1. |∆| = |Θ|,

2. whenever ∆
a−→C ∆′, there exists Θ′ with Θ

a−→C Θ′ and ∆′ ∼3 Θ
′,

3. if ∆ is not consistent, there exist decompositions ∆ =
∑

i∈I pi ·∆i and
Θ =

∑
i∈I pi ·Θi such that ∆i ∼3 Θi for each i ∈ I.

Finally, we adapt the bisimulation of [31]. Let A be a set of labels. We

write s
A−→ ∆ if s

a−→C ∆ for some a ∈ A and denote by SA = {s | ∃∆. s A−→ ∆}
the set of states that can perform some action from A. Then we define a

transition relation for distributions by letting ∆
A−→ Θ if s

A−→ ∆s for each
s ∈ SA ∩ ⌈∆⌉ and Θ = 1

∆(SA)

∑
s∈SA∩⌈∆⌉∆(s) ·∆s.

Definition 6.7 Let ∼4⊆ Dsub(S)×Dsub(S) be the largest symmetric relation
such that ∆ ∼4 Θ implies

1. |∆| = |Θ| and ∆(SA) = Θ(SA) for any A ⊆ L,

2. for each A ⊆ L, whenever ∆
A−→ ∆′, there exists Θ′ with Θ

A−→ Θ′ and
∆′ ∼4 Θ

′.

The lifting operation given in Definition 6.1 enjoys a few useful properties
[11, Section 3.3].

Proposition 6.1 Let ∆ and Θ be two subdistributions over S and T , respec-
tively, and R⊆ S × T . Then ∆ R† Θ if and only if there are two collections
of states, {si}i∈I and {ti}i∈I , and a collection of probabilities {pi}i∈I , for
some finite index set I, such that

∑
i∈I pi ≤ 1 and ∆,Θ can be decomposed

as follows:
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1. ∆ =
∑

i∈I pi · si

2. Θ =
∑

i∈I pi · ti

3. for each i ∈ I we have si R ti. 2

Proposition 6.2 If R1⊆R2 then (R1)
†⊆(R2)

†. 2

Proposition 6.3 Suppose R⊆ S×T and
∑

i∈I pi ≤ 1. If (
∑

i∈I pi·∆i) R† Θ

then Θ =
∑

i∈I pi ·Θi for some set of distributions {Θi}i∈I such that ∆i R† Θi

for each i ∈ I. 2

Proposition 6.4 ∼4 ⊂ ∼d.

Proof: Let us construct the following relation

R= {(p ·∆, p ·Θ) | p ∈ [0, 1] ∧∆ ∼4 Θ}

and show that it is a distribution-based bisimulation in the sense of Defi-
nition 6.3. Suppose (p ·∆, p ·Θ) ∈R for some subdistributions ∆,Θ with
∆ ∼4 Θ and p ∈ [0, 1]. We observe that |p ·∆| = p · |∆| = p · |Θ| = |p ·Θ|.
Now let p · ∆ a−→ ∆′. It is necessarily the case that ∆′ = p · ∆′′ and
∆

a−→ ∆′′ for some ∆′′. Then for each s ∈ ⌈∆⌉ there exists some ∆s such
that ∆′′ =

∑
s∈⌈∆⌉∆(s) ·∆s with s

a−→ ∆s, i.e. either s
a−→C ∆s or ∆s = ε

if s ̸ a−→. Note that s
a−→C ∆s if and only if s

{a}−−→ ∆s. It follows that

∆
{a}−−→ ∆′′′ =

1

∆(S{a})

∑
s∈S{a}∩⌈∆⌉

∆(s) ·∆s =
1

∆(S{a})
∆′′.

Since ∆ ∼4 Θ, there exists some Θ′′′ with Θ
{a}−−→ Θ′′′ and ∆′′′ ∼4 Θ

′′′. By
definition Θ′′′ must be in the form

1

Θ(S{a})

∑
s∈S{a}∩⌈Θ⌉

Θ(s) ·Θs

with s
{a}−−→ Θs, i.e. s

a−→C Θs, for any s ∈ S{a} ∩ ⌈Θ⌉. By taking Θs = ε

for any s with s ̸∈ S{a}, it follows that Θ
a−→ Θ′′ =

∑
s∈⌈Θ⌉Θ(s) · Θs =

Θ(S{a}) ·Θ′′′. We see from ∆ ∼4 Θ that ∆(S{a}) = Θ(S{a}). In summary,
we can infer that

p ·∆ a−→ p ·∆′′ = p ·∆(S{a}) ·∆′′′

p ·Θ a−→ p ·Θ′′ = p ·∆(S{a}) ·Θ′′′
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It follows that from ∆′′′ ∼4 Θ′′′ that (p ·∆(S{a}) ·∆′′′, p ·∆(S{a}) ·Θ′′′) ∈R.
Therefore, we have verified that R⊆∼d, thus ∼4⊆∼d.

We now prove that ∼d ̸⊆∼4. Consider the example in Figure 4. From
state s there is a unique transition s

a−→ ∆ with ∆ = 1
3s1 +

1
3s2 +

1
3s3. This

can be matched by t
a−→ Θ, where Θ = 2

3 t1 +
1
3 t2, because ∆ ∼d Θ holds.

To see this, we observe that ∆ can initiate three transitions: ∆
a−→ 2

3sa,

∆
b−→ 2

3sb, and ∆
c−→ 1

3sc; they can be matched by Θ
a−→ 2

3 ta, Θ
b−→ 2

3 tb,

and Θ
c−→ 1

3 tc, respectively. Similarly, the three outgoing transitions from Θ
can be matched by the three transitions of ∆. Therefore, we have verified
that s ∼d t. However, we have ∆ ̸∼4 Θ. From ∆ we have the transition

∆
{a,b}−−−→ ∆′ ≡ 2

3 · sa + 1
3 · sb. From Θ there are two transitions labelled with

{a, b}, namely Θ
{a,b}−−−→ ta and Θ

{a,b}−−−→ tb. Neither of them is able to match
the transition from ∆. To see this, we observe that ∆′(S{b}) = 1

3 while

ta(S{b}) = 0, and ∆′(S{a}) =
2
3 while tb(S{a}) = 0. It follows that s ̸∼4 t. 2

s

s1 s2 s3

sa sb sc

s3

t

t1 t2

ta tb tc

t3

a

1
3

1
3

1
3

a a b b c

a b c

a

2
3

1
3

a b

a b

c

c

Figure 4: s ∼d t but s ̸∼3 t and s ̸∼4 t.

Proposition 6.5 Suppose ∆,Θ ∈ D(S). Then ∆ ∼1 Θ if and only if
∆ ∼d Θ.

Proof: Let us define the following two relations:

R1 = {(∆,Θ) | ∆,Θ ∈ Dsub(S) ∧ p ∈ [0, 1] ∧ (∆ + p · ⊥ ∼1 Θ+ p · ⊥)}
R2 = {(∆ + p · ⊥,Θ+ p · ⊥) | ∆,Θ ∈ Dsub(S) ∧ p ∈ [0, 1] ∧∆ ∼d Θ}.
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We can prove that R1⊆∼d and R2⊆∼1. As an example, let us consider R1

and suppose (∆,Θ) ∈R1 with ∆
a−→ ∆′. Then there is some probability p

with ∆ + p · ⊥ ∼1 Θ + p · ⊥. By Lemma 4.1 ∆′ =
∑

s∈⌈∆⌉∆(s) · ∆s and

for each s ∈ ⌈∆⌉ we have s
a−→ ∆s, i.e. either s

a−→C ∆s or ∆s = ε. Let
∆′′ = ∆′ + (|∆| − |∆′|) · ⊥. It is easy to see that

∆ + p · ⊥ a−→C ∆′′ + p · ⊥.

It follows from ∆+ p · ⊥ ∼1 Θ+ p · ⊥ that

Θ + p · ⊥ a−→C Θ′′ + p · ⊥

and ∆′′ + p · ⊥ ∼1 Θ
′′ + p · ⊥ for some Θ′′. Observe that Θ′′ must take the

form Θ′ + (|Θ| − |Θ′|) · ⊥ with Θ′ =
∑

s∈⌈Θ⌉Θ(s) ·Θs and for each s ∈ ⌈Θ⌉
either s

a−→C Θs or Θs = ε. It follows that Θ
a−→ Θ′.

Since ∆,Θ are subdistributions over S and ∆ + p · ⊥ ∼1 Θ+ p · ⊥, we
know that

|∆| = ∆(S) = (∆ + p · ⊥)(S) = (Θ + p · ⊥)(S) = Θ(S) = |Θ|.

It follows from ∆′′ + p · ⊥ ∼1 Θ
′′ + p · ⊥ that

(∆′ + (|∆| − |∆′|) · ⊥+ p · ⊥) ∼1 (Θ′ + (|Θ| − |Θ′|) · ⊥+ p · ⊥).

As a result, we obtain (∆′,Θ′) ∈R1 and

|∆′| = ∆′(S) = (∆′ + (|∆| − |∆′|) · ⊥+ p · ⊥)(S)

= (Θ′ + (|Θ| − |Θ′|) · ⊥+ p · ⊥)(S) = Θ′(S) = |Θ′|.
Therefore, we have established that R1⊆∼d. By similar arguments, it can
be shown that R2⊆∼1. 2

Proposition 6.6 (∼s)
† ⊂ (∼′

s)
† = ∼2 ⊂ ∼3 ⊂ ∼d.

Proof: Since ∼′
s allows for combined transitions while ∼s uses plain

transitions only, it is obvious that ∼s⊆∼′
s. By the monotonicity of the lifting

operation, Proposition 6.2, we can infer that (∼s)
† ⊆ (∼′

s)
†. Moreover, the

inclusion is strict. For example, consider the two point distributions s and t
in Figure 5, we have s (∼′

s)
† t but not s (∼s)

† t because neither t
a−→ t1 nor

t
a−→ t2 matches the transition s

a−→ (12s1 +
1
2s2), but a combination of them

will do.
Next, let us prove (∼′

s)
† ⊆ ∼2. Suppose ∆,Θ are two subdistributions

with ∆ (∼′
s)

† Θ. By Proposition 6.1 we can decompose ∆ and Θ as follows:
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s

s1 s2

s3

t

t1 t2

t3

a

a

a

1
2

1
2

b c

a a

b c

Figure 5: s (∼′
s)

† t but not s (∼s)
† t.

• ∆ =
∑

i∈I pi · si

• Θ =
∑

i∈I pi · ti

• for each i ∈ I we have si ∼′
s ti.

It is obvious that |∆| =
∑

i∈I pi = |Θ|. It remains to check that ∆ and Θ can

match each other’s transitions. Suppose ∆
a−→C ∆′. Then ∆′ =

∑
s∈⌈∆⌉∆(s)·

∆s, where for each s ∈ ⌈∆⌉ we have s
a−→C ∆s. By Proposition 6.3 we can

decompose Θ as

Θ =
∑
s∈⌈∆⌉

∆(s) ·Θs (18)

such that s (∼′
s)

† Θs for each s ∈ ⌈∆⌉. By Proposition 6.1 we can derive
that s ∼′

s ts for each ts ∈ ⌈Θs⌉. From s
a−→C ∆s, we can find some matching

transition ts
a−→C Θts with ∆s (∼s)

† Θts for each ts ∈ ⌈Θ′
s⌉. It follows that

∆s (∼′
s)

†
(

∑
ts∈⌈Θs⌉

Θs(ts) ·Θts). (19)

Let Θ′
s =

∑
ts∈⌈Θs⌉Θs(ts) ·Θts and Θ′ =

∑
s∈⌈∆⌉∆(s) ·Θ′

s. Then Θs
a−→C Θ′

s

is clearly a valid transition for each distribution Θs where s ∈ ⌈∆⌉. Combine
this with (18), we obtain

Θ
a−→C Θ′. (20)

From (19), we derive that

∆′ (∼′
s)

†
Θ′. (21)
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By Proposition 6.3, any decomposition of ∆ as
∑

i∈I pi ·∆i can be matched

by some decomposition of Θ as
∑

i∈I pi · Θi with ∆i (∼′
s)

† Θi as desired.

Therefore, we have completed the proof of (∼′
s)

†⊆∼2.

In order to prove the other inclusion, ∼2 ⊆ (∼′
s)

†, it suffices to construct
the following relation

R = {(s, t) | s ∼2 t}

and show that it is a strong probabilistic bisimulation, which means R ⊆ ∼′
s.

The proof makes use of the property that ∆ ∼2 Θ implies ∆ R† Θ.

It is easy to see that ∼3 is a relaxation of ∼2 by requiring decompositions
for inconsistent subdistributions rather than for any subdistribution in
general. Furthermore, ∼3 is strictly coarser than ∼2. Consider the two
states s and t in Figure 6. We see that s ̸∼2 t because the point distribution
s1 reachable from s is not related to the subdistribution (12 · t1 + 1

2 · t2)
reachable from t if their decompositions need to be compared: the former
cannot be decomposed into two subdistributions that can mimic t1 and t2,
respectively. However, it is straightforward to check that s ∼3 t.

s

s1

s2 s3

s4

t

t1 t2

t3 t4

t5

a

a

1
2

1
2

b c

a

1
2

1
2

a a

b c

Figure 6: s ∼3 t and s ∼4 t but s ̸∼2 t.

In [22, Theorem 7.1.1] it is proven that ∼3 is strictly included in ∼1.
But Proposition 6.5 says that ∼1 coincides with ∼d. Therefore, ∼3 is strictly
included in ∼d. As a matter of fact, it is also not difficult to give a direct
proof. 2
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Proposition 6.7 ∼4 is incomparable with the three relations (∼s)
†, ∼2 and

∼3.

Proof: In [22, Theorem 7.1.2] it is shown that ∼3 is incomparable with
∼4. Note that ∼4 ̸⊆∼3 implies ∼4 ̸⊆∼2 and ∼4 ̸⊆(∼s)

† by Proposition 6.6.

Let us consider the diagram in Figure 7. Let ∆ = 1
2 · s1 + 1

2 · s2.
Observe that s1 ∼s s2 and thus s1 (∼s)

† ∆. By Proposition 6.6, we also have
s1 ∼2 ∆ and s1 ∼3 ∆. However, we have s1 ̸∼4 ∆ because the transition

∆
{a,b}−−−→ 1

2s3 +
1
2s6 can be matched by neither s1

{a,b}−−−→ s3 nor s1
{a,b}−−−→ s4,

the only two {a, b}-labelled transitions from s1. 2

s1 s2

s3 s4 s5 s6

s7 s8

1
2

1
2

a b a b

a b a b

Figure 7: s1 (∼s)
† (12 · s1 + 1

2 · s2) but s1 ̸∼4 (
1
2 · s1 + 1

2 · s2).

The last four propositions can be recapitulated by the following theorem.

Theorem 6.1 Figure 8 depicts the relationship between the seven bisimilar-
ities for distributions mentioned above. 2

If we confine ourselves to deterministic pLTSs, then combined transitions
add nothing new to ordinary transitions and thus ∼′

s degenerates into ∼s,
but the rest of Figure 8 remains unchanged.

7 Other Related Work

Metrics for probabilistic transition systems are first suggested by Giacalone
et al. [28] to formalize a notion of distance between processes. They are used
also in [36, 39] to give denotational semantics for deterministic models. De
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(∼s)
†(∼′

s)
†=∼2∼3∼d

∼4

=∼1

Figure 8: Relationship between the seven bisimilarities for distributions. An
arrow pointing from one relation to another means that the former relation
is strictly coarser than the latter. Two relations are incomparable if there is
no path from one to the other.

Vink and Rutten [9] show that discrete probabilistic transition systems can
be viewed as coalgebras. They consider the category of complete ultrametric
spaces. Similar ultrametric spaces are considered by den Hartog in [10].
In [51] Ying proposes a notion of bisimulation index for the usual labelled
transition systems, by using ultrametrics on actions instead of using pseudo-
metrics on states. A quantitative linear-time-branching-time spectrum for
non-probabilistic systems is given in [21].

Metrics for deterministic systems are extensively studied. Desharnais
et al. [17] propose a logical pseudometric for labelled Markov chains, which
is a deterministic model of probabilistic systems. A similar pseudometric is
defined by van Breugel and Worrell [49] via the terminal coalgebra of a functor
based on a metric on the space of Borel probability measures. Essentially
the same metric is investigated in the setting of continuous Markov decision
processes [26]. The metric of [17, 50, 26] works for continuous probabilistic
transition systems, while in this work we concentrate on discrete systems with
nondeterminism. In the future it would be interesting to see how to generalise
our results to continuous systems. In [48] van Breugel and Worrell present
a polynomial-time algorithm to approximate their coalgebraic distances.
Furthermore, van Breugel et al. propose an algorithm to approximate a
behavioural pseudometric without discount [47]. In [25] a sampling algorithm
for calculating bisimulation distances in Markov decision processes is shown
to have good performance. Later on, more efficient algorithms for computing
probabilistic bisimilarity distances for probabilistic automata have been
developed in, e.g., [45, 1]. In [7, 8] the probabilistic bisimulation metric on
game structures is characterised by a quantitative µ-calculus. Algorithms
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for game metrics are proposed in [3, 41]. A notion of bisimulation distance
for distributions is proposed in [24]. It is defined for full distributions
only and the definition itself has to be given in terms of fully enabled
transition systems. Our distribution-based bisimulation metric generalises it
to subdistributions, and allowing transitions between subdistributions has
the advantage of allowing our definition to be more direct.

Metrics for nondeterministic probabilistic systems are considered in [18],
where Desharnais et al. deal with labelled concurrent Markov chains (similar
to pLTSs, this model can be captured by the simple probabilistic automata
of [42]). They show that the greatest fixed point of a monotonic function
on pseudometrics corresponds to the weak probabilistic bisimilarity of [40].
In [27] a notion of uniform continuity is proposed to be an appropriate
property of probabilistic processes for compositional reasoning with respect
to ds . In [44] a notion of trace metric is proposed for pLTSs and a tool
is developed to compute the trace metric. In [2] the boolean-valued logic
from [13] is used to characterise state-based bisimulation metrics. It crucially
relies on distribution formulae of the form

⊕
i∈I piφi, which is demanding in

the sense that if ∆ satisfies that formula then there is some decomposition
∆ =

∑
i∈I pi ·∆i such that for each i ∈ I all the states in the support of ∆i

must satisfy φi.

Metrics for other quantitative models are also investigated. In [12] a
notion of bisimulation metric is proposed that extends the approach of [18, 17]
to a more general framework called action-labelled quantitative transition
systems. In [6] de Alfaro et al. consider metric transition systems in which
the propositions at each state are interpreted as elements of metric spaces.
In that setting, trace equivalence and bisimulation give rise to linear and
branching distances that can be characterised by quantitative versions of
linear-time temporal logic [38] and the µ-calculus [35].

8 Concluding Remarks

We have considered two behavioural pseudometrics for probabilistic labelled
transition systems where nondeterminism and probabilities co-exist. They
correspond to state-based and distribution-based bisimulations. Our modal
characterisation of the state-based bisimulation metric is much simpler than
an earlier proposal by Desharnais et al. since we only use two non-expansive
operators, negation and testing, rather than the general class of non-expansive
operators. Our modal characterisation of the distribution-based bisimulation
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metric is new. The characterisations are shown to be sound and complete.
We have also shown that the distribution-based bisimulation metric is a
lower bound of the state-based bisimulation metric lifted to distributions.
In addition, we have compared the bisimilarities entailed by the two metrics
with a few other distribution-based bisimilarities.

In the current work we have not distinguished internal actions from
external ones. But it is not difficult to make the distinction and abstract
away internal actions so as to introduce weak versions of bisimulation metrics.
In a finite-state and finitely branching pLTS, the set of subdistributions
reachable from a state by weak transitions may be infinite but can be
represented by the convex closure of a finite set [11]. This entails that the
logical characterisation of weak bisimulation metrics would be similar to
those presented here.
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lation: Naturally on distributions. In Paolo Baldan and Daniele Gorla,
editors, 25th International Conference on Concurrency Theory, CON-
CUR 2014, volume 8704 of Lecture Notes in Computer Science, pages
249–265. Springer, 2014. doi:10.1007/978-3-662-44584-6_18.

[32] Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and
model checking. In 12th Annual IEEE Symposium on Logic in Computer
Science, pages 111–122. IEEE Computer Society, 1997. doi:10.1109/
LICS.1997.614940.

[33] Bengt Jonsson andWang Larsen, Kim G.and Yi. Probabilistic extensions
of process algebras. In Jan A. Bergstra, Alban Ponse, and Scott A.
Smolka, editors, Handbook of Process Algebra, pages 685–710. Elsevier,
2001. doi:10.1016/b978-044482830-9/50029-1.

[34] Leonid Kantorovich and Gennady S. Rubinstein. On a space of totally
additive functions. Vestnik Leningrad Universitet, 13:52–59, 1958.

[35] Dexter Kozen. Results on the propositional mu-calculus. Theoretical
Computer Science, 27:333–354, 1983. doi:10.1016/0304-3975(82)

90125-6.

[36] Marta Z. Kwiatkowska and Gethin Norman. Probabilistic metric se-
mantics for a simple language with recursion. In Wojciech Penczek and
Andrzej Szalas, editors, 21st International Symposium on Mathemat-
ical Foundations of Computer Science 1996, MFCS’96, volume 1113
of Lecture Notes in Computer Science, pages 419–430. Springer, 1996.
doi:10.1007/3-540-61550-4_167.

https://doi.org/10.1007/s00165-012-0242-7
https://doi.org/10.1007/s00165-012-0242-7
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1109/LICS.1997.614940
https://doi.org/10.1109/LICS.1997.614940
https://doi.org/10.1016/b978-044482830-9/50029-1
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/3-540-61550-4_167


Behavioural Pseudometrics for
Nondeterministic Probabilistic Systems 253

[37] Kim Guldstrand Larsen and Arne Skou. Bisimulation through prob-
abilistic testing. Information and Computation, 94(1):1–28, 1991.
doi:10.1016/0890-5401(91)90030-6.

[38] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems - Specification. Springer, 1992. doi:10.1007/

978-1-4612-0931-7.

[39] Gethin Norman. Metric Semantics for Reactive Probabilistic Systems.
PhD thesis, University of Birmingham, 1997.

[40] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for
probabilistic systems. In Catuscia Palamidessi, editor, 11th International
Conference on Concurrency Theory, CONCUR 2000, volume 1877 of
Lecture Notes in Computer Science, pages 334–349. Springer, 2000.
doi:10.1007/3-540-44618-4_25.

[41] Vishwanath Raman. Game Relations, Metrics and Refinements. PhD
thesis, University of California, 2010.

[42] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, MIT, 1995.

[43] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for
probabilistic processes. In Bengt Jonsson and Joachim Parrow, editors,
5th International Conference on Concurrency Theory, CONCUR ’94,
volume 836 of Lecture Notes in Computer Science, pages 481–496.
Springer, 1994. doi:10.1007/978-3-540-48654-1_35.

[44] Lin Song, Yuxin Deng, and Xiaojuan Cai. Towards automatic mea-
surement of probabilistic processes. In 7th International Conference on
Quality Software, QSIC 2007, pages 50–59. IEEE Computer Society,
2007. doi:10.1109/QSIC.2007.65.

[45] Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity
distance one for probabilistic automata. Journal of Computer and
System Sciences, 111:57–84, 2020. doi:10.1016/j.jcss.2020.02.003.

[46] Hermann Thorisson. Coupling, Stationarity, and Regeneration. Proba-
bility and Its Applications. Springer, 2000.

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/3-540-44618-4_25
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1109/QSIC.2007.65
https://doi.org/10.1016/j.jcss.2020.02.003


254 Wenjie Du, Yuxin Deng, and Daniel Gebler

[47] Franck van Breugel, Babita Sharma, and James Worrell. Approxi-
mating a behavioural pseudometric without discount for probabilis-
tic systems. Logical Methods in Computer Science, 4(2), 2008. doi:

10.2168/LMCS-4(2:2)2008.

[48] Franck van Breugel and James Worrell. An algorithm for quantitative
verification of probabilistic transition systems. In Kim Guldstrand
Larsen and Mogens Nielsen, editors, 12th International Conference on
Concurrency Theory, CONCUR 2001, volume 2154 of Lecture Notes
in Computer Science, pages 336–350. Springer, 2001. doi:10.1007/

3-540-44685-0_23.

[49] Franck van Breugel and James Worrell. Towards quantitative verifica-
tion of probabilistic transition systems. In Fernando Orejas, Paul G.
Spirakis, and Jan van Leeuwen, editors, 28th International Collo-
quium on Automata, Languages and Programming, volume 2076 of
Lecture Notes in Computer Science, pages 421–432. Springer, 2001.
doi:10.1007/3-540-48224-5_35.

[50] Franck van Breugel and James Worrell. A behavioural pseudometric
for probabilistic transition systems. Theoretical Computer Science,
331(1):115–142, 2005. doi:10.1016/j.tcs.2004.09.035.

[51] Mingsheng Ying. Bisimulation indexes and their applications. The-
oretical Computer Science, 275(1-2):1–68, 2002. doi:10.1016/

S0304-3975(01)00124-4.

© Scientific Annals of Computer Science 2022

https://doi.org/10.2168/LMCS-4(2:2)2008
https://doi.org/10.2168/LMCS-4(2:2)2008
https://doi.org/10.1007/3-540-44685-0_23
https://doi.org/10.1007/3-540-44685-0_23
https://doi.org/10.1007/3-540-48224-5_35
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1016/S0304-3975(01)00124-4
https://doi.org/10.1016/S0304-3975(01)00124-4

	Introduction
	Preliminaries
	State-Based Bisimulation Metrics
	Distribution-Based Bisimulation Metric
	Comparison of the Bisimilarity Metrics
	Bisimulations
	Other Related Work
	Concluding Remarks

