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Abstract

In distributed quantum computing (DQC), quantum hardware design mainly focuses on providing as
many as possible high-quality inter-chip connections. Meanwhile, quantum software tries best to reduce the
required number of remote quantum gates between chips. However, this “hardware first, software follows”
methodology may not fully exploit the potential of DQC. Inspired by classical software-hardware co-design,
this paper explores the design space of application-specific DQC architectures. More specifically, we propose
AutoArch, an automated quantum chip network (QCN) structure design tool. With qubits grouping followed
by a customized QCN design, AutoArch can generate a near-optimal DQC architecture suitable for target
quantum algorithms. Experimental results show that the DQC architecture generated by AutoArch can
outperform other general QCN architectures when executing target quantum algorithms.
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1. Introduction

Quantum computing [1] is promising to accelerate solving certain problems which are hard for classical
computers, such as quantum simulation [2,3] and factoring [4]. In the current quantum computer design flow
for circuit-model-based [5] quantum computers, quantum hardware takes a leading role when collaborating
with quantum software to implement a quantum computer. In other words, quantum software is tailored to
match the requirements and constraints exposed by quantum hardware. For example, although quantum
algorithms can be designed without considering the hardware primitive gate set and qubit connectivity,
the quantum compiler [6] is responsible for making quantum programs executable on target hardware by
performing transformations, such as quantum gate decomposition [7] and qubit mapping and routing [8,9].
To be more radical, some work even crafts the quantum algorithm to make it suitable for the the target
quantum chip, trying to maximize the computational capability of the hardware [10]. However, relatively
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little attention has been paid to the efficiency of the quantum (micro)architecture when executing given
quantum algorithms.

Integrating a larger number of physical qubits is a key to increase the computational power of quantum
computing systems. Solid-state quantum computing systems, especially those based on superconducting
qubits, have achieved a steady growth in the number of qubits in a single system, from tens of qubits
to hundreds of qubits [10–19]. The scale of individual superconducting chips is limited by fabrication and
control challenges. As the number of qubits increases, the amount of elements in a single superconduct-
ing quantum chip grows proportionally, which in turn can significantly lower the superconducting chip
fabrication yield rate. Also, the number of wire used to transmit control signals also grows proportionally
to the number of qubits, which can eventually exceed the capacity of dilution refrigerators holding these
quantum chips. As a result, the number of superconducting qubits integrated into a single chip is limited.

To tackle this challenge, an alternative approach is to investigate distributed quantum computing
(DQC). In DQC, a larger system is composed of multiple quantum chips interconnected via remote con-
nections, which forms a quantum chip network (QCN). In DQC architectures, remote multi-qubit gates
can be implemented by consuming Einstein-Podolsky-Roson (EPR) [20] pairs created on the remote con-
nection between chips. Remote gates enable entangling qubits on different chips in the system, providing
a method to realize large-scale quantum computing.

Preparing a remote EPR pair could consume a longer time than local quantum gates, and the created
remote EPR pair normally has a fidelity that is significantly lower than local EPR pairs [21–24]. Conse-
quently, remote quantum gates are costly, both in time and fidelity. To improve the fidelity of executing a
quantum program on DQC architecture, it is crucial to minimize the usage of EPR pairs during execution.

Previous research on DQC architecture can be roughly classified into two categories: (1) hardware
architecture construction [25–28], and (2) software techniques to support executing quantum programs on
DQC architecture [24,28–36]. In these works, hardware design mainly focuses on providing an architecture
with a number of high-quality connection among chips, and quantum software tries best to reduce the
number of EPR pairs consumed by mapping quantum algorithms targeting these chips. However, this
methodology may not fully exploit the potential of DQC based on superconducting quantum processors
in executing quantum algorithms.

We observe that various quantum algorithms require consuming different numbers of EPR pairs when
executing on different DQC architectures. This fact hints that, given a potential quantum application in
the near term, if we can customize the DQC architecture on which the algorithm executes, we may further
reduce the required remote EPR pairs, and hence enhance the fidelity of the final result.

Guided by this insight, we adopt a software-hardware co-design methodology for DQC and exploit
application-specific DQC architectural design space to enhance the fidelity of near-term applications.
Addressing the challenges in revealing related features of quantum applications to DQC architecture
design and exploiting the large design space, we propose an automatic DQC architecture design framework
AutoArch. It can generate efficient DQC architecture designs for given potential quantum programs in
the near-term.

The main contributions of this paper are as follows:

1. We explore customized design space for DQC architectures tailored to the characteristics of quantum
programs. Furthermore, we incorporate the actual constraints inherent in each quantum chip into
our consideration, aiming to achieve more efficient design outcomes.

2. We incorporate innovative algorithmic primitives to automatically produce a spectrum of application-
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specific architecture designs under certain constraints of various quantum chips.

3. Comprehensive experiments show that the benchmark quantum algorithms can be executed with
better efficiency on the customized DQC architectures generated by our design framework compared
to other DQC architectures. The customized DQC architecture can lead to an average reduction
of 50.66% (maximum 92.6%) in the estimated EPR pair consumption, and an average reduction of
42.65% (maximum 87.93%) in the number of additional local SWAP gates.

The paper is structured as follows. Section 2 introduces the basics of DQC, quantum circuit parti-
tioning, and quantum compilation. Our solution AutoArch is introduced in Section 3 and evaluated in
Section 4. Related works are summarized in Section 5 and we finally conclude this paper in Section 6.

2. Background

DQC deals with complex computational problems by splitting out the computational workload among
multiple quantum devices to lighten the burden on individual quantum chips [37]. We begin with two
fundamental infrastructures of DQC. The first is the quantum chip network, and the second is remote
quantum communication. Following that, we discuss two patterns of remote quantum communication.

Quantum Chip Network Multiple independent quantum chips, interconnected through special
physical connections, form a quantum chip network that overcomes the limitations of the number of
qubits within a single quantum chip. This physical inter-chip connection is typically a specially designed
superconducting coaxial cable [21,23] for superconducting quantum hardware. Based on the remote physical
connections within the quantum chip network, an entangled state can be generated between two qubits
located in two different quantum chips. This entangled state serves as a quantum communication channel
that can be used for remote communication, allowing for the transmission of quantum information between
quantum chips.

Remote Quantum Communication Similar to classical distributed computing, remote quantum
communication is the foundation of DQC, yet it also presents a significant challenge. Unlike classical
systems, quantum data cannot be easily transferred across quantum chips due to the constraints imposed
by the quantum no-cloning theorem [38]. The solution to this dilemma is to utilize inter-chip quantum
entanglement. When two qubits are entangled in the state 1√

2
(|00⟩ + |11⟩), they form an EPR pair. If

two qubits of an EPR pair are distributed in two different quantum chips, a remote EPR pair is formed.
A remote EPR pair is a crucial quantum communication resource that facilitates the transfer of quantum
data between quantum chips. In this paper, physical qubits capable of establishing remote EPR pairs are
referred to as communication qubits. In contrast, physical qubits within a quantum chip designed to store
program information are known as data qubits. In the short term, the number of communication qubits
available on a single quantum chip to participate in the creation of EPR pairs is limited.

Remote Quantum Communication Patterns Indeed, EPR pairs have led to the development
of two communication patterns, named Cat-Comm and TP-Comm [24]. The Cat-Comm pattern is con-
structed using cat-entangler and cat-disentangler, while the TP-Comm pattern is founded on the quantum
teleportation [39]. Specifically, executing a remote CNOT gate on two adjacent quantum chips using the
Cat-Comm communication pattern consumes one EPR pair, but a remote SWAP gate requires up to three
EPR pairs [30]. In contrast, performing a general remote two-qubit gate on two adjacent quantum chips
using TP-Comm pattern consumes two EPR pairs. This demonstrates that the number of EPR pairs re-
quired to execute remote quantum gates in an immature quantum chip network is not only influenced by
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the remote communication pattern employed but also closely related to the distance between the quantum
chips that host these qubits.

Quantum circuit partitioning was proposed [24,29,32–36] to reduce required remote quantum gates by
grouping together qubits with more interconnections. Quantum circuit partitioning typically involves
dividing the virtual qubits used in a quantum program into k partition blocks, each block containing
several virtual quits. The objective of quantum circuit partitioning is to minimize the number of required
remote quantum gates, i.e., two-qubit gates applied on those qubits that lie in different blocks. In contrast,
the gates acting on the qubits within the same partition block are termed local quantum gates.

NISQ devices are subject to hardware constraints, such as limited topology connectivity and native
physical gate sets, preventing high-level quantum circuits from being directly executable. For instance,
two-qubit gates can only be executed on the nearest neighbouring physical qubits. Consequently, move-
ment operations such as SWAP gates need to be inserted, so to enable the execution of quantum gates
that cannot be directly performed on adjacent physical qubits. For this purpose, quantum compilation
techniques [7–9,40–45], including gate decomposition, qubit mapping and routing, and gate scheduling, have
been devised to make high-level quantum circuits compatible with hardware constraints. During quantum
compilation, qubit mapping and routing are two crucial steps. Qubit mapping aims to find an optimal
qubit initial placement that can minimize the number of additional SWAP gates required for implementing
all two-qubit gates [8,44]. Qubit routing involves continuously inserting movement operations like SWAP
gates into the input quantum circuit to relocate the virtual qubits that are mapped onto non-nearest
neighbouring physical qubits [9,40]. This step ensures that all quantum gates in the circuit satisfy the
constraints of hardware topology connectivity.

3. DQC Architecture Design

3.1.Overview of AutoArch

Given current constraints on DQC architectures, there is not a universal DQC architecture that
can guarantee the high-quality execution of various quantum programs. The purpose of the AutoArch
framework is to customize a DQC architecture targeting particular quantum programs so that the overhead
of local SWAP gates and remote EPR pairs can be minimized in qubit mapping and routing. As shown in
Fig. 1, AutoArch consists of two key phases: constrained quantum circuit partitioning and interconnection
design of QCNs.

The first phase of AutoArch aims to curtail the generation of remote quanutm gates. To this end,
we propose a Tabu-Search-based [46,47] constrained quantum circuit partitioning algorithm (CPA). It can
optimally partition quantum circuits into k parts, where k represents the number of quantum chips
required for execution in a distributed scenario. The partitioning process is dominated by the physical
data qubit constraints of quantum chips to ensure the generation of partitioning results that satisfy the
aforementioned constraints. CPA ends with outputting a set of partitioned quantum circuit blocks and
corresponding remote connection intensity matrix, which will guide subsequent steps in AutoArch.

In the near-term, it is more practical for a single quantum chip to connect to a subset of other
chips instead of all other chips in the network. The second phase of AutoArch carefully designs the
interconnections between chips while considering the remote connection capacity of each quantum chip.
This is done by quantum chip allocation and physical remote connection selection. The result of
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Fig. 1. Overview of the DQC Architecture Design Flow. Two blue circular frames represent two core
modules. The gray rectangular frames denote the input information of the modules as well as the quan-
tum circuit partition information. The green rectangular frame represents the final output of the DQC
architecture information.

CPA leads to a straightforward quantum chip allocation process, while the complexity of selecting inter-
chip connections can be exponential. Addressing this problem, we propose a heuristic algorithm to search
for the optimal connections between quantum chips, which automates the design of DQC architectures.

3.2.An Example

We use a simple example (cf. Fig. 2) to illustrate the working process of AutoArch. Consider the
quantum circuit in Fig. 2(a), which has eight virtual qubits denoted by q0, . . . , q7, and all of them are
initially set to |0⟩. Then some single-qubit gates and two-qubit gates are applied. Measurement operations
are omitted and not shown in the diagram.

Fig. 2(b) displays four available quantum chips denoted by Chip0, . . . , Chip3, with their physical data
qubit capacities being 2, 2, 2, and 3, respectively. Moreover, these quantum chips can be connected to at
most two other quantum chips. After the constrained circuit partitioning, four partition blocks denoted
by Block0, . . . , Block3 are obtained as given in Fig. 2(c), and their sizes all comply with the constraints
of the aforementioned quantum chips. Additionally, a remote connection intensity matrix can be derived,
which is the symmetric matrix displayed in Fig. 2(d).

Fig. 2(e) to Fig. 2(g) show the process of interconnecting quantum chips. Considering the capacities
of quantum chips and the sizes of partitioned blocks, it is intuitive to identify the mapping relation-
ship between them: a partition block corresponds to the quantum chip with the same subscript. After
that, we decide the order of interconnections between chips based on the number of associated remote
quantum gates between partition blocks revealed by the remote connection density matrix. Given that
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Fig. 2. Example of the working details of AutoArch.

(Block0, Block3) and (Block1, Block3) are each associated with two remote quantum gates, we sequentially
connect Chip0 and Chip1 to Chip3, preventing Chip3 from establishing new interconnections with other
chips. Next, we consider Chip2, whose feasible connection targets are limited to Chip0 and Chip1. Re-
gardless of which one is chosen for connection, the connection distance between Chip0 and Chip3 remains
consistent. Finally, we decide to connect Chip0 with Chip2, thereby constructing a new QCN shown in
Fig. 2(g).

3.3.Constrained Quantum Circuit Partitioning

In this section, we first formulate the constrained quantum circuit partitioning problem for DQC.
Following that, we explore how to minimize the number of remote quantum gates with limited physical
qubit capacity.

3.3.1. Problem Formulation and Analysis

Adopting reasonable partitioning strategies to partition quantum circuits is a common method for
reducing the number of remote quantum gates. However, in the short term, the limited availability of
physical qubits on quantum chips imposes new constraints on quantum circuit partitioning. The input to
the constrained quantum circuit partitioning problem comprises the following:

1. A quantum circuit with a set of virtual qubits (Q), and a collection of CNOT gates (G). Each
element g = CNOT(qi, qj) ∈ G is a CNOT gate applied on a pair of qubits qi, qj ∈ Q.

2. A partition block relation graph R = (B,C). Each element b ∈ B is a partition block with a set
of virtual qubits, and the element c = (qi, qj) ∈ C stands for a remote CNOT gate applied on two
remote qubits qi ∈ bm and q2 ∈ bn where bm ̸= bn.

For all q ∈ Q and b ∈ B, we introduce a binary variable xq,b ∈ {0, 1}, representing whether the virtual
qubit q is assigned to the partition block b. To guarantee that each virtual qubit is exactly allocated to
one partition block, the following constraint should be satisfied:

∀q ∈ Q,
∑
b∈B

xq,b = 1. (1)

Let sb be the maximum number of virtual qubits that block b can accommodate, then the following
constraint holds:

∀b ∈ B,
∑
q∈Q

xq,b ≤ sb. (2)
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Let n(q1, q2) ∈ N be the number of CNOT gates acting on virtual qubits q1 and q2. Additionally,
we define a binary variable cq1,q2,b1,b2 ∈ {0, 1}, which is one when q1 and q2 are located in two different
partition blocks b1 ∈ B and b2 ∈ B, respectively.

Therefore, the number of remote CNOT gates generated by the circuit partitioning algorithm is
denoted as

Nremote_CNOT =
∑
q1 ̸=q2

∑
b1 ̸=b2

n(q1, q2) · cq1,q2,b1,b2 · xq1,b1 · xq2,b2 . (3)

Overall, the constrained quantum circuit partitioning problem can be formulated as the following:

min
∑
q1 ̸=q2

∑
b1 ̸=b2

n(q1, q2) · cq1,q2,b1,b2 · xq1,b1 · xq2,b2

s.t. ∀q ∈ Q,
∑
b∈B

xq,b = 1, and ∀b ∈ B,
∑
q∈Q

xq,b ≤ sb.

After formulating the constrained quantum circuit partitioning problem, we observe that its model
shares the same structure as the quadratic assignment problem [48]. Since quadratic assignment problem is
already known to be NP-hard [49], the constrained quantum circuit partitioning problem is also NP-hard.
Therefore, it is impossible to find the optimal solution to the constrained quantum circuit partitioning
problem in polynomial time. Inspired by existing metaheuristic algorithms used to tackle NP-hard prob-
lems, we propose a partitioning algorithm based on Tabu Search to solve the constrained quantum circuit
partitioning problem.

3.3.2. Constrained Partitioning Algorithm

In this section, we will briefly explain the fundamental principles of the Tabu Search algorithm [46,47]

and introduce our CPA algorithm based on this method. Specifically, we will focus on two key design
features of CPA: a greedy strategy for initial partition generation and the partial neighboring solution set
construction.

Tabu Search is a metaheuristic algorithm widely used for solving combinatorial optimization prob-
lems [50]. It starts by generating an initial solution, which can be either random or tailored to the problem
(step 1). Next, this algorithm generates a list of neighboring solutions by making local variations to the
current solution, such as swapping the positions of two elements (step 2). The objective function is then
evaluated for each neighboring solution to indicate its quality (step 3). During the search process, the al-
gorithm records solutions that have already been explored to avoid getting trapped in local optima. These
recorded solutions are called “tabu” and are temporarily disallowed from being used in future searches.
Based on the values of the objective function and the content of the tabu list, the algorithm chooses an
appropriate neighboring solution as the direction for the next search step (step 4). Steps 1 to 4 constitute
one iteration of the Tabu Search algorithm. After multiple iterations, the algorithm terminates either
when the value of the objective function no longer changes beyond a threshold or when a given maximum
number of iterations have been reached.

The detailed workflow of CPA is shown in Fig. 3. It terminates with a partitioning result with several
blocks of different qubits. CPA can ensure that the number of qubits in every block does not exceed the
number of data qubits on the quantum chip which the block will be assigned to. A key step used in CPA
is to get the neighboring solution from the current solution. The neighboring solution is generated by
changing the location of one qubit or two qubits. There are two cases: (i) the virtual qubit is moved from
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Fig. 3. Workflow of the CPA algorithm.

one block to another block with spare capacity, and (ii) the positions of two virtual qubits belonging to
two distinct blocks are exchanged.

Greedy Strategy for Initial Partition Generation Since the quality of the initial partition can
significantly affect the required number of Tabu iterations to find a good enough solution, a well-designed
initial partition is desired. We develop a greedy strategy in CPA to generate an initial partition. In
quantum algorithms, a group of qubits may have more interactions via CNOT gates with each other than
other qubits. Hence, this group of qubits can be regarded as a cluster. This fact inspires us to design a
greedy strategy to generate the initial partition in the following way:

1. We sort qubits according to the number of CNOT gates acting on them, from the highest to the
lowest. Let S denote all virtual qubits that have not been assigned to any blocks, and B represent
all blocks with each block corresponding to a target quantum chip. At the beginning, S includes all
virtual qubits, and B includes all empty partition blocks. We start by selecting the block with the
maximum capacity in B as the current target block b.

2. We process the qubit (denoted as q) currently with the most CNOT connections with other qubits.
Our goal is to place q and its connected qubits within the same block. If the current target block b

does not have enough space to accommodate qubit q and all its connected qubits, a connected qubit
with a higher-ranking is placed in b. When b is full, a new empty block with the currently maximum
capacity in B is selected as the new target block b. After the placement, these qubits are removed
from S.

3. We repeat this process until set S is empty, indicating that the initial partition has been successfully
generated.
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Partial Neighboring Solution Set Construction The Tabu Search algorithm typically evaluates all
neighboring solutions of the current solution during each iteration and selects the most optimal one to
serve as the starting point for the subsequent iteration. For example, if we want to divide a quantum
circuit into k parts, with each part having size m, there are

(
k
2

)
partition block pairs. For each partition

block pair, there are
(
m
1

)(
m
1

)
swap scenarios. Therefore, the total number of neighboring solutions will

be Nsol =
(
k
2

)(
m
1

)(
m
1

)
= k(k−1)m2

2
. However, as the number of virtual qubits used in the quantum circuit

increases, the number of neighboring solutions explored in each iteration grows quadratically, leading to a
sharp increase in the computational cost to find the optimal partition under constraints. Considering the
interconnectivity of virtual qubits within existing quantum circuits is not immediately complex. Thus, it
is possible that the current partition solution has numerous neighboring solutions with the same count
of remote CNOT gates. To accelerate the convergence rate of the partitioning algorithm, a parameter
known as the neighborhood solutions ratio δ is introduced when traversing the neighboring solutions of
the current partition. This parameter is used to randomly select a subset of δNsol neighboring partition
solutions to form the neighborhood set.

After obtaining the partitioning result of a quantum circuit, we can get the quantum chip allocation
relationship (ϕ) and the remote connection intensity matrix (M). For ease of description, we set the index
of the partition block in ϕ to be the same as that of the corresponding quantum chip.

3.4.Interconnection Design of QCNs

Once the circuit partition result is obtained, there is a straightforward way to construct a QCN, of
which the structure shares the same topology as the partition blocks. However, there are two reasons
why we do not simply adopt this structure. First, the interconnections between quantum chips is limited,
which can be far fewer than those required by the partitioning result. Second, more interconnections
between quantum chips can reduce the number of data qubits used to perform quantum computation,
which in turn reduces the utility rate of the quantum chip. In this case, the required number of quantum
chips used to perform the same quantum algorithm can be increased. Hence, it is important to design an
interconnection scheme which uses as few as possible interconnections while not reducing the fidelity of
executing quantum algorithms on the this QCN. This task forms the second phase of AutoArch.

The challenge of QCNs interconnection design lies in the large size of the design space. For k quan-
tum chips, there are a total of Np =

(
k
2

)
distinct chip pairs. Each of these pairs can be connected or

disconnected, resulting in 2Np different cases.
In this paper, we aim to simplify the interconnection design problem by making the assumption that

each quantum chip can only be connected to a limited number of other quantum chips. This assumption
is based on the fact that until a QCN reaches a significant scale, there is a finite pool of qubits available
on any given chip for remote communication. Given this constraint, our primary goal in designing the
interconnections of QCNs is to minimize the incidence of cross-chip remote quantum communication when
executing remote quantum gates on the network. Lowering the frequency of such cross-chip communica-
tions results in a reduced consumption of EPR pairs. Despite the imposed constraints on interconnection
design, the design space for the interconnections of QCNs remains exponential, O(exp(k)), where k is the
number of quantum chips. Nonetheless, it is possible for us to develop a heuristic algorithm to guide this
design process effectively.

Considering the constraints and optimization objectives of the interconnection design phase, we as-
sume that:
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• Since more remote physical links reduce available data qubits, we set a limit on the number of remote
links to make the design easier.

• We set a limit on how many other quantum chips each chip can connect to, which means there is
a finite number of interconnections. Once we decide which chips are linked, we need not further to
worry about the exact number of remote physical links between them. Knowing how many qubits
each chip has for remote communication, we can figure out how many remote physical links are used
between them.

Algorithm 1 explains how the interconnection design algorithm adds connections between quantum
chips. Before discussing the details of this algorithm, we first introduce some new variables and concepts
used by the algorithm:

• A quantum chip is marked as connected if and only if there is an interconnection between this chip and
any other chip. Otherwise, it is unconnected. For example, in Algorithm 1, countChipCxn(I, i) = 0

means that the chip ci is unconnected, and countChipCxn(I, i) > 0 indicates that the chip ci is con-
nected, where I represents the QCN interconnection matrix. Details of the method countChipCxn()
can be found in Algorithm 2.

• The quantum chip distance matrix D, of which the element Di,j represents the shortest distance
between quantum chips ci and cj . Two chips with a direct interconnection have distance 1. The full
distance matrix D can be easily calculated based on the current topology of quantum chips using
the Floyd-Warshall algorithm [51] (See Algorithm 3 for more details).

• The sorted remote connection intensity information Is, where each element is a triplet (i, j, degree).
Here i and j represent the indices of the quantum chips ci and cj corresponding to the partition
blocks ϕ(i) and ϕ(j), respectively. The degree signifies the number of remote CNOT gates ex-
isting between the partition blocks ϕ(i) and ϕ(j). And Is can be obtained by using the method
SortPartitionBlockPairs(), which can be found in Algorithm 4.

The interconnection design algorithm adds connections between quantum chips iteratively. In each
iteration, one interconnection is added to the QCN, once again, in a greedy way. Different partition block
pairs can have different numbers of remote connections between the partition blocks in this pair. The
remote connection intensity between two partition blocks can be used to sort all Np partition block pairs.
During each iteration of the algorithm, a pair of blocks (quantum chips) with the highest degree (the
number of remote CNOT) is selected. Based on the connectivity of both quantum chips (ci, cj), there are
three distinct scenarios, each corresponding to a strategy to add interconnections:

• Both chips are unconnected: An interconnection is directly added between these two chips. Then
we use the method connectChip() to update the QCN interconnection matrix I and update D using
the method updateDistanceMatrix() (Algorithm 3). The list of connected quantum chip pairs V is
updated accordingly, as shown in line 7 of Algorithm 1.

• Only one chip is unconnected: If one of the quantum chips in the pair is unconnected, an
interconnection needs to be added to incorporate this unconnected quantum chip into the QCN.
To determine the optimal interconnection, a heuristic function is designed to evaluate all possible
interconnections that could be established with the unconnected chip. Quantum chips that have
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Algorithm 1: Physical Remote Connection Selection Algorithm
Input:

• k: number of quantum chips;
• Src (size: k): maximum number of interconnections supported by each chip;
• M (size: k × k): partition block remote connection intensity matrix, which is symmetric.

Output: I (size: k × k): QCN interconnection matrix, which is symmetric.
1 begin
2 Initialization: I ← 0k×k; D ← 0k×k; V ← ∅; Is ← SortPartitionBlockPairs(M);
3 for (i, j) in Is do
4 Cost← [ ];
5 if (∃r for countChipCxn(I, r) < Src[r]) then
6 if countChipCxn(I, i) = 0 and countChipCxn(I, j) = 0 then
7 V ← V ∪ {(i, j)}; I ← connectChip(I, i, j); D ← updateDistanceMatrix(D, i, j);
8 else if countChipCxn(I, i) = 0 or countChipCxn(I, j) = 0 then
9 cur ← countChipCxn(I, i) = 0 ? i : j;

10 for (tmp ∈ {cand | countChipCxn(I, cand) < Src[cand] and cand ̸= cur}) do
11 D′ ← updateDistanceMatrix(D, cur, tmp); V ′ ← V ∪ {(cur, tmp)};
12 Cost[tmp] = H(M , V ′,D′);
13 end
14 chosen← c where Cost[c] = min(Cost); V ← V ∪ {(cur, chosen)};
15 I ← connectChip(I, cur, chosen); D ← updateDistanceMatrix(D, cur, chosen);
16 else
17 for cur ∈ {tmp | tmp ∈ {i, j} and countChipCxn(I, tmp) < Src[tmp]} do
18 for (tmp ∈ {cand | countChipCxn(I, cand) < Src[cand] and cand ̸= cur}) do
19 V ′ ← V ∪ {(cur, tmp)}; D′ ← updateDistanceMatrix(D, cur, tmp);
20 Cost[tmp] = H(M , V ′,D′);
21 end
22 end
23 chosen← c where Cost[c] = min(Cost);
24 if Cost[chosen] > H(M , V,D) then
25 V ← V ∪ {(cur, tmp)}; I ← connectChip(I, cur, chosen);
26 D ← updateDistanceMatrix(D, cur, chosen);
27 end
28 end
29 else
30 break;
31 end
32 end
33 return I;
34 end
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Algorithm 2: Count Quantum Chip Interconnections
Input:

• I (size: k × k): partition block connection intensity matrix, which is symmetric;
• i: the index of quantum chip ci.

Output: num_ic: The number of interconnections connected to quantum chip ci.
1 begin
2 num_ic = 0;
3 for j ← 0 to k − 1 do
4 num_ic += I[i][j];
5 end
6 return num_ic;
7 end

Algorithm 3: Update Quantum Chip Distance Matrix
Input:

• D (size: k × k): quantum chip distance matrix, which is symmetric;
• i: the index of quantum chip ci;
• j: the index of quantum chip cj .

Output: Dupdated (size: k × k): the updated quantum chip distance matrix, which is symmetric.
1 begin
2 D[i][j] = 1; D[j][i] = 1;
3 Dupdated ← FloydWarshall(D);
4 return Dupdated;
5 end

Algorithm 4: Sorting Partition Block Pairs
Input:

• M (size: k × k): partition block connection intensity matrix, which is symmetric.
Output: Is: sorted partition block pair remote connection intensity result.

1 begin
2 Itmp ← ∅;
3 for i← 0 to k − 1 do
4 for j ← 0 to i− 1 do
5 Itmp ← Itmp + {(i, j, M [i][j])};
6 end
7 end
8 Is ← sort Itmp using the 3rd value in the tuple as the key;
9 return Is;

10 end
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already reached their interconnection capacity constraints are excluded from consideration. Subse-
quently, the one with the minimal cost is selected from the remaining candidate interconnections.
This strategic approach ensures that the integration of the new chip is done to optimize the overall
connectivity and efficiency of QCN while adhering to the established constraints. Afterward, V , I,
and D will be updated. Further details of the heuristic function are provided in equation (4), with
the corresponding information in lines 9 to 15 of Algorithm 1.

• Both chips are connected: When both quantum chips in a pair are connected, the algorithm
requires the selection of two quantum chips from those previously utilized but have not yet reached
their interconnection capacity constraints. Similarly, it employs the heuristic function to evaluate all
possible interconnections. It chooses the interconnection with the smallest evaluation and also yields
a positive gain to establish a link between the two quantum chips that are not yet linked. Then V ,
I, and D will be updated, and the details are shown in lines 17 to 27 of Algorithm 1.

The algorithm goes through a series of steps to update the topology of the QCN. Once all partition
block pairs have been visited, the search process terminates. The final output is a structured topology
that defines the interconnections within the QCN.

The heuristic cost function mentioned above is formally defined as follows:

H(M , V,D) =
∑

(i,j)∈V

M [i][j] ∗ (2 ∗D[i][j]− 1) (4)

Here, M represents the partition block remote connection intensity matrix, V represents the list of
connected quantum chip pairs, and D represents the quantum chip distance matrix. In a QCN, when a
remote CNOT gate is located on adjacent quantum chips, by default we use the Cat-Comm pattern, which
consumes one EPR pair. When a remote CNOT gate spans multiple quantum chips, we use a fusion of the
TP-Comm pattern and the Cat-Comm pattern. For example, for a remote CNOT gate grm(q1, q2), where
virtual qubits q1 and q2 are allocated to quantum chips c1 and c2 respectively, with the shortest distance
of two between c1 and c2, executing this remote CNOT gate requires consuming three EPR pairs. This is
because we first need to use the TP-Comm pattern to propagate the state of q1 from c1 to the intermediate
quantum chip between c1 and c2, which consumes one EPR pair. Then, we implement grm(q1, q2) using
the Cat-Comm pattern, and finally consume one EPR pair using the TP-Comm pattern to transfer the
state of q1 back to c1. In summary, we can use the number 2 ∗ D[i][j] − 1 to estimate the number of
consumed EPR pairs when implementing a remote CNOT gate in a QCN.

3.5.Time and Space Complexities Analysis

We assume N used virtual qubits and E two-qubit gates are in the input quantum program. And
we assume that the number of quantum chips required is M , the maximum qubit scale of the quantum
chip is m, and the total number of iterations is Niter. In the CPA algorithm, the greedy generation of
the initial partition first requires traversing each two-qubit gate in the quantum program to obtain the
usage frequency of each virtual qubit. This process has a time complexity of O(E). Next, the qubits
need to be sorted in O(N logN). Therefore, the time complexity of producing the initial partition is
O(E + N logN). The space complexity is O(N) because it requires storing the initial partition. During
the iterative search process of the partitioning algorithm, each iteration requires traversing δM(M−1)m2

2

neighboring partition solutions. Since N ≤ mM , the time complexity of the partitioning algorithm is
O(E+N logN+ δNiterM(M−1)m2

2
) ≈ O(E+XN+C1m

2M2), where C1 =
δNiter

2
and X = logN−C1m. And
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the space complexity is O(C2m
2NM2), where C2 =

δ
2
, so as to store neighboring solutions information. For

the physical remote connection selection algorithm, its time complexity is O(M2). Its space complexity is
O(M2) as it needs to store the shortest path in O(M2), the distance matrix in O(M2), and the evaluation
of each candidate quantum chip that can be connected to the current quantum chip in O(M).

In summary, since the CPA algorithm and the physical remote connection selection algorithm are
executed sequentially, the time complexity of the AutoArch framework is O(E+XN +C1m

2M2), and the
space complexity is O(C2m

2NM2).

4. Evaluation

To validate our proposed application-specific architecture design framework, we conduct experiments
across various benchmarks.

4.1.Experiment Setup

Benchmarks: We select eleven benchmark programs from QASMBench [52] and MQTBench [53],
which cover several typical application domains (such as simulation and arithmetic) with various sizes
(from 64 to 130 qubits).

Device Topology: For our experimental evaluation, we have chosen the topology of the IBM quan-
tum processor named ibmq_guadalupe [54] (connectivity shown in Fig. 4(a)) to construct QCNs. Besides,
each processor is assumed to support at most three inter-chip connections. Qubits Q0, Q6, and Q9 are
selected as boundary data qubits, with each connected to two communication qubits.

Metrics: We employ two metrics to evaluate the efficiency of a DQC architecture: the number of
EPR pairs consumed and the number of local SWAP insertions when executing quantum algorithms.
When a quantum program is compiled targeting a specific DQC architecture, lower resulted EPR pair
consumption and local SWAP gate insertions indicate higher quality of the DQC architecture. In our
experiment, we repeat the SABRE algorithm for each benchmark 10 times, and use the geometric mean
to calculate the average ratio of the EPR pairs and the additional local SWAP gates between the proposed
architecture and the baseline.

Compilation Configuration: In SABRE, The front layer (F ) represents the set of independent
two-qubit gates being processed in each iteration of the SABRE algorithm. The extended layer (ES) is
the collection of two-qubit gates considered at deeper levels in the circuit. The weight of ES signifies the
impact of gates in ES when evaluating the objective function used by SABRE. The size and weight of ES
are configured as 0.5 and 10× |F |, respectively.

4.2.Experiment Design

To evaluate the performance of AutoArch, three experimental configurations are created, which ad-
dress the following questions:

1. When employing CPA to process quantum circuits, does carefully designed initial partition accelerate
the process of finding a solution close to the optimum?

2. Can the Partial Neighbor Solution strategy introduced in the CPA aid in finding a solution that is
closer to the optimum?
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(a) IBM Guadalupe (b) Linear QCN (c) Ring QCN (d) Complex QCN

Fig. 4. The superconducting quantum processor used to build QCNs as well as QCNs with different
architectures. (a) The device topologies of ibmq_guadalupe quantum processor. Nodes represent individual
physical qubits, while edges depict the connectivity between pairs of qubits. (b) A QCN consisting of five
quantum chips with linear architecture. (c) A QCN consisting of five quantum chips with ring architecture.
(d) A QCN consisting of five quantum chips with more complex architecture.

3. Can AutoArch generate a corresponding QCN on which quantum algorithms execute with a better
performance?

Addressing the first question, we use two types of initial partitions for the CPA, randomly generated
or carefully designed. We then compare their effectiveness by couting the number of iterations of CPA
and the quantity of generated remote CNOT gates.

Addressing the second question, we examine the impact of the neighborhood solution ratio parameter
δ on the quantum circuit partitioning results of the partitioning algorithm. The impact is assessed using
two metrics: the number of generated remote CNOT gates and the number of search iterations required to
achieve the minimum number of remote CNOT gates. The value of δ determines the scale of neighboring
solutions accessed by the algorithm at each iteration. A higher value of δ implies that the partitioning
algorithm accesses larger-scale neighboring solutions. When δ = 1, the partitioning algorithm accesses all
neighboring solutions of the current solution at each iteration. In this experiment, we set δ to be 0.25,
0.5, 0.75, and 1, respectively.

Addressing the third question, four different distributed architectures are chosen as the compilation
target for compiling quantum algorithms using SABRE [40]. Among them, three architectures are shown
in Fig. 4(b) - 4(d), and the fourth architecture is a customized architecture generated by AutoArch.
Every node in these architectures is an ibm_guadalupe chip. For the sake of fairness, each chip in all
architectures is assumed to support at most three remote connections. The complex QCN is constructed
so as to support as many interconnections between chips as possible in an architecture with five chips.

4.3.The Efficiency of Deliberately Designed Initial Partition

Fig. 5 shows the iterative search of the CPA on eleven benchmarks. We set the maximum iteration
search count to 1000. The X-axis represents the distribution of iteration counts. Due to the varying
characteristics of each benchmark, the number of iterations required by the partitioning algorithm to obtain
the optimal partitioning result differs. The Y-axis represents the number of remote CNOT gates produced
by the CPA. The blue solid line represents the trajectory of the algorithm when it utilizes a randomly
initialized quantum circuit partition as the starting solution. Conversely, the green solid line depicts
the trajectory of the algorithm when it employs a deliberately designed initial quantum circuit partition
as the starting solution. The lower number of remote CNOT gates indicates the better partitioning of
quantum circuits. Table 1 shows the minimum number of remote CNOT gates obtained from processing
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(a)  Adder_n64 (b) CC_n64 (c) Ising_n98

(d) Qugan_n111 (e) Swap_test_n115 (f) Wstate_n118

(g) KNN_n129 (h) DJ_n130 (i) Cat_n130

(j) GHZ_n130 (k) Graphstate_n130

Fig. 5. The performance comparison of partitioning algorithm using random and designed initial partition
strategies. (a)-(k) show the iterative processing of eleven quantum algorithms using random and designed
initial partitions within the partitioning algorithm.

each benchmark by the CPA with random or designed initial partition (with 1000 iterations), as well as
the minimum iteration search count required to find the minimum number of remote CNOT gates.

For Adder_n64 (Fig. 5(a)), Ising_n98 (Fig. 5(c)), Qugan_n111 (Fig. 5(d)), Wstate_n118 (Fig.
5(f)), Cat_n130 (Fig. 5(i)), and GHZ_n130 (Fig. 5(j)), we can observe that when our algorithm uses a
deliberately designed initial partition as the starting point, it converges to the optimal partitioning result
more quickly and finds a better quantum circuit partitioning result compared to using a random initial
partition. As shown in Table 1, the number of remote CNOT gates is reduced by 50% in the best case.
And the partitioning algorithm with Init_Partitiondesigned performs the iterative search 855× faster than
the partitioning algorithm with Init_Partitionrandom. For CC_n64 (Fig. 5(b)), Swap_test_n115 (Fig.
5(e)), KNN_n129 (Fig. 5(g)) and Graphstate_n130 (Fig. 5(k)), although the partitioning algorithm
using a deliberately designed initial partition does not significantly accelerate the search for the optimal
result, the optimal results obtained are the same.
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Table 1. Under a maximum iteration count of 1000, the minimum number of remote CNOT gates
resulted from processing the benchmark by the CPA algorithm, as well as the iteration count required to

achieve this minimum number of remote CNOT gates.

Benchmark #Qubits
Init_Partitionrandom Init_Partitiondesigned Comparison

remote_CNOTtotal iter_nummin remote_CNOTtotal iter_nummin ∆remote_CNOTtotal irandom/idesigned

Adder_n64 64 70 15 49 553 30% 0.02
CC_n64 64 48 1 48 1 0.00% 1.00
Ising_n98 98 24 724 12 321 50.00% 2.25

Qugan_n111 111 304 760 248 168 18.42% 4.52
Swap_test_n115 115 200 29 200 33 0.00% 0.87
Wstate_n118 118 24 775 16 1 33.33% 775
KNN_n129 129 228 35 228 33 0.00% 1.06
DJ_n130 130 114 1 114 1 0.00% 1.00
Cat_n130 130 13 718 9 1 30.77% 718
GHZ_n130 130 14 885 9 1 35.71% 885

Graphstate_n130 130 14 403 14 988 0.00% 0.41
∆remote_CNOTtotal is the percentage change in the number of totally generated remote CNOT gates: ∆remote_CNOTtotal =
1 - remote_CNOTtotal(designed)/remote_CNOTtotal(random). irandom/idesigned is the ratio between the minimum iteration
count required to achieve the minimum number of remote CNOT gates of the partitioning algorithm with Init_Partitiondesigned

and Init_Partitionrandom: irandom/idesigned = iter_nummin(designed)/iter_nummin(random).

To summarize, for many quantum programs, employing our custom initial partition strategy as a
part of partitioning algorithm enables it to acquire better results swiftly. However, due to the diverse
characteristics of different quantum programs, we cannot develop a universally applicable strategy that
consistently outperforms others across all quantum programs. In other words, different quantum programs
may require specific initial partition strategies to achieve efficient partitioning. The initial partition
strategy proposed in this paper represents just one exploration in this direction.

4.4.The Effectiveness of the Partial Neighbor Solution Strategy

Fig. 6 shows the iterative search process of the CPA handling eleven benchmarks, with the partial
neighbor resolution parameter δ set to 0.25, 0.5, 0.75, and 1 respectively, and the maximum iteration
search count set to 1000. The X-axis represents the distribution of iteration counts. The Y-axis represents
the number of remote CNOT gates produced by the CPA. The solid lines of different colors represent the
iterative search trajectories of the CPA when it utilizes designed initial partitions as the initial solution.
Table 2 shows the minimum number of remote CNOT gates obtained from processing each benchmark by
the CPA with designed initial partition (with 1000 iterations), as well as the minimum iteration search
count required to find the minimum number of remote CNOT gates.
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Table 2. The default iteration count of the CPA algorithm is set to 1000. When the neighborhood
solution ratio parameter δ is set to 0.25, 0.5, 0.75, and 1.0, respectively, it determines the minimum
number of remote CNOT gates obtained from processing the benchmarks, as well as the time cost.

Benchmark #Qubits
δ = 0.25 δ = 0.5 δ = 0.75 δ = 1.0

tδ=1/tδopt
remote_CNOTtotal runtime(s) remote_CNOTtotal runtime(s) remote_CNOTtotal runtime(s) remote_CNOTtotal runtime(s)

Adder_n64 64 60 228.14 71 452.86 37 679.64 37 904.94 1.33
CC_n64 64 48 224.81 48 449.34 48 673.83 48 914.28 4.07
Ising_n98 98 14 249.32 14 495.52 14 747.29 14 994.07 3.99

Qugan_n111 111 248 300.98 248 598.29 248 896.88 248 1201.49 3.99
Swap_test_n111 115 200 281.60 200 560.54 200 838.67 200 1116.92 3.97
Wstate_n118 118 16 264.54 16 525.26 16 789.90 16 1055.46 3.99
KNN_n129 129 228 294.86 228 586.96 228 882.96 228 1181.63 4.01
DJ_n130 130 114 280.78 114 566.22 114 842.14 114 1128.37 4.02
Cat_n130 130 9 272.76 9 544.02 9 817.51 9 1089.64 3.99
GHZ_n130 130 9 271.97 9 545.38 9 816.95 9 1089.01 4.00

Graphstate_n130 130 12 274.68 10 549.91 11 824.17 10 1099.11 2.00
Geometric mean 3.40

tδ=1/tδopt is the ratio between the iteration search time of partitioning algorithm with δ = 1 and δopt, where δopt(δopt ̸= 1)

represents the value of δ corresponding to the minimum number of remote CNOT gates found during the algorithm search:
tδ=1/tδopt = runtime(δ = 1)/runtime(δopt).

(a) Adder_n64 (b) CC_n64 (c) Ising_n98

(d) Qugan_n111 (e) Swap_test_n115 (f) Wstate_n118

(g) KNN_n129 (h) DJ_n130 (i) Cat_n130

(j) GHZ_n130 (k) Graphstate_n130

Fig. 6. The performance comparison of the partitioning algorithm with the partial neighbor resolution
ratio parameter δ configured to different values. (a)-(k) show the iterative processing of eleven quantum
algorithms using the partitioning algorithm with different δ values.
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Table 3. Number of estimated usage of EPR pairs and additional local swap gates of SABRE on four
different architectures (linear, ring, complex, and customized) of QCNs.

Benchmark #Qubits QCN infrastructure
SABRE+QCN(linear) SABRE+QCN(ring) SABRE+QCN(complex) SABRE+QCN(customized) customized v.s. linear customized v.s. ring customized v.s. complex
EPRuse SWAPadd EPRuse SWAPadd EPRuse SWAPadd EPRuse SWAPadd ∆EPRuse ∆SWAPadd ∆EPRuse ∆SWAPadd ∆EPRuse ∆SWAPadd

Adder_n64 64 4*Guadalupe(16) 90.0 394.1 78.2 259.9 106.0 255.1 62.5 241.9 30.56% 38.62% 20.08% 6.93% 41.04% 5.17%
CC_n64 64 4*Guadalupe(16) 24.8 127.3 25.6 117.2 29.0 91.4 14.7 110.2 40.73% 13.43% 42.58% 5.97% 49.31% -20.57%
Cat_n65 65 5*Guadalupe(16) 48.9 190.3 50.7 182.6 44.7 133.5 6.4 51.2 86.91% 73.1% 87.38% 71.96% 85.68% 61.65%
Ising_n66 66 5*Guadalupe(16) 34.0 111.3 33.2 99.3 35.8 76.9 11.8 35.6 65.29% 68.01% 64.46% 64.15% 67.04% 53.71%
KNN_n67 67 5*Guadalupe(16) 66.2 234.8 61.9 192.3 63.3 152.3 49.9 176.7 24.62% 24.74% 19.39% 8.11% 21.17% -16.02%
qugan_n71 71 5*Guadalupe(16) 120.6 433.9 106.8 362.5 130.1 318.0 98.2 275.3 18.57% 36.55% 8.05% 24.06% 24.52% 13.43%
Wstate_n76 76 5*Guadalupe(16) 76.2 307.2 82.4 298.5 75.0 219.7 16.2 96.1 78.74% 68.72% 80.34% 67.81% 78.4% 56.26%
GHZ_n78 78 5*Guadalupe(16) 70.6 275.8 53.3 201.4 57.6 173.1 8.6 64.1 87.82% 76.76% 83.86% 68.17% 85.07% 62.97%
Ising_n98 98 7*Guadalupe(16) 66.4 242.5 63.2 207.7 60.0 141.3 16.2 55.5 75.6% 77.11% 74.37% 73.28% 73.0% 60.72%

qugan_n111 111 7*Guadalupe(16) 231.3 882.9 207.7 700.5 229.5 629.4 94.1 375.9 59.32% 57.42% 54.69% 46.34% 59.0% 40.28%
SWAP_test_n115 115 8*Guadalupe(16) 163.1 614.1 131.2 457.3 149.6 372.7 115.1 388.1 29.43% 36.8% 12.27% 15.13% 23.06% -4.13%

Wstate_n118 118 8*Guadalupe(16) 250.4 974.3 187.1 684.5 180.3 542.9 27.7 172.3 88.94% 82.32% 85.2% 74.83% 84.64% 68.26%
GHZ_n127 127 8*Guadalupe(16) 170.9 676.7 158.8 603.6 131.7 403.0 13.1 96.8 92.33% 85.7% 91.75% 83.96% 90.05% 75.98%
KNN_n129 129 9*Guadalupe(16) 258.6 904.9 184.2 648.1 190.5 481.3 125.0 421.9 51.66% 53.38% 32.14% 34.9% 34.38% 12.34%
DJ_n130 130 9*Guadalupe(16) 485.7 1913.8 381.1 1469.9 410.9 1225.7 327.2 1078.9 32.63% 43.63% 14.14% 26.6% 20.37% 11.98%
Cat_n130 130 9*Guadalupe(16) 200.2 777.3 172.0 655.9 149.7 430.7 15.5 104.9 92.26% 86.5% 90.99% 84.01% 89.65% 75.64%
GHZ_n130 130 9*Guadalupe(16) 225.8 870.8 184.7 682.0 145.5 417.8 16.7 105.1 92.6% 87.93% 90.96% 84.59% 88.52% 74.84%

Graphstate_n130 130 9*Guadalupe(16) 273.1 1163.6 131.5 529.6 101.2 289.0 50.1 165.0 81.66% 85.82% 61.9% 68.84% 50.49% 42.91%

∆EPRuse is the percentage change in estimated EPR pair overhead, and ∆SWAPadd is the percentage change in additional local
SWAP gates. In the case of customized v.s. linear, ∆EPRuse = 1 − ERPuse(customized)/EPRuse(linear), and ∆SWAPadd =
1− SWAPadd(customized)/SWAPadd(linear).

In Fig. 6 and Table 2, we use δ = 1 as the comparative baseline. For some benchmarks, when δ is less
than 1, the optimal obtained partitioning results in fewer remote CNOT gates. In other words, the search
speed is faster and the partitioning results are better. Therefore, it can be seen that using the partial
neighbor solution strategy in the CPA is effective. As the value of δ increases, the search time overhead
of algorithm also increases. As demonstrated in Table 2, when δ is 0.25, 0.5, or 0.75, the partitioning
algorithm achieves the same or even superior partitioning results with a time overhead averaging 3.4×
faster compared to the case of δ being 1.

4.5.Overall Improvement

Table 3 shows the number of additional local SWAP gates and the estimated overhead of EPR
pairs for quantum circuits compiled by the SABRE algorithm across all benchmarks. As indicated in
the QCN infrastructure column, benchmarks of varying qubit scales require varying numbers of indi-
vidual quantum processors. The column EPRuse shows the estimated overhead of EPR pairs when a
compiled quantum program is executed on a QCN, and column SWAPadd represents the total num-
ber of additional local SWAP gates. The ∆EPRuse under columns customized v.s. linear, customized
v.s. ring and customized v.s. complex is the change percentage of estimated EPR pair overhead,
and ∆SWAPadd is the change percentage of additional local SWAP gates. For example, in the cus-
tomized v.s. linear column, ∆EPRuse = 1 − ERPuse(customized)/EPRuse(linear), and ∆SWAPadd =

1− SWAPadd(customized)/SWAPadd(linear).
Since the SABRE algorithm incorporates re-synthesis, we use it to transpile each benchmark ten

times and get the average value. For all of the benchmarks, the estimated EPR pairs overhead of
SABRE+QCN(customized) is lower compared to SABRE+QCN(linear), SABRE+QCN(ring) and SABRE
+QCN(complex). Furthermore, for most benchmarks, the additional local SWAP gates are also lower than
the other three scenarios. When comparing SABRE+QCN(customized) and SABRE+QCN(linear), the
geometric mean of ∆EPRuse and ∆SWAPadd are 55.91% (with a maximum improvement of 92.6%) and
55.04% (with a maximum improvement of 87.93%). When comparing SABRE+QCN(customized) and
SABRE+QCN(ring), the geometric mean of ∆EPRuse and ∆SWAPadd are 44.46% (with a maximum
improvement of 91.75%) and 37.84% (with a maximum improvement of 84.59%). In instances where en-
hancements are observed upon comparing SABRE+QCN(customized) and SABRE+QCN(complex), the
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geometric mean of ∆EPRuse and ∆SWAPadd are 52.29% (with a maximum improvement of 90.05%) and
37.26% (with a maximum improvement of 75.98%).

For most benchmarks, when compiled on DQC architectures designed by AutoArch with SABRE,
there are fewer estimated EPR pairs overhead and fewer inserted local SWAP gates compared to other
common DQC architectures. This is because the initial qubit placement obtained by SABRE, which
takes into account the partition block allocation information provided by AutoArch, can ensure that the
occurrence of remote quantum gates is minimized as much as possible. At the same time, the DQC
architectures customized by AutoArch can reduce cross-chip remote quantum communication in some
degree. For CC_n64, KNN_n67 and SWAP_test_n115, although SABRE+QCN(customized) introduces
a greater number of local SWAP gates, the benefits of reducing the number of EPR pairs far outweigh
the increased overhead from the additional local SWAP gates (the overhead of remote CNOT and SWAP
gates far surpasses that of local SWAP gates). For instance, in the case of SWAP_test_n115, despite the
inclusion of 15.4 extra local SWAP gates, there is a significant reduction of 34.5 in the estimated usage
of EPR pairs.

5. Related Work and Discussion

Most existing works [25–28] focus on optimizing various factors within general DQC architectures.
Smith et al. [25] consider the optimization of frequency collision in the DQC hardware design. Ang et
al. [26] focus on the design of DQC systems by integrating various factors such as internode links, entangle-
ment distillation, and local architecture. Lin et al. [27] design customized DQC architectures for quantum
error correction codes. Zhang et al. [28] propose a mechanism for program concurrency for DQC systems.
In summary, these studies do not consider the design optimizations at the architectural level of DQC sys-
tems. However, there is substantial design space for customized DQC architectures tailored for quantum
algorithm execution.

This paper primarily explores the design space of specific DQC architectures for quantum algorithms.
Although the customized DQC architectures designed by our framework are able to significantly enhance
the execution quality of quantum algorithms, there is still much room left for potential improvements.
Our framework mainly focuses on the connections at the quantum chip level during the design of DQC
architecture. Some factors have not been considered, such as the selection of qubits to serve as endpoints for
remote physical connections between quantum chips, the customization of the number of communication
qubits for configuring remote physical connections, and frequency collision, etc. If these factors are
collectively taken into account in the design process of DQC architectures, it will further enhance the
actual execution effect of quantum algorithms.

6. Conclusion

The efficiency of executing quantum programs on DQC is greatly affected by their architectures.
In this paper, we explore an application-specific DQC architecture design framework to achieve lower
overhead of EPR pairs and fewer additional local SWAP gates. To achieve this, we have proposed
an efficient architecture design framework. The characteristic information of quantum programs is first
extracted through constrained quantum circuit partitioning. Then, a heuristic algorithm is developed
to design the interconnections of a QCN based on the above characteristic information. Experiments
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indicate that in the quantum program compilation results obtained by SABRE based on the customized
DQC architecture, the estimated EPR pair overhead and the number of additional local SWAP gates are
significantly lower than those of the other three general-purpose DQC architectures.
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