Introduction to Quantum Computing

Yuxin Deng
yxdeng＠sei．ecnu．edu．cn
East China Normal University

State of the art

Quantum processors

53-qubit superconducting processor "Sycamore" [AAB+19]: 200s for a particular task, which would take a supercomputer 10000 years.

[AAB+19] F. Arute et al. Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505-510 (2019).

Quantum processors

62-qubit superconducting quantum processor "Zu Chongzhi" [GWZ+21]

$[G W Z+21]$ M. Gong et al. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372, 948-952 (2021).

Quantum software

Qiskit (IBM), Cirq (Google), Q\# (Microsoft) ...

https://quantum-computing.ibm.com

References

- Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.
- Mingsheng Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.
- Santanu Pattanayak. Quantum Machine Learning with Python. Apress, 2021.

Outline

- Introduction
- Mathematical Foundations
- Postulates of Quantum Mechanics
- Quantum Circuits
- Quantum Programming
- Quantum Algorithms

Introduction

Quantum Bit

- A bit in classical computing is in one of two states: 0 or 1 .
- A quantum bit (qubit) can take two fundamental states: $|0\rangle$ and $|1\rangle$

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Dirac notation: ket $|0\rangle$ is a column vector, bra $\langle 0|$ is a row vector [10]

Superposition

- A qubit $|\psi\rangle$ can exist as a superposition of $|0\rangle$ and $|1\rangle$, expressed as a linear combination

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

with $\alpha, \beta \in \mathbb{C}$.

- $|0\rangle$ and $|1\rangle$ are computational basis states

$$
|\psi\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

- constraint: $|\alpha|^{2}+|\beta|^{2}=1$
- coefficients α, β are probability amplitudes

Qubit realization

Qubit realization using eletron energy states
Ground state: $|0\rangle$, excited state: |1 \rangle

Bloch sphere representation of qubit

Any point on the surface of the Bloch sphere represents a qubit state.

$$
|\psi\rangle=e^{i \gamma}\left(\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2} e^{i \varphi}|1\rangle\right)
$$

|0)

|1)

Bloch sphere representation of qubit

Recall that a complex number $\alpha=a+i b$ in the Cartesian coordinates can be expressed in polar coordinates as $\alpha=r e^{i \phi}$ with $r=\sqrt{a^{2}+b^{2}}$.
Let $\alpha=r_{\alpha} e^{i \phi_{\alpha}}, \beta=r_{\beta} e^{i \phi_{\beta}}$.

$$
\begin{aligned}
|\psi\rangle & =r_{\alpha} e^{i \phi_{\alpha}}|0\rangle+r_{\beta} e^{i \phi_{\beta}}|1\rangle \\
& =e^{i \phi_{\alpha}}\left(r_{\alpha}|0\rangle+r_{\beta} e^{i\left(\phi_{\beta}-\phi_{\alpha}\right)}|1\rangle\right)
\end{aligned}
$$

Since $r_{\alpha}^{2}+r_{\beta}^{2}=|\alpha|^{2}+|\beta|^{2}=1$, take $r_{\alpha}=\cos \frac{\theta}{2}$ and $r_{\beta}=\sin \frac{\theta}{2}$.

$$
|\psi\rangle=e^{i \phi_{\alpha}}\left(\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2} e^{i\left(\phi_{\beta}-\phi_{\alpha}\right)}|1\rangle\right)
$$

Then replace ϕ_{α} with γ and $\phi_{\beta}-\phi_{\alpha}$ with φ to yield the required form.

Bloch sphere representation of qubit

Ignore the global phase factor, $|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+\sin \frac{\theta}{2} e^{i \varphi}|1\rangle$

Axis	Value of θ and φ	Qubit State
$\|z\rangle$	$\theta=0 ; \varphi=0$	$10\rangle$
$\|-z\rangle$	$\theta=\pi ; \varphi=0$	$\|1\rangle$
$\|x\rangle$	$\theta=\frac{\pi}{2} ; \varphi=0$	$\frac{1}{\sqrt{2}}\|0\rangle+\frac{1}{\sqrt{2}}\|1\rangle$
$\|-x\rangle$	$\theta=\frac{\pi}{2} ; \varphi=\pi$	$\frac{1}{\sqrt{2}}\|0\rangle-\frac{1}{\sqrt{2}}\|1\rangle$
$\|y\rangle$	$\theta=\frac{\pi}{2} ; \varphi=\frac{\pi}{2}$	$\frac{1}{\sqrt{2}}\|0\rangle+\frac{i}{\sqrt{2}}\|1\rangle$
$\|-y\rangle$	$\theta=\frac{\pi}{2} ; \varphi=-\frac{\pi}{2}$	$\frac{1}{\sqrt{2}}\|0\rangle-\frac{i}{\sqrt{2}}\|1\rangle$

Multiple qubits

- State of a two-qubit system
$|\psi\rangle_{A B}=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$
- Constraint: $\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1$
- If we measure qubit A and observe 0 , the probability is

$$
\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}
$$

and the post-measurement state is

$$
\left|\phi^{\prime}\right\rangle_{A B}=\frac{\alpha_{00}|00\rangle+\alpha_{01}|01\rangle}{\sqrt{\left|\alpha_{00}\right|^{2}+\left|\alpha_{01}\right|^{2}}}
$$

Bell state

- Bell state $|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$
- If we observe qubit A and observe 0 , the two-qubit state collapses to state $|00\rangle$. Then if we measure qubit B, we observe outcome 0 with certainty.
- The states of two qubits are perfectly correlated. This phenomenon is quantum entanglement.
- Imagine this Bell state is created using quantum entanglement between two electrons and then we separate the electrons by a large distance. Measuring one electron determines the other eletron's state.

Dirac notation

- Ket vector $\left|\psi_{1}\right\rangle=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}}\end{array}\right],\left|\psi_{2}\right\rangle=\left[\begin{array}{c}\frac{3}{5} \\ \frac{4 i}{5}\end{array}\right]$
- Bra vector $\left\langle\psi_{1}\right|=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}\end{array}\right],\left\langle\psi_{2}\right|=\left[\begin{array}{ll}\frac{3}{5} & -\frac{4 i}{5}\end{array}\right]$
- Inner product of two vectors $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ is written

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{i}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{c}
\frac{3}{5} \\
\frac{4 i}{5}
\end{array}\right]=\frac{7}{5 \sqrt{2}}
$$

Magnitude of a vector

- The magnitude of a vector is the l^{2} norm

$$
\||\psi\rangle \|=\sqrt{\langle\psi \mid \psi\rangle}
$$

- $\langle\psi \mid \psi\rangle=\left[\begin{array}{llll}c_{1}^{*} & c_{2}^{*} & \ldots & c_{n}^{*}\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]=\sum_{i=1}^{n} c_{i}^{*} c_{i}=\sum_{i=1}^{n}\left|c_{i}\right|^{2}$.
- If $|\psi\rangle$ is a quantum state, $\langle\psi \mid \psi\rangle=1$. Each $\left|c_{i}\right|^{2}$ gives the probability of the state $|\psi\rangle$ collapsing to the state $|i\rangle$ on measurement.

Outer product

The outer product of two vectors $\left|\psi_{1}\right\rangle \in \mathbb{C}^{m}$ and $\left|\psi_{2}\right\rangle \in \mathbb{C}^{n}$ gives a matrix of dimension $m \times n$.

$$
\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right]\left[\begin{array}{llll}
d_{1}^{*} & d_{2}^{*} & \ldots & d_{n}^{*}
\end{array}\right]=\left[\begin{array}{cccc}
c_{1} d_{1}^{*} & c_{1} d_{2}^{*} & \ldots & c_{1} d_{n}^{*} \\
\vdots & \vdots & \vdots & \vdots \\
c_{m} d_{1}^{*} & c_{m} d_{2}^{*} & \ldots & c_{m} d_{n}^{*}
\end{array}\right]
$$

Tensor product

The tensor product of two vectors $\left|\psi_{1}\right\rangle \in \mathbb{C}^{m}$ and $\left|\psi_{2}\right\rangle \in \mathbb{C}^{n}$ is another vector in $\mathbb{C}^{m \times n}$.

$$
\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{1} d_{1} \\
c_{1} d_{2} \\
c_{1} d_{3} \\
c_{2} d_{1} \\
c_{2} d_{2} \\
c_{2} d_{3}
\end{array}\right]
$$

Tensor product

If $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{m}\right\rangle\right\}$ is the basis of one space, $\left\{\left|u_{1}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}$ the basis of another space, then using tensor product can get a larger vector space with basis vectors of the form $\left|v_{i}\right\rangle \otimes\left|u_{j}\right\rangle$, written $\left|v_{i} u_{j}\right\rangle$.

$$
\left(\alpha_{1}|0\rangle+\beta_{1}|1\rangle\right) \otimes\left(\alpha_{2}|0\rangle+\beta_{2}|1\rangle\right)=\alpha_{1} \alpha_{2}|00\rangle+\alpha_{1} \beta_{2}|01\rangle+\beta_{1} \alpha_{2}|10\rangle+\beta_{1} \beta_{2}|11\rangle
$$

The Bell state cannot be factored as a tensor product of individual qubit states.

Single-qubit gates

$$
\begin{aligned}
& X: \alpha|0\rangle+\beta|1\rangle \rightarrow \beta|0\rangle+\alpha|1\rangle \quad X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& Z: \alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|0\rangle-\beta|1\rangle \\
& Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
& H:\left\{\begin{array}{lll}
|0\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
|1\rangle & \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{array}\right. \\
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

CNOT gate

$$
\text { CNOT: }:\left\{\begin{array}{lll}
|00\rangle & \rightarrow & |00\rangle \\
|01\rangle & \rightarrow & |01\rangle \\
|10\rangle & \rightarrow & |11\rangle \\
|11\rangle & \rightarrow & |10\rangle
\end{array} \quad \text { CNOT }=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

Measurements in different basis

Let $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle,|-\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$
Then $|0\rangle=\frac{1}{\sqrt{2}}|+\rangle+\frac{1}{\sqrt{2}}|-\rangle,|1\rangle=\frac{1}{\sqrt{2}}|+\rangle-\frac{1}{\sqrt{2}}|-\rangle$
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\frac{\alpha+\beta}{\sqrt{2}}|+\rangle+\frac{\alpha-\beta}{\sqrt{2}}|-\rangle$

Preparation of Bell states

$$
\text { CNOT }:\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes|0\rangle \rightarrow \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

Generalized Bell states

$x \quad y \quad$ Bell State $|\beta x y\rangle$
$0 \quad 0 \quad\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle$
$01 \quad\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}|01\rangle+\frac{1}{\sqrt{2}}|10\rangle$
$10 \quad\left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}|00\rangle-\frac{1}{\sqrt{2}}|11\rangle$
$11 \quad\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}|01\rangle-\frac{1}{\sqrt{2}}|10\rangle$

Quantum teleportation

Quantum teleportation aims to transmit a qubit by using two bits of classical communication and a Bell pair.

Quantum teleportation

$$
\begin{aligned}
\left|\psi_{0}\right\rangle= & |\psi\rangle \otimes\left|\beta_{00}\right\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
= & \alpha|0\rangle \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)+\beta|1\rangle \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\psi_{1}\right\rangle= & \alpha|0\rangle \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)+\beta|1\rangle \frac{1}{\sqrt{2}}(|10\rangle+|01\rangle) \\
\left|\psi_{2}\right\rangle= & \frac{\alpha}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)+\frac{\beta}{\sqrt{2}}(|0\rangle-|1\rangle) \frac{1}{\sqrt{2}}(|10\rangle+|01\rangle) \\
= & \frac{1}{2}|00\rangle(\alpha|0\rangle+\beta|1\rangle)+\frac{1}{2}|01\rangle(\alpha|1\rangle+\beta|0\rangle) \\
& +\frac{1}{2}|10\rangle(\alpha|0\rangle-\beta|1\rangle)+\frac{1}{2}|11\rangle(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

M_{1}	$\boldsymbol{M}_{\mathbf{2}}$	Bob's Qubit Post Measurement	$\boldsymbol{X}^{\boldsymbol{M}_{\mathbf{2}}}$, Bob's Qubit State $^{\text {Post } \boldsymbol{X}^{M_{2}}}$	$\boldsymbol{Z}^{M_{1}}$, Bob's Qubit State Post $\boldsymbol{Z}^{M_{1}}$
0	0	$\alpha\|0\rangle+\beta\|1\rangle$	$I, \alpha\|0\rangle+\beta\|1\rangle$	$I, \alpha\|0\rangle+\beta\|1\rangle$
0	1	$\alpha\|1\rangle+\beta\|0\rangle$	$X, \alpha\|0\rangle+\beta\|1\rangle$	$I, \alpha\|0\rangle+\beta\|1\rangle$
1	0	$\alpha\|0\rangle-\beta\|1\rangle$	$I, \alpha\|0\rangle-\beta\|1\rangle$	$Z, \alpha\|0\rangle+\beta\|1\rangle$
1	1	$\alpha\|1\rangle-\beta\|0\rangle$	$X, \alpha\|0\rangle-\beta\|1\rangle$	$Z, \alpha\|0\rangle+\beta\|1\rangle$

Quantum parallelism

Start with an equal superposition state $|x\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$, the output state

$$
|\psi\rangle=|x, y \oplus f(x)\rangle=|x, f(x)\rangle=\frac{1}{\sqrt{2}}|0, f(0)\rangle+\frac{1}{\sqrt{2}}|1, f(1)\rangle
$$

Quantum parallelism

Hadamard Gate on n qubits
$\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{x_{n-1}=0}^{1} \cdots \sum_{x_{0}=0}^{1}\left|x_{n-1}, \ldots, x_{0}\right\rangle$
Treat the binary string as an integer number $x=x_{n-1} 2^{n-1} \ldots+x_{0} 2^{0}$.
Then $\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)^{\otimes n}=\frac{1}{2^{n / 2}} \sum_{x=0}^{2^{n}-1}|x\rangle$
and the output state $\frac{1}{2^{n / 2}} \sum_{x=0}^{2^{n}-1}|x, f(x)\rangle$

Quantum interference

Let $|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

$$
\begin{aligned}
H|\psi\rangle & =\frac{1}{\sqrt{2}} H|0\rangle+\frac{1}{\sqrt{2}} H|1\rangle \\
& =\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)+\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& =\frac{1}{2}(1+1)|0\rangle+\frac{1}{2}(1-1)|1\rangle \\
& =|0\rangle
\end{aligned}
$$

After applying H to $|\psi\rangle$, the probability amplitudes of $|0\rangle$ (resp. $|1\rangle$) undergo constructive (resp. destructive) interference.

Deutsch's algorithm

Deutsch's problem: decide if a Boolean function $f:\{0,1\} \rightarrow\{0,1\}$ is constant or not.

Deutsch's algorithm

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =|01\rangle \\
\left|\psi_{1}\right\rangle & =\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
\left|\psi_{2}\right\rangle & = \begin{cases} \pm\left(\frac{|0\rangle+11\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \text { if } f(0)=f(1) \\
\pm\left(\frac{|0\rangle-1| \rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right) & \text { if } f(0) \neq f(1) .\end{cases} \\
\left|\psi_{3}\right\rangle & = \begin{cases} \pm|0\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \text { if } f(0)=f(1) \\
\pm|1\rangle\left(\frac{|0\rangle-11\rangle}{\sqrt{2}}\right) & \text { if } f(0) \neq f(1) .\end{cases} \\
& = \pm|f(0) \oplus f(1)\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

The circuit can determine the global property $f(0) \oplus f(1)$ by measuring the first qubit, using only one evaluation of $f(x)$!

With a classical apparatus, one would need at least two evaluations.

The Deutsch-Jozsa algorithm

Deutsch-Jozsa problem: given a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that is guaranteed to be either constant or balanced (it returns 0's for exactly half of all inputs and 1's for the other half), determine if it is constant or balanced.

The Deutsch-Jozsa algorithm

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =|0\rangle^{\otimes n}|1\rangle \\
\left|\psi_{1}\right\rangle & =\sum_{x \in\{0,1\}^{n}} \frac{|x\rangle}{\sqrt{2^{n}}\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)} \\
\left|\psi_{2}\right\rangle & =\sum_{x \in\{0,1\}^{n}} \frac{(-1)^{f(x)}|x\rangle}{\sqrt{2^{n}}}\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Phase kickback: have the function value $f(x)$ show up in the global phase by applying a unitary transform on the target qubit in superposition.

For $x=0$ or $x=1$ we have $H|x\rangle=\sum_{z}(-1)^{x z}|z\rangle / \sqrt{2}$, thus

$$
H^{\otimes n}\left|x_{1}, \ldots, x_{n}\right\rangle=\frac{\sum_{z_{1}, \ldots, z_{n}}(-1)^{x_{1} z_{1}+\ldots x_{n} z_{n}}\left|z_{1}, \ldots, z_{n}\right\rangle}{\sqrt{2^{n}}}
$$

Write it succinctly,

$$
H^{\otimes n}|x\rangle=\frac{\sum_{z}(-1)^{x \cdot z}|z\rangle}{\sqrt{2^{n}}}
$$

where $x \cdot z$ is the bitwise inner product of x and z, modulo 2 .

$$
\left|\psi_{3}\right\rangle=\sum_{z} \sum_{x} \frac{(-1)^{x \cdot z+f(x)}|z\rangle}{2^{n}}\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

- If f is constant: the amplitude for $|0\rangle^{\otimes n}$ is ± 1, all other amplitudes must be zero.
- If f is balanced: the positive and negative contributions to the amplitude for $|0\rangle^{\otimes n}$ cancel, leaving amplitude zero.

In summary, a measurement of all 0 means f is constant; otherwise it is balanced.

The Bernstein-Vazirani Algorithm

The Bernstein-Vazirani Problem: Suppose there is a black-box function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, as in the Deutsch-Jozsa problem. Instead of being balanced or constant, it is guaranteed to return the dot product with some string s, i.e. $f_{s}(x)=s \cdot x(\bmod 2)$. The problem is to find such s.

Classically, we can reveal s by querying with the inputs $100 \ldots 0,010 \ldots 0,001 \ldots 0, \ldots, 000 \ldots 1$, i.e. to call f_{s} exactly n times.

The Bernstein-Vazirani Algorithm

Use the same quantum circuit as in the Deutsch-Jozsa algorithm,

$$
\begin{aligned}
\left|\psi_{3}\right\rangle & =\sum_{z} \sum_{x} \frac{(-1)^{x \cdot z+f_{\mathcal{S}}(x)}|z\rangle}{2^{n}}\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
& =\sum_{z} \sum_{x} \frac{(-1)^{x \cdot z+s \cdot x}|z\rangle}{2^{n}}\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

The amplitude of any computational basis state $|z\rangle$ is

$$
A(z)=\sum_{x \in\{0,1\}^{n}} \frac{(-1)^{x \cdot z+s \cdot x}}{2^{n}}
$$

In particular, when $z=s$,

$$
A(s)=\sum_{x \in\{0,1\}^{n}} \frac{(-1)^{x \cdot s+s \cdot x}}{2^{n}}=1
$$

That is, we will get state $|s\rangle$ with 100% probability.

Simon's Problem

Suppose there is an unknown black-box function f, which is guaranteed to be either one-to-one or two-to-one. For example,

- one-to-one: $f(i)=i$ for $i \in\{1,2,3.4\}$
- two-to-one: $f(1)=f(3)=1, f(2)=f(4)=2$

When the function is two-to-one, then there is a secret string s such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ iff $x_{1} \oplus x_{2}=s$. The string $s=000 \ldots$ represents the one-to-one function f.

The aim is to determine if f is one-to-one or two-to-one by finding string s. Classically, we have to query f up to $2^{n-1}+1$ inputs, where n is the number of bits in the inputs.

Simon's algorithm

Simon's algorithm

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =|0\rangle^{\otimes n}|0\rangle^{\otimes n} \\
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|0\rangle^{\otimes n} \\
\left|\psi_{2}\right\rangle & =U_{f}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle|f(x)\rangle \\
\left|\psi_{3}\right\rangle & =H^{\otimes n}\left|\psi_{2}\right\rangle=\frac{1}{2^{n}} \sum_{z \in\{0,1\}^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot z}|z\rangle|f(x)\rangle
\end{aligned}
$$

- If f is one-to-one, measuring the target qubits and observe $|f(x)\rangle$ will get only one corresponding x. For each input $|z\rangle$ state, the amplitude is $A(z)=\frac{1}{2^{n / 2}}$ given that the target $|f(x)\rangle$ is observed. The probability is $\frac{1}{2^{n}}$ for all z, a uniform distribution over the input states $|z\rangle$.
- If f is two-to-one, measuring the target qubits and observe $|c\rangle$ would crresponds to two values x_{1}, x_{2} with $f\left(x_{1}\right)=f\left(x_{2}\right)=c$. The amplitude of each input state $|z\rangle$ is $A(z)=\frac{1}{2^{\frac{n+1}{2}}}\left[(-1)^{x_{1} \cdot z}+(-1)^{x_{2} \cdot z}\right]$.

If $A(z) \neq 0$ then

$$
\begin{gathered}
(-1)^{x_{1} \cdot z}=(-1)^{x_{2} \cdot z} \quad \Rightarrow \quad x_{1} \cdot z=x_{2} \cdot z \\
s \cdot z=\left(x_{1} \oplus x_{2}\right) \cdot z=x_{1} \cdot z \oplus x_{2} \cdot z=x_{1} \cdot z \oplus x_{1} \cdot z=0(\bmod 2)
\end{gathered}
$$

Measure the input qubits and observe n different z values to find string $s:$

$$
\begin{aligned}
s \cdot z_{1} & =0 \\
s \cdot z_{2} & =0 \\
& \vdots \\
s \cdot z_{n} & =0
\end{aligned}
$$

The n equations can be solved by Gaussian elimination.

Superdense coding

Superdense coding aims to send two classical bits using just a single qubit of communication.

Superdense coding

$$
\begin{aligned}
& \left(x_{0} x_{1} y_{0} y_{1},|00\rangle\right) \xrightarrow{H}\left(*, \frac{|0\rangle+|1\rangle}{\sqrt{2}}|0\rangle\right) \xrightarrow{C N O T}\left(*, \frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) \\
& \xrightarrow{C X}\left(*, X_{0}^{x_{1}} \frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) \xrightarrow{C Z}\left(*, Z_{0}^{x_{0}} X_{0}^{x_{1}} \frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) \\
& \equiv \begin{cases}\left(00 y_{0} y_{1}, \frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) & \text { if } x_{0}=x_{1}=0 \\
\left(01 y_{0} y_{1}, \frac{|10\rangle+|01\rangle}{\sqrt{2}}\right) & \text { if } x_{0}=0, x_{1}=1 \\
\left(10 y_{0} y_{1}, \frac{|00\rangle-|11\rangle}{\sqrt{2}}\right) & \text { if } x_{0}=1, x_{1}=0 \\
\left(11 y_{0} y_{1}, \frac{|10\rangle-|01\rangle}{\sqrt{2}}\right) & \text { if } x_{0}=x_{1}=1\end{cases}
\end{aligned}
$$

$$
\xrightarrow{C N O T}\left\{\begin{array} { l }
{ (0 0 y _ { 0 } y _ { 1 } , \frac { | 0 0 \rangle + | 1 0 \rangle } { \sqrt { 2 } }) } \\
{ (0 1 y _ { 0 } y _ { 1 } , \frac { | 1 1 \rangle + | 0 1 \rangle } { \sqrt { 2 } }) } \\
{ (1 0 y _ { 0 } y _ { 1 } , \frac { | 0 0 \rangle - | 1 0 \rangle } { \sqrt { 2 } }) } \\
{ (1 1 y _ { 0 } y _ { 1 } , \frac { | 1 1 \rangle - | 0 1 \rangle } { \sqrt { 2 } }) }
\end{array} \quad \xrightarrow { H } \left\{\begin{array} { l }
{ (0 0 y _ { 0 } y _ { 1 } , | 0 0 \rangle) } \\
{ (0 1 y _ { 0 } y _ { 1 } , | 0 1 \rangle) } \\
{ (1 0 y _ { 0 } y _ { 1 } , | 1 0 \rangle) } \\
{ (1 1 y _ { 0 } y _ { 1 } , | 1 1 \rangle) }
\end{array} \xrightarrow { \text { Meas } } \left\{\begin{array}{l}
(0000,|00\rangle) \\
(0101,|01\rangle) \\
(1010,|10\rangle) \\
(1111,|11\rangle)
\end{array}\right.\right.\right.
$$

Qsimulation

Qsimulation is a tool for simulating quantum computation on classical computers.

https://github.com/coconutoe/quantum
see also Qiskit https://qiskit.org

Mathematical Foundations

Vector spaces

A(complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the following conditions:

1. + is commutative: $|u\rangle+|v\rangle=|v\rangle+|u\rangle$;
2. + is associative: $|u\rangle+(|v\rangle+|w\rangle)=(|u\rangle+|v\rangle)+|w\rangle$;

3 . + has the zero element 0 , called the zero vector, such that $0+|v\rangle=|v\rangle$;
4. each $|v\rangle \in \mathcal{H}$ has its negative vector $|v\rangle$ such that $|v\rangle+(-|v\rangle)=0$;
5. $1|v\rangle=|v\rangle ;$
6. $\alpha(\beta|v\rangle)=(\alpha \beta)|v\rangle$;
7. $(\alpha+\beta)|v\rangle=\alpha|v\rangle+\beta|v\rangle$;
8. $\alpha(|u\rangle+|v\rangle)=\alpha|u\rangle+\alpha|v\rangle$.

Inner product spaces

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the conditions:

1. $\langle u \mid u\rangle \geq 0$ with equality if and only if $|u\rangle=0$;
2. $\langle u \mid v\rangle=\langle v \mid u\rangle^{*} ;$
3. $\langle u \mid \alpha v+\beta w\rangle=\alpha\langle u \mid v\rangle+\beta\langle u \mid w\rangle$.

- If $\langle u \mid v\rangle=0$, then $|u\rangle$ and $|v\rangle$ are orthogonal, written $|u\rangle \perp|v\rangle$.
- The length of a vector $|v\rangle \in \mathcal{H}$ is $\||v\rangle \|=\sqrt{\langle v \mid v\rangle}$.
- A vector $|v\rangle$ is a unit vector if $|\| v\rangle \|=1$.

Hilbert spaces

Let $\left\{\left|v_{n}\right\rangle\right\}$ be a sequence of vectors in an inner product space \mathcal{H} and $|v\rangle \in \mathcal{H}$.

1. If for any $\epsilon>0$, there exists a positive interger N such that $\|\left|v_{m}\right\rangle-\left|v_{n}\right\rangle \|<\epsilon$ for all $m, n \geq N$, then $\left\{\left|v_{n}\right\rangle\right\}$ is a Cauchy sequence.
2. If for any $\epsilon>0$, there exists a positive interger N such that $\left|\left|\left|v_{n}\right\rangle-\right| v\right\rangle \|<\epsilon$ for all $n \geq N$, then $|v\rangle$ is a limit of $\left\{\mid v_{n}\right\}$, written $|v\rangle=\lim _{n \rightarrow \infty}\left|v_{n}\right\rangle$.

A Hilbert space is a complete inner product space, i.e., an inner product space where each Cauchy sequence of vectors has a limit.

Linear independence of vectors

- A set of vectors $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ in \mathcal{H} is linearly independent if $c_{1}\left|v_{1}\right\rangle+c_{2}\left|v_{2}\right\rangle+\ldots+c_{n}\left|v_{n}\right\rangle=0$ only when all the coefficients c_{i} are zero.
- If a set of n vectors $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ in \mathbb{C}^{n} is linearly independent, the vectors span the entire n-dimensional vector space.
- A set of vectors $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ in \mathcal{H} is orthogonal if $\left|v_{i}\right\rangle \perp\left|v_{j}\right\rangle$ when $i \neq j$.
- An orthogonal set of vectors are linear independent, but the converse is not necessarily true.

Basis

A basis B of a vector space \mathcal{H} is a linearly independent subset of \mathcal{H} that spans \mathcal{H}. That is,

- (the linear independence property) for every finite subset of vectors $\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$ of B, if $c_{1}\left|v_{1}\right\rangle+\ldots+c_{n}\left|v_{n}\right\rangle=0$ then all the coefficients c_{i} are zero.
- (the spanning property) for every vector $|v\rangle$ in \mathcal{H}, there are $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{C}$ and $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle \in B$ such that $|v\rangle=c_{1}\left|v_{1}\right\rangle+\ldots+c_{n}\left|v_{n}\right\rangle$.

Orthonormal basis

- An orthonormal basis B of \mathcal{H} is a basis of \mathcal{H} such that B is an orthogonal set of unit vectors.
- The number of vectors in any two orthonormal bases are the same. It is called the dimension of \mathcal{H}.
- Suppose the dimension of \mathcal{H} is n and there is a fixed orthonormal basis $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$, then a vector $|v\rangle=\sum_{i=1}^{n} c_{i}\left|v_{i}\right\rangle \in \mathcal{H}$ is represented by the vector in \mathbb{C}^{n} :

$$
\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Closed subspace

Let \mathcal{H} be a Hilbert space.

- If $V \subseteq \mathcal{H}$, and for any $|u\rangle,|v\rangle \in V$ and $c \in \mathbb{C}$.
$-|u\rangle+|v\rangle \in V$
$-c|v\rangle \in V$
then V is called a subspace of \mathcal{H}.
- For any $V \subseteq \mathcal{H}$, its closure \bar{V} is the set of limits $\lim _{n \rightarrow \infty}\left|v_{n}\right\rangle$ of sequences $\left\{\left|v_{n}\right\rangle\right\}$ in V.
- A subspace V of \mathcal{H} is closed if $\bar{V}=V$.
- For any set $V \subseteq \mathcal{H}$, the space spanned by V is written

$$
\operatorname{span} X=\left\{\sum_{i=1}^{n} c_{i}\left|v_{i}\right\rangle \mid n \geq 0, c_{i} \in \mathbb{C} \text { and }\left|v_{i}\right\rangle \in V(i=1, \ldots, n)\right\}
$$

- $\operatorname{span} V$ is the closed subspace generated by V.
- For any $U, V \subseteq \mathcal{H}, U$ and V are orthogonal, written $U \perp V$, if $|u\rangle \perp|v\rangle$ for all $|u\rangle \in U,|v\rangle \in V$.
- The orthocomplement of a closed subspace V of \mathcal{H} is

$$
\left.V^{\perp}=\{|u\rangle \in \mathcal{H}| | u\rangle \perp V\right\}
$$

- The orthocomplement V^{\perp} is a closed subspace of $\mathcal{H},\left(V^{\perp}\right)^{\perp}=V$.
- Let U, V be two subspaces of \mathcal{H}. Then

$$
U \oplus V=\{|u\rangle+|v\rangle| | u\rangle \in U \text { and }|v\rangle \in V\} .
$$

Tensor product of Hilber spaces

- Let \mathcal{H}_{i} be a Hilbert spaces with $\left\{\left|v_{i j_{i}}\right\rangle\right\}$ as an orthonormal basis for $i=1, \ldots, n$.
- Write B for the set of elements in the form:

$$
\left|\psi_{1 j_{1}}\right\rangle, \ldots,\left|\psi_{n j_{n}}\right\rangle=\left|\psi_{1 j_{1}}\right\rangle \otimes \ldots \otimes\left|\psi_{n j_{n}}\right\rangle .
$$

- The tensor product of $\mathcal{H}_{i} i=1, \ldots, n$ is the Hilbert space with B as an orthonormal basis:

$$
\bigotimes_{i} \mathcal{H}_{i}=\operatorname{span} B .
$$

Linear operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping $A: \mathcal{H} \rightarrow \mathcal{K}$ is a linear operator if it satisfies the conditions:

1. $A(|u\rangle+|v\rangle)=A|u\rangle+A|v\rangle$
2. $A(c|v\rangle)=c A|v\rangle$

Examples:

- Identity operator maps every vector in \mathcal{H} to itself, denoted by $I_{\mathcal{H}}$.
- Zero operator maps every vector in \mathcal{H} to the zero vector, denoted by $0_{\mathcal{H}}$.
- For vectors $|u\rangle,|v\rangle \in \mathcal{H}$, their outer product is the linear operator in \mathcal{H} with

$$
(|u\rangle\langle v|)|w\rangle=\langle v \mid w\rangle|u\rangle
$$

Projections

- Let V be a closed subspace of \mathcal{H} and $|v\rangle \in \mathcal{H}$. Then there exists unique $\left|v_{0}\right\rangle \in V$ and $\left|v_{1}\right\rangle \in V^{\perp}$ such that

$$
|v\rangle=\left|v_{0}\right\rangle+\left|v_{1}\right\rangle .
$$

- Vector $\left|v_{0}\right\rangle$ is called the projection of $|v\rangle$ onto $V,\left|v_{0}\right\rangle=P_{V}|v\rangle$.
- For closed subspace V of \mathcal{H}, the operator

$$
P_{V}: \mathcal{H} \rightarrow V, \quad|v\rangle \mapsto P_{V}|v\rangle
$$

is the projector onto V.

Linear operator in terms of outer product

- We can define a linear operator A from a vector space V to W as $|w\rangle\langle v|$, where $|v\rangle \in V,|w\rangle \in W$.
- For any vector $\left|v^{\prime}\right\rangle \in W$,

$$
A\left|v^{\prime}\right\rangle=|w\rangle\left\langle v \mid v^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle|w\rangle
$$

- The action of A is to take $\left|v^{\prime}\right\rangle$ to the scaled version of $|w\rangle \in W$. The scaling is based on how much overlap $\left|v^{\prime}\right\rangle$ has with $|v\rangle$.
- In general, if $\left|v_{i}\right\rangle \in V$ and $\left|w_{i}\right\rangle \in W$ are chosen to be be linearly independent. Let $B=\sum_{i}\left|w_{i}\right\rangle\left\langle v_{i}\right|$. Then

$$
B\left|v^{\prime}\right\rangle=\sum_{i}\left|w_{i}\right\rangle\left\langle v_{i} \mid v^{\prime}\right\rangle=\sum_{i}\left\langle v_{i} \mid v^{\prime}\right\rangle\left|w_{i}\right\rangle
$$

The term $\left\langle v_{i} \mid v^{\prime}\right\rangle$ denotes the overlap of $\left|v^{\prime}\right\rangle$ with each of the $\left|v_{i}\right\rangle$.

Pauli operators

$$
\begin{aligned}
& \sigma_{0}=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=|0\rangle\langle 0|+|1\rangle\langle 1| \\
& \sigma_{1}=X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=|1\rangle\langle 0|+|0\rangle\langle 1| \\
& \sigma_{2}=Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]=i|1\rangle\langle 0|-i|0\rangle\langle 1| \\
& \sigma_{1}=X=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=|0\rangle\langle 0|-|1\rangle\langle 1|
\end{aligned}
$$

Bounded operators

- An operator A is bounded if there is a constant $c \geq 0$ such that

$$
\| A|v\rangle\|\leq c \cdot|\| v\rangle\|
$$

for all $|v\rangle \in \mathcal{H}$.

- The norm of A is

$$
\|A\|=\inf \{c \geq 0|\| A| v\rangle\|\leq c \cdot\||v\rangle \| \text { for all }|v\rangle \in \mathcal{H}\}
$$

- $\mathcal{L}(\mathcal{H})$ stands for the set of bounded operators in \mathcal{H}.

Operations of operators

$$
\begin{aligned}
(A+B)|v\rangle & =A|v\rangle+B|v\rangle \\
(c A)|v\rangle & =c(A|v\rangle) \\
(B A)|v\rangle & =B(A|v\rangle)
\end{aligned}
$$

Löwner order

- An operator $A \in \mathcal{L}(\mathcal{H})$ is positive if for all states $|v\rangle \in \mathcal{H}$,

$$
\langle v| A|v\rangle \geq 0 .
$$

- Löwner order: $A \sqsubseteq B$ if and only if $B-A$ is positive.
- Distance between operators

$$
d(A, B)=\sup _{|v\rangle} \| A|v\rangle-B|v\rangle \|
$$

Matrix representation of operators

- Let the dimension of \mathcal{H} is n, fix an orthonormal basis $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}$. An operator on \mathcal{H} can be represented by the $n \times n$ complex matrix

$$
A=\left[\begin{array}{lll}
a_{11} & \ldots & a_{1 n} \\
& \ldots & \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]
$$

where $a_{i j}=\left\langle v_{i}\right| A\left|v_{j}\right\rangle$.

- If $|v\rangle=\sum_{i=1}^{n} \alpha_{i}\left|v_{i}\right\rangle$, then

$$
A|v\rangle=A\left[\begin{array}{c}
\alpha_{1} \\
\ldots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1} \\
\ldots \\
\beta_{n}
\end{array}\right]
$$

where $\beta_{i}=\sum_{j=1}^{n} a_{i j} \alpha_{j}$.

Eigenvectors

- An eigenvector of an operator A is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle=\lambda|\psi\rangle$ for some $\lambda \in \mathbb{C} \Rightarrow(A-\lambda I)|v\rangle=0$. If $|v\rangle \neq 0$ then $\operatorname{det}(A-\lambda I)=0$.
- λ is called the eigenvalue of A corresponding to $|\psi\rangle$.
- The set of eigenvalues of A is called the spectrum of A and denoted by $\operatorname{spec}(A)$.
- For each eigenvalue $\lambda \in \operatorname{spec}(A)$, the set

$$
\{|\psi\rangle \in \mathcal{H}|A| \psi\rangle=\lambda|\psi\rangle\}
$$

is a closed subspace of \mathcal{H} and called the eigenspace of A corresponding to λ.

- the eigenspaces corresponding to different eigenvalues $\lambda_{1} \neq \lambda_{2}$ are orthogonal.

Diagonal representation

- If the eigenvectors of the operator A denoted by $|k\rangle$ are orthonormal and their corresponding eigenvalues are λ_{k}, then

$$
A=\sum_{k} \lambda_{k}|k\rangle\langle k|
$$

which is called a diagonal representation of the operator A.

- Take the Pauli matrix X. From $\operatorname{det}(X-\lambda I)=0$ we obtain two eigenvalues $\lambda_{1}=1, \lambda_{2}=-1$. The corresponding eigenvectors are $\left|\lambda_{1}\right\rangle=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]^{T}$ and $\left|\lambda_{2}\right\rangle=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]^{T}$, which are orthonormal to each other. The matrix X itself is not diagonal; however, it can be represented as the diagonal matrix wrt the basis vectors $\left|\lambda_{1}\right\rangle$ and $\left|\lambda_{2}\right\rangle$.

Adjoint of an operator

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|u\rangle,|v\rangle)=\left(|u\rangle, A^{\dagger}|v\rangle\right) .
$$

- Operator A^{\dagger} is called the adjoint of A.
- If $A=\left(a_{i j}\right)_{n \times n}$ then $A^{\dagger}=\left(b_{i j}\right)_{n \times n}$ with $b_{i j}=a_{j i}^{*}$.
- For two operators $A, B,(A B)^{\dagger}=B^{\dagger} A^{\dagger}$
- $\left(A^{\dagger}\right)^{\dagger}=A$

Normal operators

- An operator A is normal if it commutes with its adjoint A^{\dagger}, i.e., $A A^{\dagger}=A^{\dagger} A$.
- Normal operators admit a spectral decomposition:

$$
A=\sum_{k} \lambda_{k}|k\rangle\langle k|
$$

where λ_{k} stands for the eigenvalue corresponding to the eigenvector $|k\rangle$.

Example

- The matrix representation of the Hadamard operator is

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \text { has eigenvalues } \lambda_{1}=1, \lambda_{2}=-1 . \text { The corresponding } \\
& \text { eigenvectors are }\left|\lambda_{1}\right\rangle=\left[\begin{array}{c}
\frac{1}{\sqrt{4-2 \sqrt{2}}} \\
\frac{1}{\sqrt{2 \sqrt{2}}}
\end{array}\right] \text { and }\left|\lambda_{2}\right\rangle=\left[\begin{array}{c}
\frac{1}{\sqrt{4+2 \sqrt{2}}} \\
-\frac{1}{\sqrt{2 \sqrt{2}}}
\end{array}\right]
\end{aligned}
$$

- Verify that

$$
\lambda_{1}\left|\lambda_{1}\right\rangle\left\langle\lambda_{1}\right|+\lambda_{2}\left|\lambda_{2}\right\rangle\left\langle\lambda_{2}\right|=H
$$

Hermitian operators

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint: $M^{\dagger}=M$. In physics, a Hermitian operator is called an observable.
- If a Hermitian operator is not a degenerate i.e. each eigenvalue corresponds to only one eigenvector, its eigenvectors are orthogonal to each other.
- An operator P is a projector: $P=P_{V}$ for some closed subspace V of \mathcal{H}, if and only if P is Hermitian and $P^{2}=P$.
- All eigenvalues of an observable (i.e. a Hermitian operator) M are real numbers.

$$
M=\sum_{\lambda \in \operatorname{spec}(M)} \lambda P_{\lambda}
$$

where P_{λ} is the projector onto the eigenspace corresponding to λ.

Unitary transformation

- An operator $U \in \mathcal{L}(\mathcal{H})$ is unitary if $U^{\dagger} U=U U^{\dagger}=I_{\mathcal{H}}$.
- All unitary transformations preserve inner product:

$$
(U|u\rangle, U|v\rangle)=\langle u \mid v\rangle
$$

- If the dimension of \mathcal{H} is n, then a unitary operator is represented by an $n \times n$ unitary matrix U with $U^{\dagger} U=I_{n}$.

Trace of linear operators

The trace of a linear operator is the sum of its diagonal entries.

- The sum of the eigenvalues of a linear operator equals its trace.
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- For a linear operator A and a scalar $c \in \mathbb{C}, \operatorname{tr}(c A)=c \times \operatorname{tr}(A)$
- The trace of a linear operator is invariant to a unitary similarity transform, $\operatorname{tr}\left(U A U^{\dagger}\right)=\operatorname{tr}(A)$

Tensor product of operators

- Let $A_{i} \in \mathcal{L}\left(\mathcal{H}_{i}\right)$ for $i=1, \ldots, n$. Their tensor product $\bigotimes_{i=1}^{n} A_{i}=A_{1} \otimes \ldots \otimes A_{n} \in \mathcal{L}\left(\bigotimes_{i=1}^{n} \mathcal{H}_{i}\right):$

$$
\left(A_{1} \otimes \ldots \otimes A_{n}\right)\left|\psi_{1}, \ldots, \psi_{n}\right\rangle=A_{1}\left|\psi_{1}\right\rangle \otimes \ldots \otimes A_{n}\left|\psi_{n}\right\rangle
$$

- The tensor product of two matrices

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \ldots & a_{1 n} B \\
\vdots & \vdots & \vdots \\
a_{m 1} B & \ldots & a_{m n} B
\end{array}\right]
$$

- $(A \otimes B)^{*}=A^{*} \otimes B^{*}$
- $(A \otimes B)^{T}=A^{T} \otimes B^{T}$
- $(A \otimes B)^{\dagger}=A^{\dagger} \otimes B^{\dagger}$

Functions of normal operators

- A normal operator has a spectral decomposition $A=\sum_{i} \lambda_{i}|i\rangle\langle i|$, where λ_{i} represents the eigenvalues and $|i\rangle$ the corresponding eigenvectors.
- A function f on A can be defined as $f(A)=\sum_{i} f\left(\lambda_{i}\right)|i\rangle\langle i|$
- Example: $\exp (c A)=\sum_{i} e^{c \lambda_{i}}|i\rangle\langle i|$
- Alternatively, if A is not normal, we use the exponential expansion

$$
\exp (c A)=I+c A+\frac{(c A)^{2}}{2!}+\frac{(c A)^{3}}{3!}+\ldots
$$

- If A is normal, $(c A)^{k}=\sum_{i}\left(c \lambda_{i}\right)^{k}|i\rangle\langle i|$ and $\exp (c A)=\sum_{i}\left(1+c \lambda_{i}+\frac{c^{2} \lambda_{i}^{2}}{2!}+\ldots\right)|i\rangle\langle i|=\sum_{i} e^{c \lambda_{i}}|i\rangle\langle i|$

Commutator and anti-commutator operators

- The commutator of two linear operators M, N is

$$
[M, N]=M N-N M
$$

- The anti-commutator of two linear operators M, N is

$$
\{M, N\}=M N+N M
$$

$$
M N=\frac{[M, N]+\{M, N\}}{2}
$$

Postulates of Quantum Mechanics

Postulate 1: Quantum state

- The state space of a closed quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.
- Example: 2-dimensional Hilbert space

Example: Square summable sequences

- The space of square summable sequences:

$$
\mathcal{H}_{\infty}=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle \mid \alpha_{n} \in \mathbb{C} \text { for all } n \in \mathbb{Z} \text { and } \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty\right\}
$$

- Inner product:

$$
\left(\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle, \sum_{n=-\infty}^{\infty} \beta_{n}|n\rangle\right)=\sum_{n=-\infty}^{\infty} \alpha_{n}^{*} \beta_{n}
$$

- $\{|n\rangle \mid n \in \mathbb{Z}\}$ is an orthonormal basis, \mathcal{H}_{∞} is infinite-dimensional.

Postulate 2: Quantum evoluation

- Suppose that the states of a closed quantum system at times t_{0} and t_{1} are $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$, respectively. Then there is a unitary operator U such that

$$
\left|\psi_{1}\right\rangle=U\left|\psi_{0}\right\rangle
$$

Schrödinger's equation

- The quantum state of a closed system evolves according to Schrödinger's equation

$$
\frac{i h}{2 \pi} \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

where h is the Plank's constant and H is the Hamiltonian of the closed quantum system.

- The Hamiltonian is a Hermitian operator and hence has a spectral decomposition

$$
H=\sum_{k} E_{k}\left|E_{k}\right\rangle\left\langle E_{k}\right|
$$

- The solution to Schrödinger's equation is

$$
\left.|\psi(t)\rangle=e^{\frac{-i 2 \pi H\left(t-t_{0}\right)}{h}} \right\rvert\, \psi\left(t_{0}\right)
$$

- The expression $U\left(t, t_{0}\right)=e^{\frac{-i 2 \pi H\left(t-t_{0}\right)}{h}}$ is the unitary operator
- If the spectral decomposition of the Hamiltonian operator is $H=\sum_{i} E_{i}\left|E_{i}\right\rangle\left\langle E_{i}\right|$, then the spectral decomposition of $U\left(t, t_{0}\right)$ is

$$
U\left(t, t_{0}\right)=\sum_{k} e^{\frac{-i 2 \pi H\left(t-t_{0}\right)}{h}}\left|E_{k}\right\rangle\left\langle E_{k}\right|
$$

Example: Hadamard transformation

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H|0\rangle=H\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=|+\rangle \\
H|1\rangle=H\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=|-\rangle
\end{gathered}
$$

Example: Translation

- Let k be an integer. The k-translation operator T_{k} in \mathcal{H}_{∞} is defined by

$$
T_{k}|n\rangle=|n+k\rangle
$$

for all $n \in \mathbb{Z}$.

- T_{-1} and T_{1} move a particle on the line one position to the left and to the right, respectively.

Postulate 3: Quantum measurement

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of measurement operators satisfying the completeness equation: $\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}$
- The index m stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is $|\psi\rangle$ immediately before the measurement, then for each m,
- the probability that result m occurs in the measurement is

$$
p(m)=\| M_{m}|\psi\rangle \|^{2}=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle \quad \text { Born rule }
$$

- the state of the system after the measurement with outcome m is

$$
\left|\psi_{m}\right\rangle=\frac{M_{m}|\psi\rangle}{\sqrt{p(m)}}
$$

Completeness equation

- The completeness equation comes from the fact that the sum of the probabilities pertaining to the different measurement operators should sum to 1 .

$$
\begin{aligned}
& \sum_{m} p(m)=1 \\
\Rightarrow & \sum_{m}\langle m| M_{m}^{\dagger} M_{m}|m\rangle=1 \\
\Rightarrow & \langle m| \sum_{m} M_{m}^{\dagger} M_{m}|m\rangle=1
\end{aligned}
$$

The last equation holds only if $\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}$

Example

- The measurement of a qubit in the computational basis:

$$
M_{0}=|0\rangle\langle 0|, \quad M_{1}=|1\rangle\langle 1| .
$$

- If the qubit was in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ before the measurement, then
- the probability of obtaining outcome 0 is

$$
p(0)=\langle\psi| M_{0}^{\dagger} M_{0}|\psi\rangle=\langle\psi| M_{0}|\psi\rangle=|\alpha|^{2},
$$

the state of the system after the measurement is $\frac{M_{0}|\psi\rangle}{\sqrt{p(0)}}=|0\rangle$.

- the probability of outcome 1 is $p(1)=|\beta|^{2}$, the state after the measurement is $|1\rangle$.

Projective measurements

- An observable M defines a measurement $\left\{P_{\lambda} \mid \lambda \in \operatorname{spec}(M)\right\}$, called a projective measurement.
- Upon measuring a system in state $|\psi\rangle$, the probability of obtaining result λ

$$
p(\lambda)=\langle\psi| P_{\lambda}|\psi\rangle
$$

the state of the system after the measurement is

$$
\frac{P_{\lambda}|\psi\rangle}{\sqrt{p(\lambda)}}
$$

- The expectation, i.e. average value, of M in state $|\psi\rangle$ is

$$
\langle M\rangle_{\psi}=\sum_{\lambda \in \operatorname{spec}(M)} p(\lambda) \cdot \lambda=\langle\psi| M|\psi\rangle .
$$

General Heisenberg uncertainty principle

- The standard deviation ΔM of M in state $|\psi\rangle$:

$$
(\Delta M)^{2}=\left\langle M^{2}\right\rangle_{\psi}-\langle M\rangle_{\psi}^{2}
$$

- For two measurement operators M and N, the standard deviation of their outcomes follows the relation

$$
\Delta M \Delta N \geq \frac{1}{2}\|\langle\psi|[M, N]|\psi\rangle\|
$$

See P. 71-74 of S. Pattanayak's book for a detailed proof.

Postulate 4: Composite quantum systems

The state space of a composite quantum system is the tensor product of the state spaces of its components.

- Suppose S is a quantum system composed by subsystems S_{1}, \ldots, S_{n} with state Hilbert space $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$.
- If for each $1 \leq i \leq n, S_{i}$ is in state $\left|\psi_{i}\right\rangle \in \mathcal{H}_{i}$, then S is in the product state $\left|\psi_{1}, \ldots, \psi_{n}\right\rangle$.
- A state of the composite system is entangled if it is not a product of states of its component systems.

Examples

- The state space of the system of n qubits

$$
\mathcal{H}_{2}^{\otimes n}=\mathbb{C}^{2^{n}}=\left\{\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \mid \alpha_{x} \in \mathbb{C} \text { for all } x \in\{0,1\}^{n}\right\}
$$

- A two-qubit system can be in a product state like $|00\rangle,|0\rangle|+\rangle$.
- It may also be in an entangled state like the Bell states or the EPR (Einstein-Podolsky-Rosen) pairs.

$$
\begin{aligned}
& \left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\beta_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Implementing a general measurement by a projective measurement

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in Hilbert space \mathcal{H}.
- Introduce a new Hilbert space $\mathcal{H}_{M}=\operatorname{span}\{|m\rangle\}$ used to record the possible outcomes of M.
- Choose a fixed state $|0\rangle \in \mathcal{H}_{M}$. Define unitary operator in $\mathcal{H}_{M} \otimes M$:

$$
U_{m}(|0\rangle|\psi\rangle)=\sum_{m}|m\rangle|\psi\rangle
$$

- Define a projective measurement $\bar{M}=\left\{|m\rangle\langle m| \otimes I_{\mathcal{H}}\right\}$ in $\mathcal{H}_{M} \otimes \mathcal{H}$.

Implementing a general measurement by a projective measurement

- Then M is realized by the projective measurement \bar{M} together with the unitary operator U_{M}.
- For any pure state $|\psi\rangle \in \mathcal{H}$,
- When we perform measurement M on $|\psi\rangle$, the probability of outcome m is denoted by $p_{M}(m)$, the post-measurement state corresponding to m is $\left|\psi_{m}\right\rangle$.
- When we perform measurement \bar{M} on $|\bar{\psi}\rangle=U_{M}(|0\rangle|\psi\rangle)$, the probability of outcome m is denoted by $p_{\bar{M}}(m)$, the post-measurement state corresponding to m is $\left|\bar{\psi}_{m}\right\rangle$.
- For each m, we have

$$
\begin{aligned}
p_{\bar{M}}(m) & =p_{M}(m) \\
\left|\bar{\psi}_{m}\right\rangle & =|m\rangle\left|\psi_{m}\right\rangle
\end{aligned}
$$

Ensembles

- The state of a quantum system is not completely known: it is in one of a number of pure states $\left|\psi_{i}\right\rangle$, with respective probabilities p_{i}, where $\left|\psi_{i}\right\rangle \in \mathcal{H}, p_{i} \geq 0$ for each $i, \sum_{i} p_{i}=1$.
- We call $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ an ensemble of pure states or a mixed state
- It can be represented by the density operator

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- A pure state $|\psi\rangle$ may be seen as a special mixed state $\{(|\psi\rangle, 1)\}$. Its density operator is $\rho=|\psi\rangle\langle\psi|$.

Density operators

- The trace $\operatorname{tr}(A)$ of operator $A \in \mathcal{L}(\mathcal{H})$:

$$
\operatorname{tr}(A)=\sum_{i}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle
$$

where $\left\{\left|\psi_{i}\right\rangle\right\}$ is an orthonormal basis of \mathcal{H}.

- A density operator ρ is a positive operator with $\operatorname{tr}(\rho)=1$.
- The operator ρ defined by any ensemble $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ is a density operator. Conversely, any density operator ρ is defined by an (but unnecessarily unique) ensemble $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$.
- If ρ is a pure state, $\operatorname{tr}\left(\rho^{2}\right)=1$; if it is a mixed state, $\operatorname{tr}\left(\rho^{2}\right)<1$.
- The density operator of n quantum systems with density operators $\rho_{1}, \ldots, \rho_{n}$ can be expressed as $\rho=\rho_{1} \otimes \ldots \otimes \rho_{n}$.

Postulates of quantum mechanics in the language of density operators

- A closed quantum system from time t_{0} to t is described by unitary operator U depending on t_{0} and $t:|\psi\rangle=U\left|\psi_{0}\right\rangle$.
- If the system is in mixed state ρ_{0}, ρ at times t_{0} and t, respectively, then $\rho=U \rho_{0} U^{\dagger}$.
- If the state of a quantum system was ρ before measurement M_{m} is performed, then the probability that result m occurs is

$$
p(m)=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
$$

and the system after the measurement is

$$
\rho_{m}=\frac{M_{m} \rho M_{m}^{\dagger}}{p(m)}
$$

Reduced density operators

- We often need to characterize the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subssystems must be seen as in a mixed state.
- Let S and T be quantum systems whose state Hilbert spaces are \mathcal{H}_{S} and \mathcal{H}_{T}, respectively.
- The partial trace over system T :

$$
\begin{gathered}
\operatorname{tr}_{T}: \mathcal{L}\left(\mathcal{H}_{S} \otimes \mathcal{H}_{T}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{S}\right) \\
\operatorname{tr}_{T}(|\psi\rangle\langle\phi| \otimes|\theta\rangle\langle\xi|)=\langle\xi \mid \theta\rangle \cdot|\psi\rangle\langle\phi|
\end{gathered}
$$

- Let ρ be a density operator in $\mathcal{H}_{S} \otimes \mathcal{H}_{T}$. Its reduced density operator for system $S: \rho_{S}=\operatorname{tr}_{T}(\rho)$.

The Bell state

- The density operator of the Bell state $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ is

$$
\rho_{A B}=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 11|)
$$

- $\rho_{A}=\operatorname{tr}_{B}\left(\rho_{A B}\right)=$
$\frac{1}{2}(|0\rangle\langle 0|\langle 0 \mid 0\rangle+|1\rangle\langle 0|\langle 0 \mid 1\rangle+|0\rangle\langle 1|\langle 1 \mid 0\rangle+|1\rangle\langle 1|\langle 1 \mid 1\rangle)=\frac{I}{2}$
- $\operatorname{tr}\left(\rho_{A}^{2}\right)=\operatorname{tr}\left(\frac{I}{4}\right)=\frac{1}{4}<1$
- Thus qubit A is in the mixed state, so is qubit B. The joint state of the two qubits is in a pure state, while the individual qubits are in a mixed state!

Super-operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside environment, we need a general notion of quantum operation.
- A linear operator in vector space $\mathcal{L}(\mathcal{H})$ is called a super-operator in \mathcal{H}.
- Let \mathcal{H} and \mathcal{K} be Hilbert spaces. For any super-operators \mathcal{E} in \mathcal{H} and \mathcal{F} in \mathcal{K}, their tensor product $\mathcal{E} \otimes \mathcal{F}$ is the super-operator in $\mathcal{H} \otimes \mathcal{K}$: for each $C=\sum_{i} \alpha_{i}\left(A_{i} \otimes B_{i}\right), A_{i} \in \mathcal{L}(\mathcal{H}), B_{i} \in \mathcal{L}(\mathcal{K})$,

$$
(\mathcal{E} \otimes \mathcal{F})(C)=\sum_{i} \alpha_{i}\left(\mathcal{E}\left(A_{i}\right) \otimes \mathcal{F}\left(B_{i}\right)\right)
$$

Quantum operations

- A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:

1. $\operatorname{tr}(\mathcal{E}(\rho)) \leq \operatorname{tr}(\rho)=1$ for each density operator ρ in \mathcal{H};
2. (Complete positivity) For any extra Hilbert space $\mathcal{H}_{R},\left(\mathcal{I}_{R} \otimes \mathcal{E}\right)(A)$ is positive provided A is a positive operator on $\mathcal{H}_{R} \otimes \mathcal{H}$, where \mathcal{I}_{R} is the identity operator in $\mathcal{L}\left(\mathcal{H}_{R}\right)$.
3. Let the states of a system at times t_{0} and t are ρ_{0} and ρ, respectively. Then they must be related to each other by a super-operator \mathcal{E} depending only on the times t_{0} and t :

$$
\rho=\mathcal{E}\left(\rho_{0}\right)
$$

Examples

- Let U be a unitary transformation in a Hilbert space \mathcal{H}. Define $\mathcal{E}(\rho)=U \rho U^{\dagger}$ for every density operator ρ. Then \mathcal{E} is a quantum operation.
- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in \mathcal{H}.

1. For each m, if for any system state ρ before measurement, define $\mathcal{E}_{m}(\rho)=p_{m} \rho_{m}=M_{m} \rho M_{m}^{\dagger}$ where p_{m} is the probability of outcome m and ρ_{m} is the post-measurement state corresponding to m, then \mathcal{E}_{m} is a quantum operation.
2. For any system ρ before measurement, the post-measurement state is

$$
\mathcal{E}(\rho)=\sum_{m} \mathcal{E}_{m}(\rho)=\sum_{m} M_{m} \rho M_{m}^{\dagger}
$$

whenever the measurement outcomes are ignored. Then \mathcal{E} is a quantum operation.

Kraus Theorem

The following statements are equivalent:

1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H};
2. (System-environment model) There is an environment system E with state Hilbert space \mathcal{H}_{E}, and a unitary transformation U in $\mathcal{H}_{E} \otimes \mathcal{H}$ and a projector P onto some closed subspace of $\mathcal{H}_{E} \otimes \mathcal{H}$ such that

$$
\mathcal{E}(\rho)=\operatorname{tr}_{E}\left[P U\left(\left|e_{0}\right\rangle\left\langle e_{0}\right| \otimes \rho\right) U^{\dagger} P\right]
$$

for all density operator ρ in \mathcal{H}, where $\left|e_{0}\right\rangle$ is a fixed state in \mathcal{H}_{E};
3. (Krause operator-sum representation) There exists a finite or countably infinite set of operators $\left\{E_{i}\right\}$ in \mathcal{H} such that $\sum_{i} E_{i}^{\dagger} E_{i} \sqsubseteq I$ and

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger}
$$

for all density operators ρ in \mathcal{H}. We write $\mathcal{E}=\sum_{i} E_{i} \circ E_{i}^{\dagger}$.

Quantum Circuits

Single qubit gates

Some common single qubit gates

$$
\begin{array}{ccc}
\text { Hadamard } & -H & \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
\text { Pauli- } X & -\sqrt{X} & {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \\
\text { Pauli- } Y & -\sqrt{Y} & {\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]} \\
\text { Pauli- } Z & -\sqrt{Z} & {\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]} \\
\text { Phase } & -\sqrt{S}- & {\left[\begin{array}{cc}
1 & 0 \\
0 & i
\end{array}\right]} \\
\pi / 8 & -\sqrt{T}- & {\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right]}
\end{array}
$$

Rotation operators

Rotation operators about the \hat{x}, \hat{y} and \hat{z} axes.

$$
\begin{aligned}
& R_{x}(\theta) \equiv e^{-i \theta X / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} X=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{y}(\theta) \equiv e^{-i \theta Y / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Y=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
& R_{z}(\theta) \equiv e^{-i \theta Z / 2}=\cos \frac{\theta}{2} I-i \sin \frac{\theta}{2} Z=\left[\begin{array}{cc}
e^{-i \theta / 2} & 0 \\
0 & e^{i \theta / 2}
\end{array}\right]
\end{aligned}
$$

Controlled gates

- A controlled-U operation: $|c\rangle|t\rangle \rightarrow|c\rangle U^{c}|t\rangle$

- Toffoli gate

Circuit equivalence

Universal gate sets

- Single qubit and CNOT gates can be used to implement an arbitrary unitary operation on n qubits, and therefore are universal for quantum computation.
- The standard set of universal gates: $\{H, S, T, C N O T\}$
- Another universal gate set: $\{H, S, C N O T, T o f f o l i\}$
- Approximating arbitrary unitary gates is generically hard: an arbitrary unitary operation U on n qubits may be approximated to within a distance $\epsilon \operatorname{using} O\left(n^{2} 4^{n} \log ^{c}\left(n^{2} 4^{n} / \epsilon\right)\right)$ gates.

Principle of deferred measurement

- Principle of deferred measurement: Measurements can always be moved from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement results are used at any stage of the circuit then the classically controlled operations can be replaced by conditional quantum operations.
- Teleportation with measurements at the end:

Quantum Programming

Syntax of a purely quantum language

1. Assume a countably infinite set $q V a r$ of quantum variables, ranged over by q, q^{\prime}, q_{0} etc.
2. Each quantum variable $q \in q$ Var has a type \mathcal{H}_{q} (a Hilbert space).
3. For simplicity, we consider two basic types:

$$
\text { Bool }=\mathcal{H}_{2}, \quad \text { Int }=\mathcal{H}_{\infty}
$$

4. A quantum register is a finite sequence $\bar{q}=1_{1}, \ldots, q_{n}$ of quantum variables. Its state Hilbert space:

$$
\mathcal{H}_{\bar{q}}=\bigotimes_{i=1}^{n} \mathcal{H}_{q_{i}}
$$

Syntax of a purely quantum language

$$
\begin{aligned}
S::= & \text { skip }|q:=| 0\rangle|U[\bar{q}]| S_{1} ; S_{2} \\
& \mid \text { if }\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \\
& \mid \text { while } M[\bar{q}]=1 \text { do } S
\end{aligned}
$$

Notations

- A positive operator ρ is a partial density operator if $\operatorname{tr}(\rho) \leq 1$.
- Write $\mathcal{D}(\mathcal{H})$ for the set of partial density operators in \mathcal{H}.
- Write $\mathcal{H}_{\text {all }}$ for the tensor product of the state Hilbert space of all quantum variables: $\mathcal{H}_{\text {all }}=\otimes_{q \in q \operatorname{Var}} \mathcal{H}_{q}$
- Let $\bar{q}=q_{1}, \ldots, q_{n}$ be a quantum register. An operator in the state Hilbert space $\mathcal{H}_{\bar{q}}$ has a cylindrical extension $A \otimes I$ in $\mathcal{H}_{\text {all }}$.
- Write nil for the empty program, i.e., successful termination.
- A configuration is a pair $\langle S, \rho\rangle$, where

1. S is a quantum program or nil;
2. $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$ denotes the (global) state of quantum variables.

- Transition between quantum configurations: $\langle S, \rho\rangle \rightarrow\left\langle S^{\prime}, \rho^{\prime}\right\rangle$

Operational semantics

$$
\begin{aligned}
& \hline\langle\text { skip, } \rho\rangle \rightarrow\langle\text { nil, } \rho\rangle \\
& \hline\langle q:=\mid 0\rangle, \rho\rangle \rightarrow\left\langle\text { nil, } \rho^{\prime}\right\rangle \\
& \text { where } \rho^{\prime}= \begin{cases}|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0| & \text { if type }(q)=\text { Bool } \\
\sum_{n=-\infty}^{\infty}|0\rangle\langle n| \rho|n\rangle_{q}\langle 0| & \text { if type }(q)=\text { Int }\end{cases} \\
& \hline\langle U[\bar{q}], \rho\rangle \rightarrow\left\langle\text { nil }, U \rho U^{\dagger}\right\rangle
\end{aligned} \begin{aligned}
& \frac{\left\langle S_{1}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime}, \rho^{\prime}\right\rangle}{\left\langle S_{1} ; S_{2}, \rho\right\rangle \rightarrow\left\langle S_{1}^{\prime} ; S_{2}, \rho^{\prime}\right\rangle} \quad \frac{\left\langle S_{2}, \rho\right\rangle \rightarrow\left\langle S_{2}^{\prime}, \rho^{\prime}\right\rangle}{\left\langle\text { nil } ; S_{2}, \rho\right\rangle \rightarrow\left\langle S_{2}^{\prime}, \rho^{\prime}\right\rangle}
\end{aligned}
$$

Operational semantics

$$
\left\langle\text { if }\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right), \rho\right\rangle \rightarrow\left\langle S_{m}, M_{m} \rho M_{m}^{\dagger}\right\rangle
$$

for each possible outcome m of measurement $M=\left\{M_{m}\right\}$

$$
\langle\text { while } M[\bar{q}]=1 \text { do } S, \rho\rangle \rightarrow\left\langle\text { nil }, M_{0} \rho M_{0}^{\dagger}\right\rangle
$$

$$
\langle\text { while } M[\bar{q}]=1 \text { do } S, \rho\rangle \rightarrow\left\langle S ;(\text { while } M[\bar{q}]=1 \text { do } S), M_{1} \rho M_{1}^{\dagger}\right\rangle
$$

Computation

Let S be a quantum program and $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

1. A transition sequence of S starting in ρ is a finite or infinite sequence of configurations

$$
\langle S, \rho\rangle \rightarrow\left\langle S_{1}, \rho_{1}\right\rangle \rightarrow \ldots \rightarrow\left\langle S_{n}, \rho_{n}\right\rangle \rightarrow \ldots
$$

such that $\rho_{n} \neq 0$ for all n except for the last n if the sequence is finite.
2. If a sequence cannot be extended, then it is a computation of S starting in ρ.

- If a computation is finite with the last configuration $\left\langle n i l, \rho^{\prime}\right\rangle$, then it terminates in ρ^{\prime}.
- If it is infinite, then it diverges.

Denotational semantics

1. If a configuration $\left\langle S^{\prime}, \rho^{\prime}\right\rangle$ can be reached from $\langle S, \rho\rangle$ in n steps, then we write $\langle S, \rho\rangle \rightarrow^{n}\left\langle S^{\prime}, \rho^{\prime}\right\rangle$.
2. Write \rightarrow^{*} for the reflexive and transitive closure of \rightarrow.
3. Let S be a quantum program. Its semantic function

$$
\begin{aligned}
& \llbracket S \rrbracket: \mathcal{D}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \mathcal{D}\left(\mathcal{H}_{\text {all }}\right) \\
& \llbracket S \rrbracket(\rho)=\sum\left\{\left|\rho^{\prime}\right|\langle S, \rho\rangle \rightarrow^{*}\left\langle\text { nil }, \rho^{\prime}\right\rangle \mid\right\}
\end{aligned}
$$

Structural definition

1. \llbracket skip $\rrbracket(\rho)=\rho$
2. If $\operatorname{type}(q)=$ Bool, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=|0\rangle_{q}\langle 0| \rho|0\rangle_{q}\langle 0|+|0\rangle_{q}\langle 1| \rho|1\rangle_{q}\langle 0|
$$

3. If type $(q)=$ Int, then

$$
\llbracket q:=|0\rangle \rrbracket(\rho)=\sum_{n=-\infty}^{\infty}|0\rangle\langle n| \rho|n\rangle_{q}\langle 0|
$$

4. $\llbracket U[\bar{q}] \rrbracket(\rho)=U \rho U^{\dagger}$
5. $\llbracket S_{1} ; S_{2} \rrbracket(\rho)=\llbracket S_{2} \rrbracket\left(\llbracket S_{1} \rrbracket(\rho)\right)$
6. $\llbracket \mathrm{if}\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \rrbracket(\rho)=\sum_{m} \llbracket S_{m} \rrbracket\left(M_{m} \rho M_{m}^{\dagger}\right)$

Basic lattice theory

1. A partial order is a pair (X, \sqsubseteq), where X is a nonempty set and \sqsubseteq is a binary relation on X satisfying

- Reflexivity: $x \sqsubseteq x$ for all $x \in X$;
- Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ imply $x=y$ for all $x, y \in X$;
- Transitivity: $x \sqsubseteq y$ and $y \sqsubseteq z$ imply $x \sqsubseteq z$ for all $x, y, z \in X$.

2. Let (X, \sqsubseteq) be a partial order.

- An element $x \in X$ is the least element of X if $x \sqsubseteq y$ for all $y \in X$. The least element is denoted by 0 .
- An element $x \in X$ is an upper bound of a subset $Y \subseteq X$ if $y \sqsubseteq x$ for all $y \in Y$.
- x is the least upper bound of Y, written $x=\bigsqcup X$ if
$-x$ is an upper bound of Y
- for any upper bound x^{\prime} of $Y, x \sqsubseteq x^{\prime}$.

Basic lattice theory

1. A complete partial order (CPO) is a partial order (X, \sqsubseteq) if for any increasing sequence $\left\{x_{n}\right\}$

$$
x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots
$$

its least upper bound $\bigsqcup_{n=0}^{\infty} x_{n}$ exists. A CPO with bottom is a CPO with a least element.
2. Let (X, \sqsubseteq) be a CPO. A function f on X is continuous if

$$
f\left(\bigsqcup_{n} x_{n}\right)=\bigsqcup_{n} f\left(x_{n}\right)
$$

for any increasing sequence $\left\{x_{n}\right\}$ in X.

Knaster-Tarski Theorem

Let (X, \sqsubseteq) be a CPO with bottom and function $f: X \rightarrow X$ is continuous. Then f has the least fixed point

$$
\mu \cdot f=\bigsqcup_{n=0}^{\infty} f^{n}(0)
$$

where $f^{0}=0$ and $f^{n+1}(0)=f\left(f^{n}(0)\right)$ for $n \geq 0$.

Domain of quantum operations

- Domain of partial density operators: $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$ is a CPO with the zero operator $0_{\mathcal{H}}$ as its least element.
- Domain of quantum operations:
- Each quantum operation in a Hilbert space \mathcal{H} is a continuous function on $(\mathcal{D}(\mathcal{H}), \sqsubseteq)$.
- Write $\mathcal{Q O}(\mathcal{H})$ for the set of quantum operations in Hilbert space \mathcal{H}.
- The Löner order between operators induces a partial order between quantum operations: for any $\mathcal{E}, \mathcal{F} \in \mathcal{Q O}(\mathcal{H})$,

$$
\mathcal{E} \sqsubseteq \mathcal{F} \Leftrightarrow \mathcal{E}(\rho) \sqsubseteq \mathcal{F}(\rho) \text { for all } \rho \in \mathcal{D}(\mathcal{H})
$$

- $(\mathcal{Q O}(\mathcal{H}), \sqsubseteq)$ is a CPO.

Syntactic approximation

- abort denotes a quantum program such that

$$
\llbracket \text { abort } \rrbracket(\rho)=0_{\mathcal{H}_{\text {all }}} \text { for all } \rho \in \mathcal{D}(\mathcal{H})
$$

- Consider a quantum loop

$$
\text { While } \equiv \text { while } M[\bar{q}]=1 \text { do } S
$$

- For any integer $k \geq 0$, the k-th syntactic approximation while ${ }^{k}$ of while:

$$
\begin{aligned}
\text { while }^{0}= & \text { abort } \\
\text { while }^{k+1}= & \text { if }(M[\bar{q}]=0 \rightarrow \text { skip } \\
& \left.\square M[\bar{q}]=1 \rightarrow S ; \text { while }^{k}\right)
\end{aligned}
$$

Denotation of loops

- Semantic function of loops:

$$
\llbracket w h i l e \rrbracket=\bigsqcup_{k=0}^{\infty} \llbracket w h i l e^{k} \rrbracket,
$$

where \bigsqcup stands for the supremum of a sequence of quantum operations in the $\mathrm{CPO}\left(\mathcal{Q O}\left(\mathcal{H}_{\text {all }}\right), \sqsubseteq\right)$.

- For any $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$:

$$
\llbracket w h i l e \rrbracket(\rho)=M_{0} \rho M_{0}^{\dagger}+\llbracket w h i l e \rrbracket\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{\dagger}\right)\right) .
$$

Termination probabilities

- For any quantum program S and all partial density operators $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$,

$$
\operatorname{tr}(\llbracket S \rrbracket(\rho)) \leq \operatorname{tr}(\rho)
$$

- $\operatorname{tr}(\llbracket S \rrbracket(\rho))$ is the probability that program S terminates when starting in state ρ.

Quantum predicates

- A quantum predicate should be a physical observable.
- A quantum predicate in a Hilbert space \mathcal{H} is a Hermitian operator M in \mathcal{H} with all its eigenvalues lying within the unit interval $[0,1]$.
- The set of predicates in \mathcal{H} is denoted $\mathcal{P}(\mathcal{H})$.
- Satisfaction of quantum predicates: $\operatorname{tr}(M \rho)$ may be interpreted as the degree to which quantum state ρ satisfies quantum predicate M.
- Let M be a Hermitian operator in \mathcal{H}. The following statements are equivalent:

1. $M \in \mathcal{P}(\mathcal{H})$ is a quantum predicate
2. $0_{\mathcal{H}} \sqsubseteq M \sqsubseteq I_{\mathcal{H}}$
3. $0 \leq \operatorname{tr}(M \rho) \leq 1$ for all density operators $\rho \in \mathcal{H}$

Quantum predicates

Lemma For any observables M, N, the following two statements are equivalent:

1. $M \sqsubseteq N$
2. $\operatorname{tr}(M \rho) \leq \operatorname{tr}(N \rho)$ for all density operators $\rho \in \mathcal{H}$

Lemma The set $\mathcal{P}(\mathcal{H})$, \sqsubseteq of quantum predicates with the Löwner partial order is a CPO.

Quantum preconditions

- Let $M, N \in \mathcal{P}(\mathcal{H})$ be quantum predicates, $\mathcal{E} \in \mathcal{Q O}(\mathcal{H})$ a quantum operation. Then M is a precondition of N w.r.t. \mathcal{E}, written $\{M\} \mathcal{E}\{N\}$, if

$$
\operatorname{tr}(M \rho) \leq \operatorname{tr}(N \mathcal{E}(\rho))
$$

for all density operators $\rho \in \mathcal{H}$.

- Intuition: a probabilistic version of implication relation - if state ρ satisfies predicate M, then the state after transformation \mathcal{E} from ρ satisfies predicate N.

Quantum weakest preconditions

Let $M \in \mathcal{P}(\mathcal{H})$ be a quantum predicate, $\mathcal{E} \in \mathcal{Q O}(\mathcal{H})$ a quantum operation. The weakest precondition of M w.r.t. \mathcal{E} is a quantum predicate $w p(\mathcal{E})(M)$ satisfying

1. $\{w p(\mathcal{E})(M)\} \mathcal{E}\{M\}$
2. for all quantum predicates $N,\{N\} \mathcal{E}\{M\}$ implies $N \sqsubseteq w p(\mathcal{E})(M)$.

Characterisation of quantum weakest preconditions

Using Kraus operators:
Let $\mathcal{E} \in \mathcal{Q O}(\mathcal{H})$ be represented by the set $\left\{E_{i}\right\}$ of operators

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger}
$$

Then for each predicate $M \in \mathcal{P}(\mathcal{H})$:

$$
w p(\mathcal{E})(M)=\sum_{i} E_{i}^{\dagger} M E_{i} .
$$

Characterisation of quantum weakest preconditions

Using system-environment model:
If quantum operation \mathcal{E} is given by

$$
\mathcal{E}(\rho)=\operatorname{tr}_{E}\left(P U\left(\left|e_{0}\right\rangle\left\langle e_{0}\right| \otimes \rho\right) U^{\dagger} P\right)
$$

then

$$
w p(\mathcal{E})(M)=\left\langle e_{0}\right| U^{\dagger} P\left(M \otimes I_{E}\right) P U\left|e_{0}\right\rangle
$$

Schrödinger-Heisenberg duality

- Denotationally, a quantum program is a forward state transformer \mathcal{E} :

$$
\begin{aligned}
\mathcal{E}: & \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H}), \\
& \rho \mapsto \mathcal{E}(\rho) \text { for each } \rho \in \mathcal{D}(\mathcal{H})
\end{aligned}
$$

- A weakest precondition defines a backward quantum predicate transformer:

$$
\begin{aligned}
w p(\mathcal{E}): & \mathcal{P}(\mathcal{H}) \rightarrow \mathcal{P H}, \\
& M \mapsto w p(\mathcal{E})(M) \text { for each } M \in \mathcal{P}(\mathcal{H})
\end{aligned}
$$

Schrödinger-Heisenberg duality

Let \mathcal{E} be a quantum operation mapping density operators to themselves, \mathcal{E}^{*} an operator mapping Hermitian operators to themselves. If for each density operator ρ, Hermitian operator M,

$$
(\text { Duality }) \quad \operatorname{tr}(M \mathcal{E}(\rho))=\operatorname{tr}\left(\mathcal{E}^{*}(M) \rho\right)
$$

then \mathcal{E} and \mathcal{E}^{*} are (Schrödinger-Heisenberg dual).

$$
\begin{array}{cccc}
\rho & \models & \mathcal{E}^{*}(M) \\
\mathcal{E} \downarrow & & \uparrow \mathcal{E}^{*} \\
\mathcal{E}(\rho) & \models & M
\end{array}
$$

Any quantum operation $\mathcal{E} \in \mathcal{Q} \mathcal{O}(\mathcal{H})$ and its weakest precondition $w p(\mathcal{E})$ are dual to each other.

Basic properties of quantum weakest preconditions

Let $\lambda \geq 0, \mathcal{E}, \mathcal{F} \in \mathcal{Q O}(\mathcal{H})$, let $\left\{\mathcal{E}_{n}\right\}$ be an increasing sequence in $\mathcal{Q O}(\mathcal{H})$.

1. $w p(\lambda \cdot \mathcal{E})=\lambda \cdot w p(\mathcal{E})$ provided $\lambda \cdot \mathcal{E} \in \mathcal{Q O}(\mathcal{H})$;
2. $w p(\mathcal{E}+\mathcal{F})=w p(\mathcal{E})+\wp(\mathcal{F})$ provided $\mathcal{E}+\mathcal{F} \in \mathcal{Q O}(\mathcal{H})$;
3. $w p(\mathcal{E} \circ \mathcal{F})=w p(\mathcal{F}) \circ w p(\mathcal{E}) ;$
4. $w p\left(\bigsqcup_{n=0}^{\infty}\right)=\bigsqcup_{n=0}^{\infty} w p\left(\mathcal{E}_{n}\right)$, with the later being defined as follows:

$$
\left(\bigsqcup_{n=0}^{\infty} w p\left(\mathcal{E}_{n}\right)\right)(M):=\bigsqcup_{n=0}^{\infty} w p\left(\mathcal{E}_{n}\right)(M)
$$

Floyd-Hoare logic

A correctness formulas is a statement of the form

$$
\{P\} S\{Q\}
$$

where

- S is a quantum program
- $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ are quantum predicates in $\mathcal{H}_{\text {all }}$
- P is called the precondition, Q the postcondition.

Partial and total correctness

- Partial correctness: If a state satisfies precondition P, by executing S, either the program does not terminate, or it terminates in a state satisfying the postcondition Q.
- Total correctness: If a state satisfies precondition P, by executing S, the program must terminate and it terminates in a state satisfying the postcondition Q.

Partial and total correctness

- The Hoare triple $\{P\} S\{Q\}$ is valid in the sense of total correctness, written

$$
\models_{t o t}\{P\} S\{Q\}
$$

if

$$
\operatorname{tr}(P \rho) \leq \operatorname{tr}(Q \llbracket S \rrbracket(\rho))
$$

for all $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$, where $\llbracket S \rrbracket$ is the semantics of S.

- The Hoare triple $\{P\} S\{Q\}$ is valid in the sense of partial correctness, written

$$
\models_{p a r}\{P\} S\{Q\}
$$

if

$$
\operatorname{tr}(P \rho) \leq \operatorname{tr}(Q \llbracket S \rrbracket(\rho))+(\operatorname{tr}(\rho)-\operatorname{tr}(\llbracket S \rrbracket(\rho)))
$$

for all $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

Basic properties of correctness

- If $\models_{\text {tot }}\{P\} S\{Q\}$ then $\models_{\text {par }}\{P\} S\{Q\}$.
- For any quantum program S, and predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$,

$$
\models_{\text {tot }}\left\{0_{\mathcal{H}_{\text {all }}}\right\} S\{Q\}, \quad \models_{\text {par }}\{P\} S\left\{I_{\mathcal{H}_{\text {all }}}\right\} .
$$

- (Linearity) For any $P_{1}, P_{2}, Q_{1}, Q_{2} \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ and $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1} P_{1}+\lambda_{2} P_{2}, \lambda_{1} Q_{1}+\lambda_{2} Q_{2} \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, if

$$
\models_{t o t}\left\{P_{i}\right\} S\left\{Q_{i}\right\}(i=1,2)
$$

then

$$
\models_{t o t}\left\{\lambda_{1} P_{1}+\lambda_{2} P_{2}\right\} S\left\{\lambda_{1} Q_{1}+\lambda_{2} Q_{2}\right\}
$$

The same holds for partial correctness if $\lambda_{1}+\lambda_{2}=1$.

Weakest (liberal) preconditions

- Let S be a quantum program, $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ a quantum predicate in $\mathcal{H}_{\text {all }}$.

1. The weakest precondition of S w.r.t. P is the quantum predicate wp.S.P $\in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ satisfying:

- $\models_{\text {tot }}\{w p . S . P\} S\{P\}$;
- if quantum predicate $Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ satisfies $\models_{\text {tot }}\{Q\} S\{P\}$ then $Q \sqsubseteq w p . S . P$.

2. The weakest liberal precondition of S w.r.t. P is the quantum predicate wlp.S.P $\in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ satisfying:

- $\models_{\text {par }}\{$ wlp.S.P $\} S\{P\}$;
- if quantum predicate $Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ satisfies $\models_{\text {par }}\{Q\} S\{P\}$ then $Q \sqsubseteq w$.S.P.
- Equivalence of semantic and syntactic definitions w p.S. $P=w p(\llbracket S \rrbracket)(P)$.

Structural representation of weakest liberal preconditions

- wlp.skip. $P=P$.
- If type $(q)=$ Bool, then

$$
w l p .(q:=|0\rangle) . P=|0\rangle_{q}\langle 0| P|0\rangle_{q}\langle 0|+|1\rangle_{q}\langle 0| P|0\rangle_{q}\langle 1|
$$

If $\operatorname{type}(q)=$ Int, then $w l p \cdot(q:=|0\rangle) \cdot P=\sum_{n=-\infty}^{\infty}|n\rangle_{q}\langle 0| P|0\rangle_{q}\langle n|$

- wlp. $(U[\bar{q}]) . P=U^{\dagger} P U$.
- $w l p \cdot\left(S_{1} ; S_{2}\right) \cdot P=w l p \cdot S_{1} \cdot\left(w l p \cdot S_{2} \cdot P\right)$.
- wlp. (if $\left.\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right) \cdot P=\sum_{m} M_{m}^{\dagger}\left(w l p \cdot S_{m} \cdot P\right) M_{m}$.
- wlp. $($ while $M[\bar{q}]=1$ do $S) \cdot P=\sqcap_{n=0}^{\infty} P_{n}$, where $P_{0}=I_{\mathcal{H}_{\text {all }}}$,

$$
P_{n+1}=M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger}\left(w l p . S . P_{n}\right) M_{1} \text { for all } n \geq 0
$$

Trace-preserving property

- For any quantum program S, quantum predicate $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$, and any partial density operator $\rho \in \mathcal{D}\left(\mathcal{H}_{q l l}\right)$:

$$
\begin{aligned}
\operatorname{tr}((w p . S . P) \rho) & =\operatorname{tr}(P \llbracket S \rrbracket(\rho)) \\
\operatorname{tr}((w l p . S . P) \rho) & =\operatorname{tr}(P \llbracket S \rrbracket(\rho))+(\operatorname{tr}(\rho)-\operatorname{tr}(\llbracket S \rrbracket \rho)) .
\end{aligned}
$$

- Fixed point characterisation. Write while for the quantum loop "while $M[\bar{q}]=1$ do S ". Then for any $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$
$-w p . w h i l e . P=M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger}(w p . S .(w p . w h i l e . P)) M_{1}$.
$-w l p . w h i l e . P=M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger}(w l p . S .(w l p . w h i l e . P)) M_{1}$.

Proof system for partial correctness

- $\{P\}$ skip $\{P\}$
- If type $(q)=$ Bool, then

$$
\left\{|0\rangle_{q}\langle 0| P|0\rangle_{q}\langle 0|+|1\rangle_{q}\langle 0| P|0\rangle_{q}\langle 1|\right\} q:=|0\rangle\{P\}
$$

If type $(q)=$ Int, then

$$
\left\{\sum_{n=-\infty}^{\infty}|n\rangle_{q}\langle 0| P|0\rangle_{q}\langle n|\right\} q:=|0\rangle\{P\}
$$

- $\left\{U^{\dagger} P U\right\} U[\bar{q}]\{P\}$

Proof system for partial correctness

$$
\begin{aligned}
& \text { - } \frac{\{P\} S_{1}\{Q\} \quad\{Q\} S_{2}\{R\}}{\{P\} S_{1} ; S_{2}\{R\}} \\
& \text { - } \frac{\left\{P_{m}\right\} S\{Q\} \text { for all } m}{\left\{\sum_{m} M_{m}^{\dagger} P_{m} M_{m}\right\} \text { if }\left(\square m \cdot M[\bar{q}]=m \rightarrow S_{m}\right)\{Q\}} \\
& \text { - } \frac{\{Q\} S\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\}}{\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\} \text { while } M[\bar{q}]=1 \text { do } S\{P\}} \\
& \text { - } \frac{P \sqsubseteq P^{\prime}\left\{P^{\prime}\right\} S\left\{Q^{\prime}\right\} \quad Q^{\prime} \sqsubseteq Q}{\{P\} S\{Q\}}
\end{aligned}
$$

Proof system for partial correctness

If $\{P\} S\{Q\}$ is derivable in the previous proof system, we write $\vdash_{\text {par }}\{P\} S\{Q\}$.

- Soundness For any program S and predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$

$$
\vdash_{\text {par }}\{P\} S\{Q\} \text { implies } \models_{\text {par }}\{P\} S\{Q\}
$$

- Completeness For any program S and predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$

$$
\models_{p a r}\{P\} S\{Q\} \text { implies } \vdash_{\text {par }}\{P\} S\{Q\}
$$

Bound (ranking) functions

Let $P \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$ be a quantum predicate, $\epsilon>0$ be a real number.
A function

$$
t: \mathcal{D}\left(\mathcal{H}_{\text {all }}\right) \rightarrow \omega
$$

is a (P, ϵ)-bound function of quantum loop

$$
\text { while } M[\bar{q}]=1 \text { do } S
$$

if for all $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$,

1. $t\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{\dagger}\right)\right) \leq t(\rho)$;
2. $\operatorname{tr}(P \rho) \geq \epsilon$ implies

$$
t\left(\llbracket S \rrbracket\left(M_{1} \rho M_{1}^{\dagger}\right)\right)<t(\rho)
$$

Characterisation of bound functions

The following two statements are equivalent:

1. for any $\epsilon>0$, there exists a (P, ϵ)-bound function t_{ϵ} of the loop while $M[\bar{q}]=1$ do S;
2. $\lim _{n \rightarrow \infty} \operatorname{tr}\left(P\left(\llbracket S \rrbracket \circ \mathcal{E}_{1}\right)^{n}(\rho)\right)=0$ for all $\rho \in \mathcal{D}\left(\mathcal{H}_{\text {all }}\right)$.

Proof system for total correctness

Rule for while loop: if

- $\{Q\} S\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\}$
- for any $\epsilon>0, t_{\epsilon}$ is a $\left(M_{1}^{\dagger} Q M_{1}, \epsilon\right)$-bound function of loop while $M[\bar{q}]=1$ do S
then $\left\{M_{0}^{\dagger} P M_{0}+M_{1}^{\dagger} Q M_{1}\right\}$ while $M[\bar{q}]=1$ do $S\{P\}$

Proof system for total correctness

If $\{P\} S\{Q\}$ is derivable in the previous proof system for total correctness, we write $\vdash_{\text {tot }}\{P\} S\{Q\}$.

- Soundness For any program S and predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$

$$
\vdash_{\text {tot }}\{P\} S\{Q\} \text { implies } \models_{\text {tot }}\{P\} S\{Q\}
$$

- Relative completeness For any program S and predicates $P, Q \in \mathcal{P}\left(\mathcal{H}_{\text {all }}\right)$

$$
\models_{\text {tot }}\{P\} S\{Q\} \text { implies } \vdash_{\text {tot }}\{P\} S\{Q\}
$$

Quantum Algorithms

Grover's algorithm

Suppose there are $N=2^{n}$ items in a database. The aim is to search the item indexed by k. Assume the existence of a function f with $f(x)=1$ if $x=k$ and 0 otherwise.

Conditional Phase Flip Operator

Grover's algorithm

1. $\left|\psi_{0}\right\rangle=|0\rangle^{\otimes n}|0\rangle$
2. $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{N}} \sum_{x}|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
3. Phase kickback: $\left|\psi_{2}\right\rangle=U_{f}\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{N}} \sum_{x}(-1)^{f(x)}|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
4. View the equal superposition state $\left|\psi_{i n}\right\rangle=\frac{1}{\sqrt{N}} \sum_{x}(-1)^{f(x)}|x\rangle$ as a linear combination of two vectors.

$$
\left|\psi_{i n}\right\rangle=\cos \theta|c\rangle+\sin \theta|k\rangle
$$

with $\theta=\arcsin \frac{1}{\sqrt{N}}$.
5. Apply U_{f} on $\left|\psi_{i n}\right\rangle$ gives $\left|\psi_{m i d}\right\rangle=\cos \theta|c\rangle-\sin \theta|k\rangle$. It is a relfection about vector $|c\rangle$.

Grover's algorithm

(a) Initial Amplitudes
(b) Amplitudes after U_{f} transform
(c) Amplitudes after $U_{e q} U_{f}$ transform

Grover's algorithm

6. Reflect vector $\left|\psi_{m i d}\right\rangle$ over the equal superposition state vector $\left|\psi_{e q}\right\rangle$. Let

$$
\begin{gathered}
U_{\text {eq }}=2\left|\psi_{e q}\right\rangle\left\langle\psi_{e q}\right|-I=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right] \\
\left|\psi_{\text {out }}\right\rangle=U_{\text {eq }}\left|\psi_{\text {mid }}\right\rangle=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left[\begin{array}{c}
\cos \theta \\
-\sin \theta
\end{array}\right] \\
=\left[\begin{array}{c}
\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta
\end{array}\right]=\left[\begin{array}{c}
\cos 3 \theta \\
\sin 3 \theta
\end{array}\right]=\cos 3 \theta|c\rangle+\sin 3 \theta|k\rangle
\end{gathered}
$$

7. Apply U_{f} followed by $U_{e q}$ for m iterations, the final output state $\left(U_{e q} U_{f}\right)^{m}\left|\psi_{i n}\right\rangle$ will be close to $|k\rangle$.
8. The U_{f} transformation is the same as in the Deutsch-Jozsa and

Bernstein-Vajirani algorithms. $U_{e q}$ can be slightly simplified as:

$$
U_{e q}=H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I\right) H^{\otimes n}\right.
$$

The unitary transformation $\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I\right)\right.$ maps $|x\rangle$ to $|x\rangle$ if $|x\rangle=|0\rangle^{\otimes n}$, and to $-|x\rangle$ otherwise.

