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Abstract

Verifying temporal properties of quantum systems, including quantum Markov chains (QMCs),
has attracted an increasing interest in the last decade. Typically, the properties are specified
by quantum computation tree logic (QCTL), in which reachability analysis plays a central role.
However, safety as the dual problem is known little. Motivated by this, we propose a more
expressive logic — QCTL+ (QCTL plus), which extends QCTL by allowing the conjunction in
path formulas and the negation in the top level of path formulas. The former can be adopted
to express conditional events, and the latter can express safety. To deal with conjunction, we
present a product construction of classical states in the QMC and the tri-valued truths of atomic
path formulas; to deal with negation, we develop an algebraic approach to compute the safety
of the bottom strongly connected component subspaces with respect to a super-operator under
some necessary and sufficient convergence conditions. Thereby we conditionally decide QCTL+

formulas over QMCs; without the convergence conditions the safety problem still remains open.
The complexity of our method is provided in terms of the size of both the input QMC and the
QCTL+ formula.
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1. Introduction1

Quantum computing has attracted more and more interest in the last decades, since it of-2

fers the possibility to efficiently solve important problems such as integer factorization [30],3

unstructured search [17], and solving linear equations [20]. To realize the potential of quantum4

computing, it is indispensable to develop quantum software that can control quantum devices to5

execute algorithms and thus solve practical problems [6]. However, it is much more challenging6

to ensure the correctness of quantum systems, as we can see from various attacks on the quan-7

tum key distribution protocol [33, 14]. Therefore, there is an urgent need to develop effective8

verification techniques to improve the trustworthiness of quantum systems.9

Model checking [8, 2] is one of the most successful techniques for the formal verification10

of classical hardware and software systems. Usually it is based on Markov models. For clas-11

sical Markov chains (MCs), early work dates back to 1980s. Based on computation tree logic12
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(CTL) [7], Hansson and Jonsson introduced probabilistic CTL (PCTL) by adding the probability-13

quantifier, and further gave an algorithm for checking the validity of the PCTL formulas over14

MCs [18], in which reachability analysis plays a central role. Like CTL, PCTL is a two-level15

logic consisting of state formulas and path formulas. The syntax of PCTL path formulas al-16

lows neither conjunction in path formulas nor negation. The former can be adopted to express17

conditional events, and the latter can express safety as the dual problem. Whereas, both conjunc-18

tion and negation are allowed in linear temporal logic (LTL) [29]. A natural extension of PCTL19

is PCTL∗, introduced by Aziz et al. [1], which subsumes PCTL and LTL. The decidability of20

PCTL∗ formulas over MCs follows from the fact in [13] that a set of paths satisfying a formula in21

probabilistic LTL is measurable. Furthermore, Bianco and de Alfaro presented model checking22

algorithms for PCTL and PCTL∗ formulas over Markov decision processes (MDP), in which the23

probabilistic behavior coexists with nondeterminism [4].24

Model checking has also been extended to the quantum setting to verify the correctness of25

quantum programs [37]. Usually, the behaviour of a quantum program can be described by26

a formal model such as a quantum Markov chain (QMC) [16]. The QMC was shown to be27

able to describe some hybrid systems [23]. Under it, the authors considered the reachability28

probability [38], the repeated reachability probability [15], and the model checking of linear time29

properties [23] and a quantum analogy of CTL (QCTL) [16]. QCTL allows for trace-quantifier30

formulas, by which the probabilities of specified properties can be taken into consideration. A31

key step in their work is decomposing the state space (known as a Hilbert space) into a direct-32

sum of some bottom strongly connected component (BSCC) subspaces plus a maximal transient33

subspace with respect to a given super-operator. After decomposition, all the aforementioned34

problems were shown to be computable/decidable in polynomial time.35

In the current work, we focus on the properties specified by a more expressible logic called36

QCTL+ (QCTL plus), which extends QCTL [38] by allowing conjunction in path formulas and37

negation in the top level of path formulas. This logic allows for two kinds of quantifier formulas,38

instead of probability-quantifier formulas in PCTL: trace-quantifier and fidelity-quantifier for-39

mulas. The former employs the notion of positive operator valued measure (POVM) to quantify40

sets of infinite paths in QMCs, and the latter makes use of the notion of super-operator valued41

measure (SOVM). Unlike classical Markov chains, QMCs have transitions weighted by super-42

operators instead of numerical probabilities, and it is natural to introduce SOVMs as in [16]. A43

POVM is conceptually more succinct and easier to manipulate, and it has served as the most gen-44

eral formulation of measurements in quantum physics [27], so we also investigate the semantics45

entailed by this measure [35].46

Fidelity is a popular distance measure in quantum computing [31, 12]. It is one of the most47

widely used quantities to quantify uncertainty of noise in experimental quantum physics and48

quantum engineering communities; for example, see [26, 5]. When quantifying the degree of49

satisfaction for a property, we have the freedom to choose a probability or a fidelity, correspond-50

ing to POVM and SOVM, respectively. Their difference can be seen from a simple example.51

Suppose that a quantum system is in the state described by a density operator ρ and some quan-52

tum operation E is applied, changing the quantum system to the state E(ρ). As an abstraction53

on the distance between ρ and E(ρ), the probability measure is mainly determined by the trace54

of E(ρ). For instance, the quantum states ρ = |0〉〈0| and E(ρ) = |1〉〈1| (where E is the bit flip)55

have the same trace 1, but they are different states. Whereas, the fidelity concerns how well the56

quantum operation E has preserved the state ρ of the quantum system, whose arc-cosine value57

is a precise metric between the aforementioned ρ and E(ρ). For instance, the fidelity between58

|0〉〈0| and |1〉〈1| is 0 as we expected. Hence the probability measure does not suffice to recognize59
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general quantum states, but fidelity does!60

To decide the trace-quantifier and fidelity-quantifier formulas, we need to first synthesize61

the super-operators of path formulas embedded into them. There are three kinds of atomic path62

formulas — the next formula, the time-bounded until formula, and the time-unbounded until63

formula. We can directly obtain the super-operators for the former two kinds according to the64

semantics of QCTL+. Whereas, for the last kind, we have to resort to the matrix representation65

of the super-operators F that characterizes state transitions. The BSCC subspaces of F are66

subsets of the state space, in which all states are pairwise reachable with probability one under67

the quantum operation F , and thus yield deadlock. After removing all BSCC subspaces of F ,68

we could get an explicit matrix fraction describing the series of repeatedly applying F .69

Proceeding to deal with conjunction and disjunction in atomic path formulas, we present70

a product construction of classical states in the QMC and the tri-valued truths (“true”, “unde-71

termined” and “false”) of atomic path formulas. After unrolling with those product states, we72

reduce the arbitrary conjunction and disjunction in atomic path formulas on the original QMC73

to a single atomic path formula on the product QMC with SOVM being preserved. Next, we74

deal with negation in atomic path formulas. The super-operators for the negations of the next75

formula and the time-bounded until formula can also be obtained according to the semantics of76

QCTL+. Whereas, for the negation of the time-unbounded until formula, we have to determine77

the ultimate density operators that stay in the BSCC subspaces with respect to F , which turn78

out to form a dense set, not a singleton. So we propose the necessary and sufficient convergence79

conditions that make the semantics unambiguous on the QMC. Under them we synthesize the80

super-operators. These super-operators are the SOVMs of the properties to be checked. The81

POVMs follow from them by matrix transformation. However, our approach of synthesizing82

super-operators would fail without those convergence conditions.83

Finally we decide trace-quantifier and fidelity-quantifier formulas using the aforementioned84

POVMs and SOVMs, respectively. If the input QMC is fed with an initial quantum state, the85

trace-quantifier and fidelity-quantifier formulas can be decided directly by matrix operations;86

otherwise we decide the trace-quantifier formula by real root isolation for polynomials and decide87

the fidelity-quantifier formula by quantifier elimination over real closed fields. The workflow of88

deciding the QCTL+ formulas on the QMC with an initial quantum state is given in Figure 1.89

The main contributions of this paper are summarized as follows.90

1. We propose the logic QCTL+ interpreted on QMCs that extends QCTL by allowing con-91

junction in path formulas and negation in the top level of path formulas.92

2. To deal with conjunction, we present a product construction of classical states in the QMC93

and the tri-valued truths of atomic path formulas.94

3. To deal with negation, we develop an algebraic approach for the safety of the BSCC sub-95

spaces under the necessary and sufficient convergence conditions.96

4. Two running examples — quantum teleportation protocol and quantum Bernoulli factory97

protocol — are provided to illustrate our method.98

Organization. The rest of the paper is structured as follows. In Section 2 we recall some basic99

concepts and results from quantum computing and number theory. In Section 3 we introduce the100

model of QMC. In Section 4 we define the syntax and the semantics of QCTL+. We synthesize101

super-operators for path formulas in Section 5, and decide QCTL+ state formulas and discuss the102

time complexities in Section 6. Finally, we conclude in Section 7.103
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Figure 1: Workflow of deciding the QCTL+ formulas on the QMC with an initial quantum state

2. Preliminaries104

2.1. Quantum computing105

Here we recall some basic notions and notations in quantum computing. Interested readers106

can refer to [27, 16] for more details. Let N, Z, R, C denote the sets of natural numbers, integers,107

real numbers, and complex numbers, respectively. In this paper, we adopt the Dirac notations108

that are standard in quantum computing:109

• |ψ〉 stands for a unit column vector labelled with ψ;110

• 〈ψ| B |ψ〉† is the Hermitian adjoint (transpose and complex conjugate entrywise) of |ψ〉;111

• 〈ψ1|ψ2〉 B 〈ψ1| |ψ2〉 is the inner product of |ψ1〉 and |ψ2〉;112

• |ψ1〉〈ψ2| B |ψ1〉 ⊗ 〈ψ2| is the outer product, where ⊗ denotes tensor product.113

Specifically, |i〉 with i ∈ Z+ denotes the vector whose i-th entry is 1 and the others are 0. Thus114

〈i|i〉 = 1 and 〈i| j〉 = 0 hold for all positive integers i, j ( j , i) by orthonormality.115

Let [n] (n ∈ N) denote the finite set {1, . . . , n}. LetH be a Hilbert space with finite dimension116

d B dim(H) throughout this paper. Unit elements |ψ〉 of H are usually interpreted as states of117

a quantum system. Since {|i〉 : i ∈ [d]} forms an orthonormal basis of H , any element |ψ〉 of H118

can be expressed as |ψ〉 =
∑

i∈[d] ci |i〉, where ci ∈ C (i ∈ [d]) satisfy
∑

i∈[d] |ci|
2 = 1. That is,119

the quantum state |ψ〉 is entirely determined by those coefficients ci. In a product Hilbert space120

H ⊗ H ′, let |ψ, ψ′〉 be a shorthand of the product state |ψ〉 |ψ′〉 B |ψ〉 ⊗ |ψ′〉 with |ψ〉 ∈ H and121

|ψ′〉 ∈ H ′; |ψ̂ ψ′〉 denotes a general joint state inH ⊗H ′ where ψ̂ ψ′ encoded as a whole symbol122

is a label. For example, the Bell state |Bell〉 = (|0, 0〉 + |1, 1〉)/
√

2 with label Bell is a general123

state that cannot be decomposed as a product one. For any |ψ1〉 , |ψ2〉 in H and |ψ′1〉 , |ψ
′
2〉 in124

H ′, the inner product of two product states |ψ1, ψ
′
1〉 and |ψ2, ψ

′
2〉 is defined by 〈ψ1, ψ

′
1 |ψ2, ψ

′
2〉 =125

〈ψ1|ψ2〉 〈ψ
′
1 |ψ

′
2〉.126
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Let LH be the set of linear operators onH , ranged over by letters in bold font, e.g. E,F, I,P.127

For conciseness, we will omit such a subscript H afterwards if it is clear from the context. A128

linear operator γ is Hermitian if γ = γ†; it is positive if 〈ψ| γ |ψ〉 ≥ 0 holds for all |ψ〉 ∈ H . Given129

a Hermitian operator γ, we have the spectral decomposition [27, Box 2.2] that130

γ =
∑
i∈[d]

λi |ψi〉〈ψi| , (1)

where λi ∈ R (i ∈ [d]) are the eigenvalues of γ and |ψi〉 are the corresponding eigenvectors.131

The support of γ is the subspace of H spanned by all eigenvectors associated with nonzero132

eigenvalues, i.e., supp(γ) B span({|ψi〉 : i ∈ [d] ∧ λi , 0}). A projector P is a positive operator133

of the form
∑

i∈[m] |ψi〉〈ψi| with m ≤ d, where |ψi〉 (i ∈ [m]) are orthonormal. Clearly, there is134

a bijective map between projectors P =
∑

i∈[m] |ψi〉〈ψi| and subspaces of H that are spanned by135

{|ψi〉 : i ∈ [m]}. To summarize, positive operators are Hermitian ones whose eigenvalues are136

nonnegative; projectors are positive operators whose eigenvalues are 0 or 1.137

The trace of a linear operator γ is defined as tr(γ) B
∑

i∈[d] 〈ψi| γ |ψi〉 for any orthonormal138

basis {|ψi〉 : i ∈ [d]} of H . A density operator (resp. partial density operator) ρ on H is a139

positive operator with trace 1 (resp. ≤ 1). It gives rise to a generic way to describe quantum140

states: if a density operator ρ is |ψ〉〈ψ| for some |ψ〉 ∈ H , it is said to be a pure state; otherwise it141

is a mixed one, i.e., ρ =
∑

i∈[d] pi |ψi〉〈ψi| under the spectral decomposition, where pi (i ∈ [d]) are142

positive eigenvalues (interpreted as the probabilities of taking the pure states |ψi〉) and their sum143

is 1. Let D≤1 be the set of partial density operators on H , and D the set of density operators.144

In a product Hilbert space H ⊗ H ′, γ ⊗ γ′ with γ ∈ LH and γ′ ∈ LH ′ has the partial traces145

trH ′ (γ ⊗ γ′) B tr(γ′)γ and trH (γ ⊗ γ′) B tr(γ)γ′, which result in linear operators on H and H ′,146

respectively. The (partial) trace is defined to be linear in its input.147

A super-operator E on H is a linear operator on LH , ranged over by letters in calligraphic148

font, e.g. E,F ,I,P. A super-operator is completely positive if for any Hilbert space H ′, the149

trivially extended operator E ⊗ IH ′ maps positive operators on LH⊗H ′ to positive operators150

on LH⊗H ′ , where IH ′ is the identity super-operator on H ′. Let S be the set of completely151

positive super-operators on H . By Kraus representation [27, Theorem 8.3], a super-operator E152

is completely positive on H if and only if there are m linear operators E1,E2, . . . ,Em ∈ L with153

some m ≤ d2 (called Kraus operators), such that for any γ ∈ L, we have154

E(γ) =
∑
`∈[m]

E` γE†
`
. (2)

The description of E is given by those Kraus operators {E` : ` ∈ [m]}. Thus, the sum E1 + E2155

of super-operators E1 = {E1,` : ` ∈ [m1]} and E2 = {E2,` : ` ∈ [m2]} is given by the union156

{E1,` : ` ∈ [m1]}∪{E2,` : ` ∈ [m2]}; the composition E2◦E1 is given by {E2,`2 E1,`1 : `1 ∈ [m1]∧`2 ∈157

[m2]}. In a product Hilbert space H ⊗ H ′, for super-operators E = {E` : ` ∈ [m]} ∈ SH and158

E′ = {E′` : ` ∈ [m′]} ∈ SH ′ , the product super-operator E⊗E′ is given by {E` : ` ∈ [m]}⊗ {E′` : ` ∈159

[m′]} = {E` ⊗E′`′ : ` ∈ [m]∧ `′ ∈ [m′]}. It is easy to validate that (E⊗E′)(γ ⊗ γ′) = E(γ)⊗E′(γ′)160

holds for all γ ∈ LH and γ′ ∈ LH ′ . The partial trace can be extended toSH⊗SH ′ as trH (E⊗E′) B161 ∑
i∈[d]{〈ψi|E` : ` ∈ [m]}⊗E′ and trH ′ (E⊗E′) B

∑
i∈[d′] E⊗{〈ψ

′
i |E
′
` : ` ∈ [m′]} for any orthonormal162

basis {|ψi〉 : i ∈ [d]} of H and {|ψ′i〉 : i ∈ [d′]} of H ′ and for any E = {E` : ` ∈ [m]} ∈ SH and163

E′ = {E′` : ` ∈ [m′]} ∈ SH ′ .164

A partial order v can be defined on L as: ρ1 v ρ2 if ρ2 − ρ1 is positive. A trace pre-order .165

can be defined on S as: E1 . E2 if tr(E1(ρ)) ≤ tr(E2(ρ)) holds for all ρ ∈ D. The equivalence166
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E1 h E2 means that both E1 . E2 and E1 & E2 hold. For a super-operator E = {E` : ` ∈ [m]},167

the completeness E h I holds if and only if
∑
`∈[m] E†

`
E` = I where I is the identity operator. Let168

S.I be the set of trace-nonincreasing super-operators E, i.e., S.I = {E ∈ S : E . I}.169

For a super-operator E ∈ S.I and a density operator ρ ∈ D, the fidelity is defined as170

Fid(E, ρ) B tr
√
ρ1/2E(ρ)ρ1/2; (3a)

when ρ is a pure state |ψ〉〈ψ|, it is simply171

Fid(E, |ψ〉〈ψ|) B
√
〈ψ| E(|ψ〉〈ψ|) |ψ〉. (3b)

The fidelity reflects how well the quantum operation E has preserved the quantum state ρ. The172

better the quantum state is preserved, the larger the fidelity would be. We can see 0 ≤ Fid(E, ρ) ≤173

1 where the equality in the first inequality holds if and only if the supports of ρ and E(ρ) are or-174

thogonal, and the equality in the second inequality holds if and only if E = I. More technically,175

the fidelity measures the average angle between the vectors in supp(ρ) and those in supp(E(ρ)),176

which reveals that arccos Fid(E, ρ) would be a standard metric between ρ and E(ρ). For conser-177

vation, we would like to study the (minimum) fidelity of E, which is defined by178

Fid(E) B min
ρ∈D

Fid(E, ρ) = min
|ψ〉∈H

Fid(E, |ψ〉〈ψ|), (3c)

where the last equation comes from the joint concavity [27, Exercise 9.19].179

2.2. Number theory180

We recall some basic results about dense subsets and algebraic numbers.181

Definition 2.1. For a given set S ⊆ Rm with m ∈ N, a subset S ′ of S is dense if any element of S182

can be approximated up to arbitrarily precision by elements of S ′.183

Definition 2.2. A collection of numbers µ1, . . . , µm are Z-linearly independent if no linear rela-184

tion
∑

i∈[m] ziµi = 0 holds for some integer coefficients zi (i ∈ [m]), not all zero; otherwise they185

are Z-linearly dependent.186

Theorem 2.3 (Kronecker [19, Theorem 443]). The set {(kµ1 mod 1, . . . , kµm mod 1) : k ∈ N} of187

m-tuples is dense in [0, 1)m if 1, µ1, . . . , µm are Z-linearly independent.188

Corollary 2.4. The m-tuple set {(kµ1 mod 2π, . . . , kµm mod 2π) : k ∈ N} is dense in [0, 2π)m if189

π, µ1, . . . , µm are Z-linearly independent.190

Definition 2.5. A number λ is algebraic, denoted by λ ∈ A, if there is a nonzero Z-polynomial191

fλ(z) of least degree, satisfying fλ(λ) = 0.192

In the definition, such a polynomial fλ(z) is called the minimal polynomial of λ if the coefficients193

of fλ(z) have no common divisors , ±1. The degree D of λ is exactly degz( fλ), and the height H194

is the maximum of the absolute values of the coefficients in fλ(z). So, D and the bit length log2 H195

are reflected in the encoding size ‖λ‖. The standard encoding of λ is the minimal polynomial fλ196

plus an isolation disk in the complex plane that distinguishes λ from other roots of fλ.197
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Definition 2.6. Let µ1, . . . , µm be a collection of irrational complex numbers. The field extension198

Q(µ1, . . . , µm) : Q is the smallest set that contains µ1, . . . , µm and is closed under arithmetic199

operations, i.e., addition, subtraction, multiplication and division.200

Here those irrational complex numbers µ1, . . . , µm are called the generators of the field extension.201

A field extension is simple if it has only one generator. For instance, the simple field extension202

Q(
√

2) : Q is exactly the set {a + b
√

2: a, b ∈ Q}.203

Lemma 2.7 ([24, Algorithm 2]). Let λ1 and λ2 be two algebraic numbers of degree D1 and204

D2, respectively. There is an algebraic number λ0 of degree at most D1D2, such that the field205

extension Q(λ0) : Q is exactly Q(λ1, λ2) : Q.206

For the collection of algebraic numbers λ1, . . . , λm appearing in the input instance, by repeat-207

edly applying this lemma, we can obtain a simple field extension Q(λ0) : Q that can span all208

λ1, . . . , λm. Thus we suppose w.l.o.g. that the input instance takes all constants from Q(λ0) : Q,209

and ‖λ0‖ is reflected in the size of the input.210

Lemma 2.8 ([9, Corollary 4.1.5]). Let λ be an algebraic number of degree D, and f (z) a poly-211

nomial with degree D f and coefficients taken from Q(λ) : Q. There is a Q-polynomial g(z) of212

degree at most DD f , such that the roots of f (z) are those of g(z).213

The above lemma entails the fact that roots of all A-polynomials are also algebraic.214

Theorem 2.9 (Masser [25],[28, Theorem 3.1]). Let λ1, . . . , λm be unit algebraic numbers of de-215

gree at most D and height at most H. Then the free Abelian (addition) group {(z1, . . . , zm) ∈216

Zm : λz1
1 · · · λ

zm
k = 1} has a basis with entries bounded by (D log2 H)O(m2).217

The above result gives the complexity of finding such a basis, which is in the finite range (−B, B)m
218

with B = (D log2 H)O(m2) (i.e., PSPACE with respect to the number m of algebraic numbers, and219

PTIME with respect to the size D + log2 H of algebraic numbers when m is fixed).220

3. Quantum Markov Chain221

Let AP be a set of atomic propositions throughout this paper. For the consideration of com-222

putability, all occurring numbers are supposed to be algebraic, taken from the field extension223

Q(λ0) : Q for an appropriate algebraic number λ0. This field Q(λ0) : Q contains some irrational224

numbers, say the most common constant 1/
√

2 appeared in quantum computing.225

Definition 3.1 ([16, Definition 3.1]). A labelled quantum Markov chain (QMC for short) C over226

H is a tuple (S ,Q, L), in which227

• S is a finite set of the classical states,228

• Q : S × S → S.I is a transition super-operator matrix, satisfying that
∑

t∈S Q(s, t) h I229

holds for each s ∈ S , and230

• L : S → 2AP is a labelling function.231

Usually, a classical state s0 ∈ S is appointed as the initial one.232
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Let Hcq B C ⊗ H be the enlarged Hilbert space with C = span({|s〉 : s ∈ S }) corresponding233

to the whole classical–quantum system. Here {|s〉 : s ∈ S } is a set of orthonormal states serving234

as the quantization of classical system S . The dimension of Hcq is N B nd where n = |S |235

and d = dim(H). In the QMC C, a state ρcq is a density operator on Hcq with the mixed form236 ∑
s∈S |s〉〈s|⊗ρs where ρs ∈ D

≤1 (s ∈ S ) satisfy
∑

s∈S tr(ρs) = 1. Note that only the initial classical237

state s0 is specified in the model, while the initial quantum state ρs0 is not. We will consider the238

concrete and the parametric models, respectively, afterwards.239

The transition super-operator matrix Q is functionally analogous to the transition probability240

matrix in the ordinary Markov chain (MC). Actually, QMC extends MC by the fact that a QMC241

would be an MC when H is one-dimensional. Sometimes, it is convenient to combine all the242

super-operators in Q together to form a single super-operator, denotedF B
∑

s,t∈S {|t〉〈s|}⊗Q(s, t),243

on the enlarged Hilbert spaceHcq.244

A pathω in the QMC C is an infinite-state sequence in the form s0, s1, s2, . . ., where Q(si, si+1)245

, 0 and si ∈ S for i ≥ 0. Letω(i) be the (i+1)-th state ofω = s0, s1, s2, . . . for i ≥ 0, e.g. ω(0) = s0246

and ω(1) = s1. We denote by Path the set of all paths starting at the initial state s0, and by Pathfin247

the set of all finite paths starting at s0, i.e., Pathfin B {ω̄ : ω̄ is a finite prefix of some ω ∈ Path}.248

Example 3.2. Here we consider the quantum teleportation protocol [27]. Its background is de-249

scribed as follows. Suppose there are two partners: Alice and Bob. While together they generated250

a qubit pair q2 and q3, each took one qubit of the pair when they were separated. After that, Alice251

wants to send a qubit information |q1〉 to Bob. She can only use classical information. So she252

interacts the qubit q1 with the share of the entangled qubit pair q2, and measures two qubits in253

her possession by M1 and M2, respectively. Alice then sends the results to Bob. According to the254

measurement results, Bob performs the certain transformation to his qubit q3, whose information255

|q3〉 is expected to be Alice’s original qubit one |q1〉.256

Technically, the protocol can be implemented by the quantum circuit (see Figure 2). The257

symbols of some basic quantum gates and their meanings are given in Table 1, in which double258

lines represent classical wires which transmit the classical output after measurement.259

|q1〉 • H •

|q2〉

|q3〉 X Z |q1〉

Figure 2: Quantum circuit for the quantum teleportation protocol

We model the quantum teleportation protocol with the QMC C1 = (S ,Q, L) shown in Figure 3.
The state set S is {s0, s1, s2, s3, s4, s5, s6, s7}, in which s7 has label ok and others have no label.
Particularly, s0 is the initial classical state that prepares i) the information |q1〉 (on the first qubit)
to be sent and ii) the entangled information |q̂2 q3〉 (on the second and the third qubits) between
Alice and Bob. After a CNOT gate is applied on the first two qubits, we get state s1; then after
a Hadamard gate is applied to the first qubit, we get state s2. Performing a measurement on the
first two qubits gives rise to four outcomes “1,1”, “1,2”, “2,1” and “2,2”, and the system moves
to s3, s4, s5 and s6, respectively. If the states s3 is obtained, keep the last qubit unchanged, which
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Symbol Name Operation

X Pauli-X (bit flip) X = |1〉〈2| + |2〉〈1|

Z Pauli-Z (phase flip) Z = |1〉〈1| − |2〉〈2|

Y Pauli-Y (bit-phase flip) Y = −ı |1〉〈2| + ı |2〉〈1|

H Hadamard H = |+〉〈1| + |−〉〈2| with
|±〉 = (|1〉 ± |2〉)/

√
2

•
controlled-NOT (CNOT) |1〉〈1| ⊗ I + |2〉〈2| ⊗ X

measurement a collection {Mi}, e.g.
Mi = |i〉〈i|

Table 1: The symbols of some basic quantum gates and their specific operations

leads to the state s7. If s4, s5 and s6 are obtained, apply the bit, phase, bit–phase flips to the last
qubit, respectively, which leads to s7 too. Finally, s7 is the goal classical state indicating that the
information |q1〉 has been delivered to Bob. The transition super-operator matrix Q is given by
the following nonzero entries in Kraus representation:

Q(s0, s1) = {|1〉〈1| ⊗ I ⊗ I + |2〉〈2| ⊗ X ⊗ I} = CNOT1,2,

Q(s1, s2) = {H ⊗ I ⊗ I} = H1, Q(s7, s7) = {I ⊗ I ⊗ I} = I,

Q(s2, s3) = {|1〉〈1| ⊗ |1〉〈1| ⊗ I} = M1,1
1,2 , Q(s2, s4) = {|1〉〈1| ⊗ |2〉〈2| ⊗ I} = M1,2

1,2 ,

Q(s2, s5) = {|2〉〈2| ⊗ |1〉〈1| ⊗ I} = M2,1
1,2 , Q(s2, s6) = {|2〉〈2| ⊗ |2〉〈2| ⊗ I} = M2,2

1,2 ,

Q(s3, s7) = {I ⊗ I ⊗ I} = I3 = I, Q(s4, s7) = {I ⊗ I ⊗ X} = X3,

Q(s5, s7) = {I ⊗ I ⊗ Z} = Z3, Q(s6, s7) = {I ⊗ I ⊗ Y} = Y3,

where I = |1〉〈1| + |2〉〈2| is the identity operator, and X,Z,Y,H are referred to the descrip-260

tion in Table 1 with subscripts indicating which qubits are operated. Note that the factor ı in261

ıY = ZX yields a global phase of the resulting state, which is ignored in practice since it is not262

measurable [27, Subsection 2.2.7].263

In the QMC, ω1 = s0, s1, s2, s3, s7, s7, . . . is a path in the set Path, while its finite prefix264

ω̄1 = s0, s1, s2, s3, s7 is in Pathfin. Besides, we have to address that the initial quantum state265

(density operator) on s0 consists of two independent parts: |q1〉 and |q̂2 q3〉, which are parameters266

in the model. We will algorithmically determine them later. �267

To effectively reason about quantitative properties of QMC, we would restrict the family of268

basic events in consideration to be a countable set, and study the measures of the closure of that269

family under union and complement. Formally, we are to establish two measure spaces, named270

super-operator valued measure (SOVM) space and positive operator valued measure (POVM)271

space, over paths as follows.272

Definition 3.3. A measurable space is a pair (Ω,Σ), where Ω is a nonempty set and Σ is a σ-273

algebra on Ω that is a collection of subsets of Ω, satisfying:274

9
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start
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ok
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Figure 3: QMC for the quantum teleportation protocol

• Ω ∈ Σ, and275

• Σ is closed under countable union and complement.276

In addition, an SOVM space is a triple (Ω,Σ,∆), where (Ω,Σ) is a measurable space and ∆ : Σ→277

S.I is an SOVM, satisfying:278

• ∆(Ω) h I, and279

• ∆(
⊎

i Ai) h
∑

i ∆(Ai) for any pairwise disjoint Ai ∈ Σ;280

a POVM space is a triple (Ω,Σ,Λ), where Λ : Σ→ {M ∈ L : 0 vM v I} is a POVM, satisfying:281

• Λ(Ω) = I, and282

• Λ(
⊎

i Ai) =
∑

i Λ(Ai) for any pairwise disjoint Ai ∈ Σ.283

For a given finite path ω̄ ∈ Pathfin, we define the cylinder set as284

Cyl(ω̄) B {ω ∈ Path : ω has the prefix ω̄}; (4)

for C ⊆ Pathfin, we extend (4) by Cyl(C) B
⋃
ω̄∈C Cyl(ω̄). Particularly, we have Cyl(s0) = Path.285

Let Ω = Path and Π ⊆ 2Ω be the countable set of all cylinder sets {Cyl(ω̄) : ω̄ ∈ Pathfin} plus286

the empty set ∅. By [2, Chapter 10], there is a smallest σ-algebra Σ of Π that contains Π and is287

closed under countable union and complement. It is clear that the pair (Ω,Σ) forms a measurable288

space.289

Next, for a given finite path ω̄ = s0, s1, . . . , sn, we define the accumulated super-operator290

along with ω̄ as291

∆(Cyl(ω̄)) B

I if n = 0,
Q(sn−1, sn) ◦ · · · ◦ Q(s0, s1) otherwise.

(5a)

By [16, Theorem 3.2], the domain of ∆ can be extended to Σ, i.e., ∆ : Σ→ S.I, which is unique292

under the countable union
⋃

i Ai for any Ai ∈ Π and is an equivalence class of super-operators in293

terms of h under the complement Ac for some A ∈ Π. Hence the triple (Ω,Σ,∆) forms an SOVM294

space. Additionally, we would like to address that for two disjoint path sets, we can simply295
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sum up their super-operators to get a total measure; however, the sum is improper when the two296

path sets are overlapping, which could be resolved by using the measurable space on path sets297

established as above.298

Whereas, we define the accumulated positive operator along with ω̄ as299

Λ(Cyl(ω̄)) B

I if n = 0,
Q(s0, s1)† ◦ · · · ◦ Q(sn−1, sn)†(I) otherwise.

(5b)

Again, by a simplification of [16, Theorem 3.2], the domain of Λ can be extended to Σ, i.e.,300

Λ : Σ → {M ∈ L : 0 v M v I}, which is unique under the countable union
⋃

i Ai for any Ai ∈ Π301

and under the complement Ac for some A ∈ Π. Hence the triple (Ω,Σ,Λ) forms a POVM space.302

Example 3.4. Over the path set Path of C1 shown in Example 3.2, we can establish the SOVM303

and the POVM spaces as follows. For the finite path ω̄1 = s0, s1, s2, s3, s7, we can calculate304

• the SOVM ∆(ω̄1) as305

∆(ω̄1) = Q(s3, s7) ◦ Q(s2, s3) ◦ Q(s1, s2) ◦ Q(s0, s1)
= Q(s3, s7) ◦ Q(s2, s3) ◦ {|+〉〈1| ⊗ I ⊗ I + |−〉〈2| ⊗ X ⊗ I}
= Q(s3, s7) ◦ { 1

√
2
|1〉〈1| ⊗ |1〉〈1| ⊗ I + 1

√
2
|1〉〈2| ⊗ |1〉〈2| ⊗ I}

= { 1
√

2
|1〉〈1| ⊗ |1〉〈1| ⊗ I + 1

√
2
|1〉〈2| ⊗ |1〉〈2| ⊗ I},

• the POVM Λ(ω̄1) as306

Λ(ω̄1) = Q(s0, s1)† ◦ Q(s1, s2)† ◦ Q(s2, s3)† ◦ Q(s3, s7)†(I ⊗ I ⊗ I)

= Q(s0, s1)† ◦ Q(s1, s2)† ◦ Q(s2, s3)†(I ⊗ I ⊗ I)

= Q(s0, s1)† ◦ Q(s1, s2)†(|1〉〈1| ⊗ |1〉〈1| ⊗ I)

= Q(s0, s1)†(( 1
2 I + 1

2 X) ⊗ |1〉〈1| ⊗ I)

= 1
2 (|1〉〈1| ⊗ |1〉〈1| ⊗ I + |1〉〈2| ⊗ |1〉〈2| ⊗ I + |2〉〈1| ⊗ |2〉〈1| ⊗ I + |2〉〈2| ⊗ |2〉〈2| ⊗ I),

which is exactly E†E with E = 1
√

2
|1〉〈1|⊗ |1〉〈1|⊗ I+ 1

√
2
|1〉〈2|⊗ |1〉〈2|⊗ I being the unique307

Kraus operator of ∆(ω̄1).308

Similarly, we have that the SOVMs of ω̄2 = s0, s1, s2, s4, s7, ω̄3 = s0, s1, s2, s5, s7 and ω̄4 =

s0, s1, s2, s6, s7 are

∆(ω̄2) = Q(s4, s7) ◦ Q(s2, s4) ◦ Q(s1, s2) ◦ Q(s0, s1)

= { 1
√

2
|1〉〈1| ⊗ |2〉〈2| ⊗ X + 1

√
2
|1〉〈2| ⊗ |2〉〈1| ⊗ X},

∆(ω̄3) = Q(s5, s7) ◦ Q(s2, s5) ◦ Q(s1, s2) ◦ Q(s0, s1)

= { 1
√

2
|2〉〈1| ⊗ |1〉〈1| ⊗ Z − 1

√
2
|2〉〈2| ⊗ |1〉〈2| ⊗ Z},

∆(ω̄4) = Q(s6, s7) ◦ Q(s2, s6) ◦ Q(s1, s2) ◦ Q(s0, s1)

= { 1
√

2
|2〉〈1| ⊗ |2〉〈2| ⊗ Y − 1

√
2
|2〉〈2| ⊗ |2〉〈1| ⊗ Y}. �

From Example 3.4, we have seen the identity Λ(ω̄) = ∆(ω̄)†(IH ). Hence, the POVM Λ can309

be easily obtained, provided that the SOVM ∆ is known. The SOVM is indeed generic!310
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4. Quantum CTL Plus311

Now we propose the formal logic considered in this paper — QCTL+ (QCTL plus) — that312

extends quantum computation tree logic (QCTL) [16] by admitting the conjunction in the path313

formulas and the negation in the top level of path formulas.314

Definition 4.1. The syntax of QCTL+ is split into the following state formulas Φ and path for-315

mulas φ:316

Φ B a | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | F
tr
vM[φ] | Ffid

≤τ[φ] | Ftr
vM[¬φ] | Ffid

≤τ[¬φ]

φ B X Φ | Φ1U ≤kΦ2 | Φ1U Φ2 | φ1 ∧ φ2 | φ1 ∨ φ2

where a ∈ AP is an atomic proposition, 0 vM v I and τ ∈ Q are thresholds, and k ≥ 0 is a time317

bound.318

In this logic, X Φ is called the next formula, Φ1U ≤kΦ2 is the time-bounded until formula, Φ1U Φ2319

is the time-unbounded until formula, and all of them are atomic path formulas; the former four320

state formulas are basic ones, Ftr
vM[·] is the trace-quantifier formula and Ffid

≤τ[·] is the fidelity-321

quantifier formula. The QCTL+ formulas are referred to state formulas. It is generic to consider322

the comparison operators v,≤, since other comparison operators A,w,@, >,≥, <,= can be tack-323

led similarly. Next, Ftr
vM[¬φ] and Ffid

≤τ[¬φ] allow us to express the negation acting on the top324

level of path formulas, not on some arbitrary level of path formulas. The latter should be in325

the scope of the quantum analogy QCTL∗ of probabilistic CTL∗ [1] that is more expressive than326

our QCTL+. So, under this restriction, we do not directly allow the negation in the syntax of327

path formulas, but allow the negation in the path formulas embedded into the trace-quantifier328

and fidelity-quantifier formulas. The reason of imposing this restriction is to effectively synthe-329

size the super-operators in an explicit form, without which there would be nontrivial technical330

hardness (to be specified at the end of Subsection 5.3).331

Definition 4.2. The semantics of QCTL+ interpreted over a QMC C = (S ,Q, L) is given by the
satisfaction relation |=:

s |= a if a ∈ L(s),
s |= ¬Φ if s 6|= Φ,

s |= Φ1 ∧ Φ2 if s |= Φ1 and s |= Φ2,

s |= Φ1 ∨ Φ2 if s |= Φ1 or s |= Φ2,

s |= Ftr
vM[φ] if Λ({ω ∈ Path(s) : ω |= φ}) vM,

s |= Ffid
≤τ[φ] if Fid(∆({ω ∈ Path(s) : ω |= φ})) ≤ τ,

ω |= X Φ if ω(1) |= Φ,

ω |= Φ1U ≤kΦ2 if there is an i ≤ k such that ω(i) |= Φ2 and ω( j) |= Φ1 holds for all j < i,

ω |= Φ1U Φ2 if there is an i such that ω(i) |= Φ2 and ω( j) |= Φ1 holds for all j < i,

ω |= ¬φ if ω 6|= φ,

ω |= φ1 ∧ φ2 if ω |= φ1 and ω |= φ2,

ω |= φ1 ∨ φ2 if ω |= φ1 or ω |= φ2.
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Later on, we will use ∆(ω̄) and ∆(φ) to abbreviate ∆(Cyl(ω̄)) and ∆({ω ∈ Path : ω |= φ})332

respectively, and similar for the POVM Λ.333

Example 4.3. Consider the path ω1 = s0, s1, s2, s3, s7, s7, . . . on the QMC C1 shown in Exam-334

ple 3.2. We can see:335

• s7 |= ok and s 6|= ok for each s ∈ S \ {s7};336

• ω1 |= X¬ok, as ω1(1) = s1 6|= ok;337

• ω1 6|= true U ≤2ok, as ω1(i) 6|= ok for each i ≤ 2;338

• ω1 |= true U ok, as ω1(4) = s7 |= ok and ω1(i) |= true for each i < 4.339

The final classical state of the quantum teleportation protocol is s7 that is uniquely labelled
with ok, and the corresponding map from the initial quantum state to the final one is charac-
terized by the SOVM of all paths ω reaching ok, i.e., ∆(♦ok) = ∆({ω ∈ Path : ω |= true U ok}).
Since there are exactly four disjoint finite paths ω̄1 = s0, s1, s2, s3, s7, ω̄2 = s0, s1, s2, s4, s7,
ω̄3 = s0, s1, s2, s5, s7 and ω̄4 = s0, s1, s2, s6, s7 that reach ok, we get

∆(♦ok) = ∆(ω̄1) + ∆(ω̄2) + ∆(ω̄3) + ∆(ω̄4)

=


1
√

2
|1〉〈1| ⊗ |1〉〈1| ⊗ I + 1

√
2
|1〉〈2| ⊗ |1〉〈2| ⊗ I,

1
√

2
|1〉〈1| ⊗ |2〉〈2| ⊗ X + 1

√
2
|1〉〈2| ⊗ |2〉〈1| ⊗ X,

1
√

2
|2〉〈1| ⊗ |1〉〈1| ⊗ Z − 1

√
2
|2〉〈2| ⊗ |1〉〈2| ⊗ Z,

1
√

2
|2〉〈1| ⊗ |2〉〈2| ⊗ Y − 1

√
2
|2〉〈2| ⊗ |2〉〈1| ⊗ Y


.

5. Synthesizing Super-operators of Path Formulas340

Let Sat(Φ) denote the satisfying set {s ∈ S : s |= Φ}. From a bottom-up fashion (see Figure 1),341

Sat(Φ) for the basic state formulas Φ can be directly calculated by a scan over the labelling342

function L on S . Whereas, for trace-quantifier and fidelity-quantifier formulas Φ, one has to343

know the SOVMs of the path formulas φ embedded in Φ, which is just the main task of this344

section. We first review the known method for synthesizing the super-operators of three kinds of345

atomic path formulas in QCTL+. Then we reduce the conjunction and disjunction in atomic path346

formulas over the QMC to the time-unbounded until formula over a product QMC. Finally we347

synthesize the super-operators of the negation in atomic path formulas. Thereby, we synthesize348

the super-operators of all path formulas required in the syntax of QCTL+. Based on them, we349

will decide the trace-quantifier and fidelity-quantifier formulas in the coming section.350

5.1. Atomic path formulas351

Let Ps denote the projection super-operator {|s〉〈s|} ⊗ I = {|s〉〈s| ⊗ I} on the enlarged Hilbert352

space Hcq, and PΦ B {
∑

s|=Φ |s〉〈s|} ⊗ I = {
∑

s|=Φ |s〉〈s| ⊗ I}. Utilizing the mixed form of the353

classical–quantum state ρ =
∑

s∈S |s〉〈s| ⊗ ρs, we have the decomposition354

ρ =
∑
s|=Φ

|s〉〈s| ⊗ ρs +
∑
s 6|=Φ

|s〉〈s| ⊗ ρs = PΦ(ρ) + P¬Φ(ρ) (6)

for any state formula Φ. After an initial classical state s is fixed, the SOVMs of three kinds of355

path formulas can be obtained as follows.356
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• Supposing that Sat(Φ) is known, we have357

∆(X Φ) = ∆

⊎
t|=Φ

Cyl(s, t)

 =
∑
t|=Φ

∆(s, t) =
∑
t|=Φ

Q(s, t). (7a)

• Supposing that Sat(Φ1) and Sat(Φ2) are known, we have

∆(Φ1U ≤kΦ2) = ∆

 k⊎
i=0

ω ∈ Path : ω(i) |= Φ2 ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

k∑
i=0

∆


ω ∈ Path : ω(i) |= Φ2 ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

k∑
i=0

trC(PΦ2 ◦ (F ◦ PΦ1∧¬Φ2 )i ◦ Ps), (7b)

where trC is the partial trace that traces out the classical system C.358

• Supposing that Sat(Φ1) and Sat(Φ2) are known, we have

∆(Φ1U Φ2) = ∆

 ∞⊎
i=0

ω ∈ Path : ω(i) |= Φ2 ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

∞∑
i=0

∆


ω ∈ Path : ω(i) |= Φ2 ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

∞∑
i=0

trC(PΦ2 ◦ (F ◦ PΦ1∧¬Φ2 )i ◦ Ps). (7c)

For the latter two kinds, all satisfying paths ω can be classified upon the first time-stamp i that359

ω(i) |= Φ2 and ω( j) |= Φ1 for each j < i (or equivalently the unique time-stamp i that ω(i) |= Φ2360

and ω( j) |= Φ1 ∧ ¬Φ2 for each j < i). Thereby, we can get the pairwise disjoint resulting361

sets Ai = {ω ∈ Path : ω(i) |= Φ2 ∧
∧i−1

j=0 ω( j) |= (Φ1 ∧ ¬Φ2)}, whose SOVMs are obtained as362

trC(PΦ2 ◦ (F ◦ PΦ1∧¬Φ2 )i ◦ Ps), respectively.363

Example 5.1. Consider the quantum Bernoulli factory protocol [22]. It goes as follows. Cary364

and David want to select a leader by coin tossing. Perhaps, the coin is biased. To make the365

selection fair, they adopt the trick of von Neumann [32] that tosses the coin twice. If the result366

is “head followed by tail”, then Cary wins; if it is “tail followed by head”, then David wins;367

otherwise (either “head followed by head” or “tail followed by tail”) repeat the above process.368

In the quantum setting, we start with a state |q̂1 q2〉 in the two-qubit Hilbert space; tossing the369

first (resp. second) coin is modelled by applying the Hadamard gate H to the first (resp. sec-370

ond) qubit; the event “head followed by tail” is measured by M1 = {|1, 2〉〈1, 2|}, the event “tail371

followed by head” is measured by M2 = {|2, 1〉〈2, 1|}, the complement event is measured by372

M0 = {|1, 1〉〈1, 1| + |2, 2〉〈2, 2|}, and together {M0,M1,M2} form a projective measurement [27,373

Subsection 2.2.5]. Overall, the protocol is summarized by the quantum program:374
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1: |q̂1 q2〉 B?;375

2: while M[q1, q2] = 0 do376

3: H[q1];377

4: H[q2];378379

5: if M[q1, q2] = 1 then return Cary;380381

6: if M[q1, q2] = 2 then return David;382383

and is expressed by the QMC C2 = (S ,Q, L) in Figure 4. The state set S is {s0, s1, s2, s3, s4}, in384

which s3 is labelled with winC (Cary wins), s4 is labelled with winD (David wins), and others385

have no label. The initial classical state s0 prepares the initial quantum state |q̂1 q2〉. After386

measurement it is led to s2, s3 or s4, the latter two are goal classical states. The state s2 indicates387

that the coin would be tossed twice, i.e., applying H to q1 and to q2, returning to the state s0 for388

a restart. The transition super-operator matrix Q is given by the following nonzero entries:389

Q(s0, s2) = {|1, 1〉〈1, 1| + |2, 2〉〈2, 2|} = M0, Q(s0, s3) = {|1, 2〉〈1, 2|} = M1,

Q(s0, s4) = {|2, 1〉〈2, 1|} = M2, Q(s2, s1) = {H ⊗ I} = H1,

Q(s1, s0) = {I ⊗H} = H2, Q(s3, s3) = Q(s4, s4) = {I ⊗ I} = I.

We would like to use a single super-operator onHcq, combining all super-operator entries, as:390

F B {|s2〉〈s0|} ⊗ Q(s0, s2) + {|s3〉〈s0|} ⊗ Q(s0, s3) + {|s4〉〈s0|} ⊗ Q(s0, s4) +

{|s1〉〈s2|} ⊗ Q(s2, s1) + {|s3〉〈s3|} ⊗ Q(s3, s3) + {|s0〉〈s1|} ⊗ Q(s1, s0) +

{|s4〉〈s4|} ⊗ Q(s4, s4).

s0

start

s1 s2s3

winC

s4

winD

H2 H1

M0

M1

M2

I

I

Figure 4: The QMC modelling the quantum Bernoulli factory protocol

After having fixed the initial classical state s0, the SOVM space over Path can be established391

to check some interesting properties, say “Cary wins”, i.e., ♦winC ≡ true U winC . To this end,392

we first define the projection super-operators Ps0 = {|s0〉〈s0| ⊗ I}, PwinC = {|s3〉〈s3| ⊗ I} and393

P¬winC = {(|s0〉〈s0| + |s1〉〈s1| + |s2〉〈s2| + |s4〉〈s4|) ⊗ I}, and therefore F ◦ P¬winC is given by394

{|s2〉〈s0|} ⊗ Q(s0, s2) + {|s3〉〈s0|} ⊗ Q(s0, s3) + {|s4〉〈s0|} ⊗ Q(s0, s4) +

{|s0〉〈s1|} ⊗ Q(s1, s0) + {|s1〉〈s2|} ⊗ Q(s2, s1) + {|s4〉〈s4|} ⊗ Q(s4, s4).

The path set satisfying♦winC can be classified as Ai = {ω ∈ Path : ω(i) |= winC∧
∧i−1

j=0 ω( j) |=
¬winC} (i ≥ 0), which are pairwise disjoint; their SOVMs are

∆(A0) = trC(PwinC ◦ Ps0 ) = trC(0) = 0,
∆(A1) = trC(PwinC ◦ (F ◦ P¬winC ) ◦ Ps0 ) = trC({|s3〉〈s0|} ⊗ Q(s0, s3))

= Q(s0, s3) = {|1, 2〉〈1, 2|},
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∆(A2) = trC(PwinC ◦ (F ◦ P¬winC )2 ◦ Ps0 ) = trC(0) = 0,

∆(A3) = trC(PwinC ◦ (F ◦ P¬winC )3 ◦ Ps0 ) = trC(0) = 0,

∆(A4) = trC(PwinC ◦ (F ◦ P¬winC )4 ◦ Ps0 )
= trC({|s3〉〈s0|} ⊗ (Q(s0, s3) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)))

= Q(s0, s3) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2) = { 12 |1, 2〉〈1, 1| −
1
2 |1, 2〉〈2, 2|},

and so on. Finally, the SOVM ∆(♦winC) is calculated as the infinite sum
∑∞

i=0 ∆(Ai), which will395

be used to decide the trace-quantifier and fidelity-quantifier formulas in later, e.g. the nontermi-396

nation event Ftr
vM[¬♦(winC ∨ winD)]. �397

It is worth noticing that the SOVM (7c) is not in a closed form. To overcome it, we would398

phrase it using matrix series and rephrase it using matrix fraction. By Brouwer’s fixed-point399

theorem [21, Chapter 4], the existence of bottom strongly connected component (BSCC) sub-400

spaces (defined below) implies the existence of fixed-points that F ◦ PΦ1∧¬Φ2 (ρcq) = ρcq, which401

makes the resulting matrix series divergent. Hence, before using matrix fraction, it is necessary402

to remove all BSCC subspaces with respect to FΦ1∧¬Φ2 B F ◦ PΦ1∧¬Φ2 . Recall that:403

Definition 5.2. Given a super-operator E ∈ S, a subspace Γ ofH is bottom if for any pure state404

|ψ〉 ∈ Γ, the support of E(|ψ〉〈ψ|) is contained in Γ; it is a SCC if for any pure states |ψ1〉 , |ψ2〉 ∈ Γ,405

|ψ2〉 is in span(
⋃∞

i=0 supp(Ei(|ψ1〉〈ψ1|))); it is a BSCC if it is a bottom SCC.406

Lemma 5.3 ([34, Lemma 5.4]). For the super-operator FΦ1∧¬Φ2 , the direct-sum of all BSCC407

subspaces can be computed as408

Γ = span({supp(γi) : i ∈ [m]}), (8)

where γi (i ∈ [m]) are all linearly independent solutions to the stationary equation FΦ1∧¬Φ2 (γ) =409

γ (γ = γ† ∈ LH ).410

In details, the stationary equation E(γ) = γ can be solved in O(n3d6) by Gaussian elimination,411

whose complexity is cubic in the number nd2 of real variables in γ. The support supp(γi) of412

an individual solution γi can be computed in O(n3d3) by the Gram–Schmidt procedure, whose413

complexity is cubic in the dimension nd. In total, they are in O(mn3d3) ⊆ O(n4d5) as m is414

bounded by nd2, and the complexity of computing the direct-sum of all BSCC subspaces is in415

O(N6) where N = nd is the dimension of Hcq. The resulting projectors PΓ and PΓ⊥ = IHcq − PΓ416

are of the form
∑

s∈S |s〉〈s| ⊗ Ps where Ps (s ∈ S ) are positive operators onH .417

Example 5.4. Reconsider the event ♦winC over the QMC C2 in Example 5.1. The repeated418

super-operator of the SOVM is F¬winC B F ◦ P¬winC which has been obtained. We solve the419

stationary equation F¬winC (γ) = γ where γ =
∑

s∈S |s〉〈s| ⊗ γs and γs = γ†s ∈ LH , and obtain the420

5 linearly independent solutions:421

γ1 = |s0〉〈s0| ⊗
1
2 [|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|] +

|s1〉〈s1| ⊗
1
2 [|1,+〉〈1,+| + |1,+〉〈2,−| + |2,−〉〈1,+| + |2,−〉〈2,−|] +

|s2〉〈s2| ⊗
1
2 [|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|],

γ2 = |s4〉〈s4| ⊗ |1, 1〉〈1, 1| ,
γ3 = |s4〉〈s4| ⊗ |1, 2〉〈1, 2| ,
γ4 = |s4〉〈s4| ⊗ |2, 1〉〈2, 1| ,
γ5 = |s4〉〈s4| ⊗ |2, 2〉〈2, 2| .
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Then the BSCC subspaces Γ covering all the fixed points of F¬winC is span(supp(γ1)∪ supp(γ2)∪422

supp(γ3) ∪ supp(γ4) ∪ supp(γ5)), in which423

supp(γ1) = span({|s0〉 ⊗ [|1, 1〉 + |2, 2〉], |s1〉 ⊗ [|1,+〉 + |2,−〉], |s2〉 ⊗ [|1, 1〉 + |2, 2〉]}),
supp(γ2) = span({|s4〉 ⊗ |1, 1〉}),
supp(γ3) = span({|s4〉 ⊗ |1, 2〉}),
supp(γ4) = span({|s4〉 ⊗ |2, 1〉}),
supp(γ5) = span({|s4〉 ⊗ |2, 2〉}).

The projection super-operator PΓ = {PΓ} onto Γ is given by the projector PΓ = γ1 + γ2 + γ3 +424

γ4 + γ5 as all eigenvectors (with respect to nonzero eigenvalues) of those γi are orthonormal;425

the projection super-operator PΓ⊥ = {PΓ⊥ } onto the orthogonal complement Γ⊥ of Γ is given by426

PΓ⊥ = IHcq − PΓ. Thereby, the composite super-operator F¬winC ◦ PΓ⊥ is427

{|s2〉〈s0| ⊗ E0,2, |s3〉〈s0| ⊗ E0,3, |s4〉〈s0| ⊗ E0,4, |s0〉〈s1| ⊗ E1,0, |s1〉〈s2| ⊗ E2,1},

in which428

E0,2 = 1
2 [|1, 1〉〈1, 1| − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| + |2, 2〉〈2, 2|],

E0,3 = |1, 2〉〈1, 2| ,
E0,4 = |2, 1〉〈2, 1| ,

E1,0 = 1
2 [|1, 1〉〈1,+| + |2, 2〉〈2,−| − |1, 1〉〈2,−| − |2, 2〉〈1,+|] + |1, 1〉〈2,−| + |2, 1〉〈2,+| ,

E2,1 = 1
2 [|+, 1〉〈1, 1| − |+, 1〉〈2, 2| − |−, 2〉〈1, 1| + |−, 2〉〈2, 2|] + |+, 2〉〈1, 2| + |−, 1〉〈2, 1| ;

it has no fixed-point. �429

The following lemma indicates that the desired SOVM is preserved after all BSCC subspaces430

are removed.431

Lemma 5.5 ([34, Lemma 5.6]). The identity PΦ2 ◦ (FΦ1∧¬Φ2 )i = PΦ2 ◦ (FΦ1∧¬Φ2 ◦ PΓ⊥ )i holds432

for each i ≥ 0, where Γ is the direct-sum of all BSCC subspaces with respect to FΦ1∧¬Φ2 .433

We proceed to explicitly represent the SOVMs (7) using POVMs and matrices. Recall from434

[37, Definition 2.2] that a super-operator E = {E` : ` ∈ [m]} has the matrix representation435

S2M(E) B
∑
`∈[m]

E` ⊗ E∗` , (9)

where ∗ denotes entrywise complex conjugate. Let436

• L2V(γ) B
∑

i, j∈[n] 〈i| γ | j〉 |i, j〉 be the function that rearranges entries of the linear operator437

γ as a column vector;438

• V2L(v) B
∑

i, j∈[n] 〈i, j| v |i〉〈 j| be the function that rearranges entries of the column vector439

v as a linear operator.440

Here, S2M, L2V and V2L are read as “super-operator to matrix”, “linear operator to vector”441

and “vector to linear operator”, respectively. Then, we have the identities V2L(L2V(γ)) = γ,442

L2V(E(γ)) = S2M(E)L2V(γ), and S2M(E2 ◦ E1) = S2M(E2)S2M(E1). Therefore, all involved443

super-operator manipulations can be converted to matrix manipulations.444
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• Supposing Q(s, t) = {Qs,t,` : ` ∈ [Ls,t]} in Kraus representation, where Ls,t is the number of
Kraus operators, the POVM and the matrix representation of the SOVM (7a) are

S2M(∆(X Φ)) =
∑
t|=Φ

∑
`∈[Ls,t]

Qs,t,` ⊗Q∗s,t,`, (10a)

Λ(X Φ) =
∑
t|=Φ

∑
`∈[Ls,t]

Q†s,t,`Q
T
s,t,`. (10b)

• Supposing FΦ1∧¬Φ2 ◦ PΓ⊥ =
⋃

u,v∈S {|v〉〈u| ⊗ Fu,v,` : ` ∈ [Lu,v]}, the matrix representation of
the SOVM (7b) is

S2M(∆(Φ1U ≤kΦ2)) =
∑
t|=Φ2

k∑
i=0

(〈t| ⊗ IH⊗H )Mi(|s〉 ⊗ IH⊗H )

=
∑
t|=Φ2

(〈t| ⊗ IH⊗H )[IHcq⊗H −M
k+1][IHcq⊗H −M]−1(|s〉 ⊗ IH⊗H ),

(10c)

where M =
∑

u,v∈S
∑
`∈[Lu,v] |v〉〈u| ⊗ Fu,v,` ⊗ F∗u,v,` is adapted to the vector representation445 ∑

s∈S |s〉 ⊗ L2V(ρs) of the state ρ.446

• The matrix representation of the SOVM (7c) is

S2M(∆(Φ1U Φ2)) =
∑
t|=Φ2

∞∑
i=0

(〈t| ⊗ IH⊗H )Mi(|s〉 ⊗ IH⊗H )

=
∑
t|=Φ2

(〈t| ⊗ IH⊗H )[IHcq⊗H −M]−1(|s〉 ⊗ IH⊗H ). (10d)

Anyway, the POVMs can be analogously obtained as Λ(φ) = ∆(φ)†(I).447

Example 5.6. In Example 5.4, we have obtained the repeated super-operator F¬winC and the448

corresponding BSCC subspaces Γ for the event “Cary wins” specified by the path formula φ =449

♦winC . Then the matrix representation of F¬winC ◦ PΓ⊥ is450

M = |s2〉〈s0| ⊗ E0,2 ⊗ E∗0,2 + |s3〉〈s0| ⊗ E0,3 ⊗ E∗0,3 + |s4〉〈s0| ⊗ E0,4 ⊗ E∗0,4 +

|s0〉〈s1| ⊗ E1,0 ⊗ E∗1,0 + |s1〉〈s2| ⊗ E2,1 ⊗ E∗2,1.

The eigenvalues of M are 0 of multiplicity 80. Since M has no eigenvalue 1, the inverse of451

IHcq⊗H − M is well-defined. Finally, the explicit matrix representation S2M(∆(φ)) of ∆(φ) is452

obtained as453

(〈s3| ⊗ IH⊗H )[IHcq⊗H −M]−1(|s0〉 ⊗ IH⊗H )

= 1
4 |1, 2〉〈1, 1| ⊗ |1, 2〉〈1, 1| −

1
4 |1, 2〉〈1, 1| ⊗ |1, 2〉〈2, 2| +

1
4 |1, 2〉〈2, 2| ⊗ |1, 2〉〈2, 2| −

1
4 |1, 2〉〈2, 2| ⊗ |1, 2〉〈1, 1| + |1, 2〉〈1, 2| ⊗ |1, 2〉〈1, 2| .

Moreover, we can get the POVM Λ(φ) as454

∆(φ)†(IH ) = V2L(S2M(∆†(φ))L2V(IH ))

= V2L((S2M(∆(φ)))†L2V(IH ))

= 1
4 |1, 1〉〈1, 1| −

1
4 |1, 1〉〈2, 2| −

1
4 |2, 2〉〈1, 1| +

1
4 |2, 2〉〈2, 2| + |1, 2〉〈1, 2| ,
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where the second equation follows from the identity S2M(∆†(φ)) = (S2M(∆(φ)))†. �455

Utilizing the facts that for a matrixM and a time bound k,456

• it is in polynomial time with respect to ‖M‖ and linear time with respect to dlog2(k + 1)e ≤457

‖φ‖ to compute the matrix powerMk, and458

• it is in polynomial time with respect to ‖M‖ to compute the matrix series (IHcq⊗H −M)−1 =459 ∑∞
i=0M

i ifM has no eigenvalue 1,460

we obtain:461

Theorem 5.7 ([35, 34]). The matrix representation of the SOVM ∆(φ) and the POVM Λ(φ) for462

the atomic path formulas φ in QCTL+ can be synthesized in time polynomial in the size of C and463

linear in the size of φ.464

5.2. Conjunction and disjunction in atomic path formulas465

Here we consider how to reduce the conjunction and disjunction in atomic path formulas to466

a time-unbounded until formula over a product QMC. We first show the reduction on a single467

conjunction or a single disjunction of two time-unbounded until formulas, then generalize it to468

the arbitrary conjunction and disjunction of finitely many time-unbounded until formulas, and469

even to the arbitrary conjunction and disjunction of finitely many arbitrary atomic path formulas.470

Classical states s in a QMC C are static information that cannot record dynamical behavior471

along with a path ω of C. To record dynamical information, we introduce the product state472

structure, saying (s,Φ1,3) for a conjunction of two time-unbounded until formulas φ1 = Φ1U Φ2473

and φ2 = Φ3U Φ4, in which the auxiliary information Φ1,3 is used to record the (Φ1 ∧ Φ3)-states474

we are in and the Φ2- and the Φ4-states are expected to be reached along with ω, i.e., the path475

formulas φ1 and φ2 whose truth are undetermined at the current state s along with ω. Once476

one of the two time-unbounded formulas, saying φ1, is satisfied, (s,Φ3) would be introduced to477

record the Φ3-states we are in and the Φ4-states are expected to be reached. More formally, we478

construct:479

Definition 5.8. Given a QMC C = (S ,Q, L) and a conjunction of two time-unbounded until480

formulas φ1 = Φ1U Φ2 and φ2 = Φ3U Φ4, their product QMC Ĉ is the pair (Ŝ , Q̂), where481

• Ŝ is the finite state set482

{⊥,>} ∪ {(s,Φ1,3) : s ∈ S } ∪ {(s,Φ3) : s ∈ S } ∪ {(s,Φ1) : s ∈ S },

• Q̂ : Ŝ × Ŝ → S.I is a transition super-operator matrix given by

(i)
Q̂(⊥,⊥) = I

(ii)
Q̂(>,>) = I

(iii)
Q̂((s,Φ1,3),⊥) =

∑
{|Q(s, t) : t |= (¬Φ1 ∧ ¬Φ2 ∨ ¬Φ3 ∧ ¬Φ4)|}

(iv)
t |= (Φ1 ∧ ¬Φ2 ∧ Φ3 ∧ ¬Φ4)
Q̂((s,Φ1,3), (t,Φ1,3)) = Q(s, t)

(v)
t |= (Φ2 ∧ Φ3 ∧ ¬Φ4)

Q̂((s,Φ1,3), (t,Φ3)) = Q(s, t)

(vi)
t |= (Φ1 ∧ ¬Φ2 ∧ Φ4)

Q̂((s,Φ1,3), (t,Φ1)) = Q(s, t)
(vii)

Q̂((s,Φ1,3),>) =
∑
{|Q(s, t) : t |= (Φ2 ∧ Φ4)|}
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(viii)
Q̂((s,Φ3),⊥) =

∑
{|Q(s, t) : t |= (¬Φ3 ∧ ¬Φ4)|}

(ix)
t |= (Φ3 ∧ ¬Φ4)

Q̂((s,Φ3), (t,Φ3)) = Q(s, t)
(x)

Q̂((s,Φ3),>) =
∑
{|Q(s, t) : t |= Φ4|}

(xi)
Q̂((s,Φ1),⊥) =

∑
{|Q(s, t) : t |= (¬Φ1 ∧ ¬Φ2)|}

(xii)
t |= (Φ1 ∧ ¬Φ2)

Q̂((s,Φ1), (t,Φ1)) = Q(s, t)
(xiii)

Q̂((s,Φ1),>) =
∑
{|Q(s, t) : t |= Φ2|}

,

where
∑
{| · |} denotes the summation over the multiset {| · |}. (We employ the priority on483

Boolean connectives that ‘¬’ ≺ ‘∧’ ≺ ‘∨’ in this paper.)484

In the product construction, the special state ⊥ indicates the event that either φ1 or φ2 is unsat-485

isfiable; the special state > represents that both φ1 and φ2 have already been satisfied; the state486

(s,Φ1,3) represents that φ1 and φ2 are undetermined; (s,Φ3) represents that φ1 is already satisfied487

while φ2 is undetermined; (s,Φ1) represents that φ2 is already satisfied while φ1 is undetermined.488

There are 13 rules to define the transition super-operator matrix Q̂:489

• Rules (i)–(ii) characterize that ⊥ and > are absorbing states.490

• Rules (iii)–(vii) give all possible successors of (s,Φ1,3), depending on the satisfaction491

relations t |= Φ1, t |= Φ2, t |= Φ3 and t |= Φ4. Particularly, if the successor t |=492

(¬Φ1 ∧ ¬Φ2 ∨ ¬Φ3 ∧ ¬Φ4), we can infer that the current path refutes φ1 or φ2, lead-493

ing to the state ⊥. As there might be more than one dissatisfying successor t, we collect494

those super-operators as the weight Q̂((s,Φ1,3),⊥) of the transition by a summation over495

the multiset, i.e.,
∑
{|Q(s, t) : t |= (¬Φ1 ∧ ¬Φ2 ∨ ¬Φ3 ∧ ¬Φ4)|}.496

• Rules (viii)–(x) give all possible successors of (s,Φ3), depending on the satisfaction rela-497

tions t |= Φ3 and t |= Φ4.498

• Rules (xi)–(xiii) give all possible successors of (s,Φ1), depending on the satisfaction rela-499

tions t |= Φ1 and t |= Φ2.500

It is not hard to see
∑

t̂∈Ŝ Q̂(ŝ, t̂) h I for each ŝ ∈ Ŝ . The initial state is supposed to be of the501

type (s,Φ1,3), i.e., both φ1 and φ2 have undetermined truth at s unless it is trivial.502

Example 5.9. Reconsider the QMC C2 = (S ,Q, L) shown in Figure 4. Cary and David play three503

rounds of the coin-tossing game on the original basis, whose outcomes determine the winner by504

the principle of majority. It can be modeled by the following QMC C3 = (S ,Q, L) in Figure 5,505

where states s3, s8, s13 are labelled with winC , states s4, s9, s14 are labelled with winD, which506

means Cary or David wins the current round, respectively.507

Both Cary and David want to know the measure that they could win the game at least508

once. The event is specified by the conjunction of two path formulas φ1 = true U winC and509

φ2 = true U winD. To this end, we construct the product QMC C = (Ŝ , Q̂), in which510

• the state set Ŝ is {⊥,>} ∪ {(si,Φ1,3) : 0 ≤ i ≤ 14} ∪ {(si,Φ3) : 0 ≤ i ≤ 14} ∪ {(si,Φ1) : 0 ≤511

i ≤ 14} with (s0,Φ1,3) being the initial one, and512

• the transition super-operator matrix Q̂ is given by the following nonzero entries:

Q̂((s0,Φ1,3), (s2,Φ1,3)) = Q̂((s5,Φ3), (s7,Φ3)) = Q̂((s5,Φ1), (s7,Φ1))

= Q̂((s10,Φ3), (s12,Φ3)) = Q̂((s10,Φ1), (s12,Φ1)) = M0,
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Figure 5: QMC for 3 rounds of the coin-tossing game

Q̂((s0,Φ1,3), (s3,Φ3)) = Q̂((s5,Φ3), (s8,Φ3)) = Q̂((s5,Φ1), >)

= Q̂((s10,Φ3), (s13,Φ3)) = Q̂((s10,Φ1), >) = M1,

Q̂((s0,Φ1,3), (s4,Φ1)) = Q̂((s5,Φ1), (s9,Φ1)) = Q̂((s5,Φ3), >)

= Q̂((s10,Φ1), (s14,Φ1)) = Q̂((s10,Φ3), >) = M2,

Q̂((s2,Φ1,3), (s1,Φ1,3)) = Q̂((s7,Φ3), (s6,Φ3)) = Q̂((s7,Φ1), (s6,Φ1))

= Q̂((s12,Φ3), (s11,Φ3)) = Q̂((s12,Φ1), (s11,Φ1)) = H1,

Q̂((s1,Φ1,3), (s0,Φ1,3)) = Q̂((s6,Φ3), (s5,Φ3)) = Q̂((s6,Φ1), (s5,Φ1))

= Q̂((s11,Φ3), (s10,Φ3)) = Q̂((s11,Φ1), (s10,Φ1)) = H2,

Q̂((s3,Φ3), (s5,Φ3)) = Q̂((s4,Φ1), (s5,Φ1)) = Q̂((s8,Φ3), (s10,Φ3))

= Q̂((s9,Φ1), (s10,Φ1)) = Q̂((s13,Φ3), (s13,Φ3))

= Q̂((s14,Φ1), (s14,Φ1)) = I,

where the super-operators M0, M1, M2, H1 and H2 are referred to Example 5.1.513

The reachable part of C3 is shown in Figure 6. Due to space limit, three absorbing states >,514

(s13,Φ3) and (s14,Φ1) are marked as accepting ones that omit the self-loops labelled with I. �515

For a disjunction of two time-unbounded until formulas, the product state structure is simi-516

larly introduced. For instance, the auxiliary information Φ1,3 in the product state (s,Φ1,3) is used517

to record the (Φ1 ∧ Φ3)-states we are in and the Φ2- or Φ4-states are expected to be reached518

along with ω, i.e., the path formulas φ1 and φ2 whose truth are undetermined at the current state519

s along with ω. Once one of the two time-unbounded until formulas, saying φ1, is dissatisfied,520

(s,Φ3) would be introduced to record the Φ3-states we are in and the Φ4-states are expected to521

be reached. More formally, we construct:522

Definition 5.10. Given a QMC C = (S ,Q, L) and a disjunction of two time-unbounded until523

formulas φ1 = Φ1U Φ2 and φ2 = Φ3U Φ4, their product QMC Ĉ is the pair (Ŝ , Q̂), where524
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Figure 6: Product QMC for conjunction of two path formulas

• Ŝ is the finite state set525

{⊥,>} ∪ {(s,Φ1,3) : s ∈ S } ∪ {(s,Φ3) : s ∈ S } ∪ {(s,Φ1) : s ∈ S },

• Q̂ : Ŝ × Ŝ → S.I is a transition super-operator matrix given by

(i)
Q̂(⊥,⊥) = I

(ii)
Q̂(>,>) = I

(iii)
Q̂((s,Φ1,3),⊥) =

∑
{|Q(s, t) : t |= (¬Φ1 ∧ ¬Φ2 ∧ ¬Φ3 ∧ ¬Φ4)|}

(iv)
t |= (Φ1 ∧ ¬Φ2 ∧ Φ3 ∧ ¬Φ4)
Q̂((s,Φ1,3), (t,Φ1,3)) = Q(s, t)

(v)
t |= (¬Φ1 ∧ ¬Φ2 ∧ Φ3 ∧ ¬Φ4)
Q̂((s,Φ1,3), (t,Φ3)) = Q(s, t)

(vi)
t |= (Φ1 ∧ ¬Φ2 ∧ ¬Φ3 ∧ ¬Φ4)
Q̂((s,Φ1,3), (t,Φ1)) = Q(s, t)

(vii)
Q̂((s,Φ1,3),>) =

∑
{|Q(s, t) : t |= (Φ2 ∨ Φ4)|}

(viii)
Q̂((s,Φ3),⊥) =

∑
{|Q(s, t) : t |= (¬Φ3 ∧ ¬Φ4)|}

(ix)
t |= (Φ3 ∧ ¬Φ4)

Q̂((s,Φ3), (t,Φ3)) = Q(s, t)
(x)

Q̂((s,Φ3),>) =
∑
{|Q(s, t) : t |= Φ4|}

(xi)
Q̂((s,Φ1),⊥) =

∑
{|Q(s, t) : t |= (¬Φ1 ∧ ¬Φ2)|}

(xii)
t |= (Φ1 ∧ ¬Φ2)

Q̂((s,Φ1), (t,Φ1)) = Q(s, t)
(xiii)

Q̂((s,Φ1),>) =
∑
{|Q(s, t) : t |= Φ2|}

.

Let [[φ]] denote the truth of a path formula φ. For a time-unbounded until formula `, the truth526

[[`]] is determined along with some concrete path ω. During this process, there are three possible527
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values “true” T, “undertermined” U and “false” F of [[`]]. Initially, w.l.o.g., the value of [[`]] is528

U, which would be changed upon the encountered state ω(k). Specifically, it would be changed529

to be T if the finite path ω(0), . . . , ω(k) satisfies `, to be F if ω(0), . . . , ω(k) refutes `, and keep U530

otherwise. The truth [[φ]] is correspondingly obtained as the conjunction and disjunction of [[` j]]531

for all distinct time-unbounded until formulas ` j in φ. Formally, we construct:532

Definition 5.11. Given a QMC C = (S ,Q, L) and a path formula φ(`1, . . . , `m) where ` j ( j ∈ [m])533

denote all distinct time-unbounded until formulas Φ j,1U Φ j,2 in φ, their product QMC Ĉ is the534

pair (Ŝ , Q̂), in which535

• Ŝ is the finite state set536

{⊥,>} ∪ {(s, [[`1]], . . . , [[`m]]) : s ∈ S ∧ ∀ j ∈ [m] : [[` j]] ∈ {T,F,U}},

• Q̂ : Ŝ × Ŝ → S.I is a transition super-operator matrix given by:

(i)
Q̂(⊥,⊥) = I

(ii)
Q̂(>,>) = I

(iii)
φ([[`1]], . . . , [[`m]]) = F

Q̂((s, [[`1]], . . . , [[`m]]),⊥) = I
(iv)

φ([[`1]], . . . , [[`m]]) = T
Q̂((s, [[`1]], . . . , [[`m]]),>) = I

(v)
φ([[`1]], . . . , [[`m]]) = U

Q̂((s, [[`1]], . . . , [[`m]]), (t, δ1([[`1]], t), . . . , δm([[`m]], t))) = Q(s, t)
,

where for j ∈ [m],537

δ j([[` j]], t) =


F if [[` j]] = F ∨ [[` j]] = U ∧ t |= (¬Φ j,1 ∧ ¬Φ j,2),
U if [[` j]] = U ∧ t |= (Φ j,1 ∧ ¬Φ j,2),
T if [[` j]] = T ∨ [[` j]] = U ∧ t |= Φ j,2.

Lemma 5.12. The SOVM ∆(φ) in the QMC C = (S ,Q, L) is the SOVM ∆(♦>) in the product538

QMC Ĉ = (Ŝ , Q̂) as in Definition 5.11, which can be constructed in time polynomial in the size539

of C and exponential in the size of φ.540

Proof. We will show that the reduction preserves the SOVM in both directions. Let ω̄ =541

s0, s1, . . . , sn be a minimal finite path of C that satisfies φ. The term ‘minimal’ means there is no542

proper prefix of ω̄ that satisfies φ. Then we have that the truth φ([[`1]], . . . , [[`m]]) of φ(`1, . . . , `m)543

is U for all proper prefixes of ω̄ and it is T for ω̄. So the states s in ω̄ equipped with the truth544

[[`1]], . . . , [[`m]] upon prefixes of ω̄ are the product states (s, [[`1]], . . . , [[`m]]) in Ĉ, all of which545

make up a minimal finite path of Ĉ that reaches > and has the same SOVM according the rules546

defining the transition super-operator matrix Q̂. Conversely, for a minimal finite path of Ĉ that547

reaches >, after removing the truth [[`1]], . . . , [[`m]] in the product states (s, [[`1]], . . . , [[`m]]), we548

would get a minimal finite path of C that satisfies φ and has the same SOVM. Hence the SOVM549

∆(φ) in C is exactly the SOVM ∆(♦>) in Ĉ.550

Since the number of states in Ĉ is at most 3mn + 2 where n = |S | and m is the number of551

disjunct time-unbounded until formulas, and the number of transitions is bounded polynomially552

in 3mn, each transition costs at most O(‖Q‖) operations, the construction is in time polynomial in553

‖C‖ and exponential in m ≤ ‖φ‖. �554
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Here, counting all paths that satisfy φ is not easier than counting all satisfying assignments to555

an arbitrary instance of the SAT problem, which is in #P, i.e., no polynomial-time algorithm is556

known yet. So the exponential hierarchy with respect to ‖φ‖ is tight.557

Now we further tackle time-unbounded until formulas together with next formulas and time-558

bounded until formulas. Let TB denote the time bound of an atomic path formula `, i.e.,559

TB(`) =


∞ if ` = Φ1U Φ2,

k if ` = Φ1U ≤kΦ2,

1 if ` = X Φ,

and K be the maximum of finite time bounds of atomic path formulas ` in φ. The product QMC560

of a general path formula is obtained from the one in Definition 5.11 by extending the transfor-561

mation function δ̃ that depends on the additional time variable k ranging over {0, . . . ,K,∞}.562

Example 5.13. Consider three different atomic path formulas `1 = X winD, `2 = true U ≤5 winD,563

`3 = true U winD and a concrete path ω = s0, s1, s2, s0, s1, s2, s0, s4, s4, . . . of the QMC C2 =564

(S ,Q, L) shown in Figure 4. We describe all states equipped with the auxiliary information [[` j]]565

( j ∈ [3]) as follows:566

• Initially, ` j ( j ∈ [3]) have the truth U, as none of them has been satisfied or refuted by s0,567

i.e., [[` j]] = U;568

• for time k = 1, upon the state ω(1) = s1 6|= winD which refutes `1, the truth [[`1]] of `1569

changes to F and keeps F for all k > 1;570

• the truth [[`2]] of `2 keeps U until time k = 5, then upon the state ω(5) = s2 6|= winD which571

refutes `2, the truth [[`2]] changes to F and keeps F for all k > 5;572

• the truth [[`3]] of `3 keeps U until time k = 7, then upon the state ω(7) = s4 |= winD which573

satisfies `3, the truth [[`3]] changes to T and keeps T for all k > 7.574

Thus, we can determine all involved product states (s, k, [[`1]], [[`2]], [[`3]]) using the above rules.575

For instance, when time k varies from 4 to 5, the product state (s1, 4,F,U,U) would be changed576

to (s2, 5,F,F,U). �577

More formally and completely, we construct:578

Definition 5.14. Given a QMC C = (S ,Q, L) and a path formula φ(`1, . . . , `m) where ` j ( j ∈ [m])579

denote all distinct atomic path formulas, their product QMC C̃ is the pair (S̃ , Q̃), in which580

• S̃ is the finite state set581

{⊥,>} ∪ {(s, k, [[`1]], . . . , [[`m]]) : s ∈ S ∧ k ∈ {0, . . . ,K,∞} ∧
m∧

j=1

[[` j]] ∈ {T,F,U}},

• Q̃ : S̃ × S̃ → S.I is a transition super-operator matrix given by:

(i)
Q̂(⊥,⊥) = I

(ii)
Q̂(>,>) = I

24



(iii)
φ([[`1]], . . . , [[`m]]) = F

Q̂((s, k, [[`1]], . . . , [[`m]]),⊥) = I
(iv)

φ([[`1]], . . . , [[`m]]) = T
Q̂((s, k, [[`1]], . . . , [[`m]]),>) = I

(v)
k < K, φ([[`1]], . . . , [[`m]]) = U

Q̂((s, k, [[`1]], . . . , [[`m]]), (t, k + 1, δ̃1(k, [[`1]], t), . . . , δ̃m(k, [[`m]], t))) = Q(s, t)

(vi)
k ≥ K, φ([[`1]], . . . , [[`m]]) = U

Q̂((s, k, [[`1]], . . . , [[`m]]), (t,∞, δ̃1(k, [[`1]], t), . . . , δ̃m(k, [[`m]], t))) = Q(s, t)
,

where for j ∈ [m],582

– if ` j is a next formula,583

δ̃ j(k, [[` j]], t) =

F if [[` j]] = F ∨ [[` j]] = U ∧ t |= ¬Φ,

T if [[` j]] = T ∨ [[` j]] = U ∧ t |= Φ;

– if ` j is a time-bounded until formula,584

δ̃ j(k, [[` j]], t) =


F if [[` j]] = F ∨ [[` j]] = U ∧

 k = TB(` j) ∧ t |= ¬Φ j,2 ∨

k < TB(` j) ∧ t |= (¬Φ j,1 ∧ ¬Φ j,2)

 ,
U if [[` j]] = U ∧ k < TB(` j) ∧ t |= (Φ j,1 ∧ ¬Φ j,2),
T if [[` j]] = T ∨ [[` j]] = U ∧ k ≤ TB(` j) ∧ t |= Φ j,2;

– if ` j is a time-unbounded until formula,585

δ̃ j(k, [[` j]], t) =


F if [[` j]] = F ∨ [[` j]] = U ∧ t |= (¬Φ j,1 ∧ ¬Φ j,2),
U if [[` j]] = U ∧ t |= (Φ j,1 ∧ ¬Φ j,2),
T if [[` j]] = T ∨ [[` j]] = U ∧ t |= Φ j,2.

By noticing that the construction is at most K + 2 times of the product QMC Ĉ = (Ŝ , Q̂), it586

follows from Lemma 5.12 that:587

Corollary 5.15. The SOVM ∆(φ) in the QMC C = (S ,Q, L) is the SOVM ∆(♦>) in the product588

QMC C̃ = (S̃ , Q̃) as in Definition 5.14, which can be constructed in time polynomial in the size589

of C and exponential in the size of φ.590

Combining Theorem 5.7 with Corollary 5.15, we obtain:591

Theorem 5.16. The matrix representation of the SOVM ∆(φ) and the POVM Λ(φ) for the con-592

junction and disjunction φ of atomic path formulas in QCTL+ can be synthesized in time polyno-593

mial in the size of C and exponential in the size of φ.594

We have to address that the synthesis is in polynomial time when the size of φ is fixed, like the595

single conjunction and the single disjunction in the most common cases.596

5.3. Negation in path formulas597

In the previous subsection, we have reduced an arbitrary conjunction and disjunction in598

atomic path formulas over the QMC to an atomic path formula over a product QMC. Here we599

will synthesize the super-operators of the negation in atomic path formulas. That completes the600
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super-operator synthesis of the path formulas required in the syntax of QCTL+. For the negation601

of time-unbounded path formulas, it is necessary to consider the ultimate density operators that602

are the density operators at sufficiently large time. These ultimate density operators turn out to603

form a dense set, not a singleton. The super-operators of the negation of atomic path formulas604

are therefore synthesized conditionally.605

After an initial classical state s is fixed, the SOVMs of the negation of three kinds of atomic606

path formulas can be obtained as follows.607

• Supposing that Sat(Φ) is known, we have608

∆(¬(X Φ)) = ∆

⊎
t 6|=Φ

Cyl(s, t)

 =
∑
t 6|=Φ

∆(s, t) =
∑
t 6|=Φ

Q(s, t). (11a)

• Supposing that Sat(Φ1) and Sat(Φ2) are known, we have

∆(¬(Φ1U ≤kΦ2))

= ∆

k−1⊎
i=0

ω ∈ Path : ω(i) |= (¬Φ1 ∧ ¬Φ2) ∧
i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)


]

ω ∈ Path : ω(k) |= ¬Φ2 ∧

k−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

k−1∑
i=0

∆


ω ∈ Path : ω(i) |= (¬Φ1 ∧ ¬Φ2) ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




+ ∆


ω ∈ Path : ω(k) |= ¬Φ2 ∧

k−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

k−1∑
i=0

trC(P¬Φ1∧¬Φ2 ◦ F
i
Φ1∧¬Φ2

◦ Ps) + trC(P¬Φ2 ◦ F
k
Φ1∧¬Φ2

◦ Ps)

= ∆((Φ1 ∧ ¬Φ2)U ≤k−1(¬Φ1 ∧ ¬Φ2)) + trC(P¬Φ2 ◦ F
k
Φ1∧¬Φ2

◦ Ps). (11b)

• Supposing that Sat(Φ1) and Sat(Φ2) are known, we have

∆(¬(Φ1U Φ2))

= ∆

 ∞⊎
i=0

ω ∈ Path : ω(i) |= (¬Φ1 ∧ ¬Φ2) ∧
i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)


]

ω ∈ Path :
∞∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




=

∞∑
i=0

∆


ω ∈ Path : ω(i) |= (¬Φ1 ∧ ¬Φ2) ∧

i−1∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)




+ ∆


ω ∈ Path :

∞∧
j=0

ω( j) |= (Φ1 ∧ ¬Φ2)
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=

∞∑
i=0

trC(P¬Φ1∧¬Φ2 ◦ F
i
Φ1∧¬Φ2

◦ Ps) + trC(F ∞Φ1∧¬Φ2
◦ Ps)

= ∆((Φ1 ∧ ¬Φ2)U (¬Φ1 ∧ ¬Φ2)) + trC(F ∞Φ1∧¬Φ2
◦ Ps). (11c)

Example 5.17. Again, continued to consider Example 5.1, we now calculate the SOVMs for the609

path formulas φ1 = ¬(true U ≤4winC) and φ2 = ¬(true U winC). For the former, we have610

∆(φ1) = ∆((true ∧ ¬winC)U ≤3(false ∧ ¬winC)) + trC(P¬winC ◦ F
4

true∧¬winC
◦ Ps0 )

= ∆(¬winC U ≤3false) + trC(P¬winC ◦ F
4
¬winC

◦ Ps0 )

= trC(P¬winC ◦ F
4
¬winC

◦ Ps0 ).

By calculating ∆(A4) in Example 5.1, we have seen611

F 4
¬winC

◦ Ps0 = {|s2〉〈s0|} ⊗ (Q(s0, s2) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)) +

{|s3〉〈s0|} ⊗ (Q(s0, s3) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)) +

{|s4〉〈s0|} ⊗ (Q(s0, s4) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)) +

{|s4〉〈s0|} ⊗ (Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s0, s4)).

So, we get

∆(φ1) = trC({|s2〉〈s0|} ⊗ (Q(s0, s2) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)) +

{|s4〉〈s0|} ⊗ (Q(s0, s4) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2)) +

{|s4〉〈s0|} ⊗ (Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s0, s4)))
= Q(s0, s2) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2) +

Q(s0, s4) ◦ Q(s1, s0) ◦ Q(s2, s1) ◦ Q(s0, s2) +

Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s4, s4) ◦ Q(s0, s4)

= { 12 |1, 1〉〈1, 1| +
1
2 |2, 2〉〈1, 1| +

1
2 |1, 1〉〈2, 2| +

1
2 |2, 2〉〈2, 2| , |2, 1〉〈2, 1|}.

Whereas, for φ2, we obtain612

∆(φ2) = ∆(¬winC U false) + trC(F ∞true∧¬winC
◦ Ps0 ) = trC(F ∞true∧¬winC

◦ Ps0 ),

which we will reconsider later in Example 5.19. �613

It is worth noticing that all super-operators occurring in (11), apart from F ∞
Φ1∧¬Φ2

, have been614

already covered in Subsection 5.1. The super-operator trC(F ∞true∧¬winC
◦ Ps0 ) concerns a safety615

property, which is under the restriction that the negation only occurs on the top level of path616

formulas. The QCTL+ proposed in this paper can express both the reachability property and the617

safety property to the sense.618

To deal with F ∞
Φ1∧¬Φ2

, it is necessary to know the ultimate density operators ρ∞ that stay619

into the BSCC subspaces with respect to FΦ1∧¬Φ2 for a given initial density operator ρ0, i.e.,620

ULT B {F k
Φ1∧¬Φ2

(ρ0) : k is sufficiently large}. The following lemma indicates that such ultimate621

density operators are not convergent in general.622

Lemma 5.18. For an initial density operator ρ0 ∈ DHcq , the ultimate density operators ρ =623

limk→∞ F
k
Φ1∧¬Φ2

(ρ0) are dense in a computable algebraic subset Ξ ofDHcq .624
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Proof. We will analyze the algebraic structure of ρ∞ using the discrete-time dynamical system625

V(k) = MkV(0), where M = S2M(FΦ1∧¬Φ2 ), V(0) = L2V(ρ0) and ρk = V2L(V(k)). Thus ULT626

is exactly the set of elements limk→∞ ρk = limk→∞ V2L(V(k)). It is known that every entry of627

V(k) is in the form628 ∑
i, j

ci, jk jλk
i , (12)

where ci, j ∈ A are coefficients and λ j ∈ A are eigenvalues ofMwith multiplicities by Lemma 2.8,629

since all entries of M are algebraic. Suppose that V(k) is determined under an appropriate630

orthonormal basis of H , such that ρk is diagonal. We can infer there is no term ci, jk jλk
i in (12)631

with |λi| > 1 or |λi| = 1 ∧ j > 0, since otherwise the entry would have absolute value greater632

than 1 as k goes to infinity, which destroys the trace-nonincreasing property of FΦ1∧¬Φ2 . On the633

other hand, all terms ci, jk jλk
i with |λi| < 1 would vanish as k goes to infinity. Hence the ultimate634

density operators ρ∞ consist of only entries in the form635 ∑
i

ci lim
k→∞

exp(ıkθi), (13)

where θi are the magnitudes of the unit eigenvalues of M. That is, ULT is the set of elements636

ρ∞ =
∑

i Ci limk→∞ exp(ıkθi) with A-matrix coefficients Ci.637

Let θ1, . . . , θl be all distinct magnitudes in (13). By Theorem 2.9, we can obtain a Z-linearly638

independent basis {π/κ, µ1, . . . , µm}, such that639 
θ1
θ2
...
θl

 =


z1,0 z1,1 · · · z1,m
z2,0 z2,1 · · · z2,m
...

...
. . .

...
zl,0 zl,1 · · · zl,m



π/κ
µ1
...
µm

 ,
where κ, zi, j ∈ Z satisfy gcd({zi, j : i ∈ [l]}) = 1 for each j ∈ [m]. By Corollary 2.4, we can see640

• {(kµ1 mod 2π, . . . , kµm mod 2π) : k ∈ N} is dense in [0, 2π)m,641

• {(exp(ıkµ1), . . . , exp(ıkµm)) : k ∈ N} is dense in {w ∈ C : |w| = 1}m, and642

• {(cos(kµ1), sin(kµ1), . . . , cos(kµm), sin(kµm)) : k ∈ N} is dense in {(x, y) ∈ R2 : x2+y2 = 1}m.643

For each j ∈ [l], we have

exp(ıkθ j) = exp(z j,0π/κ)
m∏

i=1

exp(ız j,ikµi)

= exp(z j,0π/κ)
m∏

i=1

(cos(z j,ikµi) + ı sin(z j,ikµi)),

which results in an A-polynomial p j in cos(kµ j) and sin(kµ j) by trigonometric identities. Af-644

ter introducing real variables x j = cos(kµ j) and y j = sin(kµ j) for i ∈ [m], we can charac-645

terize {exp(ıkθ j) : k ∈ N} by the range of p j(x, y) on {(x, y) ∈ R2 : x2 + y2 = 1}m, in which646

the former set is dense in the latter set. The same holds for the set ULT of elements ρ∞ =647 ∑
i Ci limt→∞ ci exp(ıkθi), whose range is a computable algebraic set Ξ by quantifier elimina-648

tion [3, Algorithm 14.5]. �649
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Example 5.19. In Example 5.4, we have obtained the repeated super-operator F¬winC . Suppose650

that all classical states in S are ordered as s0 ≺ · · · ≺ s4. Then states |s0〉 through |s4〉 are651

indexed by |1〉 through |5〉, respectively. The matrix representation S2M(F¬winC ) is652

|3〉〈1| ⊗Q0,2 ⊗Q∗0,2 + |4〉〈1| ⊗Q0,3 ⊗Q∗0,3 + |5〉〈1| ⊗Q0,4 ⊗Q∗0,4 +

|1〉〈2| ⊗Q1,0 ⊗Q∗1,0 + |2〉〈3| ⊗Q2,1 ⊗Q∗2,1 + |5〉〈5| ⊗Q4,4 ⊗Q∗4,4,

where Qi, j are the unique Kraus operators of those super-operators Q(si, s j) in C2. By Jordan653

decomposition, we have S2M(F¬winC ) = S−1JS, in which:654

• J is the Jordan canonical form of S2M(F¬winC ) that is655

diag(J0;1, . . . , J0;1︸         ︷︷         ︸
15 copies

, J0;3, . . . , J0;3︸         ︷︷         ︸
11 copies

, J0;6, J0;7, J1;1, . . . , J1;1︸         ︷︷         ︸
17 copies

, Jexp(2ıπ/3);1, Jexp(−2ıπ/3);1),

where Jλ;m denotes the Jordan block of eigenvalue λ and order m, i.e.,656 

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ


m×m

;

• S is the corresponding transformation matrix (omitted here for conciseness, but available657

at the bottom of Bernoulli Factory.nb at https://github.com/meijingyi/CheckQCTLPlus).658

Since the entries of S2M(F¬winC ) are algebraic, it follows that the diagonal entries of J that659

are eigenvalues of S2M(F¬winC ), as well as the entries of S whose columns are (generalized)660

eigenvectors, are algebraic too.661

When k is sufficiently large, say k > 7, we can see that S2M(F¬winC )k is S−1JkS with662

Jk = diag(0, . . . , 0︸  ︷︷  ︸
61 copies

, 1, . . . , 1︸  ︷︷  ︸
17 copies

, exp(−2ıkπ/3), exp(2ıkπ/3)),

since663

Jk
λ;m =



(
k
0

)
λk

(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k

m−2

)
λk−m+2

(
k

m−1

)
λk−m+1

0
(

k
0

)
λk

(
k
1

)
λk−1 · · ·

(
k

m−3

)
λk−m+3

(
k

m−2

)
λk−m+2

...
...

...
. . .

...
...

0 0 0 · · ·
(

k
0

)
λk

(
k
1

)
λk−1

0 0 0 · · · 0
(

k
0

)
λk


m×m

;

Jk
0;3, Jk

0;6 and Jk
0;7 vanish then. It implies that given an initial density operator ρ0 ∈ DHcq , every664

entry of the final density operators ρk = F k
¬winC

(ρ0) can be expressed as665

c0 + c1 exp(2ıkπ/3) + c2 exp(−2ıkπ/3)
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for some algebraic coefficients c0, c1, c2 (or equivalently c0 + d1 cos(2kπ/3) + d2 sin(2kπ/3) for666

some algebraic coefficients c0, d1, d2). For example, we have that:667

ρ7 = C0 + C1 exp(2ıπ/3) + C2 exp(−2ıπ/3),
ρ8 = C0 + C1 exp(−2ıπ/3) + C2 exp(2ıπ/3),
ρ9 = C0 + C1 + C2,

(14)

hold for some A-matrices C0, C1, C2; ρk = ρk−3 holds for any k ≥ 10. Thus all the density668

operators ρk (k ≥ 7) plainly form a finite set Ξ = {ρ7, ρ8, ρ9}, thus being not convergent. �669

In the above example, if we first remove the BSCC subspaces as a pretreatment, those terms670

corresponding to unit eigenvalues (, 1) would also be removed, thus simplifying the result (14).671

However, in the general case, there are newly-produced quantum states that would enter in the672

BSCC subspaces when the quantum system evolves, and the pretreatment of removing BSCC673

subspaces does not suffice then. Additionally, since the composite super-operator along with the674

loop s0 → s2 → s1 → s0 is H2 ◦ H1 ◦ M0 = {|+,+〉〈1, 1| + |−,−〉〈2, 2|} and (H2 ◦ H1 ◦ M0)k =675

{ 12 (|1, 1〉〈1, 1| + |2, 2〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈2, 2|)} for any k > 1, it ensures that all nonzero676

eigenvalues in the result (14) are unit.677

From Lemma 5.18, we have seen that F ∞
Φ1∧¬Φ2

is not a function (super-operator) in general,678

since the singleton initial density operator ρ0 is associated with a set ULT of ultimate density679

operators ρ∞. To effectively synthesize the super-operator of the negation, we have to propose680

the following convergence conditions.681

Definition 5.20. A super-operator E is convergent on an initial density operator ρ0 if the pos-682

sible unit eigenvalue of S2M(E) whose eigenvector is not orthogonal to L2V(ρ0) is 1. A super-683

operator E is uniformly convergent if the possible unit eigenvalue of S2M(E) is 1.684

Note that, by Theorem 2.9, these convergence conditions are checkable in PSPACE with respect685

to the dimension d, and in PTIME with respect to the size of C when d is fixed. If the condi-686

tions fail, the super-operator of the negation cannot be synthesized. Afterwards we would only687

consider those convergent instances, thus establish the decidability conditionally.688

Example 5.21. Continue to consider Example 5.19. The unit eigenvalues of S2M(F¬winC ) are 1689

and exp(±2ıkπ/3). It turns out to have periodic final density operators as shown in Example 5.19,690

thus F¬winC does not meet the uniformly convergence condition. However, consider the initial691

density operator ρ0 = ρ′ + ρ′′ with692

ρ′ = |s0〉〈s0| ⊗
1
8 [|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|] +

|s1〉〈s1| ⊗
1
8 [|1,+〉〈1,+| + |1,+〉〈2,−| + |2,−〉〈1,+| + |2,−〉〈2,−|] +

|s2〉〈s2| ⊗
1
8 [|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|]

ρ′′ = |s2〉〈s2| ⊗
1
8 [|+,−〉〈+,−| + |−,+〉〈−,+|].

After performing F k
¬winC

(k ≥ 4) on ρ0, the final density operators ρk would be the same as693

ρ4 = ρ′ + ρ′′′ with694

ρ′′′ = |s4〉〈s4| ⊗
1
8 |1, 2〉〈1, 2| ,

which is independent from k, since both L2V(ρ′) and L2V(ρ′′′) are eigenvectors (corresponding695

to eigenvalue 1) of S2M(F¬winC ). Hence F¬winC meets the convergence condition on this ρ0. �696
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Theorem 5.22. Under the convergence conditions described in Definition 5.20, the matrix rep-697

resentation of the SOVM F ∞
Φ1∧¬Φ2

can be synthesized in time polynomial in the size of C.698

Proof. It suffices to determine the algebraic structure of ρ∞ =
∑

i Ci limk→∞ exp(ıkθi), where699

θi are the magnitudes of the unit eigenvalues of S2M(FΦ1∧¬Φ2 ) and Ci are A-matrices. By700

Lemma 2.8 and the known algorithms that:701

• it is in O(D4) to determine the characteristic polynomial of a matrix of dimension D [3,702

Algorithm 8.17], and703

• it is in O(D6) to determine roots of a Q-polynomial of degree D [3, Algorithm 10.4],704

we obtain that:705

• the characteristic polynomial f (z) of S2M(FΦ1∧¬Φ2 ) is an A-polynomial of degree d2 where706

d = dim(H), and coefficients taken from Q(λ0) : Q, where the degree of λ0 is bounded by707

‖λ0‖ ≤ ‖C‖,708

• the roots of f (z) are those of a Q-polynomial g(z) of degree not greater than d2‖λ0‖, and709

• the roots of g(z) can be determined in O(d12‖λ0‖
6), as well as the eigenvalues of the matrix710

S2M(FΦ1∧¬Φ2 ). �711

Finally, we have to address the hardness of synthesizing the SOVMs for the arbitrary nega-712

tion in path formulas. In the previous two subsections, we employ the strategy (see Figure 1) of713

i) reducing the conjunction and disjunction in path formulas to a time-unbounded until formula714

over a product QMC; and ii) synthesizing the SOVM of the latter path formula. However, it does715

not imply that one could employ the strategy of i) synthesizing the SOVMs of individual atomic716

path formulas; and ii) combining these SOVMs according to the corresponding conjunction and717

disjunction in path formulas, since the SOVMs are defined on path formulas and once the SOVMs718

are obtained, the path formulas could not be recovered. After dealing with negation on a path719

formula φ in this subsection, we would get the SOVM of ¬φ, not an atomic path formula, which720

makes it fail to be incorporated with the previous subsections. To avoid such technical hardness,721

we focus on the sublogic QCTL+ of the quantum analogy QCTL∗ of PCTL∗ [1] in this paper.722

6. Deciding the QCTL Plus State Formulas723

In this section, we aim to decide basic state formulas, trace-quantifier formulas (resp. fidelity-724

quantifier) formulas in turn, using the POVMs (resp. SOVMs) obtained in the previous section,725

over the QMC fed with and without an initial quantum state. The complexity of checking QCTL+
726

formulas will be summarized. Here we suppose that the generator λ0 of all numbers appearing in727

the input QMC is defined in the standard way: the minimal polynomial fλ0 (z) ∈ Q[z] with degree728

D plus the disk with center c and radius r that distinguishes λ0 from other roots of fλ0 , i.e., λ0 is729

the unique solution to the constraint fλ0 (z) = 0 ∧ |z − c| < r.730

For basic state formulas, the satisfying sets can be directly calculated by their definitions:731

• Sat(a) = {s ∈ S : a ∈ L(s)};732

• Sat(¬Φ) = S \ Sat(Φ), provided that Sat(Φ) is known;733
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• Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2), provided that Sat(Φ1) and Sat(Φ2) are known;734

• Sat(Φ1 ∨ Φ2) = Sat(Φ1) ∪ Sat(Φ2), provided that Sat(Φ1) and Sat(Φ2) are known.735

Obviously, the top-level logic connective of those formulas requires merely a scan over the la-736

belling function L on S , which is in O(n). Hence, deciding basic state formulas is linear time737

with respect to the size of C.738

For the trace-quantifier formula Ftr
vM[φ], we have:739

• If the QMC C is fed with an initial quantum state ρs, Ftr
vM[φ] holds if and only if tr((M −740

Λ(φ))ρs) is nonnegative. It is checkable in time O(d3), as it is dominated by multiplication741

over d-dimensional matrices.742

• If the QMC C is not fed with any initial quantum state, Ftr
vM[φ] holds if and only if the743

eigenvalues of M − Λ(φ) are nonnegative. For the latter, it suffices to determine roots of744

the characteristic polynomial of M − Λ(φ), which has degree not greater than d and takes745

coefficients from Q(λ0) : Q. Hence, the latter can be checked in time O(d6D6), since746

roots of that characteristic polynomial are roots of a Q-polynomial with degree dD by747

Lemma 2.8 and [3, Algorithm 10.4].748

Particularly, the trace-quantifier formula Ftr
vM[¬φ] reduces to Λ(¬φ) = I − Λ(φ).749

Example 6.1. Now, we consider the nontermination of the quantum Bernoulli factory protocol in750

Example 5.1. To this end, we are to decide the trace-quantifier formula with formFtr
vM[¬♦(winC∨751

winD)], where M = 1
2 (|1, 1〉〈1, 1| − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| + |2, 2〉〈2, 2|) is a threshold. From752

Example 5.6, we have753

Λ(♦winC) = 1
4 (|1, 1〉〈1, 1| − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| + |2, 2〉〈2, 2|) + |1, 2〉〈1, 2| ,

and we could get Λ(♦winD) in the same way as follows:754

Λ(♦winD) = 1
4 (|1, 1〉〈1, 1| − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| + |2, 2〉〈2, 2|) + |2, 1〉〈2, 1| .

Since both the unique winC-state s3 and the unique winD-state s4 are absorbing (i.e., having755

self-loops weighted by I), the POVM of nontermination can be computed as756

Λ(¬♦(winC ∨ winD)) = I − Λ(♦winC) − Λ(♦winD)

= 1
2 (|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|).

Thus the matrix M − Λ(¬♦(winC ∨ winD)) = − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| has eigenvector757

ρ′ = 1
2 (|1, 1〉〈1, 1| − |1, 1〉〈2, 2| − |2, 2〉〈1, 1| + |2, 2〉〈2, 2|)

corresponding to eigenvalue 1 and eigenvector758

ρ′′ = 1
2 (|1, 1〉〈1, 1| + |1, 1〉〈2, 2| + |2, 2〉〈1, 1| + |2, 2〉〈2, 2|)

corresponding to eigenvalue −1. These eigenvectors ρ′ and ρ′′ can be obtained by spectral759

decomposition in polynomial time O(‖C2‖
6). Then we decide the truth of the trace-quantifier760

formula Ftr
vM[¬♦(winC ∨ winD)] respectively in the following two cases:761
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• When we feed C2 with the initial quantum state 2
3ρ
′ + 1

3ρ
′′, we could calculate762

tr((M − Λ(¬♦(winC ∨ winD)))( 2
3ρ
′ + 1

3ρ
′′))

= 2
3 · tr((M − Λ(¬♦(winC ∨ winD)))ρ′) + 1

3 · tr((M − Λ(¬♦(winC ∨ winD)))ρ′′)

= 2
3 · (1) · tr(ρ′) + 1

3 · (−1) · tr(ρ′′) = 2
3 · (1) + 1

3 · (−1) = 1
3 .

Hence Ftr
vM[¬♦(winC ∨winD)] is decided to be true over this C2 with initial quantum state763

2
3ρ
′ + 1

3ρ
′′.764

• When we feed C2 with the initial quantum state 1
3ρ
′ + 2

3ρ
′′, we could calculate tr((M −765

Λ(¬♦(winC ∨ winD)))( 1
3ρ
′ + 2

3ρ
′′)) = − 1

3 , i.e., minρ tr((M − Λ(¬♦(winC ∨ winD)))ρ) < 0.766

Hence Ftr
vM[¬♦(winC∨winD)] is decided to be false over this C2 with some initial quantum767

state.768

Overall, it is in polynomial time to decide the trace-quantifier formula. �769

For the fidelity-quantifier formula Ffid
≤τ[φ], we have:770

• If the QMC C is fed with an initial quantum state ρs, Ffid
≤τ[φ] holds if and only if771

tr
√
ρ1/2

s V2L(S2M(∆(φ))L2V(ρs))ρ
1/2
s ≤ τ.

For the latter, it is dominated by the spectral decomposition of ρs [27, Box 2.2] to get ρ1/2
s .772

So we have to determine the eigenvalues of ρs, which is checkable in time O(d6D6) by real773

root isolation [3, Algorithm 10.4].774

• If the QMC C is not fed with any initial quantum state, Ffid
≤τ[φ] holds if and only if for any775

pure state |ψ〉, 〈ψ|V2L(S2M(∆(φ))L2V(|ψ〉〈ψ|)) |ψ〉 is not greater than τ2. Here we confine776

the initial quantum state to be pure, i.e., ρs = |ψ〉〈ψ|, which does not lose the generality by777

the joint concavity [27, Exercise 9.19]. After introducing d complex variables x to denote778

the quantum state |ψ〉, subject to the purity ‖x‖2 = 1, the latter is reformulated as779

ζ ≡ ∀ |ψ〉 ∈ H : Fid(∆(φ), |ψ〉〈ψ|) ≤ τ2

≡ ∀ |ψ〉 ∈ H : 〈ψ|V2L(S2M(∆(φ))L2V(|ψ〉〈ψ|)) |ψ〉 ≤ τ2

≡ ∀ x ∈ Cd : ‖x‖2 = 1→

 ∑
i, j∈[d]

x∗i x j 〈i, j|

 S2M(∆(φ))

 ∑
i, j∈[d]

xix∗j |i, j〉

 ≤ τ2.

Additionally, as S2M(∆(φ)) admits the algebraic number λ0, we further reformulate the780

latter as the Q-polynomial formula781

ζ(λ0) ≡ ∀ z ∈ C∀ x ∈ Cd : [ fλ0 (z) = 0 ∧ |z − c| < r ∧ ‖x‖2 = 1] → ∑
i, j∈[d]

x∗i x j 〈i, j|

︸              ︷︷              ︸
deg=2

S2M(∆(φ))︸       ︷︷       ︸
deg=1

 ∑
i, j∈[d]

xix∗j |i, j〉

︸              ︷︷              ︸
deg=2

≤ τ2, (15)

which has the following size parameters:782
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– a block of 2d + 2 universally quantified real variables taken from real and imaginary783

parts of x and z, and784

– 4 distinct polynomials of degree at most the maximum of 5 and D.785

Hence, the latter can be checked in time exponential in d, i.e., max(5,D)O(d), by quantifier786

elimination over real closed fields (see Appendix Appendix A for more details).787

The fidelity-quantifier formula Ffid
≤τ[¬φ] can be similarly dealt with, since the matrix representa-788

tion of ∆(¬φ) has been synthesized in Subsection 5.3. Note that if φ is a time-unbounded until789

formula, it is required to meet the convergence conditions described in Definition 5.20.790

Example 6.2. Continue to consider the QMC C1 shown in Example 3.2. To validate the correct-
ness of the quantum teleportation protocol, it needs to decide whether Fid(♦s7) = 1 holds for
some initial state |q̂2 q3〉, or more generally compute the set of the initial states |q̂2 q3〉 on which
Fid(♦s7) = 1 holds. The latter is characterized by the following quantified formula

∀ |q1〉 : Fid(|q1〉〈q1| , trH1,2 (∆(♦ ok)(
∣∣∣q1, q̂2 q3

〉〈
q1, q̂2 q3

∣∣∣))) = 1

≡ ∀ |q1〉 : |q1〉〈q1| = trH1,2 (∆(♦ ok)(
∣∣∣q1, q̂2 q3

〉〈
q1, q̂2 q3

∣∣∣)), (16)

where trH1,2 = {〈i, j| ⊗ I : i ∈ [2], j ∈ [2]} traces out the Hilbert spaces on |q1〉 and |q2〉. So, the791

formula (16) means that the information |q1〉 in the initial density operator is preserved as the792

information |q3〉 in the final density operator, since Fid(♦s7) = 1 holds if and only if the initial793

qubit |q1〉 is the same as the final qubit |q3〉, regardless of a global phase.794

To rewrite the formula (16) as a polynomial one, we first introduce complex variables x =795

(xi)i∈[4] to encode the state |q̂2 q3〉 as x1 |1, 1〉 + x2 |1, 2〉 + x3 |2, 1〉 + x4 |2, 2〉 and y = (yi)i∈[2] to796

encode the state |q1〉 as y1 |1〉 + y2 |2〉. Then the encoded initial density operator is the pure state797 ∣∣∣q1, q̂2 q3
〉〈

q1, q̂2 q3
∣∣∣ with |q1, q̂2 q3〉 being (y1 |1〉+ y2 |2〉)(x1 |1, 1〉+ x2 |1, 2〉+ x3 |2, 1〉+ x4 |2, 2〉).798

After applying the SOVM ∆(♦ ok) = ∆(true U ok) (obtained in Example 4.3) on the initial state,799

the final density operator ∆(♦ ok)(
∣∣∣q1, q̂2 q3

〉〈
q1, q̂2 q3

∣∣∣) turns out to be the mixed state which can800

be expressed as801

1
2 (|1, 1〉〈1, 1| ⊗ |ψ1〉〈ψ1| + |1, 2〉〈1, 2| ⊗ |ψ2〉〈ψ2| + |2, 1〉〈2, 1| ⊗ |ψ3〉〈ψ3| + |2, 2〉〈2, 2| ⊗ |ψ4〉〈ψ4|),

where

|ψ1〉 = 1
√

2
[(y1x1 + y2x3) |1〉 + (y1x2 + y2x4) |2〉],

|ψ2〉 = 1
√

2
[(y1x4 + y2x2) |1〉 + (y1x3 + y2x1) |2〉],

|ψ3〉 = 1
√

2
[(y1x1 − y2x3) |1〉 − (y1x2 − y2x4) |2〉],

|ψ4〉 = 1
√

2
[(y1x4 − y2x2) |1〉 − (y1x3 − y2x1) |2〉].

Thus we have trH1,2 (∆(♦ ok)(
∣∣∣q1, q̂2 q3

〉〈
q1, q̂2 q3

∣∣∣) =
∑4

i=1 |ψi〉〈ψi|. Utilizing the trace-preserving802

property of the SOVM ∆(♦ ok), these four final state vectors |ψi〉 are required to be proportional803

to the initial state vector |q1〉. For instance, |ψ1〉 should satisfy (y1x1 + y2x3)y2 = (y1x2 + y2x4)y1.804

In the same way, we can get805

(y1x4 + y2x2)y2 = (y1x3 + y2x1)y1,

(y1x1 − y2x3)y2 = −(y1x2 − y2x4)y1,

(y1x4 − y2x2)y2 = −(y1x3 − y2x1)y1.
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After further introducing the real variables µ = <(x), ν = =(x), µ′ = <(y) and ν′ = =(y),
the formula (16) could be encoded into the polynomial one

∀ {y1, y2} : |y1|
2 + |y2|

2 = 1→


|x1|

2 + |x2|
2 + |x3|

2 + |x4|
2 = 1 ∧

(y1x1 + y2x3)y2 = (y1x2 + y2x4)y1 ∧

(y1x4 + y2x2)y2 = (y1x3 + y2x1)y1 ∧

(y1x1 − y2x3)y2 = −(y1x2 − y2x4)y1 ∧

(y1x4 − y2x2)y2 = −(y1x3 − y2x1)y1


≡ ∀ {µ′1,ν

′
1,µ

′
2,ν

′
2} : µ

′2
1 + ν′21 + µ′22 + ν′22 = 1 →

µ2
1 + ν2

1 + µ2
2 + ν2

2 + µ2
3 + ν2

3 + µ2
4 + ν2

4 = 1 ∧
µ1µ

′
1µ
′
2 + µ3µ

′2
2 − µ

′
2ν1ν

′
1 − µ

′
1ν1ν

′
2 − 2µ′2ν3ν

′
2 − µ1ν

′
1ν
′
2 − µ3ν

′2
2 =

µ2µ
′2
1 + µ4µ

′
1µ
′
2 − 2µ′1ν2ν

′
1 − µ

′
2ν4ν

′
1 − µ2ν

′2
1 − µ

′
1ν4ν

′
2 − µ4ν

′
1ν
′
2 ∧

µ′1µ
′
2ν1 + µ′22 ν3 + µ1µ

′
2ν
′
1 + µ1µ

′
1ν
′
2 + 2µ3µ

′
2ν
′
2 − ν1ν

′
1ν
′
2 − ν3ν

′2
2 =

µ′21 ν2 + µ′1µ
′
2ν4 + 2µ2µ

′
1ν
′
1 + µ4µ

′
2ν
′
1 − ν2ν

′2
1 + µ4µ

′
1ν
′
2 − ν4ν

′
1ν
′
2 ∧

µ4µ
′
1µ
′
2 + µ2µ

′2
2 − µ

′
2ν4ν

′
1 − 2µ′2ν2ν

′
2 − µ

′
1ν4ν

′
2 − µ4ν

′
1ν
′
2 − µ2ν

′2
2 =

µ3µ
′2
1 + µ1µ

′
1µ
′
2 − µ

′
2ν1ν

′
1 − 2µ′1ν3ν

′
1 − µ3ν

′2
1 − µ

′
1ν1ν

′
2 − µ1ν

′
1ν
′
2 ∧

µ′22 ν2 + µ′1µ
′
2ν4 + µ4µ

′
2ν
′
1 + µ4µ

′
1ν
′
2 + 2µ2µ

′
2ν
′
2 − ν4ν

′
1ν
′
2 − ν2ν

′2
2 =

µ′1µ
′
2ν1 + µ′21 ν3 + 2µ3µ

′
1ν
′
1 + µ1µ

′
2ν
′
1 − ν3ν

′2
1 + µ1µ

′
1ν
′
2 − ν1ν

′
1ν
′
2 ∧

µ1µ
′
1µ
′
2 − µ3µ

′2
2 − µ

′
2ν1ν

′
1 − µ

′
1ν1ν

′
2 + 2µ′2ν3ν

′
2 − µ1ν

′
1ν
′
2 + µ3ν

′2
2 =

−µ2µ
′2
1 + µ4µ

′
1µ
′
2 + 2µ′1ν2ν

′
1 − µ

′
2ν4ν
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′
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′
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′
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′
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′
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′
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′2
1 + µ1µ

′
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′
2 − ν1ν

′
1ν
′
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, (17)

which can be solved in exponential time 2O(‖C1‖
2) by Algorithm 1.806

Using the tool Reduce (a.k.a. Redlog [11]), we obtain that µ1 = µ4, ν1 = ν4 and the807

other free variables are 0. Thus the satisfying initial states are exactly c(|1, 1〉 + |2, 2〉)/
√

2 for808

an arbitrarily unit complex number c interpreted as global phase. As a corollary, the quantum809

teleportation protocol is proven to be correct on the Bell state (|1, 1〉 + |2, 2〉)/
√

2. �810

Combining the above analysis with Theorems 5.7,5.16,5.22, we obtain the main result:811

Theorem 6.3. Under the convergence conditions described in Definition 5.20, the QCTL+ for-812

mulas are decidable over QMCs. Furthermore, the complexity (specified in terms of the size of813

the input QMC ‖C‖ and the QCTL+ formula as default) is summarized in Table 2, where ‘matrix’814

is short for the matrix representation of SOVM.815

As a by-product, we immediately get:816

Corollary 6.4. The safety property Λ[�Φ] v M with �Φ ≡ ¬♦(¬Φ) over QMCs can be817

checked in polynomial time.818

Implementation. The prototypes of the algorithms listed in Table 2 have been well implemented819

in the Wolfram language on Mathematica 11.3 with Intel Core i7-10700 CPU at 2.90GHz, avail-820

able at https://github.com/meijingyi/CheckQCTLPlus. We have implemented all the821
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Table 2: Summary on Deciding QCTL+ Formulas

formula type QMC w/ an initial state QMC w/o an initial state

atomic path formulas matrix & POVM, PTIME [35, 34]
{∧,∨} of atomic path formulas matrix & POVM, PTIME w.r.t. ‖C‖, EXPTIME w.r.t. ‖φ‖

{¬} of path formulas matrix (if convergent) & POVM, PTIME

basic state formulas PTIME [16] PTIME [16]
trace-quantifier formulas POVM, PTIME [35] POVM, PTIME [35]

fidelity-quantifier formulas matrix, PTIME [34] matrix, EXPTIME [34]

function prototypes required for checking QCTL+ properties, and delivered them as user-friendly822

interface modules in the online file Functions.nb. The main functions are introduced as follows.823

• QMCinitialize constructs and initializes QMC model with given information;824

• ComputeBSCC computes the direct-sum of all BSCC subspaces with respect to a specified825

super-operator;826

• UBuntilSOVM (resp. UBuntilPOVM), BuntilSOVM (resp. BuntilPOVM), NextSOVM (resp.827

NextPOVM) synthesize the super-operators of three kinds of atomic path formulas by es-828

tablishing SOVM spaces (resp. POVM spaces);829

• isConvgtwithInit (resp. isConvgt) checks whether a specified super-operator satis-830

fies the convergence condition on an initial density operator (resp. uniform convergence831

condition);832

• NegUBuntilSOVM (resp. NegUBuntilPOVM), NegBuntilSOVM (resp. NegBuntilPOVM),833

NegNextSOVM (resp. NegNextPOVM) synthesize the super-operators of the negation of834

three kinds of atomic path formulas by establishing SOVM spaces (resp. POVM spaces);835

• TracewithInit (resp. Trace), FidelitywithInit (resp. Fidelity) decide the truth836

of trace-quantifier and fidelity-quantifier formulas over a QMC fed with an initial quantum837

state (resp. without any initial one).838

After inputing the dimension of the Hilbert space, a QMC model C, a QCTL+ state formula Φ839

or path formula φ, and an initial quantum state ρ0, one can invoke the algorithms by calling the840

above functions respectively. In addition, we validate the correctness of the quantum teleporta-841

tion protocol in file QTEL-Reduce.nb. We carry on the running example of quantum Bernoulli842

factory protocol in the file Bernoulli Factory.nb. It takes an overall consumption of 6.78 seconds843

in time and 123.66 MB in memory, since the efficiency is guaranteed by the fact that all func-844

tions involved have the complexity PTIME. Whereas, it is not guaranteed only for the function845

Fidelity due to the complexity EXPTIME.846

7. Conclusion847

We have proposed a more expressive logic — QCTL+ to specify temporal properties over848

quantum Markov chains. This logic extends QCTL by allowing the conjunction in path formulas849
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and the negation in the top level of path formulas. To deal with conjunction, we have presented850

a product construction of classical states in the QMC and the tri-valued truths of atomic path851

formulas; to deal with negation, we have developed an algebraic approach to computing the852

safety of the bottom strongly connected component subspace with respect to a super-operator853

under the necessary and sufficient convergence conditions. We partially solve the model checking854

problem of QCTL+ on QMC. If the convergence conditions are not met, it is still unclear to us855

whether the safety problem is decidable. Finally, the complexity of our method was provided in856

terms of the size of both the input QMC and the QCTL+ formula.857

For future work, we would like to:858

• consider how to conditionally drop the restriction that the negation is allowed to act on the859

top level of path formulas;860

• study how to check such a logic for a more complex model, such as quantum Markov861

decision process [39] and quantum continuous-time Markov chain [36];862

• incorporate the method into an automated verification tool and apply it to more scenarios.863
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Appendix A. Quantifier Elimination over Real Closed Fields953

Algorithm 1 Quantifier Elimination over Real Closed Fields [3, Algorithm 14.5]

G(y)← QE(Q1 x1 · · ·Q` x` : F(x1, . . . , x`, y))

Input: Q1 x1 · · ·Q` x` : F(x1, . . . , x`, y) is a quantified polynomial formula, in which

• xi (i ∈ {1, . . . , `}) are blocks of ki variables quantified by Qi ∈ {∀,∃},

• y is a block of l free variables,

• each atomic formula in F is in the form p ∼ 0 where ∼∈ {<,≤,=,≥, >,,},

• all distinct polynomials p, regardless of a constant factor, extracted from those atomic
formulas p ∼ 0 form a polynomial collection P,

• s is the cardinality of P, and

• d is the maximum degree of the polynomials in P.

Output: G(y) is a quantifier-free polynomial formula, which is equivalent to
Q1 x1 · · ·Q` x` : F(x1, . . . , x`, y). For each realizable sign condition of P with respect
to the variable partition {{x1}, . . . , {x`}, {y}}, the sample is also provided by a subroutine [3,
Algorithm 13.2].

Complexity: s(k1+1)···(k`+1)(l+1)dO(k1)···O(k`)O(l).

To make Algorithm 1 more intuitive, we briefly describe its process in the setting as follows.954

For the input (
∑`

i=1 ki + l)-variate polynomial formula F(x1, . . . , x`, y), we extract all polynomials955

in F as the polynomial collection P. From the polynomials p in P, the algorithm firstly applies956

variable elimination to get some critical polynomials of fewer and fewer variables, with which957

the zeros of p could be cylindrically indexed as a tree structure. Then it computes all realizable958

sign conditions of P and those critical polynomials, each sign condition gives the signs of all959

polynomials in P and those critical polynomials, which is realized by some sample in R
∑`

i=1 ki+l.960

Furthermore, since these samples are cylindrically indexed, the universal quantifier could be re-961

placed with a finite conjunction over samples and the existential quantifier could be replaced with962

a finite disjunction. Thereby, the original formula Q1 x1 · · ·Q` x` : F(x1, . . . , x`, y) is equivalent963

to the disjunction (quantifier-free) of all solution sign conditions with respect to free variables,964

each of which is realized by some sample.965

There are many tools that have implemented Algorithm 1, such as Reduce (a.k.a. Red-966

Log [11]) and Z3 [10].967
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