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Abstract

Verifying temporal properties of quantum systems, including quantum Markov chains (QMCs),
has attracted an increasing interest in the last decade. Typically, the properties are specified
by quantum computation tree logic (QCTL), in which reachability analysis plays a central role.
However, safety as the dual problem is known little. Motivated by this, we propose a more
expressive logic — QCTL* (QCTL plus), which extends QCTL by allowing the conjunction in
path formulas and the negation in the top level of path formulas. The former can be adopted
to express conditional events, and the latter can express safety. To deal with conjunction, we
present a product construction of classical states in the QMC and the tri-valued truths of atomic
path formulas; to deal with negation, we develop an algebraic approach to compute the safety
of the bottom strongly connected component subspaces with respect to a super-operator under
some necessary and sufficient convergence conditions. Thereby we conditionally decide QCTL™"
formulas over QMCs; without the convergence conditions the safety problem still remains open.
The complexity of our method is provided in terms of the size of both the input QMC and the
QCTL"* formula.

Keywords: Model Checking, Markov Chain, Formal Logic, Quantum Computing

1. Introduction

Quantum computing has attracted more and more interest in the last decades, since it of-
fers the possibility to efficiently solve important problems such as integer factorization [30],
unstructured search [[17]], and solving linear equations [20]. To realize the potential of quantum
computing, it is indispensable to develop quantum software that can control quantum devices to
execute algorithms and thus solve practical problems [6]. However, it is much more challenging
to ensure the correctness of quantum systems, as we can see from various attacks on the quan-
tum key distribution protocol [33| [14]. Therefore, there is an urgent need to develop effective
verification techniques to improve the trustworthiness of quantum systems.

Model checking [8, [2] is one of the most successful techniques for the formal verification
of classical hardware and software systems. Usually it is based on Markov models. For clas-
sical Markov chains (MCs), early work dates back to 1980s. Based on computation tree logic
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(CTL) [[7], Hansson and Jonsson introduced probabilistic CTL (PCTL) by adding the probability-
quantifier, and further gave an algorithm for checking the validity of the PCTL formulas over
MC:s [18]], in which reachability analysis plays a central role. Like CTL, PCTL is a two-level
logic consisting of state formulas and path formulas. The syntax of PCTL path formulas al-
lows neither conjunction in path formulas nor negation. The former can be adopted to express
conditional events, and the latter can express safety as the dual problem. Whereas, both conjunc-
tion and negation are allowed in linear temporal logic (LTL) [29]. A natural extension of PCTL
is PCTL?*, introduced by Aziz et al. [[1]], which subsumes PCTL and LTL. The decidability of
PCTL* formulas over MCs follows from the fact in [13]] that a set of paths satisfying a formula in
probabilistic LTL is measurable. Furthermore, Bianco and de Alfaro presented model checking
algorithms for PCTL and PCTL* formulas over Markov decision processes (MDP), in which the
probabilistic behavior coexists with nondeterminism [4].

Model checking has also been extended to the quantum setting to verify the correctness of
quantum programs [37]. Usually, the behaviour of a quantum program can be described by
a formal model such as a quantum Markov chain (QMC) [16]. The QMC was shown to be
able to describe some hybrid systems [23]]. Under it, the authors considered the reachability
probability [38], the repeated reachability probability [[15], and the model checking of linear time
properties [23] and a quantum analogy of CTL (QCTL) [16]]. QCTL allows for trace-quantifier
formulas, by which the probabilities of specified properties can be taken into consideration. A
key step in their work is decomposing the state space (known as a Hilbert space) into a direct-
sum of some bottom strongly connected component (BSCC) subspaces plus a maximal transient
subspace with respect to a given super-operator. After decomposition, all the aforementioned
problems were shown to be computable/decidable in polynomial time.

In the current work, we focus on the properties specified by a more expressible logic called
QCTL™* (QCTL plus), which extends QCTL [38] by allowing conjunction in path formulas and
negation in the top level of path formulas. This logic allows for two kinds of quantifier formulas,
instead of probability-quantifier formulas in PCTL: trace-quantifier and fidelity-quantifier for-
mulas. The former employs the notion of positive operator valued measure (POVM) to quantify
sets of infinite paths in QMCs, and the latter makes use of the notion of super-operator valued
measure (SOVM). Unlike classical Markov chains, QMCs have transitions weighted by super-
operators instead of numerical probabilities, and it is natural to introduce SOVMs as in [16]. A
POVM is conceptually more succinct and easier to manipulate, and it has served as the most gen-
eral formulation of measurements in quantum physics [27], so we also investigate the semantics
entailed by this measure [33].

Fidelity is a popular distance measure in quantum computing [31} [12]]. It is one of the most
widely used quantities to quantify uncertainty of noise in experimental quantum physics and
quantum engineering communities; for example, see [26, [5]. When quantifying the degree of
satisfaction for a property, we have the freedom to choose a probability or a fidelity, correspond-
ing to POVM and SOVM, respectively. Their difference can be seen from a simple example.
Suppose that a quantum system is in the state described by a density operator p and some quan-
tum operation & is applied, changing the quantum system to the state E(p). As an abstraction
on the distance between p and &(p), the probability measure is mainly determined by the trace
of &(p). For instance, the quantum states p = |0){0| and &E(p) = [1){1] (where & is the bit flip)
have the same trace 1, but they are different states. Whereas, the fidelity concerns how well the
quantum operation & has preserved the state p of the quantum system, whose arc-cosine value
is a precise metric between the aforementioned p and &(p). For instance, the fidelity between
[0){0] and [1){1] is O as we expected. Hence the probability measure does not suffice to recognize
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general quantum states, but fidelity does!

To decide the trace-quantifier and fidelity-quantifier formulas, we need to first synthesize
the super-operators of path formulas embedded into them. There are three kinds of atomic path
formulas — the next formula, the time-bounded until formula, and the time-unbounded until
formula. We can directly obtain the super-operators for the former two kinds according to the
semantics of QCTL*. Whereas, for the last kind, we have to resort to the matrix representation
of the super-operators ¥ that characterizes state transitions. The BSCC subspaces of ¥ are
subsets of the state space, in which all states are pairwise reachable with probability one under
the quantum operation ¥, and thus yield deadlock. After removing all BSCC subspaces of #,
we could get an explicit matrix fraction describing the series of repeatedly applying 7.

Proceeding to deal with conjunction and disjunction in atomic path formulas, we present
a product construction of classical states in the QMC and the tri-valued truths (“true”, “unde-
termined” and “false”) of atomic path formulas. After unrolling with those product states, we
reduce the arbitrary conjunction and disjunction in atomic path formulas on the original QMC
to a single atomic path formula on the product QMC with SOVM being preserved. Next, we
deal with negation in atomic path formulas. The super-operators for the negations of the next
formula and the time-bounded until formula can also be obtained according to the semantics of
QCTL". Whereas, for the negation of the time-unbounded until formula, we have to determine
the ultimate density operators that stay in the BSCC subspaces with respect to #, which turn
out to form a dense set, not a singleton. So we propose the necessary and sufficient convergence
conditions that make the semantics unambiguous on the QMC. Under them we synthesize the
super-operators. These super-operators are the SOVMs of the properties to be checked. The
POVMs follow from them by matrix transformation. However, our approach of synthesizing
super-operators would fail without those convergence conditions.

Finally we decide trace-quantifier and fidelity-quantifier formulas using the aforementioned
POVMs and SOVMs, respectively. If the input QMC is fed with an initial quantum state, the
trace-quantifier and fidelity-quantifier formulas can be decided directly by matrix operations;
otherwise we decide the trace-quantifier formula by real root isolation for polynomials and decide
the fidelity-quantifier formula by quantifier elimination over real closed fields. The workflow of
deciding the QCTL™" formulas on the QMC with an initial quantum state is given in Figure

The main contributions of this paper are summarized as follows.

1. We propose the logic QCTL" interpreted on QMCs that extends QCTL by allowing con-
junction in path formulas and negation in the top level of path formulas.

2. To deal with conjunction, we present a product construction of classical states in the QMC
and the tri-valued truths of atomic path formulas.

3. To deal with negation, we develop an algebraic approach for the safety of the BSCC sub-
spaces under the necessary and sufficient convergence conditions.

4. Two running examples — quantum teleportation protocol and quantum Bernoulli factory
protocol — are provided to illustrate our method.

Organization. The rest of the paper is structured as follows. In Section [2| we recall some basic
concepts and results from quantum computing and number theory. In Section [3| we introduce the
model of QMC. In Section 4] we define the syntax and the semantics of QCTL*. We synthesize
super-operators for path formulas in Section[5] and decide QCTL* state formulas and discuss the
time complexities in Section[6] Finally, we conclude in Section
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Figure 1: Workflow of deciding the QCTL™ formulas on the QMC with an initial quantum state

2. Preliminaries

2.1. Quantum computing

Here we recall some basic notions and notations in quantum computing. Interested readers
can refer to [27,[16] for more details. Let N, Z, R, C denote the sets of natural numbers, integers,
real numbers, and complex numbers, respectively. In this paper, we adopt the Dirac notations
that are standard in quantum computing:

e | i) stands for a unit column vector labelled with i;
e (Y] == |y)' is the Hermitian adjoint (transpose and complex conjugate entrywise) of |i/);

o (Y1|g2) == (Y1l o) is the inner product of [/ ) and |i,);
o | )Xl = 1) ® (¥»| is the outer product, where ® denotes tensor product.

Specifically, |i) with i € Z* denotes the vector whose i-th entry is 1 and the others are 0. Thus
(iliy = 1 and (i|j) = 0 hold for all positive integers i, j (j # i) by orthonormality.

Let [n] (n € N) denote the finite set {1, ..., n}. Let H be a Hilbert space with finite dimension
d := dim(H) throughout this paper. Unit elements /) of H are usually interpreted as states of
a quantum system. Since {|i) : i € [d]} forms an orthonormal basis of H, any element |y) of H
can be expressed as |y) = X e Cili), where ¢; € C (i € [d]) satisty Xy lc;/> = 1. That is,
the quantum state |i) is entirely determined by those coefficients ¢;. In a product Hilbert space
H @ H’, let t |, y’) be a shorthand of the product state |y} [y') = |y) ® |y} with |y) € H and
)’y € H'; [y ) denotes a general joint state in H ® H’ where ¢ ¢’ encoded as a whole symbol
is a label. For example, the Bell state |[Bell) = (|0,0) + |1, 1))/ V2 with label Bell is a general
state that cannot be decomposed as a product one. For any [/1),[2) in H and |¢}), [¢}) in
9H’, the inner product of two product states [i1, ) and |2, 5) is defined by (Y1, ¢/ | ¥, ¥)) =

Wl2) W 1¥5).
4
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Let Ly be the set of linear operators on H, ranged over by letters in bold font, e.g. E,F, I, P.
For conciseness, we will omit such a subscript H afterwards if it is clear from the context. A
linear operator y is Hermitian if y = y'; it is positive if (/| y ) > 0 holds for all /) € H. Given
a Hermitian operator y, we have the spectral decomposition [27, Box 2.2] that

Y= A, (1)

i€[d]

where 4; € R (i € [d]) are the eigenvalues of y and |if;) are the corresponding eigenvectors.
The support of y is the subspace of H spanned by all eigenvectors associated with nonzero
eigenvalues, i.e., supp(y) = span({|y;) : i € [d] A A4; # 0}). A projector P is a positive operator
of the form 3 ;cp, W)l with m < d, where |f;) (i € [m]) are orthonormal. Clearly, there is
a bijective map between projectors P = ;) [;){ii| and subspaces of # that are spanned by
{l;) : i € [m]}. To summarize, positive operators are Hermitian ones whose eigenvalues are
nonnegative; projectors are positive operators whose eigenvalues are 0 or 1.

The trace of a linear operator 7y is defined as tr(y) = X4 Wil ¥ ;) for any orthonormal
basis {|¥;) : i € [d]} of H. A density operator (resp. partial density operator) p on H is a
positive operator with trace 1 (resp. < 1). It gives rise to a generic way to describe quantum
states: if a density operator p is [/){i| for some |i) € H, it is said to be a pure state; otherwise it
is a mixed one, i.e., p = X ;e1q) Pi i)Wl under the spectral decomposition, where p; (i € [d]) are
positive eigenvalues (interpreted as the probabilities of taking the pure states |i;)) and their sum
is 1. Let D=! be the set of partial density operators on H, and D the set of density operators.
In a product Hilbert space H ® H’, y ® ¥’ with y € Ly and v’ € Ly has the partial traces
trep (y ® y') = tr(y')y and treg(y ® y') = tr(y)y’, which result in linear operators on H and H’,
respectively. The (partial) trace is defined to be linear in its input.

A super-operator & on H is a linear operator on Ly, ranged over by letters in calligraphic
font, e.g. &, F,1,P. A super-operator is completely positive if for any Hilbert space H’, the
trivially extended operator & ® J4, maps positive operators on Lggze to positive operators
on Ly, Where Iqp is the identity super-operator on H’. Let S be the set of completely
positive super-operators on H. By Kraus representation [27, Theorem 8.3], a super-operator &
is completely positive on H if and only if there are m linear operators E|, E,, ... ,E,, € £ with
some m < d? (called Kraus operators), such that for any y € £, we have

&y = ) EyEL @)

te[m]

The description of & is given by those Kraus operators {E;: £ € [m]}. Thus, the sum &; + &,
of super-operators & = {E,: £ € [m]} and & = {Ey,: £ € [m,]} is given by the union
{Ei¢: € € [m}U{Ey,: € € [m,]}; the composition E; o0& is given by {Ey o, E1 ¢, : €1 € [m AL, €
[m,]}. In a product Hilbert space H ® H’, for super-operators & = {E,;: £ € [m]} € Sg and
& ={E}: € [m']} € Sy, the product super-operator EQE’ is given by {E;: € € [m]} ®{E}: ( €
']} ={E;®QFE),: £ € [m] AL €[m']}. Itis easy to validate that (E@E)(y®7Y') = E(Y)QE' (Y')
holds for all y € L4y andy’ € Lg. The partial trace can be extended to Sy ®Syy: as tr (ERE’) =
e Wil E¢: € € [m]}®&’ and trap (E®E’) i= Y10y E@ Y E}: € € [m']} for any orthonormal
basis {|y;) : i € [d]} of H and {|y) : i € [d']} of H' and for any & = {E;: £ € [m]} € Sy and
& ={E;: te[m']} € Sy

A partial order C can be defined on L as: p; C p, if p» — py is positive. A trace pre-order <
can be defined on S as: & < &, if tr(E1(p)) < tr(E2(p)) holds for all p € D. The equivalence

5
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&1 ~ &; means that both & < &, and &; 2 &; hold. For a super-operator & = {E,: € € [m]},
the completeness & ~ I holds if and only if ¢, E;Eg = I where I is the identity operator. Let

S<7 be the set of trace-nonincreasing super-operators &, i.e., S = (€ S: & < I,
For a super-operator & € SS7 and a density operator p € D, the fidelity is defined as

Fid(&, p) = try/p'2E(p)p'/?; (3a)

when p is a pure state |/)(y/], it is simply

Fid(&, ) = VW1 EW WD ). (3b)

The fidelity reflects how well the quantum operation & has preserved the quantum state p. The
better the quantum state is preserved, the larger the fidelity would be. We can see 0 < Fid(&E, p) <
1 where the equality in the first inequality holds if and only if the supports of p and E(p) are or-
thogonal, and the equality in the second inequality holds if and only if & = 7. More technically,
the fidelity measures the average angle between the vectors in supp(p) and those in supp(&E(p)),
which reveals that arccos Fid(&, p) would be a standard metric between p and &(p). For conser-
vation, we would like to study the (minimum) fidelity of &, which is defined by

Fid(&) := min Fid(&, p) = min Fid(&, |y )}¥|), (3¢)
- peD [yyeH
where the last equation comes from the joint concavity [27, Exercise 9.19].

2.2. Number theory
We recall some basic results about dense subsets and algebraic numbers.

Definition 2.1. For a given set S C R™ withm € N, a subset S’ of S is dense if any element of S
can be approximated up to arbitrarily precision by elements of S'.

Definition 2.2. A collection of numbers uy, ..., u, are Z-linearly independent if no linear rela-
ton Y eim Zitti = 0 holds for some integer coefficients z; (i € [m]), not all zero; otherwise they
are Z-linearly dependent.

Theorem 2.3 (Kronecker [19, Theorem 443]). The set {(ku; mod 1,..., ku,, mod 1): k € N} of
m-tuples is dense in [0, 1) if 1,1, ..., wy are Z-linearly independent.

Corollary 2.4. The m-tuple set {(ky; mod2n, ..., ku, mod2r): k € N} is dense in [0,27)" if
T UL, ... i are Z-linearly independent.

Definition 2.5. A number A is algebraic, denoted by A € A, if there is a nonzero Z-polynomial
fa(z) of least degree, satisfying f1(1) = 0.

In the definition, such a polynomial f,(z) is called the minimal polynomial of A if the coefficients
of f1(z) have no common divisors # 1. The degree D of A is exactly deg.(f,), and the height H
is the maximum of the absolute values of the coefficients in f)(z). So, D and the bit length log, H
are reflected in the encoding size ||1||. The standard encoding of A is the minimal polynomial f;
plus an isolation disk in the complex plane that distinguishes A from other roots of f;.

6
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Definition 2.6. Let y;, ...,y be a collection of irrational complex numbers. The field extension
QWi, ... um) : Q is the smallest set that contains (i, ..., 1, and is closed under arithmetic
operations, i.e., addition, subtraction, multiplication and division.

Here those irrational complex numbers yy, . . . , i, are called the generators of the field extension.
A field extension is simple if it has only one generator. For instance, the simple field extension
Q(V2) : Qis exactly the set {a + b V2: a,b € Q).

Lemma 2.7 ([24}, Algorithm 2]). Let Ay and A, be two algebraic numbers of degree D, and
D», respectively. There is an algebraic number Ay of degree at most D1 D,, such that the field
extension Q(Ay) : Q is exactly Q(11, A7) : Q.

For the collection of algebraic numbers 4, ..., 4, appearing in the input instance, by repeat-
edly applying this lemma, we can obtain a simple field extension Q(4y) : Q that can span all
AL, ..., Ay. Thus we suppose w.l.o.g. that the input instance takes all constants from Q(41p) : Q,
and [|A|| is reflected in the size of the input.

Lemma 2.8 ([9} Corollary 4.1.5]). Let A be an algebraic number of degree D, and f(z) a poly-
nomial with degree Dy and coefficients taken from Q(A) : Q. There is a Q-polynomial g(z) of
degree at most DDy, such that the roots of f(z) are those of g(2).

The above lemma entails the fact that roots of all A-polynomials are also algebraic.

Theorem 2.9 (Masser [25],[28, Theorem 3.1]). Let A4, ..., A, be unit algebraic numbers of de-
gree at most D and height at most H. Then the free Abelian (addition) group {(z1,...,zZn) €
Z": A} - A" = 1} has a basis with entries bounded by (D log, H)Om),

The above result gives the complexity of finding such a basis, which is in the finite range (—B, B)"
with B = (Dlog, H )9 (i.e., PSPACE with respect to the number m of algebraic numbers, and
PTIME with respect to the size D + log, H of algebraic numbers when m is fixed).

3. Quantum Markov Chain

Let AP be a set of atomic propositions throughout this paper. For the consideration of com-
putability, all occurring numbers are supposed to be algebraic, taken from the field extension
Q(19) : Q for an appropriate algebraic number Ay. This field Q(4p) : Q contains some irrational
numbers, say the most common constant 1/ V2 appeared in quantum computing.

Definition 3.1 ([16, Definition 3.1]). A labelled quantum Markov chain (QMC for short) € over
H is a tuple (S, Q, L), in which

e S is a finite set of the classical states,

o 0: 8 xS — S is a transition super-operator matrix, satisfying that Dies O(s, ) = T
holds for each s € S, and

o L: S — 247 is a labelling function.

Usually, a classical state so € S is appointed as the initial one.

7
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Let Heq := C ® H be the enlarged Hilbert space with C = span({|s) : s € S}) corresponding
to the whole classical-quantum system. Here {|s) : s € S} is a set of orthonormal states serving
as the quantization of classical system S. The dimension of Hq is N := nd where n = |S|
and d = dim(H). In the QMC G, a state p.q is a density operator on H,q with the mixed form
Y s 15)(s|®ps where p; € D! (s € §) satisfy Y s tr(p,) = 1. Note that only the initial classical
state sg is specified in the model, while the initial quantum state py, is not. We will consider the
concrete and the parametric models, respectively, afterwards.

The transition super-operator matrix Q is functionally analogous to the transition probability
matrix in the ordinary Markov chain (MC). Actually, QMC extends MC by the fact that a QMC
would be an MC when H is one-dimensional. Sometimes, it is convenient to combine all the
super-operators in Q together to form a single super-operator, denoted 7 := 3’ s {I){s}®Q(s, 1),
on the enlarged Hilbert space Hcq.

A path w in the QMC € is an infinite-state sequence in the form s, s1, 52, . . ., Where Q(s;, Si+1)
#0ands; € S fori > 0. Let w(i) be the (i+1)-th state of w = s¢, 51, $2,...fori > 0,e.g. w(0) = 59
and w(1) = s;. We denote by Path the set of all paths starting at the initial state s¢, and by Pathg,
the set of all finite paths starting at s, i.e., Pathg, = {@: @ is a finite prefix of some w € Path}.

Example 3.2. Here we consider the quantum teleportation protocol [27|]. Its background is de-
scribed as follows. Suppose there are two partners: Alice and Bob. While together they generated
a qubit pair q, and g3, each took one qubit of the pair when they were separated. After that, Alice
wants to send a qubit information |q,) to Bob. She can only use classical information. So she
interacts the qubit q; with the share of the entangled qubit pair q,, and measures two qubits in
her possession by M| and M,, respectively. Alice then sends the results to Bob. According to the
measurement results, Bob performs the certain transformation to his qubit q3, whose information
lg3) is expected to be Alice’s original qubit one |q;).

Technically, the protocol can be implemented by the quantum circuit (see Figure ). The
symbols of some basic quantum gates and their meanings are given in Table[I} in which double
lines represent classical wires which transmit the classical output after measurement.

lq1) [H]

By

X

lg2) S

l3) [X] [Z] lg1)

Figure 2: Quantum circuit for the quantum teleportation protocol

We model the quantum teleportation protocol with the QMC €, = (S, Q, L) shown in Figure/[3)]
The state set S is {s¢, S1, $2, 3, S4, 55, Se, 87}, in which s7 has label ok and others have no label.
Particularly, s is the initial classical state that prepares i) the information |q.) (on the first qubit)
to be sent and ii) the entangled information |q; q3) (on the second and the third qubits) between
Alice and Bob. After a CNOT gate is applied on the first two qubits, we get state s,; then after
a Hadamard gate is applied to the first qubit, we get state s,. Performing a measurement on the
first two qubits gives rise to four outcomes “1,1”, “1,2”, “2,1” and “2,2”, and the system moves
to s3, S4, S5 and s, respectively. If the states s3 is obtained, keep the last qubit unchanged, which
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Symbol Name Operation

Pauli-X (bit flip) X = [1)(2] + [2)(1]
Pauli-Z (phase flip) Z = 11| = 2)(2]
Pauli-Y (bit-phase flip) Y = = |12 + 1 12)(1]
H = [+)(1] + |-)(2| with
[H] Hadamard [y = (I1) + 12)/ V2
:é; controlled-NOT (CNOT) I QT+ 22| ® X

a collection {M;}, e.g.

measurement .
M; = i)

;

Table 1: The symbols of some basic quantum gates and their specific operations

leads to the state s7. If s4, 55 and s¢ are obtained, apply the bit, phase, bit—phase flips to the last
qubit, respectively, which leads to s7 too. Finally, sq is the goal classical state indicating that the
information |q,) has been delivered to Bob. The transition super-operator matrix Q is given by
the following nonzero entries in Kraus representation:

0(s0, s1) = (I @IT + 2)2]@ X ® I} = CNOT) 1,

O(s1,82)={HeIQI} = Hy, O(s7,57)={Ix1I®I} =1,

Qs2,53) = {IIX1| @ 11| @T) = M, Qs2,50) = {11 @ 22| T} = M5,
Qs2,55) = {2)2 @ 11| @ T} = M7, Q52 56) = {2X2 @ 22| & T} = M5,
O(sz,s7)={IIel} =15 =1, 0(s4,57) ={I01® X} = X3,

Q(ss, s7) = (1@ 10 Z} = Z, Q(s6, 57) = {I@1Q Y} = Y3,

where I = |1){1]| + |2)(2| is the identity operator, and X,Z,Y,H are referred to the descrip-
tion in Table |l| with subscripts indicating which qubits are operated. Note that the factor 1 in
1Y = ZX yields a global phase of the resulting state, which is ignored in practice since it is not
measurable [27, Subsection 2.2.7].

In the OMC, wy = so, S1, $2, 53, 87, 87, ... Is a path in the set Path, while its finite prefix
w1 = S0, 51,52, 53,87 is in Pathg,. Besides, we have to address that the initial quantum state
(density operator) on sy consists of two independent parts: |q,) and |¢> q3), which are parameters
in the model. We will algorithmically determine them later. O

To effectively reason about quantitative properties of QMC, we would restrict the family of
basic events in consideration to be a countable set, and study the measures of the closure of that
family under union and complement. Formally, we are to establish two measure spaces, named
super-operator valued measure (SOVM) space and positive operator valued measure (POVM)
space, over paths as follows.

Definition 3.3. A measurable space is a pair (Q, %), where Q is a nonempty set and X is a o -
algebra on Q that is a collection of subsets of Q, satisfying:
9
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Figure 3: QMC for the quantum teleportation protocol

e Qe and
o X is closed under countable union and complement.

In addition, an SOVM space is a triple (Q, Z, A), where (Q, Z) is a measurable space and A: ¥ —
S=1 is an SOVM, satisfying:

e A(Q) =~ I, and
o A(W; A) = X; A(A)) for any pairwise disjoint A; € X;
a POVM space is a triple (Q,Z, A), where A: L — {M € L: 0C M C 1} is a POVM, satisfying:
e A(Q) =1 and
o A(lH; A) = 3 A(A)) for any pairwise disjoint A; € X.
For a given finite path @ € Pathg,, we define the cylinder set as
Cyl(@) = {w € Path: w has the prefix @}; 4)

for C C Pathgy,, we extend @) by Cyl(C) := Jgec CyI(@). Particularly, we have Cyl(sy) = Path.
Let Q = Path and T1 C 2% be the countable set of all cylinder sets {Cyl(@): @ € Pathg,} plus
the empty set 0. By [2, Chapter 10], there is a smallest o-algebra X of II that contains IT and is
closed under countable union and complement. It is clear that the pair (Q2, ) forms a measurable
space.

Next, for a given finite path @ = so, sy, ..., s,, we define the accumulated super-operator
along with @ as

ACYI(@)) = {I ifn=0. (5a)

O(Sp—1,8y) 0 -+ 0 Q(sg, 51) otherwise.

By [16, Theorem 3.2], the domain of A can be extended to Z, i.e., A: £ — SsI, which is unique

under the countable union | J; A; for any A; € IT and is an equivalence class of super-operators in

terms of ~ under the complement A for some A € I1. Hence the triple (Q2, X, A) forms an SOVM

space. Additionally, we would like to address that for two disjoint path sets, we can simply
10
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sum up their super-operators to get a total measure; however, the sum is improper when the two
path sets are overlapping, which could be resolved by using the measurable space on path sets
established as above.

Whereas, we define the accumulated positive operator along with @ as

ACYI®)) = {I itn =0, (5b)

Q(SO’ SI)T 0---0 Q(Sn—l, sn)T(I) otherwise.

Again, by a simplification of [16, Theorem 3.2], the domain of A can be extended to X, i.e.,
A:X— {Me L£:0C M C I}, which is unique under the countable union | J; A; for any A; € I1
and under the complement A for some A € I1. Hence the triple (Q2, %, A) forms a POVM space.

Example 3.4. Over the path set Path of €, shown in Example we can establish the SOVM
and the POVM spaces as follows. For the finite path o = so, S1, $2, 53, §7, we can calculate

o the SOVM A(iy) as
A(@wr) = O(s3, 57) © O(s2, 53) © O(s1, 52) © O(s0, 51)
= 0(s3,57) 0 Q(s2, s3) o {[+ X1 @I I+ |[-)2| e X @ I}
= 0(s3,87) 0 {% 1)1l 1)X1|e I+ % 1)2|® [1)2| T}
= {% 11 1)1 &1+ % 1)2| & [1)2|e 1},

o the POVM A(&,) as

A(@1) = Q(s0,51)" © O(s1,52)" 0 Q(s2, 53)" 0 O(s3, s’ ARIRT)
= Q(s0, 51)" 0 QCs1,52)" 0 Q(s2,53) ASTBT)
= Q(s0. 51)" 0 Q(s1, )" (1)1 @ |11 @)
O(so, s (GT+ 1 X) @11 @T)
FAAR @I+ 12l @ 12/ @ T+ [2)(1] ® [2)(1| @ I+ [2)(2[ @ [2)2| @ T),

which is exactly ETE with E = % (111 T + % [1)(2|®|1)(2|®1 being the unique
Kraus operator of A(@1).

Similarly, we have that the SOVMSs of w, = So, S1, 52, S4, S7, W3 = S0, S1, $2, S5, 57 and w4 =
50, 81, 52, S¢, §7 are
A(@2) = Q(s4, 57) © Q(s2, 54) © Q(s1, 52) © O(50, 51)
= {ﬁ X1 @ 2)2| @ X + % 12| ® 21| ® X},
A(@3) = O(ss, 57) © O(s2, 55) © Q(51, 52) © Q(S0, 51)
= {%5 X1 @ 1X1|®Z - \/% 12)2® 12| ® Z},
A(@g) = Q(s6, 57) © O(s2, 56) © Q(51, 52) © O(S0, 51)
= {%5 2X1®2)2|®Y - % 2)2|® [2)1] ® Y}. O
From Example we have seen the identity A(@) = A(@)'(I3). Hence, the POVM A can

be easily obtained, provided that the SOVM A is known. The SOVM is indeed generic!
11
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4. Quantum CTL Plus

Now we propose the formal logic considered in this paper — QCTL* (QCTL plus) — that
extends quantum computation tree logic (QCTL) [16] by admitting the conjunction in the path
formulas and the negation in the top level of path formulas.

Definition 4.1. The syntax of QCTL* is split into the following state formulas ® and path for-
mulas ¢:

Di=a|-D D ADy | D VD | Fhy[o] | FLIB] | Fipg[-0] | FLi[-0]
¢=XO|D U0, | DUD, ¢ Ay |y Vo

where a € AP is an atomic proposition, 0 T M C I and T € Q are thresholds, and k > 0 is a time
bound.

In this logic, X @ is called the next formula, ®,U <k®, is the time-bounded until formula, ®,U @,
is the time-unbounded until formula, and all of them are atomic path formulas; the former four
state formulas are basic ones, <8}EM[-] is the trace-quantifier formula and ‘&2‘1[-] is the fidelity-
quantifier formula. The QCTL™" formulas are referred to state formulas. It is generic to consider
the comparison operators C, <, since other comparison operators J1, 3, [, >, >, <, = can be tack-
led similarly. Next, SEM[—'M and 82‘1[—4)} allow us to express the negation acting on the top
level of path formulas, not on some arbitrary level of path formulas. The latter should be in
the scope of the quantum analogy QCTL" of probabilistic CTL* [1] that is more expressive than
our QCTL". So, under this restriction, we do not directly allow the negation in the syntax of
path formulas, but allow the negation in the path formulas embedded into the trace-quantifier
and fidelity-quantifier formulas. The reason of imposing this restriction is to effectively synthe-
size the super-operators in an explicit form, without which there would be nontrivial technical
hardness (to be specified at the end of Subsection [5.3).

Definition 4.2. The semantics of QCTL* interpreted over a QMC € = (S, Q, L) is given by the
satisfaction relation [=:

sEa if a € L(s),

sE @ if s £ @,

sE O AD, if s E®;and s £ ©,,

sE® VD, if s E ®yorskE O,

sE i?EM[qS] if Alw € Path(s): w E ¢}) T M,

s E 3] if Fid(A(fw € Path(s): w  ¢})) <7,

wEXD if (1) E O,

wE ®,U*®, if there is an i < k such that w(i) E @, and w(j) E @, holds for all j < i,
wE O U, if there is an i such that w(i) E ®, and w(j) E @, holds for all j < i,
wkE —¢ ifw i ¢,

wEd A ifwk ¢ and w [ ¢,

wE OV P ifwE ¢ orwE ¢.

12
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Later on, we will use A(®) and A(¢) to abbreviate A(Cyl(®)) and A({w € Path: w E ¢})
respectively, and similar for the POVM A.

Example 4.3. Consider the path w, = sy, 1, $2, 3, 57, 57, . .. on the QMC €, shown in Exam-
ple[3.2] We can see:

e 57 = ok and s [~ ok for each s € S \ {s7};

o w E X -0k, as wi(1) = sy £ ok;

o w; I true U=%ok, as w; (i) i ok for eachi < 2;

e w; E trueUok, as wi(4) = s7 E ok and w1 (i)  true for each i < 4.

The final classical state of the quantum teleportation protocol is s7 that is uniquely labelled
with ok, and the corresponding map from the initial quantum state to the final one is charac-
terized by the SOVM of all paths w reaching ok, i.e., A(Qok) = A({w € Path: w E true U ok}).
Since there are exactly four disjoint finite paths o, = Sg, S1, 52, 53,57, W2 = 80, S1, 52, S4, 57,
w3 = S0, 51, 52, S5, 87 and w4 = Sg, S1, $2, S, §7 that reach ok, we get

A(Q0k) = Al@1) + Al@2) + Al@3) + A(@4)
% XU @ X1 @T+ 5 Q2@ 12 L
B % Xl @R)2eX+ 55 2@ 218X,
- % XL @ IXI®Z - % 12)2I®1){2I®Z,

- 1o R)2eY - 5 2)2leRX1|eY

5. Synthesizing Super-operators of Path Formulas

Let Sat(®) denote the satisfying set {s € S : s | ®}. From a bottom-up fashion (see Figure,
Sat(®) for the basic state formulas @ can be directly calculated by a scan over the labelling
function L on §. Whereas, for trace-quantifier and fidelity-quantifier formulas ®, one has to
know the SOVMs of the path formulas ¢ embedded in @, which is just the main task of this
section. We first review the known method for synthesizing the super-operators of three kinds of
atomic path formulas in QCTL™". Then we reduce the conjunction and disjunction in atomic path
formulas over the QMC to the time-unbounded until formula over a product QMC. Finally we
synthesize the super-operators of the negation in atomic path formulas. Thereby, we synthesize
the super-operators of all path formulas required in the syntax of QCTL*. Based on them, we
will decide the trace-quantifier and fidelity-quantifier formulas in the coming section.

5.1. Atomic path formulas

Let P, denote the projection super-operator {|s){s|} ® I = {|s)(s| ® I} on the enlarged Hilbert
space Heq, and Po = {X o [S)sI} ® T = {¥ 0 Is)(s] ® I}. Utilizing the mixed form of the
classical-quantum state p = } g |5){s| ® ps, we have the decomposition

p= ) 1s)sl@py+ D 1Xs @ ps = Palp) + P-alp) (©6)

sE® sED

for any state formula ®@. After an initial classical state s is fixed, the SOVMs of three kinds of

path formulas can be obtained as follows.
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e Supposing that Sat(®) is known, we have

AKX D) = A (@ Cyl(s, t)] - Z A(s, 1) = Z 0(s, 1). (7a)

=D = =

o Supposing that Sat(®;) and Sat(®,) are known, we have

J=0

k i—1
A@, U d,) = A[@ {w € Path: w(i) E ®; A /\ w(j) E (@ A —|(I>2)}]
i=0

k i—1
Z A[{w € Path: w(i) £ ©; A /\ w(j) E (@) A ﬂqaz)}
i=0 =0
k
i=0

trC(Pq)z o (T ° Pq’]/\‘!‘bz)i o PA‘)? (7b)

where tre is the partial trace that traces out the classical system C.

o Supposing that Sat(®;) and Sat(®,) are known, we have

o

1
S

i—1
A@UD,) = A[ + {w € Path: w(i) E ®; A /\w(j) E (D) A —|<I>2)}]

J=0

DMe 1D

j=0

i—1
A[{w € Path: w(i) £ ®; A /\ w(j) E (@) A ﬂqaz)}

trc(Pao, © (F 0 Paoy-a,) © Py). (7¢)

L

Il
(=]

For the latter two kinds, all satisfying paths w can be classified upon the first time-stamp i that
w(i) E @, and w(j) = P, for each j < i (or equivalently the unique time-stamp i that w(i) E @,
and w(j) E ®; A =@, for each j < i). Thereby, we can get the pairwise disjoint resulting
sets A; = {w € Path: w(i) E ®y A N w(j) E () A ~®;)}, whose SOVMs are obtained as

tre(Pa, o (F o Po,a-a,)' © Py), respectively.

Example 5.1. Consider the quantum Bernoulli factory protocol [22)]. It goes as follows. Cary
and David want to select a leader by coin tossing. Perhaps, the coin is biased. To make the
selection fair, they adopt the trick of von Neumann [32] that tosses the coin twice. If the result
is “head followed by tail”, then Cary wins, if it is “tail followed by head”, then David wins;
otherwise (either “head followed by head” or “tail followed by tail”) repeat the above process.
In the quantum setting, we start with a state |4 q2) in the two-qubit Hilbert space; tossing the
first (resp. second) coin is modelled by applying the Hadamard gate H to the first (resp. sec-
ond) qubit; the event “head followed by tail” is measured by M| = {|1,2)(1, 2|}, the event “tail
followed by head” is measured by M, = {|2,1)(2, 1|}, the complement event is measured by
My = {1, 1)1, 1| +12,2)(2, 2|}, and together {My, My, M>} form a projective measurement [27
Subsection 2.2.5]. Overall, the protocol is summarized by the quantum program:
14
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g1 g2) ="
while M[q,,q>] = 0do
Hlq\l;
Hlg];
if M[q1,q>] = 1 then return Cary;
if M[q1,q2] = 2 then return David;
and is expressed by the QMC €, = (S, Q, L) in Figure 4| The state set S is {so, S1, $2, $3, S4}, in
which s3 is labelled with winc (Cary wins), s4 is labelled with winp (David wins), and others
have no label. The initial classical state sy prepares the initial quantum state \q, q2). After
measurement it is led to s», s3 or sS4, the latter two are goal classical states. The state s, indicates
that the coin would be tossed twice, i.e., applying H to q and to q,, returning to the state s for
a restart. The transition super-operator matrix Q is given by the following nonzero entries:
OC(s0, 52) = {1, IXT, 11+ 12,22, 21} = Mo, Q(so, s3) = {I1,2X1, 2]} = M,
OC(s0, s4) = {12, 1}2, 1} = M, O(s2, 1) ={He I} = Hy,
O(s1,50) = {I®H} = Ha, O(s3,53) = Qsa, 54) ={I® 1} = 1.
We would like to use a single super-operator on Heq, combining all super-operator entries, as:
F = {ls2){s0l} ® O(s0, 52) + {Is3)(s0l} ® OCs0, 53) + {ls4){s0l} ® O(s0, 54) +
{Is1){(s2} ® OCs2, 51) + {Is3)(s3]} ® OC(s3, 53) + {Is0)(s1]} ® O(s1, 50) +
{lsa)(s4l} ® OC(s4, 54).

AN S

winp

winge
Figure 4: The QMC modelling the quantum Bernoulli factory protocol

After having fixed the initial classical state s, the SOVM space over Path can be established
to check some interesting properties, say “Cary wins”, i.e., Q wing = true Uwinc. To this end,
we first define the projection super-operators P, = {[50){sol ® I}, Puin. = {l53){(s3| ® I} and
Pvine = {(Iso)(sol + [s1)s1] + [s2)(s2| + |54)(s4]) ® I}, and therefore F o P i is given by

{Is2){(sol} ® O(s0, 52) + {Is3){s0l} ® O(s0, 53) + {Is4)(s0[} ® Ols0, 54) +
{ls0){s11} ® Q(s1, 50) + {ls1)(s2[} ® O(s2, 51) + {Is4)(s4]} ® O(s4, 54).

The path set satisfying Q wine can be classified as A; = {w € Path: w(i) E winc/\/\;}) w()) E

—winc} (i > 0), which are pairwise disjoint; their SOVMs are
A(Ap) = tre(Prine © Ps,) = tre(0) = 0,
A(A1) = tre(Puing © (F 0 Pawine) © Psy) = tre({ls3)(sol} ® O(s0, 53))

= Q(s0, s3) = {I1,2X1, 21},
15
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A(A2) = tic(Prine © (F 0 Pyyin )" © Py,) = tre(0) = 0,
A(A3) = tic(Puine © (F 0 Pyyin )’ © Py,) = tre(0) = 0,
A(A4) = ticPuine © (F © Pyin)* © Py,)
= tre({ls3){sol} ® (Q(s0, 53) © O(s1, S0) © O(s2, 51) © QS0 52)))
= Q(s0, 53) © Q(s1, %) © O(s2, 51) © Qs0, 82) = {5 |1, 2)(1, 1] = 5 [1,2)(2, 2},
and so on. Finally, the SOVM A(Q wing) is calculated as the infinite sum Y52, A(A;), which will

be used to decide the trace-quantifier and fidelity-quantifier formulas in later, e.g. the nontermi-
nation event FL\ [-O(winc V winp)]. O

It is worth noticing that the SOVM is not in a closed form. To overcome it, we would
phrase it using matrix series and rephrase it using matrix fraction. By Brouwer’s fixed-point
theorem [21, Chapter 4], the existence of bottom strongly connected component (BSCC) sub-
spaces (defined below) implies the existence of fixed-points that F o P, n-w,(0cq) = Peg» Which
makes the resulting matrix series divergent. Hence, before using matrix fraction, it is necessary
to remove all BSCC subspaces with respect to Fo,r-0, = F © P, -0, Recall that:

Definition 5.2. Given a super-operator & € S, a subspace T of H is bottom if for any pure state
[y € T, the support of E(W )W) is contained in T it is a SCC if for any pure states Y1), ¥2) € T,
yr2) is in span(|J:, supp(E (Y1) 1))); it is a BSCC if it is a bottom SCC.

Lemma 5.3 ([34, Lemma 5.4]). For the super-operator o, n-o,, the direct-sum of all BSCC
subspaces can be computed as

I" = span({supp(y): i € [m]}), (®)
where y; (i € [m]) are all linearly independent solutions to the stationary equation Fo,r-0,(y) =
y(y=v"€Ln)

In details, the stationary equation &(y) = vy can be solved in O(n3d®) by Gaussian elimination,
whose complexity is cubic in the number nd” of real variables in y. The support supp(y;) of
an individual solution y; can be computed in O(nd>) by the Gram—Schmidt procedure, whose
complexity is cubic in the dimension nd. In total, they are in O(mn*d®) € O(n*d>) as m is
bounded by nd?, and the complexity of computing the direct-sum of all BSCC subspaces is in

O(N®) where N = nd is the dimension of Hcq. The resulting projectors Pr and Pr. = Iy, — Pr
are of the form Y ¢ |s)(s| ® P; where P; (s € §) are positive operators on H.

Example 5.4. Reconsider the event ) winc over the QMC €, in Example The repeated
super-operator of the SOVM is F_yin. = F © P-yin. Which has been obtained. We solve the
stationary equation F_in.(y) =y wherey = 3 s |S)s| ® ys and y; = )/I € Ly, and obtain the
5 linearly independent solutions:
Y1 = Is0)(sol ® S[IL 1)(L, 1+ 11, 1)(2, 2] +12,2)(1, 1] +12,2)(2, 2] +
sl @ ST )+ + 11, +)2, =+ 12, = XL, +] + 12, -)2, ] +
Is2)(s2l ® ST, (L 1]+ 11, 142,20 + 12,21, 1] + 12,22, 2]],
Y2 = Isa)(sal ® |1, IX1, 1],
Y3 = lsa)(sal @ [1,2)(1, 2],
Ya = Isa)(sal ® 12, 12, 1],

¥s = Isa)(s4l ®2,2)(2,2]. 6
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Then the BSCC subspaces I covering all the fixed points of F_in. is span(supp(y1) U supp(y2) U
supp(y3) U supp(ya) U supp(ys)), in which

supp(y1) = span({lso) @ [[1, 1) +12,2)], s1) @ [[1, +) + 2, )], [s2) @ [|1, 1) + 2, 2)]}),
supp(y2) = span({|ss) ® |1, 1)}),
supp(y3) = span({|ss) ® |1,2)}),
supp(y4) = span({|s4) ® [2, 1)}),
supp(ys) = span({|ss) ® 2, 2)}).

The projection super-operator Pr = {Pr} onto I is given by the projector Pr = y; + vy, +y3 +
v4 + ¥s as all eigenvectors (with respect to nonzero eigenvalues) of those y; are orthonormal;
the projection super-operator Pr. = {Pr.} onto the orthogonal complement T+ of T is given by
Pr. = Iwcq — Pr. Thereby, the composite super-operator F_in. © Pre is

{1s2)(s0l ® Eq 2, 53){s0| ® Eq 3, [s4){s0| ® Eg 4, [50){s1| ® E1 0, |51){52] ® E2,1},

in which
Eop = 211, 11, 11 = [1, 142,21 = 12, 2)1, 1] + |2, 2)(2, 2]],
Eos = [1,2)(1,2],
Eoq = 12, 1)(2,1],

Eio = 301, DL+ 412,22, =1 = 11, 142, =] = 12, 2)C1, +HT + |1, 12, =| + 12, 12, 4,
Ep i = 31 DCL ] = 1 162,20 = =, 201 1]+ = 202, 201 + [+, 2)C1, 2] + =, 12, 11

it has no fixed-point. ([

The following lemma indicates that the desired SOVM is preserved after all BSCC subspaces
are removed.

Lemma 5.5 ([34, Lemma 5.6]). The identity Po, o (Fo,r-0,)' = Po, © (Fo,n-0, © Pre)’ holds
foreachi > 0, where I is the direct-sum of all BSCC subspaces with respect t0 F o, -,

We proceed to explicitly represent the SOVMs ([7) using POVMs and matrices. Recall from
[37, Definition 2.2] that a super-operator & = {E,: £ € [m]} has the matrix representation

S2M(E) = Z E,®FE, )

{€[m]
where * denotes entrywise complex conjugate. Let

o L2V(y) = % jepm Cil ¥ 1) 1i, j) be the function that rearranges entries of the linear operator
v as a column vector;

o V2L(V) = 3 jepn (i J1 V1i){/] be the function that rearranges entries of the column vector
v as a linear operator.

Here, S2M, L2V and V2L are read as “super-operator to matrix”, “linear operator to vector”
and “vector to linear operator”, respectively. Then, we have the identities V2L(L2V(y)) = v,
L2V(&E(y)) = S2M(E)L2V(y), and S2M(&; o &) = S2M(E,)S2M(E). Therefore, all involved
super-operator manipulations can be converted to matrix manipulations.

17



e Supposing O(s,?) = {Qy¢: € € [Ls,]} in Kraus representation, where Lj, is the number of
Kraus operators, the POVM and the matrix representation of the SOVM are

SIMAX®) = > > Que® Qi (10a)
tE® (e[Ly,]

AX®) =) > Ql, Q7. (10b)
1ED e[Ly,)

e Supposing Fo,r-a, © Pre = Uyyes VUl ® Fy 00 € € [L,,, ]}, the matrix representation of
the SOVM is

k
SIMA@ U= ®,)) = > " (] ® Tyep)M'(1s) © Lyia)

1D, =0
= > (18 Tnar) Myt am — M g — M1 (15 @ Lo,
P
(10c)
s where M = 3, \e5 Dreqr,,,1 IV ul ® Fuy e ® F |, is adapted to the vector representation
s Dises |8) ® L2V(py) of the state p.
e The matrix representation of the SOVM is
SIMA@ U ®2)) = > 3" ({118 Tyiar)M(15) ® Tye)
@, =0
= Z((fl ® It por — M1 (1) © Ipon). (10d)
=D,

w7 Anyway, the POVMs can be analogously obtained as A(¢) = A(¢)"(I).

«s Example 5.6. In Example we have obtained the repeated super-operator ¥, and the
ws  corresponding BSCC subspaces T for the event “Cary wins” specified by the path formula ¢ =
w0 Qwing. Then the matrix representation of _yin. © Pre is

IM = [52)(s0l ® Eo2 ® E 5 + |53)(s0| ® Eo3 @ E 3 + [54){s0| ® Eo 4 ® Ey 4, +
Iso)(s11 @ E10 @ Ej +[s1){s2] ® Ep1 ® E7 ;.

w1 The eigenvalues of M are 0 of multiplicity 80. Since M has no eigenvalue 1, the inverse of
w2 g on — M is well-defined. Finally, the explicit matrix representation SZM(A(¢)) of A(@) is
w3 obtained as

(531 ® InerO Mgt o = M1 (150) ® Iran)
= }1 (1,21, 1| ®]1,2)(1, 1| - }1 [1,2)1, 1| ®]1,2)(2,2| + }l [1,2)(2,2|®|1,2)(2,2| —
% [1,2)¢2,2| @ |1, 2)(1, 1| + |1, 2)(1, 2| ® |1,2)(1,2].
wse  Moreover, we can get the POVM A(¢) as
A(¢)'(Ig1) = V2L(S2M(AT(¢))L2V (1))
= V2L((S2M(A($))) L2V (I3))
= % 1, 1)1, 1] - }1 11,1)2,2] 1—8% [2,2)(1, 1] + % 12,2)2,2] +|1,2)1,2],
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where the second equation follows from the identity S2M(A(¢)) = (S2M(A(¢)))". (I

Utilizing the facts that for a matrix IM and a time bound k&,

e it is in polynomial time with respect to ||IM|| and linear time with respect to [log,(k + 1)] <
||¢]| to compute the matrix power M¥, and

e itisin polynomial time with respect to ||IM|| to compute the matrix series (I

-1
A q®H — M)™ =
Yoo M' if IM has no eigenvalue 1,

we obtain:

Theorem 5.7 ([35,134]]). The matrix representation of the SOVM A(¢) and the POVM A(¢) for
the atomic path formulas ¢ in QCTL" can be synthesized in time polynomial in the size of € and
linear in the size of ¢.

5.2. Conjunction and disjunction in atomic path formulas

Here we consider how to reduce the conjunction and disjunction in atomic path formulas to
a time-unbounded until formula over a product QMC. We first show the reduction on a single
conjunction or a single disjunction of two time-unbounded until formulas, then generalize it to
the arbitrary conjunction and disjunction of finitely many time-unbounded until formulas, and
even to the arbitrary conjunction and disjunction of finitely many arbitrary atomic path formulas.

Classical states s in a QMC € are static information that cannot record dynamical behavior
along with a path w of €. To record dynamical information, we introduce the product state
structure, saying (s, @ 3) for a conjunction of two time-unbounded until formulas ¢; = ®,U ®,
and ¢, = ®3U @y, in which the auxiliary information @, 3 is used to record the (O; A O3)-states
we are in and the ®,- and the ®q4-states are expected to be reached along with w, i.e., the path
formulas ¢; and ¢, whose truth are undetermined at the current state s along with w. Once
one of the two time-unbounded formulas, saying ¢, is satisfied, (s, @3) would be introduced to
record the @j3-states we are in and the ®4-states are expected to be reached. More formally, we
construct:

Definition 5.8. Given a QMC € = (S, Q,L) and a conjunction of two time-unbounded until
formulas ¢, = ©1U O, and ¢y = O3U Dy, their product QMC C is the pair (S', Q), where

e S is the finite state set

(L, THU{(s,D13): s€STU{(s,D3): s€SIU{(s,D)): s€ S},

A

e 0:8x8 — S isa transition super-operator matrix given by

® o, 1)=1 (@) oT,T) =1

(iii)

O(5,®13), 1) = THQ(s.1): 1 | (= @) A =Dy V =D3 A =Dy))}
tE (O A =Dy A D3 A =Dy) tE (O A D3 A—Dy)

- (V) =
O((s, @13), (1, @13)) = OC(s, 1) Y O((s, @13), (¢, @3)) = O(s,1)
tE (O A =Dy ADy)

O(s, @1 3), (t, 1)) = O(s, 1)

(iv)

(vi) (v

1119) O((s, @13), T) = ZHIQ(s, 1): 1 | (02 A Dy}
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(viii)

O((s,@3), L) = SH0(s,): t E (=D3 A ~Dy)]}
tE (D3 A -Dy) )
O((s, 3), (1, @3)) = QO(s, 1) O(s,®3), T) = SIQ(s,1): 1 = Dal}

O(s, @), L) = T{Q(s.1): 1 | (=01 A~ D)}

_ tE (D) A D)) (i) = ’
O((s, @), (¢, D1)) = O(s, 1) O((s, @), T) = 2{1Q(s, D) 1 | Do}
where Y {| - |} denotes the summation over the multiset {| - |}. (We employ the priority on
Boolean connectives that ‘=’ < ‘A’ < V' in this paper.)

(ix)
(xi)

(xii)

In the product construction, the special state L indicates the event that either ¢; or ¢, is unsat-
isfiable; the special state T represents that both ¢; and ¢, have already been satisfied; the state
(s, @) 3) represents that ¢; and ¢, are undetermined; (s, @3) represents that ¢, is already satisfied
while ¢, is undetermined; (s, @) represents that ¢, is already satisfied while ¢; is undetermined.
There are 13 rules to define the transition super-operator matrix Q:

e Rules (i)—(ii) characterize that L and T are absorbing states.

e Rules (iii)—(vii) give all possible successors of (s,®,;3), depending on the satisfaction
relations ¢t = @, t E @, t E @3 and ¢t E P4. Particularly, if the successor ¢ |
(=®; A =D, V =03 A =Dy), we can infer that the current path refutes ¢, or ¢,, lead-
ing to the state L. As there might be more than one dissatisfying successor ¢, we collect
those super-operators as the weight Q((s, @, 3), L) of the transition by a summation over
the multiset, i.e., > {|O0(s,1): t E (=@ A =D, V =D3 A =Dy)]}.

o Rules (viii)—(x) give all possible successors of (s, ®3), depending on the satisfaction rela-
tions t | @3 and ¢t E 4.

e Rules (xi)—(xiii) give all possible successors of (s, ®;), depending on the satisfaction rela-
tions t E @ and ¢t £ ©,.

It is not hard to see Y;.¢ O(S,7) ~ I for each § € §. The initial state is supposed to be of the
type (s, @ 3), i.e., both ¢; and ¢, have undetermined truth at s unless it is trivial.

Example 5.9. Reconsider the QMC €, = (S, Q, L) shown in Figure[d] Cary and David play three
rounds of the coin-tossing game on the original basis, whose outcomes determine the winner by
the principle of majority. It can be modeled by the following QMC €5 = (S, Q, L) in Figure[3]
where states s3, sg, S13 are labelled with winc, states s, S9, S14 are labelled with winp, which
means Cary or David wins the current round, respectively.

Both Cary and David want to know the measure that they could win the game at least
once. The event is specified by the conjunction of two path formulas ¢, = true Uwinc and
¢, = true Uwinp. To this end, we construct the product QMC € = (S’ s Q), in which

o the state set S is {L, T} U {(5i,D13): 0<i <14} U{(5:,DP3): 0<i <14} U {(5;,D1): 0 <
i < 14} with (sg, 1 3) being the initial one, and

o the transition super-operator matrix Q is given by the following nonzero entries:

O(s0, @1 3), (52, D13)) = O((s5, D3), (57, D3)) = Q((s5, D1), (57, P1))

= Q((s10, ©3), (512, D3)) = O((510, P1), (512, D1)) = Mo,
20
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Figure 5: QMC for 3 rounds of the coin-tossing game

O((s0, @1 3), (53, D3)) = O((s5, D3), (53, P3)) = O((55, D1), T)
= O((s10. ©3), (513, D3)) = O((510, P1), T) = M},
O((s0. @1.3), (54, D1)) = O((55, D1), (59, 1)) = Q((s5,D3), T)
= O((s10, @), (514, D1)) = O((510, P3), T) = M3,
O((52, ®13), (51, D13)) = O((57, D3), (56, D3)) = O(57, D1), (55, D))
= Q((s12, @3), (511, @3)) = O((s12, 1), (511, 1)) = Hjy,
O((s1,@13), (50, P13)) = O(s6, D3), (55, D3)) = O(56, P1), (55, D1))
= O((s11, ©3), (510, D3)) = O((s11, P1), (510, D1)) = Ha,
O((s3,D3), (55, ©3)) = O((54, D1), (55, D)) = O((58, D3), (510, D3))
= O((59, 1), (510, 1)) = O((513, D3), (513, D3))
= O((s14, 1), (514, D)) = 7,
where the super-operators My, My, M», H, and H, are referred to Example

The reachable part of €5 is shown in Figure[6] Due to space limit, three absorbing states T,
(513, @3) and (514, ©1) are marked as accepting ones that omit the self-loops labelled with 1. [

For a disjunction of two time-unbounded until formulas, the product state structure is simi-
larly introduced. For instance, the auxiliary information @, 3 in the product state (s, @, 3) is used
to record the (O A @3)-states we are in and the ®,- or ®4-states are expected to be reached
along with w, i.e., the path formulas ¢; and ¢, whose truth are undetermined at the current state
s along with w. Once one of the two time-unbounded until formulas, saying ¢, is dissatisfied,
(s, @3) would be introduced to record the ®@;-states we are in and the ®4-states are expected to
be reached. More formally, we construct:

Definition 5.10. Given a QMC € = (S, Q, L) and a disjunction of two time-unbounded until
formulas ¢y = ®1U ®, and ¢y = ;U Dy, their product QMC € is the pair (S’, Q), where
21
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H, H, H,
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1 M,
1 1
M, H, H, M, H, H,
514, Oy 510, @1 s11, @y 512, @y 513, D3 s10, D3 s11, D3 512, D3
My My
Figure 6: Product QMC for conjunction of two path formulas
525 o S is the finite state set

(L, THU{(s,D13): s €STU{(s,D3): s€STU{(s,Dy): s€ S},

e 0: 8 x8 — S isa transition super-operator matrix given by

® oL, 1)=1 w oT,T)=1
O (5. @130, 1) = SO0, 0: 1 E (< A 03 A =3 A D))
(iv) tE (@) A =Dy A D3 A —Dy) v tE (=@ A =Dy A O3 A ~Dy)
O(s, @1 3), (t, D1 3)) = O(s, 1) O(s, @1 3), (t,D3)) = O(s, 1)
L TE (D A =Dy A D3 A ~Dy) .
(vi) — (vii) —
O((s, @1 3), (1, D1)) = Q(s, 1) O((s, ®13), T) = 2HIQ(s, 1): 1 = (D V D))
O (5. @3, 1) = 210G, 07 1 E (o3 A D]
. 1 (D3 A ~Dy)
(ix) — x) =
O((s, @3), (1, @3)) = O(s, 1) O((s, @3), T) = SIQ(s, 1): 1 = Dy}
" B 00 1) = T0G.0: 1F (01 A —Do)])
. 1 (@) A D)
(xii) (xiii)

O((s, @1), (1, ®1)) = Q(s,1) O((s, @), T) = H1Q(s,1): 1 £ Do}’

526 Let [¢] denote the truth of a path formula ¢. For a time-unbounded until formula ¢, the truth
sz [[€]] is determined along with some concrete path w. During this process, there are three possible
22
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values “true” T, “undertermined” U and “false” F of [{]]. Initially, w.l.0.g., the value of [£] is
U, which would be changed upon the encountered state w(k). Specifically, it would be changed
to be T if the finite path w(0), ..., w(k) satisfies ¢, to be F if w(0), ..., w(k) refutes £, and keep U
otherwise. The truth [#]] is correspondingly obtained as the conjunction and disjunction of [£;]]
for all distinct time-unbounded until formulas ¢; in ¢. Formally, we construct:

Definition 5.11. Givena QMC € = (S, Q, L) and a path formula ¢({y, . .., ;) where € (jA € [m])
denote all distinct time-unbounded until formulas ®©; ;U ®;, in ¢, their product QMC C is the
pair (S, Q), in which

e S is the finite state set
(L, TYUA(Gs, IO, ..., [6uDD: s €S AV je [m]: [£;] € (T,F,U}},

A

o (: 8 x 8 — S is a transition super-operator matrix given by:

1) ———— (il)) ————
o4, =1 oT,mH=1
oL, ... . [6.1) =F . o, ... . 06,1 =T
(iii) — (1v) —
(s, [, . ... 161D, L =T (s, e, ... 16D, ™ =1
) oL, ..., [6.1) =U

O((s, [T, .., L), (4, 51 MAT, ), -, 5[], D)) = O, 7)

where for j € [m],

F if[(1=FVILI=UAtE (=D A D)),
O[(I¢l, 0 =30 if 4] = UA1E (@ A =Dj2),
T flGI=TVIGI=UALE @),

Lemma 5.12. The SOVM A(¢) in the QMC € = (S, Q, L) is the SOVM A(QT) in the product
oMC € = ($, Q) as in Definition which can be constructed in time polynomial in the size
of € and exponential in the size of ¢.

Proor. We will show that the reduction preserves the SOVM in both directions. Let & =
50, 81, - - - » Sp be a minimal finite path of € that satisfies ¢. The term ‘minimal’ means there is no
proper prefix of @ that satisfies ¢. Then we have that the truth ¢([£€1 1], . .., [€, 1) of ¢(€1,. .., €n)
is U for all proper prefixes of @ and it is T for @. So the states s in @ equipped with the truth
[€11, ..., [€.] upon prefixes of @ are the product states (s, [{1]], ..., [£x]) in @€, all of which
make up a minimal finite path of € that reaches T and has the same SOVM according the rules
defining the transition super-operator matrix Q. Conversely, for a minimal finite path of € that
reaches T, after removing the truth [{(]), ..., [{,] in the product states (s, [£1]],. .., [€x]), we
would get a minimal finite path of € that satisfies ¢ and has the same SOVM. Hence the SOVM
A(¢) in € is exactly the SOVM A(QT) in &.

Since the number of states in € is at most 3"n + 2 where n = |S| and m is the number of
disjunct time-unbounded until formulas, and the number of transitions is bounded polynomially
in 3"n, each transition costs at most O(||Q||) operations, the construction is in time polynomial in
[|€]] and exponential in m < ||¢||. [l
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Here, counting all paths that satisfy ¢ is not easier than counting all satisfying assignments to
an arbitrary instance of the SAT problem, which is in #P, i.e., no polynomial-time algorithm is
known yet. So the exponential hierarchy with respect to ||¢|| is tight.

Now we further tackle time-unbounded until formulas together with next formulas and time-
bounded until formulas. Let TB denote the time bound of an atomic path formula ¢, i.e.,

oo iff =0, Ud,,
TB(() =3k if £ = & U~ d,,
1 if=X0o,

and K be the maximum of finite time bounds of atomic path formulas ¢ in ¢. The product QMC
of a general path formula is obtained from the one in Definition [5.11] by extending the transfor-
mation function § that depends on the additional time variable k ranging over {0, ..., K, oo}.

Example 5.13. Consider three different atomic path formulas €, = X winp, €, = true U 5 winp,
{3 = true Uwinp and a concrete path w = So, S1, S2, S0, S1, 82, S0, S4, 54, ... of the OMC €, =
(S, 0, L) shown in Figure We describe all states equipped with the auxiliary information [[{;]]
(7 € [3]) as follows:

e [nitially, £; (j € [3]) have the truth U, as none of them has been satisfied or refuted by s,
ie, [¢] =U;

e for time k = 1, upon the state w(1) = s; ¥ winp which refutes €1, the truth [£1] of ¢,
changes to F and keeps F for all k > 1;

o the truth [;]] of €; keeps U until time k = 5, then upon the state w(5) = s, ¥ winp which
refutes €y, the truth [€>]] changes to F and keeps F for all k > 5;

o the truth [[(3]] of {3 keeps U until time k = 7, then upon the state w(7) = s4 | winp which
satisfies €3, the truth [{s]] changes to T and keeps T for all k > 7.

Thus, we can determine all involved product states (s, k, [€1 1], [£2], [£3]]) using the above rules.
For instance, when time k varies from 4 to 5, the product state (s,,4,F, U, U) would be changed
to (s0,5,F,F,U). [l

More formally and completely, we construct:

Definition 5.14. Givena QMC € = (S, Q, L) and a path formula ¢({1, .. ., €,) where € (j € [m])
denote all distinct atomic path formulas, their product QMC € is the pair (S, Q), in which

o § is the finite state set

(L, TYU{(s, k[0, ..., [En]): s €S Ak € {O,...,K,oo}/\/\[[fj]] e {T,F, U}},
j=1

J

o 0:8 x8 — S is a transition super-operator matrix given by:

® O,1)=1T1 (@) T, ) =1
24
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¢([[£1]], .., ) =F (IV) ¢([[€1]]’ L =T
O((s. k. [61], ..., [6u]). L) = T O((s. k. [611, ..., [6u]). T =T
k< K, ¢([41],....06.1) =0

%) O(s, k, 01T, - .., L], (8, k + 1,8, (k, L6111, D), - . ., Sk, [ ]l 1)) = OCs, 1)
(vi) k> K, ¢(0],...,[6,0) =U

O((s, k, 61T, .., [T, (1, 00, 81(k, LT ), -, Sk, [l 1)) = QCs, )

where for j € [m],

(iii)

(

— if ¢t} is a next formula,

F if[61=FVIGI=UAtE -,

- if {; is a time-bounded until formula,

k=TB({)AtE -Djp Vv
k<TB()AtE (=D A=Dj2) |
U if[(1=UAk<TB)AtE (@)1 A=D)»),

T if[1=TVIGI=UAk<TBE)AtE D;y;

F if[6]=FVI=UA

6k, ¢, 1) =

— if {; is a time-unbounded until formula,

F if[(1=FVIGI=UAtE (=@ A=D;,),
ik [0 =U [T =UAtE @) A-D)y),
T f[1=TVILI=UAtE @

By noticing that the construction is at most K + 2 times of the product QMC €=S,0),it
follows from Lemma[5.12] that:

Coroll?ry 5.15. The SOVM A(¢) in the QMC € = (S, Q, L) is the SOVM A(QT) in the product
OMC € = (§, Q) as in Definition which can be constructed in time polynomial in the size
of € and exponential in the size of ¢.

Combining Theorem [5.7] with Corollary [5.15] we obtain:

Theorem 5.16. The matrix representation of the SOVM A(¢) and the POVM A(¢) for the con-
Junction and disjunction ¢ of atomic path formulas in QCTL* can be synthesized in time polyno-
mial in the size of € and exponential in the size of ¢.

We have to address that the synthesis is in polynomial time when the size of ¢ is fixed, like the
single conjunction and the single disjunction in the most common cases.

5.3. Negation in path formulas

In the previous subsection, we have reduced an arbitrary conjunction and disjunction in
atomic path formulas over the QMC to an atomic path formula over a product QMC. Here we
will synthesize the super-operators of the negation in atomic path formulas. That completes the
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super-operator synthesis of the path formulas required in the syntax of QCTL*. For the negation
of time-unbounded path formulas, it is necessary to consider the ultimate density operators that
are the density operators at sufficiently large time. These ultimate density operators turn out to
form a dense set, not a singleton. The super-operators of the negation of atomic path formulas
are therefore synthesized conditionally.

After an initial classical state s is fixed, the SOVMs of the negation of three kinds of atomic
path formulas can be obtained as follows.

e Supposing that Sat(®) is known, we have
A((X ®)) = A [Lﬂ Cyl(s, r)] = D A = ) 0s,1). (11a)
D 1D D
o Supposing that Sat(®;) and Sat(®,) are known, we have
A(—~(®,U = dy))
k-1 i—1
=A Lﬂ w € Path: w(i) E (=@ A =0y) A /\w(j) E (D) A ~D,)

J=0

i=

k-1
W {a) € Path: w(k) E ~®; A A w(j) E (@) A ﬂcbz)}

J=0

k-1 i—1
= Z A[{w € Path: w(i) £ (=®; A ~®y) A /\ w(j) E (@1 A ﬂcpz)}]

- =0

i=

k-1
+ A[{w € Path: wk) g ~®,; A /\ w(j) E (@) A —'Cbz)}]

j=0
k-1 .
= > C(P-0,1-02 © F pory © Po) + ic(Poa, © 1, 0 P)
i=0
= A((®) A =D2)U = (=0 A =Dy)) + tre(P-o, © Fiy p, © Ps)- (11b)

e Supposing that Sat(®;) and Sat(®,) are known, we have
A(=(P,U @)

S} i—1
= A[Lﬂ {w € Path: w(i) E (=@ A =D>) A A w(j) E (@) A ﬁcbz)}

i=0 =0

© {w € Path: /\w(j) E (D) A —'(1)2)}

J=0

00 i—1
= A[{w € Path: w(i) £ (=@ A =D5) A /\ w(j) E (@) A ﬁcbz)}]
=0

i j=0

+ A[{w € Path: /\ w(j) E (@) A ﬁCI>2)}

J=0
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619

620

621

622

623

624

= > C(P-0,1-0, © Fi poy © Po) + U (Fiy poay, © P)
i=0

= A((@1 A ~D)U (=@ A ~D2)) + tre(F, po, © Ps)- (11c)

Example 5.17. Again, continued to consider Example[5.1) we now calculate the SOVMs for the
path formulas ¢1 = —(true U=*win¢) and ¢ = —(trae U wing). For the former, we have
A(¢1) = A((true A ~wine)U = (false A =winc)) + tre(P-wine © Fimenwine
= A(=winc U =*false) + tre(Pyin. © Fro 0 Py,)

—wine
4
= trC(P—‘winc oF. wine © Pso)

-

o PX() )

By calculating A(A4) in Example|5.1} we have seen

[52)¢s0l} ® (Q(s0, 52) © O(s1, 50) © O(s2, 51) © O(0, 52)) +

Fi o 0Py, }

s3)(s0l} ® (Q(s0, 53) © Q(s1, 50) © Q(s2, 51) © O(50, 52)) +
}
}

—winc

|s4){so0l} ® (O(s0, 54) © Q(s1, 50) © OQ(s2, 51) © O(50, 52)) +
[54)(sol} ® (O(s4, 54) © O(54, 53) © O(54, 54) © O(50, 54)).

={
{
{
{

So, we get

A(g1) = trc({ls2)Csol} ® (Q(s0, 52) © O(s1, 50) © O(s2, 51) © O(s0, 52)) +
{Is4)(sol} ® (Q(s0, 54) © Q(s1, 50) © Q(s2, 51) © O(50, 52)) +
{Is4)(so0l} ® (Q(s4, 54) © O(54, 54) © Q(54, 54) © (S0, 54)))
= Q(s0, 52) © O(s1, 50) © Q(s2, 51) © O(50, 52) +
O(s0, 54) © Q(s1, 50) © Q(s2, 51) © O(50, 52) +
O(s4, 54) © O(54, 54) © O(54, 54) © O(S0, 54)
= (1L DL 1+ 212,200 1]+ 311, 102,21+ 412,2)(2, 21, 12, 1)(2, 1},

Whereas, for ¢,, we obtain

A(¢$2) = A(—wine U false) + tro(Fn o Py,) = tre(Fem o Pgy)s

eA-wine rueA—wingc

which we will reconsider later in Example O

It is worth noticing that all super-operators occurring in (TI]), apart from F &, n-a,> Nave been
already covered in Subsection The super-operator tre(F v, n-wine © Pso) concerns a safety
property, which is under the restriction that the negation only occurs on the top level of path
formulas. The QCTL* proposed in this paper can express both the reachability property and the
safety property to the sense.

To deal with ¥, _, . it is necessary to know the ultimate density operators p that stay
into the BSCC subspaces with respect to ¥, -0, for a given initial density operator po, i.e.,
ULT = {5‘;’51 -, (00) ¢ k is sufficiently large}. The following lemma indicates that such ultimate
density operators are not convergent in general.

Lemma 5.18. For an initial density operator py € Dy, the ultimate density operators p =

limy 0 ?’}’fl A, (po) are dense in a computable algebraic subset E of Dy,
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Proor. We will analyze the algebraic structure of p., using the discrete-time dynamical system
V(k) = M¥V(0), where M = S2M(Fo, r-a,), V(0) = L2V(pp) and p; = V2L(V(k)). Thus ULT
is exactly the set of elements limg_,co px = limg—,co V2L(V (k)). It is known that every entry of
V (k) is in the form

ik, (12)

iJ
where c; ; € A are coefficients and A; € A are eigenvalues of IM with multiplicities by Lemma
since all entries of IM are algebraic. Suppose that V(k) is determined under an appropriate
orthonormal basis of H, such that p; is diagonal. We can infer there is no term c;, jkj /lf.‘ in (12)
with |4;] > 1 or [4;] = 1 A j > 0, since otherwise the entry would have absolute value greater
than 1 as k goes to infinity, which destroys the trace-nonincreasing property of Fo,r-0,. On the
other hand, all terms ¢;, jkj /lf,‘ with [4;] < 1 would vanish as k goes to infinity. Hence the ultimate
density operators p., consist of only entries in the form

Z ¢; lim exp(iké), (13)

1

where 6; are the magnitudes of the unit eigenvalues of IM. That is, ULT is the set of elements
Poo = 2; Cilimy_, exp(tk6;) with A-matrix coefficients C;.

Let 6y, ..., 6, be all distinct magnitudes in (I3). By Theorem[2.9] we can obtain a Z-linearly
independent basis {/k, i, . .., n}, such that

0 210 2,1t Zm||m/k
0> 20 21 0 Zom|| M1

= . b
0, 20 w1l Umdlum

where k, z; ; € Z satisfy gcd({z; ;: i € [[]}) = 1 for each j € [m]. By CorollaIy Wwe can see
e {(kuy mod2mn,...,ku, mod2n): k € N} is dense in [0, 27)",
o {(exp(tkuty), ..., exp(tku,)): k € N}yis dense in {w € C: |w| = 1}", and
o {(cos(kuy), sin(kuy), . . ., cos(kty), sin(ku,)): k € N}isdense in {(x, y) € R?: x2+y? = 1)™.

For each j € [I], we have

m

exp(ikf;) = exp(zjom/K) 1_[ exp(iz;ikpt;)

i=1

= exp(z;o7/K) ]_[(COS(Z jikuti) + 1sin(z; k),
i=1

which results in an A-polynomial p; in cos(kyu;) and sin(ku;) by trigonometric identities. Af-

ter introducing real variables x; = cos(ku;) and y; = sin(ku;) for i € [m], we can charac-

terize {exp(1k6;): k € N} by the range of p;(x,y) on {(x,y) € R?: x> +y> = 1}, in which

the former set is dense in the latter set. The same holds for the set ULT of elements p,, =

> Cilim,_,, c; exp(ikf;), whose range is a computable algebraic set & by quantifier elimina-

tion [3, Algorithm 14.5]. ([l
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sso  Example 5.19. In Example we have obtained the repeated super-operator ¥ .. Suppose
st that all classical states in S are ordered as sy < --- < s4. Then states |so) through |s4) are
sz indexed by |1) through |5), respectively. The matrix representation S2M(F_in..) IS

13){11® Qo2 ® Qp, + 411 ® Qo3 ® Q5 + I5X11® Qo4 ® Qo4 +
D21 QIo®Q+12)3I®Q21 ®Q;; +I5)5|®Qus ®Quy,

s where Q; j are the unique Kraus operators of those super-operators Q(s;, s;) in €,. By Jordan
s decomposition, we have S2M(F_yin.) = S~1JS, in which:

655 o J is the Jordan canonical form of S2M(F _in.) that is

diag(Jo;15 - - - Jos1s Joz, - -» Joz» Josss Jo7o Jists -5 I, Jexpinsayits Jexp2im/3),1)s
~— ——
15 copies 11 copies 17 copies

656 where J ., denotes the Jordan block of eigenvalue A and order m, i.e.,

A 1 0 0 0

0 a2 1 0 0

0 0 0 A1

0 0 O 0

mxm

657 o S is the corresponding transformation matrix (omitted here for conciseness, but available
658 at the bottom of Bernoulli Factory.nb at https://github.com/meijingyi/CheckQCTLPlus).

so  Since the entries of S2M(Fin.) are algebraic, it follows that the diagonal entries of J that
o are eigenvalues of S2M(F_in.), as well as the entries of S whose columns are (generalized)
et eigenvectors, are algebraic too.

662 When k is sufficiently large, say k > 7, we can see that S2M(F—in )* is ST J*S with

J* = diag(0,...,0, 1,..., 1, exp(=2ikn/3), exp(2ikn/3)),
—_— Y—

61 copies 17 copies
63 Since
((1;) 2k (llc) pL! (15) A2 (m]i 2) Ak-m+2 (m]i 1) Al=m+1]
O (g)/lk (]]{)/lkil . (m]iS)/lkfmJJ (m]iz)/lkferZ
Yim=| : S : : ;
0 0 0 (H (-
L O O 0 e 0 (](;>ﬂk “mXm

664 Jgﬁ, Jg;ﬁ and J/(‘);7 vanish then. It implies that given an initial density operator py € Dy, , every
ss entry of the final density operators py = F*

wing(P0) can be expressed as

co + ¢1 exp(2ikm/3) + ¢ exp(—2tkn/3)
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for some algebraic coefficients cy, c1,cy (or equivalently cy + dy cos(2kn/3) + dp sin(2kn/3) for
some algebraic coefficients cy,dy, d). For example, we have that:

p7 = Co + Cyexpin/3) + C, exp(—2ur/3),
ps = Co + Cy exp(—2ir/3) + C, exp(2un/3), (14)
p9=Co+C; +Cy,

hold for some A-matrices Cy, Ci, Cy; px = pi—3 holds for any k > 10. Thus all the density
operators py (k > 7) plainly form a finite set E = {p7, ps, po}, thus being not convergent. (I

In the above example, if we first remove the BSCC subspaces as a pretreatment, those terms
corresponding to unit eigenvalues (# 1) would also be removed, thus simplifying the result (T4).
However, in the general case, there are newly-produced quantum states that would enter in the
BSCC subspaces when the quantum system evolves, and the pretreatment of removing BSCC
subspaces does not suffice then. Additionally, since the composite super-operator along with the
loop so — so = 51 = sois Hy o Hy o My = {|+, +){1, 1| + |-, —)(2,2|} and (H, o H; o MyF =
{%(|1, D} L+ 12,21, 1]+ |1, 142, 2] +12,2)(2,2])} for any k£ > 1, it ensures that all nonzero
eigenvalues in the result (T4) are unit.

From Lemma , we have seen that ¥, is not a function (super-operator) in general,
since the singleton 1nitial density operator p, is associated with a set ULT of ultimate density
operators p.,. To effectively synthesize the super-operator of the negation, we have to propose
the following convergence conditions.

Definition 5.20. A super-operator & is convergent on an initial density operator py if the pos-
sible unit eigenvalue of S2M(E) whose eigenvector is not orthogonal to L2V (py) is 1. A super-
operator & is uniformly convergent if the possible unit eigenvalue of S2M(E) is 1.

Note that, by Theorem[2.9] these convergence conditions are checkable in PSPACE with respect
to the dimension d, and in PTIME with respect to the size of € when d is fixed. If the condi-
tions fail, the super-operator of the negation cannot be synthesized. Afterwards we would only
consider those convergent instances, thus establish the decidability conditionally.

Example 5.21. Continue to consider Example The unit eigenvalues of S2M(F_in.) are 1
and exp(+2iknt/3). It turns out to have periodic final density operators as shown in Example[5.19,
thus F_yin. does not meet the uniformly convergence condition. However, consider the initial
density operator py = p’ + p”" with
£ = 150)¢s0l @ T, (L 1]+ [1, 12,2 + 12, 2)(1, 1] + [2,2)(2, 2[] +
|S1><S1| ® %[ll’ +><1’ +| + |1’ +><29 _l + |2’ _><1’ +| + |2’ _><29 _l] +
Is2)Csal @ gL, (L 1]+ (1,162, 20 + 12, 2)¢1, 1] + 12, 2)(2,2]]
P = I52)(s2l ® g1+, =)+, =] + |—, +)(—, +I.

After performing F¥

Swine (k= 4) on po, the final density operators py would be the same as
P4 =p' +p""" with

P = Isa)(sal ® 5 [1,2)(1,2],

which is independent from k, since both L2V (") and L2V (p"") are eigenvectors (corresponding
to eigenvalue 1) of S2M(F_yin. ). Hence F_,in. meets the convergence condition on this pg. U
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Theorem 5.22. Under the convergence conditions described in Definition the matrix rep-
resentation of the SOVM Tq‘;‘: A, Can be synthesized in time polynomial in the size of C.

Proor. It suffices to determine the algebraic structure of p., = Y; C;limy_, exp(ik6;), where
0; are the magnitudes of the unit eigenvalues of S2M(F ¢, r-0,) and C; are A-matrices. By
Lemma[2.8|and the known algorithms that:

e it is in O(D*) to determine the characteristic polynomial of a matrix of dimension D [3]
Algorithm 8.17], and

e itis in O(D®) to determine roots of a Q-polynomial of degree D [3| Algorithm 10.4],
we obtain that:

e the characteristic polynomial f(z) of S2M(F, r-a,) is an A-polynomial of degree d> where
d = dim(H), and coeflicients taken from Q(1y) : Q, where the degree of A, is bounded by
ll2oll < NIE],

e the roots of f(z) are those of a Q-polynomial g(z) of degree not greater than d>|| ||, and

e the roots of g(z) can be determined in O(d 1211 20119), as well as the eigenvalues of the matrix
S2M(F o, A, )- |

Finally, we have to address the hardness of synthesizing the SOVMs for the arbitrary nega-
tion in path formulas. In the previous two subsections, we employ the strategy (see Figure[l) of
1) reducing the conjunction and disjunction in path formulas to a time-unbounded until formula
over a product QMC; and ii) synthesizing the SOVM of the latter path formula. However, it does
not imply that one could employ the strategy of i) synthesizing the SOVMs of individual atomic
path formulas; and ii) combining these SOVMs according to the corresponding conjunction and
disjunction in path formulas, since the SOVMs are defined on path formulas and once the SOVMs
are obtained, the path formulas could not be recovered. After dealing with negation on a path
formula ¢ in this subsection, we would get the SOVM of —¢, not an atomic path formula, which
makes it fail to be incorporated with the previous subsections. To avoid such technical hardness,
we focus on the sublogic QCTL™* of the quantum analogy QCTL* of PCTL* [1]] in this paper.

6. Deciding the QCTL Plus State Formulas

In this section, we aim to decide basic state formulas, trace-quantifier formulas (resp. fidelity-
quantifier) formulas in turn, using the POVMs (resp. SOVMs) obtained in the previous section,
over the QMC fed with and without an initial quantum state. The complexity of checking QCTL™*
formulas will be summarized. Here we suppose that the generator A of all numbers appearing in
the input QMC is defined in the standard way: the minimal polynomial f),(z) € Q[z] with degree
D plus the disk with center ¢ and radius r that distinguishes Ay from other roots of f;,, i.e., A is
the unique solution to the constraint f3,(z) =0 Alz—c| <.

For basic state formulas, the satisfying sets can be directly calculated by their definitions:

e Sat(a) ={se S:aelL(s);
e Sat(—®) = § \ Sat(®), provided that Sat(d) is known;
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o Sat(®; A ©y) = Sat(®;) N Sat(P,), provided that Sat(P;) and Sat(d,) are known;
o Sat(®; vV ©,) = Sat(®;) U Sat(d,), provided that Sat(®;) and Sat(D,) are known.

Obviously, the top-level logic connective of those formulas requires merely a scan over the la-
belling function L on S, which is in O(n). Hence, deciding basic state formulas is linear time
with respect to the size of €.

For the trace-quantifier formula ‘&EM [¢], we have:

o If the QMC € is fed with an initial quantum state p;, ((?ng [¢] holds if and only if tr((M —
A($))ps) is nonnegative. It is checkable in time O(d>), as it is dominated by multiplication
over d-dimensional matrices.

e If the QMC € is not fed with any initial quantum state, F_y,[#] holds if and only if the
eigenvalues of M — A(¢) are nonnegative. For the latter, it suffices to determine roots of
the characteristic polynomial of M — A(¢), which has degree not greater than d and takes
coefficients from Q(1y) : Q. Hence, the latter can be checked in time O(d®D®), since
roots of that characteristic polynomial are roots of a Q-polynomial with degree dD by
Lemma[2.8|and [3 Algorithm 10.4].

Particularly, the trace-quantifier formula ‘&EM[—‘(ﬁ] reduces to A(=¢) = 1 — A(¢).

Example 6.1. Now, we consider the nontermination of the quantum Bernoulli factory protocol in
Example To this end, we are to decide the trace-quantifier formula with form EM[—'O(Wich

winp)l, where M = %(Il, DXL = 1, 142,2] = 12,2)1, 1] + 12,2)2,2|) is a threshold. From
Example[5.6] we have

A wine) = g(I1, DX 1] = 1,142, 21 = 12, 2)¢1, 1] +12,2)(2, 2)) + [1,2)(1, 2],
and we could get A(O winp) in the same way as follows:
A winp) = (1 (LT = 11,142, 2] = 2,21 1]+ [2,2)(2,2) + 12, 1(2, 1].

Since both the unique winc-state sz and the unique winp-state s4 are absorbing (i.e., having
self-loops weighted by I ), the POVM of nontermination can be computed as

A(=Owine V winp)) =1 — A(Q wing) — A(Q winp)
= %(ll, XA, 1]+ (1, 1¢2,2] + 12,201, 1] + 12, 2)¢2, 2|).

Thus the matrix M — A(=Q(wine V winp)) = — |1, 12, 2] — |2, 2){1, 1| has eigenvector
P = 3L =11, 142, 2] = 12,2)(1, 1] +12,2)(2, 2])
corresponding to eigenvalue 1 and eigenvector
o’ = %(|1, DL 1]+ 1, 142,21 + 12,21, 1] + 12, 2)(2,2])

corresponding to eigenvalue —1. These eigenvectors p’ and p” can be obtained by spectral
decomposition in polynomial time O(||€,]|%). Then we decide the truth of the trace-quantifier
formula Z’;EM[—'O(winc V winp)] respectively in the following two cases:
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o When we feed €, with the initial quantum state %p' + 30", we could calculate

tr(M = A(=O(wine V winp))(3p’ + 1p”))
= % - tr((M — A(=O(wine V winp)))p’) + % tr((M — A(=O(wine V winp)))p”)
=3 M)+ 3 (D) =53 (D + 5 (1) =1

Hence ‘ngM[—'Q(winc V winp)] is decided to be true over this &, with initial quantum state

%pl + %p//.

When we feed €, with the initial quantum state %p’ + %p”, we could calculate tr((M —
A(=Owine V winp) (30" + 3p)) = =1, i.e., min, tr(M — A(=Q(winc V winp)))p) < 0.
Hence ‘&EM[—'O(winc Vwinp)] is decided to be false over this &, with some initial quantum
state.

Overall, it is in polynomial time to decide the trace-quantifier formula. U

For the fidelity-quantifier formula Eg‘ [¢], we have:

o [f the QMC € is fed with an initial quantum state pj, 323[@ holds if and only if

tr \/p}/ 2V2L(S2M(A(¢)L2V(p)pl/* < 7.
For the latter, it is dominated by the spectral decomposition of p; [27, Box 2.2] to get pi/ 2,
So we have to determine the eigenvalues of p,, which is checkable in time O(d® D) by real
root isolation [3| Algorithm 10.4].

If the QMC € is not fed with any initial quantum state, F'¢[¢] holds if and only if for any
pure state |), (W] V2L(S2M(A()L2V () {y])) [ is not greater than 72. Here we confine
the initial quantum state to be pure, i.e., p; = |¥){¢|, which does not lose the generality by
the joint concavity [27, Exercise 9.19]. After introducing d complex variables x to denote
the quantum state |1/}, subject to the purity ||x||> = 1, the latter is reformulated as

£ =V ) € H: Fid(A@@), )yl < 7°
=V Yy € H: (Y] V2L(S2M(A(@)L2V(p)y) Iy < 7°
=VxeC |xP=1— [ Z xixj (i, j|] SZM(A(¢))[ Z P j>] <7

i, jeld] i, jeld]

Additionally, as S2M(A(¢)) admits the algebraic number Ay, we further reformulate the
latter as the Q-polynomial formula

L) =V¥zeCVxeCh [fi,=0Alz—cl<rAlx|?=1] —

(Z X, 4 j|] szM(A<¢>>[ > i j)] <, (15)

i.jeld] doant | \eld]

deg=2 deg=2

which has the following size parameters:
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— ablock of 2d + 2 universally quantified real variables taken from real and imaginary
parts of x and z, and

— 4 distinct polynomials of degree at most the maximum of 5 and D.

Hence, the latter can be checked in time exponential in d, i.e., max(5, D)@, by quantifier
elimination over real closed fields (see Appendix for more details).

The fidelity-quantifier formula ng[ﬂqﬁ] can be similarly dealt with, since the matrix representa-
tion of A(—¢) has been synthesized in Subsection Note that if ¢ is a time-unbounded until
formula, it is required to meet the convergence conditions described in Definition [5.20]

Example 6.2. Continue to consider the QMC €, shown in Example[3.2} To validate the correct-
ness of the quantum teleportation protocol, it needs to decide whether Fid(Os7) = 1 holds for
some initial state |¢ q3), or more generally compute the set of the initial states |q; q3) on which
Fid(Qs7) = 1 holds. The latter is characterized by the following quantified formula

¥ lg1) : Fid(q1)(gq1], tr, ,(A(O 0k)(|g1. 4233 ){q1, G2 @3]) = 1
=V g1y : g Xql = tra, (A 0k)(|g1. 42 33 )(q1. 42 G3))). (16)

where trq;, = (i, jl®1: i € [2], j € [2]} traces out the Hilbert spaces on |q1) and |q,). So, the
formula (16) means that the information |q,) in the initial density operator is preserved as the
information |qs) in the final density operator, since Fid(Qs7) = 1 holds if and only if the initial
qubit |qy) is the same as the final qubit |q3), regardless of a global phase.

To rewrite the formula as a polynomial one, we first introduce complex variables X =
(X)icra) to encode the state |2 qz) as x1 |1, 1) + x2 [1,2) + x312, 1) + x412,2) and 'y = (Vi)iez) 10
encode the state |q1) as y1 |1) + y2 |2). Then the encoded initial density operator is the pure state
|1, 32 @)1, @2 @3| with \q1, G2 @) being (v 1) +y2 1200 11, 1) + 22 11,2) + x3 12, 1) + x4 [2,2)).
After applying the SOVM A({ ok) = A(true U ok) (obtained in Example on the initial state,
the final density operator A(Q ok)(|q1 .32 43{q1, qﬁgb turns out to be the mixed state which can
be expressed as

3L DA U@ W)Wl + 11,21, 20 ® o)l + 12, 162, 1 @ s )ws] + 12, 2)42, 2 ® Ira)(Wal),

where

1) = %[(ylxl + y2x3) [1) + (y1x2 + y2x4) [2)],

2y = %[@1164 + y2x2) [1) + (y1x3 + y2x1) [2)],

lr3) = %[(ylxl = y2x3) [1) = (y1x2 = y2x4) [2)],

sy = %[@1164 = y2x2) |1} = (y1x3 — y21) [2)].
Thus we have trg, ,(A(O 0k)(|q1 G2 3 ){q1, Clﬁ3|) = Z?zl i)l Utilizing the trace-preserving
property of the SOVM A({ ok), these four final state vectors ;) are required to be proportional

to the initial state vector |q,). For instance, ) should satisfy (y1x1 + y2x3)y2 = (V1 X2 + Y2 X4)y1.
In the same way, we can get

(V1x4 + yax2)ys = (y1x3 + y2x1)y1,

1x1 = y2x3)y2 = —=(ViX2 — Y2 Xa)y1,

1x4 = y2x2)y2 = —=(V1X3 = yax1)y1.
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After further introducing the real variables u = R(x), v = J(x), W’ = R(y) and v’ = 3(y),
the formula (16) could be encoded into the polynomial one

X1l + e + [ + [al? = 1A
(V1x1 + y2x3)y2 = (1x2 + y2x4)y1 A
ViyLya: lyiP +1y2lP = 1> | (ixa +y2x2)y2 = (13 + y2x0)y1 A
V1x1 = y2x3)y2 = —(V1X2 — yaxa)y1r A
(Y1X4 = y2x2)y2 = =(y1X3 — Y2X1)¥1

— oA ro . 2 72 72 2 _
SY{UL VLW, Vol g VT v =1 -

[ ,u%+v%+,u%+v§+u§+v§+pi+vﬁ: 1A

HARG ) + [} = HoVIVy = PViVy = VsV = [,V = 3Vy
Hol? + apti = 24 vaV] = Hyvavy — oV = i vavh = uaviv,
HHGVE + [5V3 + V) + V) + 2Usph vy = vivivs = vavh =
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—H + papt py + 2\ VoV, = hvaVy + oV — VeV — sV A
HYYVL = HEV3 + Uy, + iV = 2uspiyVh = vivivh + vavy =
—/,t’lzvz + M Ve = 2Uop| V] + paps vy + vzv’l2 + pap vy = VaVivy A
Hapty iy = Hols — phvavy + 2U5vavh — i vavhy — pavi vy + vy =
—H3HY + G = HoVIV) 203V sV = vy — vy A
—UV) Ve + Hapth V] F papt)Vy = 2V — vaViVy + VoV =

/

2 2
L GV = V3 = 2 V] sy VY Yy = ViviY)

>l

which can be solved in exponential time 2001617 by Algorithm

Using the tool Reduce (a.k.a. Redlog [I1)]), we obtain that uy = a4, vi = v4 and the
other free variables are 0. Thus the satisfying initial states are exactly c¢(|1,1) + |2,2))/ V2 for
an arbitrarily unit complex number c interpreted as global phase. As a corollary, the quantum
teleportation protocol is proven to be correct on the Bell state (11, 1) +12,2))/ V2. O

Combining the above analysis with Theorems[5.7]5.16]5.22] we obtain the main result:

Theorem 6.3. Under the convergence conditions described in Definition the QCTL"* for-
mulas are decidable over QMCs. Furthermore, the complexity (specified in terms of the size of
the input QMC ||€|| and the QCTL" formula as default) is summarized in Table where ‘matrix’
is short for the matrix representation of SOVM.

As a by-product, we immediately get:

Corollary 6.4. The safety property A[J®] E M with OO = =0(—=®) over QMCs can be
checked in polynomial time.

Implementation. The prototypes of the algorithms listed in Table[2]have been well implemented

in the Wolfram language on Mathematica 11.3 with Intel Core i17-10700 CPU at 2.90GHz, avail-

able at https://github.com/meijingyi/CheckQCTLPlus. We have implemented all the
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Table 2: Summary on Deciding QCTL* Formulas

’ formula type ‘ QMC w/ an initial state ‘ QMC wj/o an initial state ‘
atomic path formulas matrix & POVM, PTIME (35! 34]
{A, v} of atomic path formulas | matrix & POVM, PTIME w.r.t. ||€||, EXPTIME w.r.t. ||¢||
{—} of path formulas matrix (if convergent) & POVM, PTIME
basic state formulas PTIME [16] PTIME [16]
trace-quantifier formulas POVM, PTIME [35] POVM, PTIME [35]
fidelity-quantifier formulas matrix, PTIME [34] matrix, EXPTIME [34]

function prototypes required for checking QCTL* properties, and delivered them as user-friendly
interface modules in the online file Functions.nb. The main functions are introduced as follows.

e (QMCinitialize constructs and initializes QMC model with given information;

e ComputeBSCC computes the direct-sum of all BSCC subspaces with respect to a specified
super-operator;

e UBuntilSOVM (resp. UBuntilPOVM), Bunti1SOVM (resp. BuntilPOVM), NextSOVM (resp.
NextPOVM) synthesize the super-operators of three kinds of atomic path formulas by es-
tablishing SOVM spaces (resp. POVM spaces);

e isConvgtwithInit (resp. isConvgt) checks whether a specified super-operator satis-
fies the convergence condition on an initial density operator (resp. uniform convergence
condition);

e NegUBuntilSOVM (resp. NegUBuntilPOVM), NegBuntilSOVM (resp. NegBuntilPOVM),
NegNextSOVM (resp. NegNextPOVM) synthesize the super-operators of the negation of
three kinds of atomic path formulas by establishing SOVM spaces (resp. POVM spaces);

e TracewithInit (resp. Trace), FidelitywithInit (resp. Fidelity) decide the truth
of trace-quantifier and fidelity-quantifier formulas over a QMC fed with an initial quantum
state (resp. without any initial one).

After inputing the dimension of the Hilbert space, a QMC model €, a QCTL"* state formula ®
or path formula ¢, and an initial quantum state py, one can invoke the algorithms by calling the
above functions respectively. In addition, we validate the correctness of the quantum teleporta-
tion protocol in file QTEL-Reduce.nb. We carry on the running example of quantum Bernoulli
factory protocol in the file Bernoulli Factory.nb. It takes an overall consumption of 6.78 seconds
in time and 123.66 MB in memory, since the efficiency is guaranteed by the fact that all func-
tions involved have the complexity PTIME. Whereas, it is not guaranteed only for the function
Fidelity due to the complexity EXPTIME.

7. Conclusion

We have proposed a more expressive logic — QCTL* to specify temporal properties over
quantum Markov chains. This logic extends QCTL by allowing the conjunction in path formulas
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and the negation in the top level of path formulas. To deal with conjunction, we have presented
a product construction of classical states in the QMC and the tri-valued truths of atomic path
formulas; to deal with negation, we have developed an algebraic approach to computing the
safety of the bottom strongly connected component subspace with respect to a super-operator
under the necessary and sufficient convergence conditions. We partially solve the model checking
problem of QCTL* on QMC. If the convergence conditions are not met, it is still unclear to us
whether the safety problem is decidable. Finally, the complexity of our method was provided in
terms of the size of both the input QMC and the QCTL™* formula.
For future work, we would like to:

o consider how to conditionally drop the restriction that the negation is allowed to act on the
top level of path formulas;

e study how to check such a logic for a more complex model, such as quantum Markov
decision process [39] and quantum continuous-time Markov chain [36];

e incorporate the method into an automated verification tool and apply it to more scenarios.
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Appendix A. Quantifier Elimination over Real Closed Fields

Algorithm 1 Quantifier Elimination over Real Closed Fields [3] Algorithm 14.5]
G(y) « QEQq x; - Qex¢: F(X1,...,X.,Y))
Input: Q;x;---Q¢x;: F(Xy,...,Xs,Y) is a quantified polynomial formula, in which
e x; (i €{l,...,£}) are blocks of k; variables quantified by Q; € {V, 3},

e y is a block of / free variables,

e cach atomic formula in F is in the form p ~ 0 where ~ € {<, <, =, >,>, #},

o all distinct polynomials p, regardless of a constant factor, extracted from those atomic
formulas p ~ 0 form a polynomial collection PP,

e s is the cardinality of P, and
e d is the maximum degree of the polynomials in P.

Output: G(y) is a quantifier-free polynomial formula, which is equivalent to
Qi x;---Qrx¢: F(Xy,...,Xp,y). For each realizable sign condition of P with respect
to the variable partition {{x;},..., {X¢}, {y}}, the sample is also provided by a subroutine [3,

Algorithm 13.2].
Complexity: sti+1- (kDD gOGk)-0kOD

To make Algorithm [T|more intuitive, we briefly describe its process in the setting as follows.
For the input (Zf=l k; + [)-variate polynomial formula F(xy,...,X,,y), we extract all polynomials
in F as the polynomial collection P. From the polynomials p in P, the algorithm firstly applies
variable elimination to get some critical polynomials of fewer and fewer variables, with which
the zeros of p could be cylindrically indexed as a tree structure. Then it computes all realizable
sign conditions of P and those critical polynomials, each sign condition gives the signs of all
polynomials in P and those critical polynomials, which is realized by some sample in REZii kit
Furthermore, since these samples are cylindrically indexed, the universal quantifier could be re-
placed with a finite conjunction over samples and the existential quantifier could be replaced with
a finite disjunction. Thereby, the original formula Q; x; - -- Q/X,: F(Xy,...,Xs,Yy) is equivalent
to the disjunction (quantifier-free) of all solution sign conditions with respect to free variables,
each of which is realized by some sample.

There are many tools that have implemented Algorithm [T} such as Reduce (a.k.a. Red-
Log [11]]) and Z3 [10].
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