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Abstract The goal of qubit mapping is to map a logical circuit to a physical device by introducing additional gates as few
as possible in an acceptable amount of time. We present an effective approach called Tabu Search-based Adjustment (TSA)
algorithm to construct the mappings. It consists of two key steps: one makes use of a combined subgraph isomorphism and
completion to initialize some candidate mappings, and the other dynamically modifies the mappings by TSA. Our experiments
show that, compared with state-of-the-art methods in the literature, TSA can generate mappings with a smaller number of
additional gates and have better scalability for large-scale circuits.
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1 Introduction

Quantum computing has attracted more and more

interest in the last decades, since it provides the pos-

sibility to efficiently solve important problems such

as integer factorization[1], unstructured search[2], and

solving linear equations[3]. However, the (great) im-

provements in computer science driven by quantum

technology are still in the early stage, since large-scale

quantum computers have not yet been built. IBM has

been developed the first 5-qubit backend called IBM

QX2, followed by the 16-qubit backend IBM QX3. The

revised versions of them are called IBM QX4 and IBM

QX5, respectively. Google announced the realization

of quantum supremacy, with the 53-qubit quantum

processor Sycamore[4]. IBM Q Experience1 provides

the public with free quantum computing resources on

the cloud and Qiskit2, an open source quantum com-

puting software framework.

Users of early quantum computers mainly rely on

quantum circuits to implement quantum algorithms.

There is a gap between the design and the implemen-

tation of a quantum algorithm[5]. In the design stage,

we usually do not consider any hardware connectivity

constraints. But in order to implement an algorithm on

a quantum physical device, physical constraints have

to be taken into account. For example, IBM physi-

cal devices only support 1-qubit gates and the 2-qubit

CX gate between two adjacent qubits. Hence, it is

necessary to transform the circuits for quantum algo-

rithms to satisfy both logical and physical constraints.

It is called qubit mapping, which maps a logical circuit

to a physical device by inserting additional gates. A

major challenge for quantum information processing

is quantum decoherence. Quantum gates are applied

in a coherent period but the qubits stay in the coher-
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ent state for a very short time. The longest coherence

time of a superconducting quantum chip is still within

10–100us[6]. Thus, the main goal of qubit mapping is

to reduce the number of additional gates and the depth

of output circuits in an efficient way.

In the current work, we use In-Memory Subgraph

Matching (IMSM)[7] to generate partial isomorphic

subgraphs of logical circuits and physical ones as a

set of partial initial mappings. By exploiting an ap-

propriate subgraph isomorphism and the connectiv-

ity of the logical circuits and the physical ones, we

get a dense (clustered nodes) initial mapping, which

avoids some nodes from being mapped to remote po-

sitions. Note that both subgraph isomorphism and

the adjustment of qubit mapping are NP-complete[8].

Thus, to be practically efficient, we propose to use

tabu search[9] to generate logical circuits that will be

executed on the physical device. The advantage of

tabu search is to jump out of local optima and en-

sure the diversity of the transformed results. We in-

sert SWAP gates, abbreviated as SW , associated

with the gates on the shortest path to the candi-

date set, which greatly reduces the search space and

improves the search speed. We design three eval-

uation functions that consider not only the current

gates but also the constraints of the gates already pro-

cessed. Our experiments have been conducted by us-

ing the architectures of IBM Q Tokyo and Sycamore as

the target physical devices. The experimental results

show that the evaluation function based on calculat-

ing the number of additional gates inserts the small-

est number of gates. We test several combinations

of state-of-the-art initial mapping and adjustment al-

gorithms aiming to insert fewer additional gates af-

ter qubit mapping. Generally speaking, Tabu Search-

based Adjustment (TSA) outperforms the Zulehner-

Paler-Wille (ZPW) algorithm[10], SWAP-based Bidi-

REctional heuristic search algorithm (SABRE)[11] and

Filtered Depth-Limited Search (FiDLS)[12] in different

aspects. When compared with the Dynamic Look-

ahead Heuristic technique (DLH)[13], which uses the

maximum consecutive positive effect of a SW oper-

ation (MCPE) and the optimized version (MCPE_OP)

as the heuristic cost function, the additional gates in-

serted by TSA in the DLH benchmarks have been re-

duced by 27.32% and 12.42%, respectively.

The main contributions of this article are summa-

rized as follows.

1. We extend IMSM, which only generates a set of

partial initial mappings, by completing the map-

ping based on the connectivity between qubits.

2. We propose a heuristic circuit adjustment algo-

rithm based on tabu search, TSA, which can

adjust large-scale circuits much more efficiently

than existing precise search and heuristic algo-

rithms.

3. We propose three look-ahead evaluation func-

tions for the circuit adjustment; one em-

ploys configuration checking with aspiration

(CCA)[14], and the other two use the number of

additional gates and the depth of the generated

circuit as evaluation criteria, taking into account

both the current gates and some gates yet to be

processed.

4. We compare several state-of-the-art initial map-

ping and adjustment algorithms, and the results

show that the initial mapping generated by our

method requires inserting fewer SWAP gates,

and TSA has better scalability than them for ad-

justing the mapping for large-scale circuits.

The rest of this article is organized as follows. In

Section 2 we discuss the related work. In Section 3 we

recall some background in quantum computing and

quantum information. In Section 4 we introduce the

problem of qubit mapping and provide our detailed

solution. Section 5 reported the experimental results.
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We conclude in the last section and discuss the future

work.

2 Related work

Paler[15] has shown that initial mappings have an

important impact on qubit mapping. Just by plac-

ing qubits in different positions from the default triv-

ial placement in the circuit instances on actual Noisy

intermediate-scale quantum (NISQ) devices, the cost

can be reduced by up to 10%. One important goal of

circuit adjustment algorithms is to minimize the num-

ber of additional gates. There are currently five main

methods to attack the qubit mapping problem.

• Unitary matrix decomposition algorithm. It is used

to rearrange a quantum circuit from the begin-

ning while retaining the input circuit[16, 17]. It

can be applied to a broad class of circuits con-

sisting of generic gate sets, but the results are not

as efficient as a compiler designed specifically for

this task.

• Converting into some existing problems. This

approach converts the qubit mapping prob-

lem into some existing problems, such as AI

planning[18, 19], integer linear programming[20]

and satisfiability modulo theories (SMT)[21], and

then uses existing tools to find the optimums in

an acceptable amount of time for the problem.

Furthermore, as the time cost is usually high, it

can only process small-scale quantum circuits.

• Exact methods. Siraichi et al. have proposed an

exact method[8]. It iterates over all possible map-

pings, thus it is only suitable for simple quantum

circuits and cannot be extended to complex ones.

• Graph theory. Shafaei et al. have used the mini-

mum linear permutation solution in graph the-

ory to model the problem of reducing the inter-

action distance[22]. A two-step method is used to

reduce the qubit mapping to a graph problem to

minimize the number of additional gates[23, 24].

• Heuristic search. Existing solutions mainly

aim at inserting as few SW gates as

possible[8, 10, 11, 12, 13, 25, 26], using the fi-

delity of the generated circuit as the objective

function[27] or minimizing the overall circuit

latency[28]. At present, there are a number

of methods[10, 11, 13, 22] that exploit the look-

ahead idea. In particular, Zhu et al. proposed

to dynamically adjust the number of look-ahead

gates[13]. SABRE[11] depends on a random ini-

tial mapping. SAHS[26] is an annealing algo-

rithm to find an initial mapping, but it is un-

stable. FiDLS[12] tends to search through all

possible combinations of SW gates to mini-

mize the number of executable 2-qubit gates.

But the cost of a thorough search is very high,

especially when dealing with medium-scale

and large-scale circuits. DLH[13] can deal with

some large-scale benchmarks. We will give a

quantitative comparison with that method in

Section 5. A variation-aware qubit movement

strategy[27] is proposed, which takes advantage

of the change in error rate and a change-aware

qubit mapping strategy by trying to select the

route with the lowest probability of failure. Lao

et al. have shown that the fidelity of a circuit is

related to the delay and the number of gates[28].

Now some heuristic methods are also applied

to other platforms such as Surface-17[28, 29] and

Sycamore[12].

3 Preliminary

In this section, we introduce some notions and no-

tations of quantum computing. Let C denote the set of

all complex numbers.

Classical information is stored in bits, while quan-
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tum information is stored in qubits. Besides two basic

states |0〉 and |1〉, a qubit can be in any linear superpo-

sition state like |φ〉 = a |0〉+b |1〉, where a, b ∈ C satisfy

the condition |a|2 + |b|2 = 1. The intuition is that |φ〉
is in the state |0〉 with probability |a|2 and in the state

|1〉 with probability |b|2. We use the letter Q (resp. q)

to denote a physical (resp. logical) qubit.

A quantum gate acts on a qubit to change the state

of the qubit. For example, the Hadamard (H) gate

is applied on a qubit, and the CX gate is applied

on two qubits. Their symbols and matrix forms are

shown in Fig. 1. The H gate turns state |0〉 (resp.

|1〉) into 1√
2
(|0〉 + |1〉) (resp. 1√

2
(|0〉 − |1〉)). The CX

gate is a generalization of the classical XOR gate,

since the action of the gate may be summarized as

|A,B〉 → |A,B ⊕A〉, where ⊕ is addition modulo

two, which is exactly what the XOR gate does. That

is, the control qubit and the target qubit are XORed

and stored in the target qubit. Here |A,B〉 is a short-

hand of the product state |A〉 |B〉 = |A〉 ⊗ |B〉. We use

a SW gate to exchange the states between two adja-

cent qubits, and multiple operations simulate moving

non-adjacent qubits to adjacent positions. A SW gate

can be implemented by three CX gates, or by insert-

ing four H gates to change the direction of the middle

CX gate, as shown in Fig. 2.

CX gate
•


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



H gate H 1√
2

(
1 1
1 −1

)

Fig.1. The symbols of two quantum gates and their matrices.

q0 × q1 q0 • • q1 q0 • H • H • q1
= =

q1 × q0 q1 • q0 q1 H H q0

Fig.2. Implementing a SW gate by CX gates and H gates.

In a quantum circuit, each line represents a wire.

The wire does not necessarily correspond to a phys-

ical wire but may correspond to the passage of time

or a physical particle that moves from one location

to another through space. The interested reader can

find more details of these gates from the standard

textbook[30]. The execution order of a quantum logi-

cal circuit is from left to right. The width of a circuit

refers to the number of qubits in the circuit. The depth

of a circuit refers to the number of layers executable

in parallel. For example, the depth of the circuit in

Fig. 3 (a) is 6, and the width is 5. We refer to a cir-

cuit with the number of 2-qubit gates no more than 100

as a small-scale circuit, a circuit with the number of 2-

qubit gates more than 1000 as a large-scale circuit, and

the rest are medium-scale circuits. It is unnecessary to

consider quantum gates acting on single qubits since

1-qubit gates are local[22], which do not need to move

the involved qubits for gate applications.

(a)

q0 •
q1 •
q2 • •
q3 • • •
q4 • •

g0 g1 g2 g3 g4 g5 g6 g7 g8

(b)

q0 q4

q3 q2

q1

Fig.3. (a) The original quantum circuit. (b) The logical interaction
graph of (a).

In the current work, we mainly consider the physi-

cal circuits of the IBM Q series, called coupling graphs.

Let CG = (VC , EC) denote the coupling graph of a

physical device, where VC is the set of physical qubits

and EC is the set of edges representing the connectiv-

ity between qubits related by CX gates. Fig. 4 (a)–(e)

are the coupling graphs of the 5-qubit IBM QX2, IBM

QX4, 16-qubit IBM QX3, and IBM QX5, the 20-qubit

IBM Q Tokyo, respectively. The control of one qubit

to a neighbor is unilateral, but for IBM Q Tokyo the

control between two adjacent qubits is bilateral. The

direction in each edge indicates the control direction
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of each 2-qubit gate, and 2-qubit gates can only be per-

formed between two adjacent qubits.

Given an interaction graph IG, a coupling graph

CG, an initial mapping τ , and a CX gate g = 〈qi, qj〉

where qi is the control qubit and qj is the target qubit,

if the gate g is executable on coupling graph CG, then

〈τ [qi], τ [qj ]〉 should be a directed edge on CG.

(a)

Q0 Q1

Q2

Q3 Q4

(b)

Q0 Q1

Q2

Q3 Q4

(c)

Q0 Q15 Q14 Q13 Q12 Q11 Q10 Q9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

(d)

Q0 Q15 Q14 Q13 Q12 Q11 Q10 Q9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

(e)

Q15 Q16 Q17 Q18 Q19

Q10 Q11 Q12 Q13 Q14

Q5 Q6 Q7 Q8 Q9

Q0 Q1 Q2 Q3 Q4

Fig.4. The coupling graphs of IBM Q series. (a) IBM QX2, (b) IBM
QX4, (c) IBM QX3, (d) IBM QX5, (e) IBM Q Tokyo.

Example 3.1. Consider the logical interaction graph IG

and a coupling graph CG shown in Fig. 3 (b) and the green

part of Fig. 4 (e). Let the initial mapping be as follows,

τ = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11}.

Then the 2-qubit gate g0 = 〈q2, q1〉 is not executable, since

the edge 〈τ [q2], τ [q1]〉 = 〈Q6, Q0〉 does not exist in CG.

However, the gate g1 = 〈q3, q4〉 is executable, since the edge

〈τ [q3], τ [q4]〉 = 〈Q5, Q11〉 exists in CG.

4 Qubit Mapping

Assume that the input circuit has only 1-qubit gates

and CX gates[31, 32]. We expect to find a qubit map-

ping algorithm that, when given an input circuit, can

produce an output circuit with a small number of addi-

tional gates in an acceptable amount of time. Roughly

speaking, we propose a method of qubit mapping with

the following three steps.

1. Preprocessing. This step includes extracting the

interaction graph from the input circuit and cal-

culating the shortest paths of the coupling graph.

2. Isomorphism and completion. This step first uses

the subgraph isomorphism algorithm to find a

set of partial initial mappings[7]. Then we per-

form a mapping completion to process the re-

maining nodes that do not satisfy all isomor-

phism requirements, according to the connec-

tivity between the unmapped nodes and the

mapped ones.

3. Adjustment. After the second step, some logically

adjacent nodes may be mapped to physically

non-adjacent nodes, therefore, the quantum cir-

cuit is not executable on the coupling graph. We

use a tabu search-based adjustment algorithm to

generate circuits that can be physically executed.

4.1 Preprocessing

In the preprocessing step, we adjust the input cir-

cuit described by an openQASM program[33] to ex-

tract the interaction graph from the input circuit and

calculate the shortest paths of the coupling graph.

Quantum gates acting on different qubits can be ex-

ecuted in parallel. The notationL(C) = {L0,L1, ...,Ln}
denotes the layered form of circuit C, where Li (0 ≤
i ≤ n) stands for a set of quantum gates that can

be executed in parallel. The quantum gate set sepa-

rated by the dotted lines in Fig. 3 (a) are the follow-
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ing: L0 = {g0, g1},L1 = {g2},L2 = {g3, g4},L3 =

{g5, g6},L4 = {g7},L5 = {g8}.

At the same time of layering, we generate an inter-

action graph IG = (VI , EI), which is an undirected

graph with VI being the set of vertices, and EI the

set of undirected edges that denotes the connectivity

between qubits related by CX gates. Given a cou-

pling graph and assume the distance of each edge is

1, we use the Floyd-Warshall algorithm[34] to calculate

the shortest distance matrix, with D[i][j] denoting the

shortest distance from Qi to Qj .

Consider a CX gate g = 〈qi, qj〉. If qi and qj

are mapped to Qm and Qn, respectively, then the cost

of executing g under the shortest path is denoted by

costg = 7 × (D[m][n] − 1) on devices with unilat-

eral control. For IBM Q Tokyo, the cost is costg =

3× (D[m][n]− 1).

Example 4.1. Consider the QX5 coupling graph (cf. Fig. 4

(d)). Given a CX gate g = 〈q1, q2〉, with q1 mapped to

Q6 and q2 mapped to Q13, the shortest distance between

them is D[6][13] = 3. There are three shortest paths of

moving from Q6 to an adjacent position of Q13 : π0 =

Q6 → Q5 → Q4 → Q13, π1 = Q6 → Q5 → Q12 → Q13,

π2 = Q6 → Q11 → Q12 → Q13. Their costs are given by

costπ0
= 18, costπ1

= 14, and costπ2
= 14, respectively.

Here costπ stands for the cost of swapping the qubits qi and

qj along the path π.

4.2 Isomorphism and Completion

Generally speaking, in a coupling graph, it is

almost impossible to find a subgraph that exactly

matches the interaction graph. We regard the map-

ping with the largest number of mapped nodes as a

good partial mapping. IMSM compares various com-

positions of several state-of-the-art subgraph isomor-

phism algorithms. Since IMSM cannot process discon-

nected graphs, we manually create connected graphs

by linking isolated nodes to the ones with the largest

degree in the interaction graph. Note that this does not

change the architecture of the original circuit.

The input of Algorithm 1 is a coupling graph CG,

an interaction graph IG, and a partial mappings set T .

Line 2 selects the largest number n of mapped nodes,

and the partial mappings with n mapped nodes are

used by the candidate set. Lines 3–22 complete the par-

tial mappings. The function length(τ) returns the size

of τ . In Line 5, we initialize an empty queue I , which

stores unmapped logical qubits, traverse the mapping

τ and add the unmapped qubits to I . We then loop

until I is empty, and all logical qubits are mapped to

physical qubits. Line 7 takes out the first element in I

to s. Lines 8 and 9 get the adjacency matrices of CG and

IG, respectively. Line 10 initializes a map C, sorted by

a descending order of the degree of connectivity be-

tween s and u. Lines 11–21 traverse C and select the

node u that has been mapped to the physical node t

in the coupling graph and has the largest number of

logical connections to s in C. Line 14 deletes the node

from C. Lines 15–19 select the node k adjacent to t in

the adjacency matrix, and map s to that node. Finally,

we generate a dense mapping.

Example 4.2. Consider the interaction graph shown in

Fig 3 (a) and the coupling graph in Fig. 4 (e). Suppose we

have a partial mapping set T = {τ0, τ1, ..., τn}. We take one

of the partial mappings as an example.

τ0 = {q0 → Q10, q1 → −1, q2 → Q6, q3 → Q5, q4 → Q11},

where q1 → −1 means that q1 is not mapped to any physical

qubit, therefore we need the mapping completion algorithm.

The maximum number of mapped nodes is 4. We demon-

strate how τ0 is completed. We add all unmapped nodes to

the queue I ; in this example we have I = {q1}. Then we

loop until I is empty. We pop the first element s of I , get the

adjacency matrix of the query graph and the target graph,

and traverse the adjacency matrix. We put the nodes u ad-

jacent to s into the candidate nodes list C, which is sorted

by the connectivity of s and u. We get C = {q3, q2, q4, q0}.
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Next, we traverse C and take out the first element q3 in C,

and calculate the physical node t = Q5 as τ0[q3] = Q5.

Finally, we map s to the node connected to t but not yet

mapped. In this example, it can be directly mapped to Q0.

In the end, we obtain the mapping

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 →

Q11}.

Algorithm 1: Complete the initial mapping
Input: CG: a coupling graph; IG: an

interaction graph; T : a partial mapping
set obtained by IMSM;

Output: results: a set of mapping relations
between IG and CG;

1 Initialize results = ∅;
2 n← maxτ∈T |{i : τ [i] 6= −1, i ≤ length(τ), i ∈

N}|
3 for τ ∈ T do
4 if n = length(τ) then
5 I ← {i : τ [i] = −1, i ≤ length(τ), i ∈

N};
6 while I 6= ∅ do
7 s← I.poll();
8 P ← CG.adjacencyMatrix();
9 L← IG.adjacencyMatrix();

10 C ← {u : L[s][u] 6= 0};
11 while C 6= ∅ do
12 t← τ [C[0]];
13 k ← 0;
14 C ← C\C[0];
15 while k < length(P [t]) do
16 if (P [t][k] or P [k][t] 6= 0 and

!τ.contains(k)) then
17 τ [s]← k;
18 break;

19 k ← k + 1;

20 if k 6= length(P [t]) then
21 break;

22 results.add(τ);

23 return results;

4.3 Adjustment

4.3.1 Tabu search

Tabu search uses a tabu list to avoid searching

repeated spaces and deadlock and amnesty rules

to jump out of the local optima to ensure the di-

versity of transformed results. Our circuit ad-

justment mainly relies on the tabu search algo-

rithm, aiming to adjust those large-scale circuits that

the existing algorithms are difficult to process and

generate a circuit closer to the optimal solution.

Algorithm 2: Calculate the candidate set
Input: s: the current node; P : the shortest

paths set of coupling graph; D: the
distance matrix between nodes in the
coupling graph; Mp: the mapping from
physical qubits to logical qubits; Ml: the
mapping from logical qubits to physical
qubits; L: gates included in the current
layer of circuits;

Output: results: the set of candidate mapping;
1 Initialize results← ∅; N ← ∅;
2 foreach g ∈ L do
3 if g is executable then
4 L← L\{g};
5 else
6 N ← N ∪ {g.c, g.t};

7 foreach g ∈ L do
8 foreach p ∈ P [Ml[g.c]][Ml[g.t]] do
9 foreach e ∈ p do

10 if e.s and e.t /∈ N then
11 continue;

12 M
′

p ←Mp; M
′

l ←Ml;
13 q1 ←M

′

p[e.s]; q2 ←M
′

p[e.t];
14 M

′

p[e.s]← q2; M
′

p[e.t]← q1;
15 if q1 6= −1 then
16 M

′

l [q1]← q2;

17 if q2 6= −1 then
18 M

′

l [q2]← q1;

19 s← ∅;
20 s.swaps← s.swaps ∪ {e};
21 s.value← evaluate(D,M

′

l , L);
22 results← results ∪ {s};

23 return results;

The calculation of the candidate set is shown in Al-

gorithm 2. The input Mp is a mapping from physical

qubits to logical ones, where j = Mp[i] means that the

i-th physical qubit is mapped to the j-th logical qubit.

The set Ml denotes the mapping of logical qubits to

physical ones, where j =Ml[i] means that the i-th log-

ical qubit is mapped to the j-th physical qubit. The set
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L includes all the gates in the current layer, and the

output is a candidate mapping set of the current map-

ping. The set P (resp. D) contains the edges (resp. dis-

tance) of all the shortest paths in the coupling graph.

Lines 3–6 delete the gate g that can be executed in

L under the current mapping and gather the control

qubit g.c and target qubit g.t of gate g that cannot be

executed into the set N . Lines 7–22 traverse gates g in

L, and calculate the shortest paths between the nodes

of g. If the endpoints e.s and e.t of edge e intersect

withN on the shortest path, then e is an element of the

candidate set. Lines 12–18 update the mapping after

the swap. Lines 18–20 generate a new candidate so-

lution. Line 19 stores the swapped edges that will be

used in the output circuit, and Line 21 calculates the

swap scores using an evaluation function.

Example 4.3. Let us consider the mapping

τ0 = {q0 → Q10, q1 → Q0, q2 → Q6, q3 → Q5, q4 → Q11},

with L0 = {g0, g1}, costg1 = 0 and costg0 = 3. The

gate g1 can be executed directly in the τ0 mapping, there-

fore we delete it from L0, but g0 cannot be executed in the

mapping τ0. The nodes that cannot be executed join the set

N = {Q0, Q6}. The set of shortest paths is

P [6][0] = {{Q6 → Q1 → Q0}, {Q6 → Q5 → Q0}}.

We traverse the shortest paths and calculate the candidate

set. The current candidate set is {(Q6, Q1), (Q1, Q0),

(Q6, Q5), (Q5, Q0)}.

TSA takes a layered circuit and an initial mapping

as input and outputs a circuit that can be executed in

the specified coupling graph, as shown in Algorithm 3.

The adjusted circuit mapping of each layer is used as

the initial mapping of the next layer. Line 1 regards the

initial mapping τini as the best mapping τbest. Lines

3–12 cyclically check whether all the gates in the cur-

rent layer can be executed under the mapping τbest. If

all the gates are executable or the number of iterations

reaches the given bound, the search is completed. Oth-

erwise, the search continues. Line 4 gets the current

mapping candidate, and Line 7 finds the best mapping

in the candidate set. Note that if the edge swapped

by a candidate appears in the tabu list, the candidate

will be removed from the candidate set. Then from the

remaining candidates, we choose a mapping with the

lowest cost. Line 9 takes the amnesty rules. If the best

candidate is not found, the amnesty rules will select

the mapping with the lowest cost in the candidate set

as the best mapping. Lines 10–12 update the best map-

ping τbest and insert the swapped edge performed by

the best mapping to the tabu list tl. The motivation is

to execute the generated circuit in parallel as much as

possible and to avoid swapping the edges in the tabu

list. Then it will check whether the termination con-

dition of the algorithm is satisfied. The condition de-

termines whether the number of iterations reaches the

given bound, or the current mapping ensures all the

gates in the current layer can be executed.

Algorithm 3: Tabu search
Input: τini: the initial mapping; tl: tabu list;
Output: τbest: the best mapping;

1 Initialize τbest ← τini;
2 n← 1; /*the number of iterations*/
3 while not mustStop(n, τbest) do
4 C ← τbest.candidates() /*candidate set*/
5 if C is empty then
6 break;

7 cbest ← best_candidates(C, tl);
8 if cbest is empty then
9 cbest ← amnesty_candidates(C, tl);

10 τbest ← cbest;
11 tl ← tl ∪ {cbest.swap};
12 n← n+ 1;

13 return τbest

4.3.2 Evaluation functions with look ahead

We propose three evaluation functions: one intro-

duces CCA, one uses the number of additional gates

in the generated circuit as an evaluation criterion as

given in (1), and the last one uses the depth of the gen-

erated circuit as an evaluation criterion as given in (2).
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They give rise to three variants of TSA called TSAcca,

TSAnum, and TSAdep, respectively.

CCA has mainly been used for Boolean Satisfia-

bility (SAT) problems. We apply the idea of CCA to

adjust circuits. Let submake represent the number of

qubits for which two qubits are closer after a SW gate,

and subbreak represent the number of qubits for which

two qubits are farther apart after a SW gate. We intro-

duce subscore = submake− subbreak into the evalua-

tion function, and adjust the weight with the Smooth

Weight based Threshold (SWT) scheme[14].

The output of the i-th layer, with i smaller than the

depth of the circuit d, is used as the input of the (i+1)-

th layer. Note that any SW gate in the i-th layer will

affect the mapping of the (i + 1)-th layer. If we only

consider the gate of the current layer when selecting

the SW gate, only the requirements of the i layer will

be satisfied, not necessarily the next layer. Therefore,

we take the gates from the i-th to the (i + la)-th layer,

with i + la ≤ d, into consideration, where la is the

number of look-ahead layers. It is necessary to give a

higher priority to executing the gates in the i-th layer,

therefore we introduce an attenuation factor δ to con-

trol the influence of the gates in the look-ahead layers.

costnum(Qm, Qn) =
∑
g∈Li

3× (D[τ [g.c]][τ [g.t]]− 1)

+ δ ×

i+la∑
j=i

∑
g∈Lj

3× (D[τ [g.c]][τ [g.t)]− 1]

 , (1)

costdep(Qm, Qn) = Depth

i+la⋃
j=i

Lj

 . (2)

Here costnum(Qm, Qn) (resp. costdep(Qm, Qn)) de-

notes the distance (resp. depth) of all the gates in layer

Lj (i ≤ j ≤ i+ la), after swapping the state of Qm with

that of Qn. The notation g.c (resp. g.t) stands for the

control (resp. target) qubit of gate g.

Example 4.4. Let us continue the previous exam-

ple. We select the one with the lowest evaluation

score from the candidate set. Assuming δ = 0.5 and

la = 2, for L1 = {g2, g0}, the candidate set is

{(Q6, Q1), (Q1, Q0), (Q6, Q5), (Q5, Q0)}, and the costs

are given as follows:

costnum(Q6, Q1) = 0, costnum(Q1, Q0) = 1.5,
costnum(Q6, Q5) = 1.5, costnum(Q5, Q0) = 1.5.

The algorithm chooses the first SW with the smallest score,

and the mapping becomes

τ0 = {q0 → Q10, q1 → Q0, q2 → Q1, q3 → Q5, q4 → Q11}.

It can be seen that the current mapping ensures that g0 is

executable. Thus we can continue to the next layer.

4.3.3 Complexity

Given an interaction graph IG = (VI , EI) and a

coupling graph CG = (VC , EC), we assume that the

depth of the circuit is d and there are g gates in one

layer. The candidate set consists of the edges con-

nected to the control or target qubits, thus the size of

the SW candidate set is 8 × g. The worst-case time

complexity is O(d× g × (8× g)(|EC|−1)), and the space

complexity is O(g).

5 Experiments

We compare TSA with several state-of-the-art

algorithms for qubit mapping, namely ZPW[10],

SABRE[11], FiDLS[12], and DLH[13]. Notice that other

algorithms such as SAHS[26] and t |ket〉[25] are not

listed because Li et al.[12] have been pointed out that

FiDLS is superior to SAHS and the latter outperforms

t |ket〉[26]. The implementation in Python is avail-

able online3. All the experiments are conducted on a

Ubuntu machine with a 2.2GHz CPU and 64G mem-

ory. We take the logarithm log10 of both the x-axis and

y-axis such that the experimental results are easy to ob-

serve. The time limit for each benchmark is one hour.

Among the 159 benchmarks we have considered, 158

3https://github.com/Holly-Jiang/QCTSA

https://github.com/Holly-Jiang/QCTSA
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of them are taken from some functions of RevLib[35]

and one is added by our own. This data set has also

been adopted in several related work. We believe that

it is representative and our comparative experiments

are carried out on it. With the 159 benchmarks, we

compare TSA with ZPW, SABRE, and FiDLS on IBM Q

Tokyo, and with FiDLS on Sycamore. Since the code

of DLH is not available online, we only compare with

this algorithm on the number of inserted additional

gates but not the running time. Note that SABRE uses

a random initial mapping, thus for every benchmark

we execute it five times, each with a different initial

mapping, and report the best result out of the five tri-

als. TSA uses the unsorted candidates, and thus we

execute it five times and take the best result. Other

algorithms are deterministic, therefore they only run

once. Fig. 5 illustrates the entire process of our experi-

ments. Below we go through it in more detail.

TSA with Variable Look-ahead Parameter

Comparison of TSAcca, TSAdep and TSAnum

Comparison of TSAnum with DLH

Comparison of the Initial Mapping Algorithms of
ZPW, SABRE, FiDLS, and TSA

Comparison of the Adjustment Algorithms
of ZPW, SABRE, FiDLS, TSAnum, and TSAcca

Comparison of the Overall Performance of
TSAnum, TSAcca, SABRE, and FiDLS on IBM Q Tokyo

Comparison of TSA with FiDLS on Sycamore

Fig.5. Sketch of the experiments.

Firstly, we test TSA with fixed and variable look-

ahead parameter la. In Fig. 6, different colors represent

the logarithms of the numbers of additional gates. The

lower the points in the figure, the fewer the number

of additional gates inserted. As to the look-ahead pa-

rameter la, the optimal parameter for each circuit may

be different. We have done thousands of experiments

and found that when la = 2, the number of additional

gates is relatively small for all benchmarks. It means

that a 2-layer look-ahead already gives a good perfor-

mance for TSA.

0 2 4 6 8

5.5

5.6

5.7

5.5

5.6

5.7

Fig.6. The impact of the look-ahead parameter la on search results.
The x-axis represents la, the y-axis represents the number of addi-
tional gates.

1 2 3 4 5
0

1

2

3

4

5 TSAcca

TSAdep

TSAnum

Fig.7. Comparison of the number of additional gates inserted by
TSAdep, TSAcca, and TSAnum. The x-axis represents the number of
2-qubit gates in the benchmark, the y-axis represents the number of
additional gates.

In Fig. 7, we compare TSAcca, TSAdep and TSAnum

using the 159 benchmarks mentioned above. Com-

pared with TSAcca (resp. TSAnum), the depth of the

generated circuits by TSAdep is reduced by 2.37%

(resp. 3.42%) on average. Compared with TSAcca

(resp. TSAdep), the number of additional gates by

TSAnum is reduced by 2.69% (resp. 9.56%) on aver-

age. Therefore, it is preferable to use either TSAdep or

TSAnum, depending on the optimization objective to
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Table 1. Comparison of MCPE, MCPE_OP and TSAnum

Benchmark
#circ. MCPE MCPE_OP TSAnum

∆0(%) ∆1(%)
n g g0 g1 g2

4mod5-v1_22 5 21 0 0 0 0 0

mod5mils_65 5 35 0 0 0 0 0

alu-v0_27 5 36 3 3 6 −100 −100

decod24-v2_43 4 52 0 0 0 0 0

4gt13_92 5 66 21 21 0 100 100

ising_model_10 16 786 0 0 0 0 0

ising_model_13 16 786 0 0 0 0 0

ising_model_16 16 786 0 0 0 0 0

qft_10 10 200 39 39 57 −46.15 −46.15

qft_16 16 512 225 192 189 16.00 1.56

rd84_142 15 343 153 108 99 35.29 8.33

adr4_197 13 3439 1566 1224 1029 34.29 15.93

radd_250 13 3213 1353 1047 852 37.03 18.62

z4_268 11 3073 1071 855 915 14.57 −7.02

sym6_145 14 3888 1017 1017 681 33.04 33.04

misex1_241 15 4813 2118 1098 1032 51.27 6.01

rd73_252 10 5321 2352 2193 1629 30.74 25.72

cycle10_2_110 12 6050 2226 1968 1890 15.09 3.96

square_root_7 15 7630 2061 1788 1509 26.78 15.60

sqn_258 10 4459 3708 3057 3093 16.59 −1.18

rd84_253 12 13658 6411 5697 4605 28.17 19.17

co14_215 15 17936 5634 5062 6813 −20.93 −34.59

sym9_193 10 34881 15420 13746 12315 20.14 10.41

urf5_158 9 164416 69852 58947 56253 19.47 4.57

hwb9_119 10 207775 93219 89355 78753 15.52 11.87

urf4_187 11 512064 220329 168366 141768 35.66 15.80

sum – 1307223 428778 355782 311598 27.32 12.42

Note: n is the number of qubits, g is the number of gates in the input circuit, g0–g2 are the numbers of additional gates inserted by MCPE,
MCPE_OP and TSAnum, respectively, and ∆i = (gi − g2)/gi.

be either the depth or the number of additional gates

of the resulting circuits.

Secondly, we use the benchmarks[13] to compare

TSAnum with DLH. Note that two heuristic cost func-

tions MCPE and MCPE_OP are used in DLH. Since

there is no code available online for DLH, we only

compare the number of additional gates inserted with

the circuits[13], as shown in Table 1. Compared with

MCPE and MCPE_OP, TSAnum reduces the total num-

ber of additional gates by 27.32% and 12.42%.

Thirdly, we compare the combinations of several

algorithms for inserting fewer additional gates. We

use the initial mapping and adjustment algorithms

from ZPW[10], SABRE[11], FiDLS[12], and TSA.

In Table 2, we compare the performance of the four

initial mapping algorithms from ZPW, SABRE, FiDLS,

and TSA under the specific adjustment algorithms. For

example, in the first row the adjustment algorithm is

fixed to be that of ZPW; there are 115 circuits that all

of the four initial mapping algorithms can successfully

transform and we compare the number of additional

gates. As we can see, the initial mapping algorithm of

TSA performs best when used in conjunction with the

five adjustment algorithms. It leads to a reduction of

41%, 30% and 37% of additional gates than the initial

mapping algorithms of ZPW, SABRE, and FiDLS.

We then compare the five adjustment algorithms

ZPW, SABRE, FiDLS, TSAnum, and TSAcca under spe-
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Table 2. Comparison of the initial mapping algorithms ZPW, SABRE, FiDLS, and TSA

Algorithm n g g0 g1 g2 g3 ∆0(%) ∆1(%) ∆2(%)

ZPW 115 63666 29640 24951 27651 17412 41.26 30.22 37.03

SABRE 108 77790 28671 26079 26412 16068 43.96 38.39 39.16

FiDLS 120 209433 29484 28434 30195 25950 11.99 8.74 14.06

TSAnum 120 163485 54969 52512 62817 45948 12.50 26.85 18.59

TSAcca 120 163485 57777 53922 61668 46305 19.86 14.13 24.91

Note: n is the number of circuits that all the four initial mapping algorithms can successfully transform, g is the number of gates in the input
circuits, g0–g3 are the numbers of additional gates inserted by ZPW, SABRE, FiDLS, and TSA, respectively, and ∆i = (gi − g3)/gi.

Table 3. Comparison of the adjustment algorithms ZPW, SABRE, FiDLS, TSAnum, and TSAcca

Algorithm n g g0 g1 g2 g3 g4 ∆0(%) ∆1(%) ∆2(%) ∆4(%)

ZPW 94 29443 14472 11244 4938 10173 10389 29.71 9.53 −106.01 2.08

SABRE 105 49987 19053 16632 6204 12072 11904 36.61 27.41 −94.58 −1.41

FiDLS 109 105428 45813 31011 16668 37800 37851 17.49 −21.89 −126.78 0.13

TSA 124 150464 49620 30447 19068 40461 40629 18.46 −32.89 −112.19 0.41

Note: n is the number of circuits that all the five adjustment algorithms can successfully transform, g is the number of gates in the input
circuits, g0–g4 are the numbers of additional gates inserted by ZPW, SABRE, FiDLS, TSAnum, and TSAcca respectively, and ∆i = (gi−g3)/gi.

Table 4. Comparison of the runtime and the number of circuits successfully transformed by SABRE, FiDLS, TSAnum, TSAcca, respectively

Scale n g
SABRE FiDLS TSAnum TSAcca

n0 g0 t0 n1 g1 t1 n2 g2 t2 n3 g3 t3

small 66 5997 66 2301 2 66 1329 7 66 894 16 66 897 21

medium 49 21618 49 10218 22 49 5328 90 49 5199 57 49 5280 62

large 44 3289162 29 162522 12412 44 532485 63744 44 1013196 2392 44 1037427 2440

sum 159 3312734 144 175041 12436 159 539142 63841 159 1015521 2465 159 1043604 2523

Note: n is the number of test circuits, g is the number of gates in the input circuits, n0–n3 are the numbers of circuits successfully transformed
by SABRE, FiDLS, TSAnum, and TSAcca respectively, t0–t3 are the runtime of SABRE, FiDLS, TSAnum, and TSAcca, respectively in seconds,
and g0–g3 are the numbers of additional gates inserted by SABRE, FiDLS, TSAnum, and TSAcca, respectively.

Table 5. Comparing the initial mapping and adjustment algorithms of FiDLS and TSA on Sycamore

Algorithm n g
FiDLS TSAnum TSAcca

∆1(%) ∆2(%)
g0 t0 g1 t1 g2 t2

FiDLS
159 3312734

2311560 31896 2245314 233 2257371 3392 2.86 2.56

TSA 2305125 31211 2234937 1795 2252271 3390 3.04 2.29

Note: n is the number of test circuits, g is the number of gates in the input circuits, g0–g2 are the numbers of additional gates inserted by FiDLS,
TSAnum and TSAcca, respectively, t0–t2 are the runtime of FiDLS, TSAnum, and TSAcca, respectively in seconds, and ∆i = (g0 − gi)/g0.

cific initial mapping algorithms in Table 3. FiDLS gives

rise to the fewest additional gates. For example, in

the second row, SABRE is used as the adjustment al-

gorithm, 16632 (resp. 12072) gates are inserted under

the initial mapping of SABRE (resp. TSA). The SABRE

adjustment algorithm combined with the initial map-

ping provided by TSA has fewer gates inserted than

the SABRE initial mapping algorithm in those bench-

marks. This shows that the initial mapping of TSA is

better than that of SABRE. FiDLS uses a deep search

on the circuits, calculates the full permutation of all

edges, and then selects the best among all the permuta-

tions according to an evaluation function. FiDLS takes

large-scale search space and long search time for large-
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scale circuits. Overall, TSA performs well on large-

scale circuits, trading off additional gates and runtime.

Fourthly, we compare the overall performance of

TSAnum and TSAcca with SABRE and FiDLS on IBM Q

Tokyo. We test 159 circuits, including 66 small-scale

circuits, 49 medium-scale circuits and 44 large-scale

ones. Note that in Table 4 and Fig. 8 we do not display

the data for ZPW. Instead, we compare with SABRE

because it is already shown that SABRE is much more

scalable than ZPW[11]. In Fig. 8, the number of addi-

tional gates introduced by the blue bars is the largest,

followed by the red ones. We can see that the yel-

low bars are the shortest when the x-axis is greater

than 3, indicating that FiDLS has inserted the fewest

gates in the large-scale circuits. The green bars are

for TSAnum. The number of additional gates it intro-

duces is slightly larger than that of FiDLS. It can also

be seen from Table 4 that TSAnum takes much less

time than FiDLS in general. SABRE successfully trans-

forms 144 circuits, including all the small-scale and

medium-scale circuits, and 29 large-scale ones, which

takes 12436 seconds. FiDLS successfully transforms

159 circuits, which takes 63841 seconds. TSAnum and

TSAcca are much faster, as they successfully transform

all the 159 circuits, taking 2465 seconds and 2523 sec-

onds, respectively. Compared with SABRE, the num-

ber of additional SW gates generated by TSAnum is re-

duced by 51% on average, among the 115 small-scale

and medium-scale circuits that both of them can suc-

cessfully transform.

In small scale (resp. middle scale) circuits, TSAnum

generates an average of 33% (resp. 2%) fewer ad-

ditional SW gates compared to FiDLS. Specifically,

FiDLS inserts 1329 (resp. 5328) additional gates, while

the number is 894 (resp. 5199) for TSAnum. When deal-

ing with large-scale circuits, although TSAnum inserts

more additional gates, it can convert large-scale cir-

cuits more than 25 times faster than FiDLS, as we can

see in the fourth row and the t2-column of Table 4.

1 2 3 4 5
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2
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5 SABRE
CCA
TSA
FiDLS

Fig.8. Comparison of SABRE, FiDLS, TSAnum, and TSAcca on IBM
Q Tokyo. The x-axis represents the number of 2-qubit gates in the
benchmark, the y-axis represents the number of additional gates.

Finally, we set our target device to be the 53-qubit

quantum processor Sycamore and compare TSA with

FiDLS still on the 159 benchmarks. In each row of

Table 5, the same initial mapping algorithm is used,

and in each column, the same adjustment algorithm

is used. Generally speaking, TSA leads to a reduc-

tion of 2%-3% for the number of inserted additional

gates. In the experiment, we find that the degrees of

the Sycamore nodes are small and the maximum is 4.

If the degrees of nodes in the interaction graph are gen-

erally greater than the maximum degree of Sycamore,

it is not very suitable to use subgraph isomorphism to

generate the set of partial initial mappings. The algo-

rithm tempts to first match the node with the largest

degree. If the node with the maximum degree does not

satisfy the isomorphism condition, the initial mapping

generated by the subgraph isomorphism algorithm is

not friendly. However, the adjustment of TSA is still

very effective because the time cost is drastically low-

ered, going from 31896 seconds for FiDLS to 1795 sec-

onds for TSAnum, that is, the latter is more than 17

times faster than the former.

6 Conclusions

We propose a scalable algorithm for qubit map-

ping. We first use a subgraph isomorphism algorithm

and a mapping completion algorithm based on the

connectivity between qubits to generate a high-quality



14 J. Comput. Sci. & Technol., Vol., No.

initial mapping. Then we employ a look-ahead heuris-

tic search to adjust the mapping, which takes into ac-

count the influence of the gates yet to be processed

to reduce the number of additional gates. We com-

pared the performance of the initial mapping and ad-

justment algorithms with state-of-the-art algorithms

ZPW, SABRE, and FiDLS, using the architectures of

IBM Q Tokyo and Sycamore as target devices. Our

experimental results show that the initial mapping of

TSA gives rise to fewer SW gates inserted and the

adjustment algorithm can be obtained in an accept-

able amount of time. Most small-scale and medium-

scale circuits can be transformed in a few seconds. For

large-scale circuits, the results can be obtained within

a few minutes. In the future, we will investigate how

to reduce the number of additional gates inserted and

increase the speed. We will also apply the proposed

method to more NISQ devices.
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not absolutely good or bad, but overall, the initial mapping of TSA

has the fewest number of additional gates inserted in each adjust-
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Fig.A.1. Comparison of the initial mapping algorithms of ZPW,
SABRE, FiDLS, and TSA, using the adjustment algorithm of (a) ZPW,
(b) SABRE, (c) FiDLS, (d) TSAnum, and (e) TSAcca, respectively. The
x-axis represents the number of 2-qubit gates in the benchmark, the
y-axis represents the number of additional gates.

We then compare the five adjustment algorithms ZPW, SABRE,

FiDLS, TSAnum, and TSAcca under specific initial mapping algo-

rithms. The four rows in Table 3 correspond to Fig.A. 2 (a)–(d). As

we can see, yellow bars (FiDLS) are the lowest. Red bars (SABRE)

are the highest. The second-lowest are olive bars (TSAnum), which

can handle all benchmarks. TSAnum has fewer gates and shorter

running time than ZPW in all initial mapping algorithms.
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Fig.A.2. Comparison of the adjustment algorithms of ZPW, SABRE,
FiDLS, TSAnum, and TSAcca, using the initial mapping algorithm of
(a) ZPW, (b) SABRE, (c) FiDLS, and (d) TSA, respectively. The x-axis
represents the number of 2-qubit gates in the benchmark, the y-axis
represents the number of additional gates.
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