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Abstract. The Darboux transformation formulae for the reverse-space-time derivative nonlinear Schrödinger equation

are given by using concise expressions. At the same time, the n-solitons, n-periodic solutions, higher-order hybrid-

pattern solitons and some mixed solutions are obtained through Darboux transformation formulae. It’s worth mention-
ing that the solution of reverse-space-time DNLS equation can be reduced to the solution of local DNLS equation by

symmetry relation. In the case of zero seed solution, the fact that solution q[N ] at origin depends only on the spectral

parameters is proved. Also, the amplitudes of n-solitons, n-periodic solutions, higher-order solitons and mixed solutions
are derived. Moreover, many interesting new phenomena are discovered through detailed dynamic analysis of these

solutions. For example, interactions of n-periodic waves produce peaks with different amplitudes and size. Soliton on

the periodic background looks very similar to breathers due to the interception of the periodic background. Finally, the
modulational instability analysis for the reverse-space-time derivative nonlinear Schrödinger equation is studied. The

results are useful for describing the interaction process of solitons interference by n-periodic waves in the ocean and
other fields.

Keywords:Darboux transformation; Reverse-space-time derivative nonlinear Schrödinger equation; n-periodic solution;

High-order hybrid-pattern solitons on the n-periodic background.

1. Introduction

Starting from the Kaup-Newell system [1–5]:

iqt − qxx − i(q2r)x = 0,

irt + rxx − i(qr2)x = 0.
(1.1)

When r(x, t) = −q∗(x, t), the derivative nonlinear Schrödinger equation (DNLS) [6–9]

iqt − qxx + i(q2q∗)x = 0, (1.2)

is derived from the Kaup-Newell system and the integrability of DNLS was proved by Kaup and Newell in 1978.
The DNLS equations arise in the study of circular polarized Alfvén waves in plasma [10], propagating parallel to
the magnetic field [11], which is one of the most important integrable systems in mathematics and physics. Here in
Eq.(1.2) the complex function q = q(x, t) denotes the wave envelopes, the superscript ∗ denotes complex conjugation
and the subscripts x and t denote the partial derivatives with respect to x and t, respectively. In nonlinear optics, the
DNLS is gauge equivalent to the modified nonlinear Schrödinger equation, which has important physical significance
in the theory of ultrashort femtosecond nonlinear pulse [12]. In addition, the filamentation of lower-hybrid waves can
be simulated by the DNLS which governs the asymptotic state of the filamentation, and it admits moving solitary
envelope solutions for the electric field [13]. Ichikawa et al. [14] obtained the peculiar structure of spiky modulation
of amplitude and phase, which arises from the derivative nonlinear coupling term. The equation is also used to
describe large-amplitude magnetohydrodynamic waves of plasmas [15,16], the sub-picosecond and femtosecond pulses
in single-mode optical fiber [17–19].

Due to generating many new physical phenomena and having important physical significance when nonlocal terms
are added to nonlinear equations, the nonlocal equations have been studied by many researchers from different view-
points and perspectives in recent years [20–22]. The PT -symmetric, reverse-time and reverse-space-time nonlocal
DNLS are three types nonlocal DNLS equations which were first proposed by Ablowitz and Musslimani [23, 24].
Among them, the reverse-space-time DNLS equation is as follows

iqt − qxx + i(q2q(−x,−t))x = 0, (1.3)

which is derived from the Kaup-Newell system with q(x, t) = −r(−x,−t). The symmetry reductions of reverse-space-
time DNLS equation are nonlocal both in space and time. Note that the Lax pair of Kaup-Newell systems is

Ψx = UΨ, Ψt = VΨ.

The eigenfunction Ψ =

Å
φk
ϕk

ã
associated with eigenvalue λk. U and V are functional matrices with spectral

parameters λk. Under the different reduction conditions, the symmetry relation of eigenfunctions are also different.
The reverse-space-time DNLS equation has the following property [7]:

φk(x, t;λk) = ϕk(−x,−t;λk).
1
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For the DNLS equation, the eigenfunctions admit the following symmetry conditions:
(i): λk = −λ∗k, φ∗k = ϕk;
(ii): λ∗k = −λl, φ∗k = ϕl, ϕ

∗
k = φl, where k 6= l.

From the symmetry relation between DNLS equation and reverse-space-time DNLS equation, it can be seen that
the solution of DNLS equation is also the solution of reverse-space-time DNLS equation. Therefore, in this paper, we
study reverse-space-time DNLS equation instead of DNLS or other types of nonlocal DNLS equation. The reverse-
space-time DNLS equation has many physical applications in optics, ocean water waves, quantum entanglement and
an unconventional system of magnetics and so on [25]. The solution of reverse-space-time DNLS equation can extend
the solution of the local equation to a more general case and deepen the physical research.

In 1965, Kruskal and Zabusky studied the entire process of the interaction between two soliton waves of the KdV
equation in detail and found that the solitary waves had the properties of elastic collision [30]. Except for the
elastic collision, resonance of solitons is also an important natural phenomenon which may lead to a disaster. Some
important results of soliton solutions of DNLS equation have been derived by different approaches. With the help
of the Hirota bilinear transformation method [31], the N-soliton formula of the DNLS was constructed by Nakamura
and Chen. Huang and Chen established the determinant form of N-soliton formula based on Darboux transform (DT)
technique [32]. Kamchatnov etc. studied the formation of solitons on the sharp front of optical pulse in an optical
fiber according to the DNLS equation [34]. The compact N-soliton formulae with both asymptotically vanishing and
nonvanishing amplitudes were obtained by iterating Bäcklund transformation of the DNLS equation [35]. High-order
solitons of DNLS equation were studied by the generalized DT [36]. Multi-solitons of three-component coupled DNLS
equation were constructed in [37].

In 1987, exact representations of double-periodic solutions were constructed in [39] by separating the variables and
reducing the NLS equation to the first-order quadratures. In 2012, Hu, Lou and Chen derived cnoidal periodic wave
solution by nonlocal symmetries [40]. He and Tao et.al obtained periodic background of variable coefficients integrable
equation in [41]. In 2014, Kedziora, Ankiewicz and Akhmedie constructed rogue waves and solitons on a cnoidal
background [42]. Huang and Ling constructed periodical solutions by PT symmetry in 2016 [43]. In 2017, Zhao and
Ling et al. studied rogue wave excitation pattern in a two-component Bose-Einstein condensate with pair-transition
effects. The results indicate that rogue wave excitation can exist on a stripe phase background for which there are
cosine and sine wave background in the two components respectively [44]. In [45], Chen and Pelinovsky constructed
two families of travelling periodic waves of the mKdV equation in the focusing case expressed by the Jacobian elliptic
functions dn and cn. In [46], Liu, Zhang and He constructed the rogue waves on the periodic background by using
generalized odd-order DT. Xue etc. studied breathers and breather-rogue waves on a periodic background for the
DNLS equation [47]. In [48], Zhou and Chen constructed the double-periodic by DT with a plane wave seed solution.

In the ocean, the surface of the ocean is usually in the form of quasi-periodic waves due to the motion of the ocean
and other factors. Obviously, pure soliton interactions only appear in the lab, in the complicated natural environment,
interaction process of solitons are often interference by other waves, such as: the periodic waves. European Space
Agency image of waves in Hudson Bay on July 18,1992. In addition to the most obvious grid soliton wave with periodic
waves, there are two newly generated bar solitary waves, a boat and its tail wave. SAR image of the Mediterranean
Sea near the Strait of Gibraltar taken by the European Space Agency on July 19, 1994. It shows a family of solitons
with a quasi-periodic background curve on the Mediterranean side of the Strait of Gibraltar, propagating in the
direction of the Alboran Sea. The large packet of solitons with quasi-periodic waves radiating eastward from the
Strait of Gibraltar, having been formed by intense westward tidal flow across the Camarinal Sill several hours earlier.
The ocean solitary waves in [38] are obviously not simple elastic collisions, but solitary wave motions under quasi-
periodic wave background interference, so studying the solitons on the n-periodic background can better reflect the
real situation.

In this investigation, the DT formulae are given by using concise expressions. Then giving a zero seed solution, the
solution q[N ] obtained by N -fold DT at origin is equal to −2i

∑N
j=1 λj , which depends only on the spectral parameters

is proved. Solitons(including elastic collision and velocity resonance solitons), periodic solution and multi-soliton on
the n-periodic background are constructed by the even-fold DT. Higher-order soliton and higher-order soliton on
the n-periodic background are constructed by degenerate DT and semi-degenerate DT. The higher-order hybrid-
pattern solitons and higher-order hybrid-pattern solitons on the n-periodic background are constructed by generalized
degenerate and semi-degenerate DT. Also the amplitudes of m-solitons, n-periodic solutions, higher-order solitons and
mixed solutions are derived. Moreover, many interesting new phenomena are discovered through dynamic analysis
of these solutions and the analysis for these phenomena are given in detail. In particular, the periodic solutions and
soliton solutions can be transformed into zero solution when

∑N
j=1 λj = 0. We also give the Modulation instability (MI)

for the Reverse-space-time DNLS equation. These results would also be useful for understanding the corresponding
soliton phenomena in many fields of local and nonlocal nonlinear dynamical systems such as ocean, nonlinear optics,
Bose-Einstein condensates and other relevant fields [49–54].

The organizational structure of this paper is as follows. In Section 2, multi-solitons on the n-periodic background are
given by N -fold DT formula. Higher-order solitons on the n-periodic backgrounds are obtained by the semi-degenerate
DT formula in Section 3. In Section 4, we construct high-order hybrid-pattern solitons on the n-periodic background
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by generalized semi-degenerate DT formula. In Section 5, modulation instability analysis of reverse-space-time DNLS
equation is given. The final section is devoted to conclusion.

2. Multi-solitons on the n-periodic background

The Lax pair of reverse-space-time DNLS equation is shown as follows.

Ψx =
(
iσλ2 +Qλ

)
Ψ = UΨ, (2.1)

Ψt =
(
2iσλ4 + V3λ

3 + V2λ
2 + V1λ

)
Ψ = VΨ, (2.2)

with

Ψ =

Å
φ
ϕ

ã
, σ =

Å
1 0
0 −1

ã
, Q =

Å
0 q

−q(−x,−t) 0

ã
,

V3 = 2Q, V2 = iQ2, V1 = Q3 + iQxσ.

The spectral parameter λ is an arbitrary complex number, Ψ is the eigenfunction corresponds to λ. The symmetric
relation of the eigenfunction corresponding to the spectrum problem Eq.(2.1) and Eq.(2.2) given in the form of lemma.

Lemma 1. Introducing Ψj =

Å
φj
ϕj

ã
=

Å
φj (x, t, λj)
ϕj (x, t, λj)

ã
, j = 1, 2, . . . , which is the eigenfunction of the Lax pair

(2.1) and (2.2) associated with λ = λj. The eigenfunction admit the following symmetry condition:Å
φ(x, t;λj)
ϕ(x, t;λj)

ã
=

Å
ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
. (2.3)

The eigenfunctions admit the following symmetry condition:Å
φ(x, t;λj)
ϕ(x, t;λj)

ã
=

Å
ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
,

where

Å
φ(x, t;λj)
ϕ(x, t;λj)

ã
is an eigenfunction associated with λ = λj .

Proof. Form the x part of the Lax pair Eq.(2.1) and Eq.(2.2), one hasÅ
φ(x, t;λj)
ϕ(x, t;λj)

ã
x

=

Å
iλ2j q(x, t)λj

−q(−x,−t)λj −iλ2j

ãÅ
φ(x, t;λj)
ϕ(x, t;λj)

ã
.

Let x = −x, t = −t thenÅ
φ(−x,−t;λj)
ϕ(−x,−t;λj)

ã
x

=

Å
−iλ2j −q(−x,−t)λj

q(x, t)λj iλ2j

ãÅ
φ(−x,−t;λj)
ϕ(−x,−t;λj)

ã
,

or Å
ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
x

=

Å
iλ2j q(x, t)λj

−q(−x,−t)λj −iλ2j

ãÅ
ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
.

So Å
ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
and

Å
φ(−x,−t;λj)
ϕ(−x,−t;λj)

ã
satisfy the same spectral problem. Taking a similar procedure, the symmetry proper also holds for the t part of the

Lax pair. That means, if

Å
φ(x, t;λj)
ϕ(x, t;λj)

ã
is the eigenfunction of Eq.(2.1) and Eq.(2.2) corresponding to λj , then so isÅ

ϕ(−x,−t;λj)
φ(−x,−t;λj)

ã
. �

Considering the gauge transformation
Ψ[N ] = TΨ, (2.4)

the spectral problem (2.1) and (2.2) are transformed to

Ψ[N ]x = U [N ]Ψ[N ], U [N ] = U |q(x,t)→q[N ](x,t),q(−x,−t)→q[N ](−x,−t) ,

Ψ[N ]t = V [N ]Ψ[N ], V [N ] = V |q(x,t)→q[N ](x,t),q(−x,−t)→q[N ](−x,−t) .
(2.5)

Based on the Eq. (2.5), the following conclusions are given

Tx = U [N ]T − TU, (2.6)

Tt = V [N ]T − TV. (2.7)

Furthermore, the following identity is deduced

U [N ]t − V [N ]x + [U [N ], V [N ]] = T (Ut − Vx + [U, V ])T−1. (2.8)
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That is, the same equation (1.3) is derived with q(x, t)→ q[N ](x, t), where q[N ] in the spectral problem (2.5) is also
a solution of Eq. (1.3).

DT can construct solutions of the integrable equation by pure algebraic construction, which has unique advantage
in solving integrable equations. To construct the N -fold DT of Eq.(1.3), we consider the Darboux matrix T in Eq.
(2.4) in the form

T =

[N2 ]∑
`=0

Å
aN−2`λ

N−2` bN−2`−1λ
N−2`−1

cN−2`−1λ
N−2`−1 dN−2`λ

N−2`

ã
.

Where [N2 ] is a least integer function, a0, b0, c0 and d0 are constants. When the subscripts of aN−2`, bN−2`−1, cN−2`−1
and dN−2` less than zero, the elements are zero, other elements of matrix T are functions about x and t.

Considering the kernel problem of DT matrix T i.e.,

T |λ=λj Ψj =

[N2 ]∑
`=0

Ç
aN−2`λ

N−2`
j bN−2`−1λ

N−2`−1
j

cN−2`−1λ
N−2`−1
j dN−2`λ

N−2`
j

å
Ψj = 0, j = 1, 2, · · · , N. (2.9)

Using Cramer’s rule, the concrete expression of the new solution q[N ] can be seen in the theorem as below.

Theorem 2. The solution q[N ] for the Eq. (1.3) is given in the following N -fold DT formula.

q[N ] =
|M2|
|P 2|

q + 2i
|MH|
|P 2|

, (2.10)

where M = (Mjk)1≤j,k≤N , H = (Hjk)1≤j,k≤N and P = (Pjk)1≤j,k≤N .

Mjk =

®
λN−kj ϕj , k = odd;

λN−kj φj , k = even.

Hjk =


λNj φj , k = 1;

λN−kj ϕj , k = even ≥ 2;

λN−kj φj , k = odd.

Pjk =

®
λN−kj φj , k = odd;

λN−kj ϕj , k = even.

(2.11)

In order to study the new solutions of Eq. (1.3) by using the N -fold DT. First substituting the seed solution
q(x, t) = q(−x,−t) = 0 into Lax pair (2.1) and (2.2), then the eigenfunction is solved as

Ψj =

Å
φj
ϕj

ã
=

Ç
ei(λ

2
jx+2λ4

j t)

e−i(λ
2
jx+2λ4

j t)

å
. (2.12)

Then we can construct important solutions for the reverse-space-time DNLS equation by substituting the eigen-
function Eq.(2.12) into N -fold DT formula (2.10).

Theorem 3. Taking seed solution q = 0 in (2.10), then the solution q[N ]=−2i
∑N
j=1 λj at origin (x, t) = (0, 0).

Proof. Taking seed solution q = 0, x = 0 and t = 0 in the following.

q[N ](0, 0) = 2i
|M(0, 0)H(0, 0)|
|P (0, 0)2|

= 2i
|H(0, 0)|
|P (0, 0)|

= −2i
N∑
j=1

λj . (2.13)

So solution q[N ] derived by seed solution q = 0 at point (x, t)=(0, 0) is −2i
∑N
j=1 λj . �
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N=1: the solution q[1] with λ1 = α1 + iβ1 is expressed as follows

q[1] = (2iα1 − 2β1)eiA+B ,

A = −2(2α4
1t− 12α2

1β
2
1t+ 2β4

1t+ α2
1x− β2

1x),

B = 2(8α3
1β1t− 8α1β

3
1t+ 2α1β1x).

(2.14)

When α1β1 = 0, |q[1]|2 = 4(α2
1 + β2

1), which is a plane wave with height of 2
√
α2
1 + β2

1 .

When α1β1 6= 0, |q[1]|2 = 4(α2
1 + β2

1)e8α1β1(4α
2
1t−4β

2
1t+x), which is an exponentially growing curved surface wave.

N=2: Let λ1 = α1 + iβ1, λ2 = α2 + iβ2, an explicit expression of q[2] is as follows.

q[2] =
2iζ1e

iA1B[ζ1B sinA4 sinA3 + ζ2 sin(A3 −A4) + ζ1 cosA4 cosA3]

[ζ2 sin (A3 −A4)− ζ1 cos (A3 +A4)]2
, (2.15)

where

B = coshA2 − sinhA2,

A1 = (2α4
1 − 12α2

1β
2
1 + 2α4

2 − 12α2
2β

2
2 + 2β4

1 + 2β4
2)t− (−α2

1 − α2
2 + β2

1 + β2
2)x,

A2 = (8α3
1β1 − 8α1β

3
1 + 8α3

2β2 − 8α2β
3
2)t+ 2x(α1β1 + α2β2),

A3 = 2α4
2t+ 8iα3

2β2t+ (−12β2
2t+ x)α2

2 − 8i(β2
2t−

1

4
x)β2α2 + 2β4

2t− β2
2x,

A4 = 2α4
1t+ 8iα3

1β1t+ (−12β2
1t+ x)α2

1 − 8i(β2
1t−

1

4
x)β1α1 + 2β4

1t− β2
1x,

ζ1 = α1 + iβ1 − α2 − iβ2, ζ2 = iα1 + iα2 − β1 − β2.

(2.16)

When α2 = α1, β2 = −β1 or α2 = −α1, β2 = β1, then A2 = 0 and A3 + A4 = 0 in the Eq.(2.15). Now the soliton
solution can be constructed. Namely, the soliton solution can be constructed by taking λ2 = ±λ∗1 = ±(α1 − iβ1).
Without loss of generality, let λ2 = −λ∗1 = −α1 + iβ1, then

q[2] = −2ζ1e
iH ζ1 cosh (F − iH) + iζ2 sinh (F − iH)

(iζ2 sinh (F − iH)−m)2
, (2.17)

where

H = 2(α2
1 − β2

1)x+ 4(β4
1 − 6α2

1β
2
1 + α4

1)t),

F = 16α3
1β1t− 16α1β

3
1t+ 4α1β1x.

(2.18)

The center trajectory equation of solution q[2] is calculated as x = 4(β2
1 − α2

1)t and the amplitude of q[2] is 4|β1|.
Furthermore, q[2] become a rational soliton solution by the limit technique α1 → 0,

q[2]r =
e2iβ

2
1(2β

2
1t−x)(64itβ5

1 − 16ixβ3
1 − 4β1)

1− 256β8
1t

2 + 128β6
1tx+ (32it− 16x2)β4

1 − 8iβ2
1x
, (2.19)

where β1 is an arbitrary real constant. From |q[2]r|2 =
16β2

1

(16β4
1t−4β2

1x)
2+1

, we know that q[2]r is an analytical solution at

whole (x, t) plane and its trajectory is defined explicitly by x = 4β2
1t.

When α1 = α2 = 0 or β1 = β2 = 0 then A2 = 0 in Eq.(2.15). It’s mean q[2] can represent periodic solutions
when λ1 and λ2 are pure imaginary numbers or real numbers. For example λ1 = iβ1, λ2 = iβ2 and β1 6= ±β2 in the
Eq.(2.15).

q[2] = 2iζ1e
i(K1+K2)

ζ1 cos (K1 −K2) + ζ2 sin (K1 −K2)

[−ζ1 cos (K1 +K2) + ζ2 sin (K1 −K2)]2
, (2.20)

where K1 = 2β2
2(2β2

2t− x) and K2 = 2β2
1(2β2

1t− x).
The periodic of q[2] is π

β2
1−β2

2
. The maximum and min amplitude of the periodic solution occurs at x = 2(β2

1 +

β2
2)t and x =

4β4
1t−4β

4
2t+π

2β2
1−2β2

2
, the maximum and min amplitude of the periodic solution q[2] is 2(|β1| + |β2|) and

4 (β1+β2)
2(β1−β2)

2e

iπ (β12+β2
2)

(β1−β2)(β1+β2)(
e

iβ2
2π

(β1−β2)(β1+β2) β1−e
iβ1

2π
(β1−β2)(β1+β2) β2

)(
β1 e

iβ1
2π

(β1−β2)(β1+β2)−e
iβ2

2π
(β1−β2)(β1+β2) β2

) . We can control the amplitude and period of

the periodic solutions by adjusting parameter values β1 and β2. In particular, when β1 = −β2, the periodic solution
degenerates into a plane wave solution.
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Taking λj = iβj , j = 1, .., 2n, 2n = N , the n-periodic solutions can be constructed by N -fold DT formula (2.10)
with zero seed solution.

Corollary 4. The height of n-periodic wave solutions q[N ] is 2|
∑2n
j=1 βj |, 2n = N.

In Fig.1, we give the dynamics plot of periodic, double-periodic and three-periodic solutions. We plot the one-
periodic solution in Fig.1(a) by taking β1 = 1, β2 = 0.5. Intuitively, a one-periodic solution looks like a set of parallel
solitons. Double-periodic solutions are two sets of parallel solitons with different directions. A peak is created at the
location of the periodic waves collision, so the double-periodic dynamic evolution looks like a set of parallel peaks with
equal amplitude (See Fig.1(b)). A linear superposition of amplitudes can be generated when the two periodic waves

collisions and the amplitude of the double-periodic wave is 2(|
∑4
j=1 βj |). Looking at the density diagram, we can see

that the double-periodic waves occur phase shifts, which is very similar to the elastic collision of solitons.
The dynamic evolution diagram of n-periodic solution (n > 2) will show more complex structure, because the elastic

collision of three periodic solutions with different directions and velocities, which will produce peaks with different
amplitudes and size. Due to the frequent collision of periodic waves will result in the frequent phase shift, the density
graph of n-periodic wave presents irregular curves (See Fig.1(c)).

(a) (b) (c)

Figure 1. (a) Periodic solution: β1 = 1, β2 = 0.5; (b) Double-periodic solution: λ1 = i, λ2 = 0.5i,

λ3 = 0.1i, λ4 =
√

2i; (c) Three-periodic solution: λ1 = 0.1i, λ2 = 0.9i, λ3 = 0.2i, λ4 = 0.8i, λ5 = 0.3i,
λ6 = 0.7i;

In the Fig. 2, we construct n-periodic solutions with different periods of the same amplitude by controlling param-
eters and show the cross-section of n-periodic solution when n = 1, 2, 3, 4. From the cross-sectional view, when n
is larger, the periodicity of the periodic wave is worse, and even the form of quasi rogue wave solution appears. The
reason for this is that when n increases, it is rare for n single periodic waves to collide completely.In the figure below,
we use different colors to represent n-periodic solutions with different parameters.

From the symmetry relation of DNLS equation and reverse-space-time DNLS equation, we know that when λk is
pure imaginary number or λ∗k = −λl, k 6= l. Solution (2.17) and solution (2.20) of reverse-space-time DNLS equation
are also the solutions of DNLS equation. In the following, we will give the multi-soliton souliton, n-periodic solution
and the mixed solution of reverse-space-time DNLS equation by the even-fold DT.

Taking λ2k = −λ∗2k−1 = −α2k−1 + iβ2k−1, k = 1, ..n, n = N
2 . We can construct n-solitons solutions by N -fold DT.

Corollary 5. The height of n-solitons solutions q[N ] is 4|
∑n
k=1 β2k−1|, n = N

2 .

When β2
2k−1−α2

2k−1 6= v0, the elastic collision n-solitons can be obtained. Otherwise, we can construct the velocity
resonance n-solitons. Moreover, according to the center trajectory equation of the solution q[n], the propagation
direction and velocity of the soliton are affected by α2k−1 and β2k−1. As an application, we show the elastic collision
two-soliton, three-soliton and four-soliton in the Fig.3.

Also the velocity resonance of two-soliton, three-soliton and four-soliton are plot in Fig.4.
At the same time, The mixed solution of elastic collision solitons and velocity resonance solitons are plot in Fig. 5.
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(a) (b) (c) (d)

Figure 2. Periodic solution (a) Blue:β1 = 0.1, β2 = 0.9; Black:β1 = 0.2, β2 = 0.8; Green:β1 = 0.3,
β2 = 0.7; Red:β1 = 0.4, β2 = 0.6; Double-periodic solution (b) Blue:λ1 = 0.1i, λ2 = 0.9i, λ3 = 0.2i,
λ4 = 0.8i; Red:λ1 = 0.1i, λ2 = 0.9i, λ3 = 0.2i, λ4 = 0.8i; Three-periodic solution (c) Blue:λ1 = 0.1i,
λ2 = 0.9i, λ3 = 0.2i, λ4 = 0.8i, λ5 = 0.4i, λ6 = 0.6i; Red: λ1 = 0.1i, λ2 = 0.9i, λ3 = 0.2i, λ4 = 0.8i,
λ5 = 0.3i, λ6 = 0.7i; Four-periodic solution (c) Blue: λ1 = 0.1i, λ2 = 0.9i, λ3 = 0.2i, λ4 = 0.8i,
λ5 = 0.3i, λ6 = 0.7i, λ7 = 0.4i, λ8 = 0.6i; Red: λ1 = 0.15i, λ2 = 0.85i, λ3 = 0.2i, λ4 = 0.8i,
λ5 = 0.3i, λ6 = 0.7i,λ7 = 0.4i, λ8 = 0.6i.

(a) (b) (c) (d)

Figure 3. (a) Two-soliton: λ1 = 1 + i, λ2 = −1 + i, λ3 = 1 + 1
2 i, λ4 = −1 + 1

2 i; (b) Three-soliton

: λ1 = 1 + i, λ2 = −1 + i, λ3 = 1 + 1
2 i, λ4 = −1 + 1

2 i, λ5 = 1 + 2i, λ6 = −1 + 2i; (c) Four-soliton:

λ1 = 1 + i, λ2 = −1 + i, λ3 = 1 + 2i, λ4 = −1 + 2i, λ5 = 1 + 1
2 i, λ6 = −1 + 1

2 i, λ7 = 2 + i, λ8 = −2 + i;
(d)Cross section view of two-soliton, three-soliton and four-soliton.

We can get the n1-soliton on the n-periodic background by letting λ2k = −λ∗2k−1 = −α2k−1 + iβ2k−1, k = 1, .., n1.
λj = iβj , j = 1, .., 2n, 2(n1 + n) = N in the N -fold DT.

Corollary 6. The height of n1-soliton on the n-periodic background is 4|
∑n1

k=1 β2k−1|+ 2|
∑2n
j=1 βj |, 2(n1 + n) = N .

As an example, we just give the case of n = 1 and 2. n=1, when n1 = 1, one-soliton on the periodic background is
constructed. We can see from Fig. 6 that the soliton looks very similar to the dynamic image of the breathers solution
due to the interception of the periodic background wave. We can also control the period of the periodic background
by adjusting the values of the spectral parameters. Fig. 6 is the soliton solution under different periodic background.
We can also see that the local structure of soliton on the periodic-background has a single peak with two caves which
is similar to the rogue waves. This gives us an idea to construct rogue wave solutions from zero seed solutions, but
the feasibility remains to be proved.

Then, elastic collision of two solitons on periodic background is constructed by setting n1 = 2 (see Fig. 7(a)). In
particular, if β2

2j−1 − α2
2j−1=v0 (v0 is constant), j = 1, 2. Then the velocity resonance of two solitons on periodic-

background is derived (see Fig. 7(b)).
When n1 = 3, elastic collision of three-solitons on periodic background is constructed (see Fig. 8(a)). In particular,

if β2
2j−1−α2

2j−1=v0, j = 1, 2 and v0 is constant, the elastic collision of velocity resonance two-solitons and one-soliton
on the periodic background is derived (see Fig. 8(b)).

n=2, one-soliton on the double-periodic background can be constructed by taking n1 = 1. In order to see the
structure of soliton solution on the double-periodic background more clearly, we give a local magnification in the right
of Fig. 9.

Moreover, n1 = 2, elastic collision of two-solitons on the double-periodic background can be constructed (see Fig.
10(a)). In particular, if β2

j − α2
j=v0 (j = 1, 2, v0 is constant), then the velocity resonance of two-solitons on double-

periodic background is derived (see Fig. 10(b)). The dynamic diagrams of these new solutions show very complex and
interesting wave structures, which were first plotted in this investigation.
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(a) (b) (c)

Figure 4. (a) Velocity resonance two-soliton: λ1 = 1+i, λ2 = −1+i, λ3 = 1
2 + 1

2 i, λ4 = − 1
2 + 1

2 i. (b)

Velocity resonance three-soliton: λ1 = 1 + i, λ2 = −1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = 1
2 + 1

2 i, λ6 =

− 1
2+ 1

2 i; (c) Velocity resonance four-soliton solution: λ1 = 1+i, λ2 = −1+i, λ3 = 1
2+ 1

2 i, λ4 = − 1
2+ 1

2 i,

λ5 = 2 + 2i, λ6 = −2 + 2i, λ7 = 3
2 + 3

2 i, λ8 = − 3
2 + 3

2 i.

3. Higher-order soliton on n-periodic background

When considering iterations of DT, the same seed cannot be used twice. How to generate higher-order soliton is
an interesting problem, which must consider the nontrivial DT corresponding to λj → λ1, namely the degenerate
Darboux transformation. To construct a n-periodic background, we also need to construct semi-degenerate DT in this
section. The specific form of the degenerate/semi-degenerate DT is given as below.

Theorem 7. Let λj →
ß
λ1, j = odd ≤ N − 2`;
λ2, j = even ≤ N − 2`.

, λ2 = −λ∗1 = −α1 + iβ1. Degenerate and semi-degenerate DT

can be derived from N -fold DT formula (2.10) by Taylor expansion.

qN =
|M ′|2

|P ′|2
q + 2i

|M ′||H ′ |
|P ′ |2

. (3.1)

Here

M ′ =

ß
M ′jk, 1 ≤ j, k ≤ N − 2`;

Mjk, N − 2` < j, k ≤ N.

H ′ =

ß
H ′jk, 1 ≤ j, k ≤ N − 2`;

Hjk, N − 2` < j, k ≤ N.

P ′ =

ß
P ′jk, 1 ≤ j, k ≤ n− 2`;

Pjk, n− 2` < j, k ≤ n.

(3.2)

M ′jk = lim
ε→0

∂nj−1M ′jk (λj + ε)

(nj − 1)!∂εnj−1
,

H ′jk = lim
ε→0

∂nj−1H ′jk (λj + ε)

(nj − 1)!∂εnj−1
,

P ′jk = lim
ε→0

∂nj−1P ′jk (λj + ε)

(nj − 1)!∂εnj−1
,
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(a) (b) (c)

Figure 5. (a) Elastic collision of one-soliton and velocity resonance two-soliton: λ1 = 1 + i,
λ2 = −1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = 1 + 2i, λ6 = −1 + 2i. (b) Two velocity resonance
two-soliton: λ1 = 1 + i, λ2 = −1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = 1 + 3

2 i, λ6 = −1 + 3
2 i,

λ7 =
√
11
2 + 2i, λ8 = −

√
11
2 + 2i; (c) Elastic collision of two-soliton and velocity resonance two-soliton:

λ1 = 1 + i, λ2 = −1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = 1 + 3
2 i, λ6 = −1 + 3

2 i, λ7 =
√
11
2 + i,

λ8 = −
√
11
2 + i.

nj =

ï
j + 1

2

ò
.

Proof. Starting from formula (2.10), let λj →
ß
λ1, j=odd;
λ2, j=even.

. It’s been stated in the article that only the case of

N is even number is considered, so we can take N = 2k at there.
Firstly, do the first order Taylor expansion in all the elements of the first and second row with respect to ε1. Extract

ε1 in the first and second row, then take ε1 → 0;
Secondly, taking λ2k−1−2` = λ1 + ε2k−1−2`, λ2k−2` = −λ1 + ε2k−1−2` and do the k − `-order Taylor expansion in

all the elements of the 2k − 1 − 2`-th and 2k − 2`-th row with respect to ε2k−1−2`. Subtract the first, third, ... ,
(2k− 3− 2`)-th row from the (2k− 1− 2`)-th row and subtract the second, fourth, ... , (2k− 2− 2`)-th row from the

2k − 2`-th row. Extract εk−1−`2k−1−2` in the (2k − 1 − 2`)-th row and (2k − 2`)-th row, then take ε2k−1−2` → 0, where
ε2k−1−2` is the real constant εk;

Then, all the elements of the (2k − 2` + 1)-th to the 2k-th row remain unchanged. Finally, the degenerate/semi-
degenerate DT formula qN can be derived through determinant calculation. �

Theorem 8. The height of high-order solitons qN derived by ` = 0 in (3.1) is N |λ1 + λ2|.

Proof. Taking seed solution q = 0, then we can derive the following conclusion from (3.1)

qN = 2i
|M ′H ′|
|P ′2|

. (3.3)

We shall set x = 0 and t = 0 in a in following to study the height of high-order solitons qN without the loss of the
generality.

qN (0, 0) = 2i
|M ′(0, 0)H ′(0, 0)|
|P ′(0, 0)2|

= 2i
|H ′(0, 0)|
|P ′(0, 0)|

= −iN(λ1 + λ2). (3.4)
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(a)

(b)

Figure 6. One soliton on the different periodic background (a): λ1 = 1 + i, λ2 = −1 + i, λ3 = i,
λ4 = 1

2 i; (b) : λ1 = 1 + i, λ2 = −1 + i, λ3 = i, λ4 = 2i.

(a)

(b)

Figure 7. (a) Two soliton on periodic background: λ1 = 1+i, λ2 = −1+i, λ3 = 1+ 1
2 i, λ4 = −1+ 1

2 i,

λ5 = i, λ6 = 1
2 i; (b) Velocity resonance two solitons on periodic periodic: λ1 = 1 + i, λ2 = −1 + i,

λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = 2i, λ6 = i.

So the height of high-order solitons qN in (3.1) is N |λ1 + λ2|. �
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(a) (b) (c)

Figure 8. (a) Three soliton on the periodic background: λ1 = 1 + i, λ2 = −1 + i, λ3 = 1 + 2i,
λ4 = −1 + 2i, λ5 = 1 + 1

2 i, λ6 = −1 + 1
2 i, λ7 = 0.1i, λ8 = i; (b) Elastic collision of velocity resonance

two-soliton and one-soliton on the periodic background: λ1 = 1 + i, λ2 = −1 + i, λ3 = 2 + 2i,
λ4 = −2 + 2i, λ5 = 1 + 1

2 i, λ6 = −1 + 1
2 i, λ7 = 0.1i, λ8 = i.

Figure 9. One-soliton on the double-periodic background: λ1 = 1+ i, λ2 = −1+ i, λ3 = i, λ4 = 1
2 i,

λ5 = 0.1i, λ6 =
√

2i.

(a) (b)

Figure 10. (a) Velocity resonance two-soliton on the double-periodic background: λ1 = 1 + i, λ2 =

−1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ5 = i, λ6 = 1
2 i, λ7 = 0.1i, λ8 =

√
2i; (b) Elastic collision

two-soliton on the double-periodic background: λ1 = 1 + i, λ2 = −1 + i, λ3 = 1 + 2i, λ4 = −1 + 2i,
λ5 = i, λ6 = 1

2 i, λ7 = 0.1i, λ8 =
√

2i.

The higher-order soliton, higher-order soliton on the n-periodic background can be derived as follows by the degen-
erate and semi-degenerate DT, respectively.

Taking ` = 0 in Theorem 2, we can get degenerate DT. Then the higher-order soliton solution can be constructed
by using the degenerate DT. For example, in Theorem 2 by setting N = 4, 6 and 8, following the Fig. (11) depicts
the second, third and fourth-order solitons.



12 HUIJUAN ZHOU, YONG CHEN∗, XIAOYAN TANG, AND YUQI LI

(a) (b) (c) (d)

Figure 11. (a) Second-order soliton: λ1 = 1 + i, λ2 = −1 + i; (b)Third-order soliton:λ1 = 1 + i, λ2 =
−1 + i; (c) Fourth-order soliton: λ1 = 1 + i, λ2 = −1 + i; (d) Cross section view of second-order
soliton, third-order soliton and fourth-order soliton.

By taking ` 6= 0 in Theorem 2, the semi-degenerate DT is derived. The n-periodic solution can be obtained when
taking ` 6= 0 and all the spectral parameters which are not degenerated in the semi-degenerate DT as imaginary or
real numbers. Since periodic solution and double-periodic solution can be constructed by 2-fold DT and 4-fold DT
respectively, as an example, we only consider the case of ` = 1 and ` = 2 in this investigation.

Taking ` = 1 in Theorem 2, the higher-order soliton on the periodic background can be constructed by the semi-
degenerate DT formula. When n = 6, using the semi-degenerate DT 3.1, elastic collision of second-order soliton and
one-soliton can be constructed by setting λ2 = −λ∗1 = −α1 + iβ1, λ5 = α5 + iβ5, λ6 = α6 + iβ6 and α5 6= α6 (see
Fig.12(a)). In particular, when β2

5 −α2
5=β2

1 −α2
1, velocity resonance of second-order soliton and one soliton is derived

(see Fig.12(b)); when α5=α6=0, the second-order soliton solution on the periodic background is constructed and the
dynamic evolution diagram is plotted in Fig.12(c).

(a) (b) (c)

Figure 12. (a) Elastic collision of second-order soliton and one soliton: λ1 = 1+i, λ2 = −1+i, λ5 =
1 + 1

2 i, λ6 = − 1
2 i; (b) Velocity resonance of second-order soliton and one soliton: λ1 = 1 + i, λ2 =

−1 + i, λ5 = 2 + 2i, λ6 = −2 + 2i; (c) Second-order soliton solution on the periodic background:
λ1 = 1 + i, λ2 = −1 + i, λ5 = i, λ6 = 1

2 i.

When n = 8, setting λ2 = −λ∗1 = −α1 + iβ1, λ8 = −λ∗7 = −α7 + iβ7, elastic collision of third-order soliton
and one-soliton is constructed. In particular, velocity resonance of third-order soliton and one-soliton is constructed
when β2

7 − α2
7=β2

1 − α2
1. Third-order soliton on a periodic background is derived by setting λ2 = −λ∗1 = −α1 + iβ1,

λ7 = iβ7, λ8 = iβ8 and β7 6= ±β8. The dynamical evolution diagrams of these solutions can be seen in Fig.13(a),
Fig.13(b) and Fig.13(c) respectively.

Taking ` = 2, many interesting mixed solutions of higher-soliton, multi-soliton, periodic solution and double-periodic
can be derived from λ2 = −λ∗1 = −α1 + iβ1, λn−2 = −λ∗n−3 = −αn−2 + iβn−2 and λn = −λ∗n−1 = −αn−1 + iβn−1.
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(a) (b) (c)

Figure 13. (a) Elastic collision of third-order soliton and one-soliton: λ1 = 1 + i, λ2 = −1 + i, λ7 =
1 + 1

2 i, λ8 = −1 + 1
2 i; (b) Velocity resonance of third-order soliton and one-soliton: λ1 = 1 + i, λ2 =

−1 + i, λ7 = 2 + 2i, λ8 = −2 + 2i; (c) Third-order soliton on the periodic background: λ1 = 1 + i, λ2 =
−1 + i, λ7 = 0.1i, λ8 = i.

Let us take n = 8 as an example, elastic collision of second-order soliton and two-soliton is constructed immediately
by using the semi-degenerate DT formula 3.1, see the dynamic evolution diagram in Fig. 14(a). In particular, elastic
collision of second-order soliton and velocity resonance two-soliton is derived when β2

5 − α2
5=β2

7 − α2
7 (see Fig. 14(b));

Velocity resonance of second-order soliton and two-soliton is constructed when β2
1 − α2

1=β2
5 − α2

5=β2
7 − α2

7 (see Fig.
14(c)).

(a) (b) (c)

Figure 14. (a) Elastic collision of second-order soliton and two-soliton: λ1 = 1+ i, λ2 = −1+ i, λ5 =
1+ 1

2 i, λ6 = −1+ 1
2 i, λ7 = 1+2i, λ8 = −1+2i; (b) Elastic collision of second-order soliton and velocity

resonance two-soliton: λ1 = 1+i, λ2 = −1+i, λ5 = 1+2i, λ6 = −1+2i, λ7 =
√

2+i
√

5, λ8 = −
√

2+i
√

5;
(c) Velocity resonance of second-order soliton and two-soliton: λ1 = 1+i, λ2 = −1+i, λ5 = 1

2+ 1
2 i, λ6 =

− 1
2 + 1

2 i, λ7 = 2 + 2i, λ8 = −2 + 2i.

Elastic collision of second-order soliton and one-soliton on the periodic can be derived by λ2 = −λ∗1 = −α1 + iβ1,
λ6 = −λ∗5 = −α5 + iβ5 λ7 = iβ7, λ8 = iβ8. In particular, when β2

5 − α2
5=β2

1 − α2
1 the velocity resonance of second-

order soliton and one-soliton on the periodic background can be derived. When λ2 = −λ∗1 = −α1 + iβ1, λk = iβk,
with k = 5, 6, 7, 8 are pure imaginary numbers, we can construct the second-order soliton on the double-periodic
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background. The dynamical evolution diagrams of these higher-order soliton on the periodic and double-periodic
background are plotted in Fig.15(a), Fig.15(b) and Fig.15(c) respectively. From these figures we can know intuitively
that the direction and position of the propagation of solitons along the periodic background have great influence on
the morphology of solitons.

(a) (b) (c)

Figure 15. (a) Elastic collision of second-order soliton and one soliton on the periodic: λ1 = 1 +
i, λ2 = −1+i, λ5 = 1+ 1

2 i, λ6 = −1+ 1
2 i, λ7 = i, λ8 = 1

2 i; (b) Velocity resonance of second-order soliton
and one-soliton on the periodic background: λ1 = 1 + i, λ2 = −1 + i, λ5 = 2 + 2i, λ6 = −2 + 2i, λ7 =
i, λ8 = 1

2 i; (c) Second-order soliton on the double-periodic background: λ1 = 1 + i, λ2 = −1 + i, λ5 =

0.1i, λ6 =
√

2i, λ7 = i, λ8 = 1
2 i.

4. High-order hybrid-pattern solitons on the n-periodic background

In the previous section, we have investigated solution dynamics in the high-order one-soliton on the periodic and
double periodic background. It is shown that the high-order one-soliton is moving on several different trajectories
in nearly equal velocities. The high-order hybrid-pattern solitons describe the nonlinear interaction between several
types of solitons, which gives rise to new types of high-order solitons with interesting dynamical patterns. It is also
shown that high-order hybrid-pattern solitons could have more complicated wave structures and behave very differently
from high-order one-solitons. In this section, we will study the high-order hybrid-pattern solitons on the n-periodic
background by generalized degenerated DT and generalized semi-degenerated DT.

Theorem 9. Setting

λj →



λ1, j = odd ≤ 2n0 + 2n1 − 1;
λ2, j = even ≤ 2n0 + 2n1;
λ3, 2n0 + 2n1 < j = odd ≤ 2n0 + 2n1 + 2n2 − 1;
λ4, 2n0 + 2n1 < j = even ≤ 2n0 + 2n1 + 2n2;
...
λ2n0−1, 2n0 + 2n1 + ...2n~−1 < j = odd ≤ 2n0 + 2n1 + ...2n~−1 + 2n~ − 1;
λ2n0

, 2n0 + 2n1 + ...2n~−1 < j = even ≤ 2n0 + 2n1 + ...2n~−1 + 2n~.

2
~∑
`=0

n` = N − 2s.

Generalized degenerated DT and generalized semi-degenerated DT can be derived from N -fold DT formula (2.10) by
Taylor expansion and determinant calculation. The specific form of the new solution qN is as follows

qN =
|M ′|2

|P ′|2
q + 2i

|M ′||H ′ |
|P ′ |2

. (4.1)
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Here

M ′ =

ß
M ′jk, 1 ≤ j, k ≤ N − 2s;

Mjk, N − 2s < j, k ≤ N.

H ′ =

ß
H ′jk, 1 ≤ j, k ≤ N − 2s;

Hjk, N − 2s < j, k ≤ N.

P ′ =

ß
P ′jk, 1 ≤ j, k ≤ N − 2s;

Pjk, N − 2s < j, k ≤ N.

(4.2)

M ′jk = lim
ε→0

∂njM ′jk (λj + ε)

nj !∂εnj−1
,

H ′jk = lim
ε→0

∂njH ′jk (λj + ε)

nj !∂εnj−1
,

P ′jk = lim
ε→0

∂njP ′jk (λj + ε)

nj !∂εnj−1
,

nj =



0, j ≤ 2n0;î
j−2n0+1

2

ó
, 2n0 < j ≤ 2n0 + 2n1;î

j−2n0−2n1+1
2

ó
, 2n0 + 2n1 < j ≤ 2n0 + 2n1 + 2n2;

...î
j−2n0−2n1−...−2n~−1+1

2

ó
, 2n0 + 2n1 + ...+ 2n~−1 < j ≤ 2n0 + 2n1 + ...+ 2n~.

The proof process of Theorem 3 is similar to those that were already presented in the proof of Theorem 2, so we
choose to omit the details of our proof of Theorem 3.

When s = 0, the generalized degenerated DT formula can be derived from Theorem 3. Taking n = 8, elastic
collision of two second-order soliton can be derived by λ2 = −λ∗1 = −α1 + iβ1, λ4 = −λ∗3 = −α3 + iβ3. It is shown that
the two second-order solitons are moving on different trajectories in different velocities and amplitudes (see Fig.16(a)).
In particular, elastic collision of two velocity resonance second-order solitons can be derived when β2

3−α2
3=β2

1−α2
1. In

Fig.16(b) and Fig.16(c), we give two different models of elastic collision of two velocity resonance second-order solitons
depending on the choices of the parameters.

(a) (b) (c)

Figure 16. (a) Elastic collision of two second-order solitons : λ1 = 1+i, λ2 = −1+i, λ3 = 1+2i, λ4 =
−1 + 2i; (b) Elastic collision of two velocity resonance second-order solitons : λ1 = 1 + i, λ2 =
−1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i; (c) Elastic collision of two second-order velocity resonance solitons
: λ1 = 0.1 + 0.1i, λ2 = −0.1 + 0.1i, λ3 = 0.2 + 0.2i, λ4 = −0.2 + 0.2i.
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Similar to the previous section, when s = n, we can consider the n-periodic solution. As a example, we just give the
detail construction process for the case of s = 1 in this section. When s = 1, by using the generalized semi-degenerate
DT, higher-order hybrid-pattern solution on the periodic and double-periodic background can be constructed. For
example, when N = 10, the elastic collision of two second-order soliton on the periodic background is constructed by
setting λ2 = −λ∗1 = −α1 + iβ1, λ4 = −λ∗3 = −α3 + iβ3, λ9 = iβ9, λ10 = iβ10 (see Fig.17(a)). In particular, when
β2
3 − α2

3=β2
1 − α2

1, velocity resonance of two second-order solitons on the periodic background can be derived. As can
be seen from the dynamic evolution diagram of solutions in Fig.17(c), high-order solitons with different velocities and
directions show completely different soliton morphology under the influence of periodic background, and the periodic
background will gradually weaken as time goes by, which is also consistent with the wave phenomenon in nature.
Fig.17(b) is the local structure diagram of Fig.17(c), Fig.17(d) gives a different model for velocity resonance of two
second-order solitons on the periodic background. The reason for this phenomenon is that the propagation pattern of
solitons change greatly with the difference period of periodic background depending on the choices of the parameters.

(a) (b) (c) (d)

Figure 17. (a) Elastic collision of two second-order solitons on the periodic background: λ1 =
1 + i, λ2 = −1 + i, λ3 = 1 + 2i, λ4 = −1 + 2i, λ9 = 0.1i, λ10 = i; (b) Velocity resonance of two second-
order solitons on the periodic background: λ1 = 0.1 + 0.1i, λ2 = −0.1 + 0.1i, λ3 = 0.2 + 0.2i, λ4 =
−0.2 + 0.2i, λ9 = 0.1i, λ10 = i; (c) and (d) Velocity resonance of two second-order soliton on the
periodic background: λ1 = 1 + i, λ2 = −1 + i, λ3 = 2 + 2i, λ4 = −2 + 2i, λ9 = 0.1i, λ10 = i.

When s = n, the high-order hybrid-pattern solitons on the n-periodic background can be derived by using the
generalized semi-degenerate DT 11 also. For example, we can construct two second-order soliton solitons on the
double-periodic background by taking N = 12 and n = 2, which requires determinant operation of order 12× 12.

5. Modulational instability

Putting plane wave seed solution q0(x, t) = cei(kx+wt) into the Eq. (1.3), we obtain that w = −c2k + k2. Here c
is amplitude, k is wave number and w is the background frequency. According to the MI theory, the perturbation
solution can be derived as q1(x, t) = (c + P )ei(kx+wt) by putting a small perturbation P = m exp(i(Kx + Ωt)) +
n exp(−i(Kx + Ωt)) into plane wave seed solution q0(x, t). The K indicates the disturbance wave number and Ω
indicates the disturbance frequency. Substituting the perturbation solution q1(x, t) into the Eq. (1.3), it can generate
a system of linear homogeneous equations for the small parameters m and n as follows.

((k + 2K)c2 + (−K2 − 2kK + Ω))m+ (k +K)c2n = 0,

(k −K)c2m+ ((k − 2K)c2 + 2kK −K2 − Ω)n = 0.
(5.1)

It gives rise to the following dispersion relation equation

Ω = (−2c2 + 2k ±
√
c4 − 2c2k +K2)K. (5.2)

It can be conclude that the MI depends on the values of the amplitude c, wave number k and perturbation wave
number K. Due to the above dispersion relation, we can see that when c4 − 2c2k + K2 ≥ 0, the time-dependent
frequency Ω is real at any value of the wave number K, whereas Ω becomes complex and disturbance will grow with
time exponentially. Let us consider the gain spectrum of MI. The power gain is obtained from

G(K) = Im(Ω) = Im(|K|
√
c4 − 2c2k +K2),
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G(K) represents the MI gain when c4 − 2c2k + K2 < 0. The frequency Ω will exist the imaginary part which makes
the perturbation function P exponentially increase and destroys the stability of the system. This instability is a
condition for the existence of rogue wave. From the above analysis, it appears that there exists two distinctive MI and
modulation stability (MS) regions, which are distinguished with each other clearly. In the region c4 − 2c2k +K2 < 0,
MI exists. On the contrary, if c4 − 2c2k +K2 ≥ 0, there appears MS region.

Let c = 1, we know the MI arises at k > 0.5. Fig. 18(a) gives the gain at the three different plane-wave numbers k
and Fig. 18(b) gives the gain function. Because the gain function G(K) is an even function (G(K) = G(−K)) about
perturbation wave number K, So we can see the MI figure is symmetric about the line K = 0.

(a) (b)

Figure 18. (a) Gain at the three different plane-wave numbers k; (b) Gain function.

6. Conclusion

In this investigation, the N -fold DT, degenerate DT, semi-degenerate DT, generalized degenerate and semi-
degenerate DT formulae for the reverse-space-time DNLS equation were presented by using concise expressions. The
n-solitons solutions can be constructed by N -fold DT when taking λ2k = ±λ∗2k−1 = ±α2k−1 ∓ iβ2k−1, k = 1, ..n,

2n = N . The velocity resonance soliton is derived by β2
k − α2

k=v0 (v0 is constant). When spectrum parameters λk
are pure imaginary numbers or real numbers, the n-periodic solutions were constructed by the even-fold DT. When
taking λ2k = −λ∗2k−1 or λk are pure imaginary numbers, the solutions satisfy both DNLS and reverse-space-time
DNLS equation. In addition, the higher-order solitons, higher-order solitons on the n-periodic background, higher-
order hybrid-pattern solitons and higher-order hybrid-pattern solitons on the n-periodic background were provided by
degenerate DT, semi-degenerate DT, generalized degenerate DT and generalized semi-degenerate DT, separately.

Then giving a zero seed solution, the solution q[N ] obtained by N -fold DT at origin is equal to −2i
∑N
j=1 λj , which

depends only on the spectral parameters. Also, we gave the corollary of the amplitude height of n-periodic wave
solutions, m-soliton on the n-periodic background and high-order solitons is 2|

∑2n
j=1 βj |, 2n = N. 4|

∑m
k=1 β2k−1| +

2|
∑2n
j=1 βj |, 2(m+ n) = N . and N |λ1 + λ2|, separately.

This is the first time to construct n-periodic solutions with zero seed solution. Intuitively, a periodic solution looks
like a set of parallel solitons, double-periodic wave looks like parallel breathers. For the density figure of double-
periodic waves which is very similar to the elastic collision of two sets of parallel solitons. The dynamic evolution
diagram of n-periodic solution (n > 2) will show more complex structure, because the elastic collision of n-periodic
solutions with different directions and velocities, which will produce peaks with different amplitudes and size. Due to
the frequent collision of periodic waves will result in the frequent phase shift, the density figure of n-periodic wave
presents irregular curves.

The dynamics of soliton on the periodic background show that the soliton looks very similar to the dynamic image
of the breathers solution due to the interception of the periodic background. The period of the periodic background is
controlled by adjusting spectral parameters. We found that the local structure of soliton on the periodic-background
has a single peak with two caves which is similar to the rogue wave, which gives us an idea to construct rogue wave
solutions from zero seed solutions, but the feasibility remains to be proved. In particular, the periodic solutions and
solitons can be transformed into zero solution when

∑N
j=1 λj = 0.

It is shown that the high-order one-soliton is moving on several different trajectories in nearly equal velocities.
Furthermore, the higher-order hybrid-pattern solitons describe the nonlinear interaction between several types of
solitons, which gives rise to new types of high-order solitons with interesting dynamical patterns. When we put the
perturbation of n-periodic background to the higher-order soliton and higher-order hybrid-pattern solitons, many
interesting new phenomena emerge. It is also shown that high-order hybrid-pattern solitons have more complicated
wave structures and behave very differently from high-order one-solitons. Interesting, these results also apply to the
DNLS equation.
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Finally, the conditions of generating MI and MS regions for the reverse-space-time DNLS equation were studied
by MI analysis. These results would also be useful for understanding the corresponding soliton phenomena in many
fields of local and nonlocal nonlinear dynamical systems such as ocean, nonlinear optics, Bose-Einstein condensates
and other relevant fields.
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