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Abstract
We investigate data-driven forward-inverse problems for Yajima-Oikawa system by employing two
technologies which improve the performance of PINN in deep physics-informed neural network
(PINN), namely neuron-wise locally adaptive activation functions and L2 norm parameter regu-
larization. In particular, we not only recover three different forms of vector rogue waves (RWs) in
the forward problem of Yajima-Oikawa (YO) system, including bright-bright RWs, intermediate-
bright RWs and dark-bright RWs, but also study the inverse problem of YO system by data-driven
with noise of different intensity. Compared with PINN method using only locally adaptive acti-
vation function, the PINN method with two strategies shows amazing robustness when studying
the inverse problem of YO system with noisy training data, that is, the improved PINN model
proposed by us has excellent noise immunity. The asymptotic analysis of wavenumber k and the
MI analysis for YO system with unknown parameters are derived systematically by applying the
linearized instability analysis on plane wave.
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1 Introduction

With the revolution of computer hardware equipment and software technology again and
again, the increasing amount of data, model scale, accuracy, complexity and impact on
the real world promote the continuous and successful application of deep learning in more
and more practical problems [1, 2]. Currently, deep learning has achieved remarkable
success in practical problems in various fields. In the field of object recognition, modern
object recognition network can not only recognize at least 1000 different categories of
objects, but also process rich high-resolution photographs without cropping photos near
the objects to be recognized [3, 4]. The introduction of deep learning has a great impact
on speech recognition, which makes the error rate of speech recognition drop sharply
[5, 6]. Furthermore, deep networks have also had spectacular successes for pedestrian
detection and image segmentation [7, 8], as well as yielded superhuman performance in
traffic sign classification [9,10]. Moreover, deep learning detonated a wide range of landing
applications, such as language understanding [11], medical imaging [12], face recognition
[13], video surveillance [14] and mathematical physics [15].

Deep feedforward network, also often called feedforward neural network (NN) or mul-
tilayer perceptron, is the quintessential deep learning model [16]. The universal approxi-
mation theorem points out a feedforward NN with a linear output layer and at least one
hidden layer with any “squashing” activation function can approximate any Borel mea-
surable function from one finite-dimensional space to another with any desired non-zero
amount of error, provided that the network is given enough hidden units [17]. With the
successful use of back-propagation in training deep NNs with internal representation and
the popularity of back-propagation algorithms [18], many optimization methods based on
the idea of calculating gradient in back-propagation came into being, such as stochastic
gradient descent [19], Adam [20] and L-BFGS [21]. Furthermore, automatic differentiation
(AD), also called algorithmic differentiation or simply “autodiff”, is a family of techniques
similar to but more general than back-propagation for efficiently and accurately evaluating
derivatives of numeric functions expressed as computer programs [22]. Recently, due to
the general approximation ability of NN architecture [23] and a wide range of AD technol-
ogy, after taking the NN space as a ansatz space for the solution of governing equation, a
physics-informed neural network (PINN) has been successfully constructed to accurately
solve both the forward problems, where the approximate solutions of governing partial
differential equations are obtained, as well as the inverse problems, where parameters in-
volved in the governing equation are discovered from the training data [15,24]. The PINN
framework has been recently successfully applied to many physical problems, including
discovering turbulence models from scattered/noisy measurements [25], fractional differ-
ential equations [26], high speed aerodynamic flows [27], stochastic differential equation
by generative adversarial networks [28] and seeking the localized waves [29].

The type selection of hidden units is extremely significant and difficult in the design
process of NN, and the activation function plays an important role during the selection
of hidden units due to the derivative of the loss function depends on the optimization
parameters, which depend on the derivative of the activation function [16]. The activation
function of common hidden units in NNs usually acts on affine transformation, and popular
activation functions include rectified linear units [30], maxout units [31], logistic sigmoid
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and hyperbolic tangent function. Moreover, some unpublished activation functions per-
form just as well as the popular ones, such as sine and cosine functions. The choice of
activation function completely depends on the problem at hand in practical application.
However, these activation functions are fixed in the training process of NN, which will
greatly limit the performance of NN and the convergence speed of objective function.
Based on the basic framework of PINN, Jagtap et al. proposed two different adaptive
activation functions, that is global adaptive activation function and locally adaptive acti-
vation function, to approximate smooth and discontinuous functions as well as solutions of
linear and nonlinear partial differential equations by introducing scalable parameters into
the activation function and adding a slope recovery term based on activation slope to the
loss function of locally adaptive activation functions, it proved that the locally adaptive
activation function further improves the performance of the NN and speeds up the train-
ing process of the NN [32, 33]. Remarkably, we have utilized the PINN with neuron-wise
locally adaptive activation function to simulate abundant localized waves of the derivative
Schrödinger equation, and these numerical results showcase that the PINN method is a
promising and powerful method to increase the efficiency, robustness and accuracy of the
NN-based approximation [34].

As is known to all, a central problem in machine learning is how to make an algorithm
that will perform well not just on the training data, but also on new inputs. Many
strategies, which are known collectively as regularization, are explicitly designed to reduce
the test error in machine learning, possibly at the expense of increased training error.
Indeed, regularization has been used for decades prior to the advent of deep learning [35].
Many regularization approaches are based on limiting the capacity of models, such as
NNs, linear regression, or logistic regression, by adding a parameter norm penalty Ω(θ)
to the objective function, of which the most common and simplest is L2 parameter norm
regularization. L2 parameter norm penalty is usually called weight decay, ridge regression
[36] or Tikhonov regularization [37], which drives the weight closer to the origin by adding a
regularization term to the objective function. Therefore, a natural inspiration is to further
enhance the performance of the novel PINN by introducing the parameter regularization
strategy into the aforementioned PINN.

Rogue wave (RW), which appears suddenly and disappear without a trace [38,39], al-
ternatively called wave of extremely large size, freak or giant waves, was originally coined
for vividly describing the mysterious and monstrous large amplitude ocean wave [40, 41].
Due to RWs could appear in any place of the world ocean and have unpredictable char-
acteristics [42,43], RWs are a well-documented hazards for mariners, and these waves are
responsible for loss of many ships and many human lives [44]. Recently, the study of RW
has attracted extensive attention in its fundamental origin and complex dynamics [45,46].
Hitherto, in addition to in the oceanographic background, these extreme wave events are
also been observed and investigated in a wide class of spatial-temporal continuous systems
including water tank [47], nonlinear optics [48], Bose-Einstein condensates [49], ultra-cold
bosonic gases [50], capillary waves and surface ripples [51,52], atmosphere [53], microwave
transport [54], plasma [55,56], versatile lasers [57] and even financial systems [58]. With the
rapid development of deep learning, predicting the generation and evolution of long-time
RWs by observing initial boundary value data plays an important role in the these afore-
mentioned disciplines. Recently, employing the PINN with neuron-wise locally adaptive
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activation function, abundant localized waves of the derivative Schrödinger equation are
successfully recovered, including soliton, rational soliton, RW, periodic wave and periodic
rogue wave [59].

Due to many physical systems include interacting wave components with different
modes, frequencies or polarizations, another important development is the study of cou-
pled wave systems. Compared with scalar dynamical systems, vector systems usually
allow energy transfer between their additional degrees of freedom, which potentially gen-
erates families of intricate vector RWs. Indeed, considering RW phenomena in various
complex systems, such as optical fiber [60], financial systems [61] and Bose-Einstein con-
densates [62], it is necessary to consider multiple amplitudes rather than a single ampli-
tude, that is, the coupled system can describe extreme waves more accurately than the
scalar model. Among coupled field dynamics systems, the coupled long wave-short wave
resonance equation (LSWR) [63] is a fascinating nonlinear physical system, it describes a
resonant interaction between long wave in complex envelope of rapidly varying field and
short wave in real low-frequency field. Once the resonance condition is satisfied, that is,
the group velocity of a short wave (high-frequency wave) exactly or almost matches the
phase velocity of a long wave (low-frequency wave), this coupled system can be derived
from the Davey-Stewartson system [64]. In 1972, Zakharov made a theoretical investi-
gation for LSWR for the first time when analyzing the Langmuir wave in plasma [65].
In the case of long wave unidirectional propagation, the general Zakharov system was
reduced to LSWR system, which is usually called one-dimensional Yajima-Oikawa (YO)
system [66]. Surprisingly, despite its simple form, this system can describe various nonlin-
ear wave phenomena, such as capillary-gravity wave in fluid [64], optical-terahertz waves
in second-order nonlinear negative refractive index medium [67] and between long and
short internal waves [68], as well as between a long internal wave and a short surface
wave in a two layer fluid [69]. Recently, in order to build new PINN suitable for cou-
pled systems, we have proposed an PINN algorithm with four output functions and four
nonlinear equation constraints to obtain the data-driven vector localized waves including
vector solitons, breathers and RWs of Manakov system in complex space [70]. The next
our goal is to establish a more powerful PINN method for such rogue waves of YO system
and further reveal an interesting cross dynamics, ranging from bright rogue waves to dark
counterparts.

In this paper, we will use the regularization strategy and the PINN with locally adap-
tive activation function to construct an improved PINN with three outputs and three
physical constraints for studying the initial boundary value problem of YO system as
follow 

iSt + λ1Sxx + SL = 0, x ∈ [X0, X1], t ∈ [T0, T1],

iLt − λ2(|S|2)x = 0, x ∈ [X0, X1], t ∈ [T0, T1],

S(x, T0) = S0(x), L(x, T0) = L0(x), x ∈ [X0, X1],

S(X0, t) = Slb(t), S(X1, t) = Sub(t), t ∈ [T0, T1],

L(X0, t) = Llb(t), L(X1, t) = Lub(t), t ∈ [T0, T1],

(1.1)

where the short wave component S(x, t) stands for the complex envelope of the rapidly
varying field and the long wave component L(x, t) represents the real low-frequency field,
with x and t the two independent evolution variables. Here, λ1 and λ2 are real valued
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parameters, which can be known parameters or undetermined parameters. The |S| repre-
sents the modulus of complex valued short wave S, which also means |S|2 = SS∗ with S∗

indicates the conjugate of S. For physics discussions, The first equation of YO system,
namely the first formula of Eq. (1.1), is arranged in a form similar to the standard non-
linear Schrödinger equation, which clearly indicates that its nonlinearity is driven by long
wave field L rather than Kerr term |S|2. We note that the RWs of this system have been
effectively obtained with the aid of Hirota bilinear method [71], KP hierarchy reduction
method [72] and Darboux transformation [73].

This paper is organized as follows: After the introduction in section 1, section 2 gives
a brief discussion of the improved PINN methodology with locally adaptive activation
function and L2 parameter norm regularization for the coupled YO systems, where we
also discuss about training data, loss function, optimization methods and the operating
environment. The algorithm flow schematic and algorithm steps for the YO system are
also exhibited in detail. Section 3 provides the results and detailed discussions for forward
problems on improved PINN approximations of data driven vector RWs in three different
states. Section 4 presents experimental results with different trade-off norm penalty term
coefficients in inverse problems. In Section 5, we systematically introduce the general MI
analysis of YO system with unknown parameters λ1 and λ2. Finally, we summarize the
conclusions of our work are given out in last section.

2 Methodology

From Ref. [34], one can know about the original PINN method could not accurately re-
construct some solutions with complex forms in some complicated nonlinear systems, and
the PINN approach with neuron-wise locally adaptive activation function and slope re-
covery term can improve the convergence speed and stability of the loss function in the
training process. Therefore, considering the training accuracy, performance requirements
and structural complexity of multi-component coupled nonlinear systems, we further im-
prove the deep learning algorithm by introducing parameter regularization based on the
aforementioned PINN method.

2.1 NN and adaptive activation function

We establish a NN of depth D with an input layer, D−1 hidden-layers and an output layer,
in which the dth hidden-layer contain Nd number of neurons. Each hidden-layer of the NN
receives an output xd−1 ∈ RNd−1 from the previous layer, where an affine transformation
can be written as follows form

Ld(xd−1) , Wdxd−1 + bd, (2.1)

where the network weights Wd ∈ RNd×Nd−1 and bias term bd ∈ RNd associated with the
dth layer. Specifically, in order to introduce adaptive activation function, we define such
neuron-wise locally adaptive activation function as

σ
(
nadi

(
Ld
(
xd−1

))
i

)
, d = 1, 2, · · · , D − 1, i = 1, 2, · · · , Nd,
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where σ is the activation function, and n > 1 is a scaling factor and {adi } are additional
D−1∑
d=1

Nd parameters to be optimized. Note that, there is a critical scaling factor nc, and

the optimization algorithm will become sensitive when n > nc in each problem set [33].
The neuron-wise locally activation function acts as a vector activation function in each
hidden layer, and each neuron has its own slope of activation function. The improved NN
with neuron-wise locally adaptive activation function can be represented as

q(x; Θ̄) =
(

(LD)i′ ◦ σ ◦ naD−1
i (LD−1)i ◦ · · · ◦ σ ◦ na1

i (L1)i

)
(x), i′ = 1, 2, 3, (2.2)

where x and q(x; Θ̄) represent the two inputs and three outputs in the NN, respectively.

The set of trainable parameters Θ̄ ∈ P̄ consists of
{
Wd,bd

}D
d=1

and
{
adi
}D−1

i=1
,∀i =

1, 2, · · · , Nd, P̄ is the parameter space.

2.2 YO system constraint

Especially, we consider the (1 + 1)-dimensional coupled YO system as the physical con-
straint of aforementioned NN to construct PINN, its specific operator representation form
for YO system (1.1) is as shown below

St +N [S,L] = 0,

Lt +N ′[S] = 0,
(2.3)

where S and L are complex valued solution and real valued solution of x and t to be de-
termined later respectively, N [·, ·] and N ′[·] are nonlinear differential operators in space.
Due to the complexity of the structure of the complex-valued solution S(x, t) in Eq. (2.2),
we decompose S(x, t) into the real part u(x, t) and the imaginary part v(x, t) by em-
ploying real-valued functions u(x, t) and v(x, t), that is S(x, t) = u(x, t) + iv(x, t). Then
substituting it into Eq. (2.3), we have

ut +Nu[u, v, L] = 0, vt +Nv[u, v, L] = 0, Lt +N ′L[u, v] = 0. (2.4)

Accordingly, the Nu, Nv and N ′L are nonlinear differential operators in space. Then
fu(x, t), fv(x, t) and fL(x, t) constitute the physics-informed parts of the NN, which can
be defined as

fu := ut +Nu[u, v, L], fv := vt +Nv[u, v, L], fL := Lt +N ′L[u, v]. (2.5)

2.3 Loss function and parameter regularization

We will attempt to find the optimized parameters, including the weights, biases and addi-
tional coefficients in the activation, to minimize two new loss functions L (Θ̄) and L̃ (Θ̄)
with weights parameter regularization, which are defined as the following forms respec-
tively

L (Θ̄) = Loss = LossS + LossL + LossfS + LossfL + Lossa,

L̃ (Θ̄) = LossPR = L (Θ̄) + αΩ(Θ̄),
(2.6)
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where LossS , LossL, LossfS and LossfL are defined as following

LossS =
1

Nq

 Nq∑
j=1

|û(xj , tj)− uj |2 +

Nq∑
j=1

|v̂(xj , tj)− vj |2
 ,

LossL =
1

Nq

Nq∑
j=1

|L̂(xj , tj)− Lj |2,

(2.7)

and

LossfS =
1

Nf

 Nf∑
l=1

|fu(xlf , t
l
f )|2 +

Nf∑
l=1

|fv(xlf , tlf )|2
 ,

LossfL =
1

Nf

Nf∑
l=1

|fL(xlf , t
l
f )|2,

(2.8)

where {xj , tj , uj , vj , Lj}Nq

j=1 denotes the initial and boundary value inputs data on Eqs.

(2.4) and (2.5). Here û(xj , tj), v̂(xj , tj) and L̂(xj , tj) represent the optimal training out-

puts data through the NN. Furthermore, {xlf , tlf}
Nf

l=1 represent the collocation points on
networks fu(x, t), fv(x, t) and fL(x, t). The last slope recovery term Lossa in the loss
function (2.6) is defined as

Lossa =
1

Na
D−1

D−1∑
d=1

exp

( Nd∑
i=1

adi

Nd

) , (2.9)

where 1/Na is the hyperparameter for slope recovery term Lossa, and we all take Na = 100
for dominating the loss function and ensuring that the final loss value is not too large in
this paper. Here, Lossa term forces the NN to increase the activation slope value quickly,
which ensures the non-vanishing of the gradient of the loss function and improves the
network’s training speed. Consequently, LossS and LossL correspond to the loss on the
initial and boundary data, the LossfS and LossfL penalizes the YO system not being
satisfied on the collocation points, and the Lossa changes the topology of Loss function
and improves the convergence speed and network optimization ability.

Furthermore, α is a hyperparameter that weights the relative contribution of the norm
penalty term Ω and loss function L (Θ̄), and the L2 parameter norm penalty Ω(Θ̄) can
be defined as following

Ω(Θ̄) =
1

2
‖W‖22, (2.10)

which drives the weights closer to the origin. Due to the biases typically require less
data to fit accurately than the weights, we note that for NNs, we typically choose to use
a parameter norm penalty Ω that penalizes only the weights of the affine transforma-
tion at each layer and leaves the biases unregularized. It is worth mentioning that the
aforementioned slope recovery term Lossa can be regarded as a self-defined parameter
regularization strategy for additional parameters {adi }.
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2.4 Optimization algorithm and improved PINN

The resulting optimization problem leads to finding the minimum value of the loss function
by optimizing the parameters Θ̄, that is, we seek

Θ̄∗ = arg min
Θ̄∈P̄

L̃ (Θ̄).

Generally, one can approximate the solutions to this minimization problem iteratively by
one of the forms of gradient descent algorithm. The stochastic gradient descent (SGD)
and its variants are probably the most used optimization algorithms for machine learning
in general and for deep learning in particular [19]. In this work, we introduce Adam
optimizer and L-BFGS optimizer to optimize the loss function. Specifically, we employ
the Adam optimizer, which is a variant of the SGD algorithm, and the L-BFGS optimizer,
which is a full-batch gradient descent optimization algorithm based on a quasi-Newton
method to optimize the loss function [20, 21]. Moreover, in order to better measure the
training error, we introduce L2 norm error, which is defined as follows

Error =

√
N∑
k=1

∣∣qexact(xk)− qpredict(xk; Θ̄)
∣∣2√

N∑
k=1

∣∣qexact(xk)
∣∣2 ,

where qpredict(xk; Θ̄) and qexact(xk) represent the model training prediction solution and
exact analytical solution at point xk = (xk, tk), respectively.

In order to understand the improved PINN approach more clearly, the improved PINN
algorithm flow chart of the YO system is shown in following Fig.1, where one can see the
NN along with the supplementary physics-informed part, and the loss function is evaluated
using the contribution from the NN part as well as the residual from the governing equation
given by the physics-informed part. Then, one seeks the optimal values of weights W,
biases b and scalable parameter adi in order to minimize the loss function below certain
tolerance ε until a prescribed maximum number of iterations. From Fig. 1, since the YO
system contains two components S(x, t) and L(x, t), one can see that the “NN” part has
three output functions {u, v, L}, and there are three nonlinear equation constraints in the
“PDE” part, that is, in terms of the nonlinear coupled system with more components, the
number of output functions and nonlinear equation constraints of the improved PINN will
increase exponentially. Furthermore, in order to further understand the improved PINN,
we also showcase the corresponding procedure steps of the improved PINN with adaptive
activation function and L2 norm parametric regularization in the following Tab. 1.

2.5 Training data and network environment

In supervised learning, training data is important to train the NN, which can be obtained
from the exact solution (if available) or from high-resolution numerical solution using nu-
merical methods like spectral method, finite element method, Chebfun numerical method,
discontinuous Galerkin method etc, as per the problem at hand. Furthermore, training
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Figure 1: (Color online) Schematic of improved PINN for the YO system. The left NN
is the uninformed network while the right one induced by the governing equation is the
informed network. The two NNs share hyper-parameters and they both contribute to the
loss function.

Table 1: Improved PINN algorithm with adaptive activation function and L2 norm pa-
rameter regularization.

Step 1: Specification of training set in computational domain:

Training data: {xj , tj , uj , vj , Lj}Nq

j=1, Residual training points: {xlf , tlf}
Nf

l=1.

Step 2: Construct neural network q(x; Θ̄) with random initialization of parameters Θ̄.
Step 3: Construct the residual neural network {fu, fv, fL} by substituting surrogate

q(x; Θ̄) into the governing equations using automatic differentiation and other arithmetic
operations.

Step 4: Specification of the loss function L̃ (Θ̄) that includes the slope recovery term
and parameter regularization term.
Step 5: Find the best parameters Θ̄∗ using a suitable optimization method for mini-

mizing the loss function L̃ (Θ̄) as
Θ̄∗ = arg min

Θ̄∈P̄
L (Θ̄).
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data can also be obtained from carefully performed physical experiments that may pro-
duce high- and low-fidelity data sets. Fortunately, the nonlinear integrable systems like
YO system has very good integrability, and there are some effective methods to solve a
variety of accurate localized wave solutions, which provide rich sample space for the ex-
traction of training data. Here, we use the traditional finite difference scheme on the even
grid to discretize these exact solutions to obtain the training data. Moreover, one can also
add uniform/normal distribution random disturbance to the exact solution to select the
training point, which may obtain some interesting physical phenomena and also provide
a powerful numerical tool for the study of modulation instability.

In the adaptive activation function, the initialization of scalable parameters are carried
out in the case of n = 10, adi = 0.1, namely nadi = 1. In addition, we select relatively
simple multi-layer perceptrons (i.e., feedforward NNs) with the Xavier initialization and
the hyperbolic tangent (tanh) as activation function. All the codes in this article is based
on Python 3.7 and Tensorflow 1.15, and all numerical experiments reported here are run on
a DELL Precision 7920 Tower computer with 2.10 GHz 8-core Xeon Silver 4110 processor,
64 GB memory and 11 GB Nvidia GeForce GTX 1080 Ti video card.

3 The forward problem of the YO system

In this section, we will focus on the forward problem of the YO system, that is reveal the
data-driven RWs for the YO system by means of small data set and 9 hidden layers deep
improved PINN with 40 neurons per layer. Specifically, after knowing the determined
unknown parameters of the YO system (1.1), which are λ1 = 0.5 and λ2 = 1, as well as
some initial boundary value data points, we can successfully approximate the various RWs
through improved PINN with parameter regularization and hyperparameter α = 0.0001.
Here the physics-informed parts Eq. (2.5) of the improved PINN for YO sysem (1.1)
become the following formula

fu := −vt + 0.5uxx + uL, fv := ut + 0.5vxx + vL, fL := Lt − (2uux + 2vvx). (3.1)

The exact form of these RWs for the YO system (1.1) with λ1 = 0.5 and λ2 = 1 have
been derived by the Darboux transformation [73], the general vector form of rogue waves
can be expressed as

S(x, t) = aeikx−i
(

1
2
k2−b

)
t

[
1− it+ (ix)/(2m− k) + 1/

(
2(2m− k)(m− k)

)
(x−mt)2 + n2t2 + 1/(4n2)

]
,

L(x, t) = b+ 2
n2t2 − (x−mt)2 + 1/(4n2)

[(x−mt)2 + n2t2 + 1/(4n2)]2
,

(3.2)

and m, n, a, b and k satisfy the following relationship

m =
1

6

[
5k −

√
3(k2 + η + σ/η)

]
, n = ±

√
(3m− k)(m− k),

σ =
1

9
k4 + 6a2k, ρ =

1

2
k6 − 1

54
(27a2 + 5k3)2,

η =

{
−
(
ρ−

√
ρ2 − σ3

)1/3
k 6 −3kn,(

− ρ+
√
ρ2 − σ3

)1/3 −3kn < k 6 3
2kn,

(3.3)
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where kn = (2a2)1/3, a > 0, b > 0 and k ∈ R. It is clear that the short-wave RW S is
characterized by the second-order polynomial of x and t, while the real long-wave RW
L involves the fourth-order polynomial. One can observe that although having a form
similar to that of Peregrine soliton [74], the RWs in (3.2) admit more complex dynamics
than the latter.

According to the central amplitude and the relative position of two zero-amplitude
points, one can divide the regime of the short-wave RWs S(x, t) into three regions, that is
bright RW region, intermediate RW region and dark RW region, which are corresponding
to parametric conditions k 6 0, 0 < k < (4/3)1/3kn (here (4/3)1/3 ≈ 1.1) and (4/3)1/3kn 6
k < 1.5kn, respectively [73].

• Bright-Bright RWs Sbrw and Lbrw1

In order to obtain the bright-bright RWs Sbrw and Lbrw1 of YO system, one can lead

to m = −1
2 , n = ±

√
3

2 by taking a = 1, b = 0, k = 0 in Eq. (3.3) and combining the value
range of k from the aforementioned results. Substituting the above parameters into the
formula Eq. (3.2), the specific form of bright-bright rogue waves Sbrw and Lbrw1 for YO
system is as follows

Sbrw(x, t) =
−3it+ 3ix+ 3t2 + 3tx+ 3x2 − 2

3t2 + 3tx+ 3x2 + 1
,

Lbrw1(x, t) =
3(3t2 − 6tx− 6x2 + 2)

(3t2 + 3tx+ 3x2 + 1)2
.

(3.4)

Apparently, the complex short-wave RW Sbrw(x, t) takes plane |Sbrw| = 1 as the back-
ground wave, while real long-wave RW Lbrw1(x, t) takes plane Lbrw1 = 1 as the background
wave. Furthermore, |Sbrw(x, t)| obtains the maximum amplitude at (x, t) = (0, 0) and the
maximum amplitude is 2, but Lbrw1(x, t) obtains the maximum amplitude at (x, t) = (0, 0)
and the maximum amplitude is 6.

• Intermediate-Bright RWs Sirw and Lbrw2

Similarly, in order to obtain the intermediate-bright RWs Sirw and Lbrw2 of YO system,
one can also take a = 1, b = 0, but parameter k have to meet the condition 0 < k <
(4/3)1/3kn, here kn = 21/3. In particular, we derive the values of parameters m and n by
taking k = 1

221/3, then substitute them into the Eq. (3.2), and then one can obtain the
intermediate-bright RWs Sirw and Lbrw2 of YO system. Since the forms of expressions for
m, n, Sirw and Lbrw2 are complex, we omit them here.

• Dark-Bright RWs Sdrw and Lbrw3

In the same way, the dark-bright RWs Sdrw and Lbrw3 of YO system are obtained by
taking a = 1, b = 0 and making the parameter k satisfy the condition (4/3)1/3kn 6 k <
1.5kn. After taking k = 6

521/3, then we obtain the dark-bright RWs Sdrw and Lbrw3 of YO
system by means of known and derived parameters. Similarly, due to the complex form,
we omit the specific expression form here.

Next, we will use the above exact solution to obtain the initial boundary value condi-
tion data, so as to construct the training data set. Under different initial boundary value
conditions, three different RWs dynamic structures are recovered by utilizing improved
PINN with parameter regularization. In order to more intuitively exhibit the training ef-
fect of improved PINN with parameter regularization, we also compare it with the training
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results from PINN without parameter regularization.

3.1 The data-driven bright-bright RWs

In this section, in order to recover the data-driven bright-bright RWs of the YO system,
we will commit to introducing the initial boundary value conditions of the YO system to
the 9-layer improved PINN with 40 neurons per layer. Selecting [X0, X1] and [T0, T1] in
Eq. (1.1) as [−5.0, 5.0] and [−2.0, 2.0] respectively, we can write the corresponding initial
value conditions as follows

S0(x) = Sbrw(x,−2.0), L0(x) = Lbrw1(x,−2.0), x ∈ [−5.0, 5.0], (3.5)

and the Dirichlet boundary conditions become

Slb(t) = Sbrw(−5.0, t), Llb(t) = Lbrw1(−5.0, t), t ∈ [−2.0, 2.0],

Sub(t) = Sbrw(5.0, t), Lub(t) = Lbrw1(5.0, t), t ∈ [−2.0, 2.0].
(3.6)

In order to obtain the original training data set of the above initial boundary value
conditions (3.5) and (3.6), we discretize the exact bright-bright RWs Sbrw and Lbrw1 (3.4)
based on the finite difference method by dividing the spatial region [−5.0, 5.0] into 2000
points and the temporal region [−2.0, 2.0] into 1000 points in Matlab. Furthermore, in
addition to the data set composed of the aforementioned initial boundary value conditions,
the residual data set is used to calculate the L2 norm error by comparing with the data-
driven bright-bright RWs. After that, a smaller training dataset that containing initial-
boundary data will be generated by randomly extracting Nq = 1000 from original dataset
and Nf = 20000 collocation points which are produced by the LHS. According to 20000
Adam iterations and 50000 L-BFGS iterations, the latent bright-bright RWs S(x, t) and
L(x, t) have been successfully learned by employing the improved PINN with parameter
regularization, and the network achieved relative L2 error of 4.968430e-04 for the bright
RW S(x, t) and relative L2 error of 1.763312e-03 for the bright RW L(x, t), and the total
number of iterations is 70000.

Figs. 2 presentS the deep learning results of the data-driven bright-bright RWs based
on the improved PINN with parameter regularization for the YO system with the initial
boundary value problem (3.5) and (3.6). The left panels of Fig. 2 display the exact, learned
and error dynamics for the bright RW |S(x, t)| and bright RW L(x, t), and exhibit the
sectional drawings which contain the learned and explicit RWs at five different moments.
From the density plots of learned dynamics and profiles which reveal amplitude and error
of exact and prediction RWs in Fig. 2, we observe that the amplitude of long-wave RW
is much higher than that of short-wave RW. The right panels of Fig. 2 exhibit the 3D
plots of the predicted bright-bright RWs. Fig. 3 showcases curve plots of the loss function
after 20000 Adam optimization iterations and 50000 L-BFGS optimization iterations in
improved PINN framework. In the left panel of Fig. 3, one can see that the loss function
curve LossPR oscillatly descends in the process of optimizing the loss function by means
of the Adam optimizer, and the gradient of the loss function descends very fast in the
last about 4000 iterations. While, from the right panel of Fig. 3, the loss function curve
LossPR linearly descends by means of the L-BFGS optimization algorithm. Furthermore,
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the loss function curves LossS and LossL of L-BFGS optimization are missing after a
certain number of iterations, that is because the loss function value in this part is less
than 1e−6, which is beyond the statistical range of “%f” in Python 3.7. During the pro-
cess of optimizing the loss function LossPR both in two optimization algorithms, Lossa
and αΩ(Θ̄) descend linearly, which depend on their topological structure and mathemat-
ical form. That is, Lossa ensures the better and faster convergence of the loss function
by means of PINN algorithm with neuron-wise locally adaptive activation function, and
αΩ(Θ̄) ensures the weight decay continuously by imposing the parameter regularization
term.
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Figure 2: (Color online) The data-driven bright-bright RWs S(x, t) and L(x, t) re-
sulted from the improved PINN with the randomly chosen initial and boundary points
Nq = 1000 which have been shown by using mediumorchid “ × ” in learned dynamics ,
and Nf = 20000 collocation points in the corresponding spatiotemporal region: (a) and
(c) The exact, learned and error dynamics density plots with five distinct tested times
t = −1.34,−0.67, 0.00, 0.67 and 1.34 (darkturquoise dashed lines), as well as sectional
drawings which contain the learned and explicit bright-bright RWs at the aforementioned
five distinct times; (b) and (d) The 3D plot for the data-driven bright-bright RWs.

3.2 The data-driven intermediate-bright RWs

In what follows, we will consider the initial-boundary value problem of the YO system for
obtaining the data-driven intermediate-bright RWs by applying the multilayer improved
PINN. Similarly, taking [X0, X1] and [T0, T1] in Eq. (1.1) as [−5.0, 5.0] and [−3.0, 3.0]
respectively, we derive the corresponding initial conditions S0(x) and L0(x), and Dirichlet
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Figure 3: (Color online) The loss function curve figures of the bright-bright RWs S(x, t)
and L(x, t) arising from the improved PINN with the 20000 steps Adam and 50000 steps
L-BFGS optimizations: (a) The loss function curve for the 20000 Adam optimization
iterations; (b) The loss function curve for the 50000 L-BFGS optimization iterations.

boundary conditions as shown in the following formulas

S0(x) = Sirw(x,−3.0), L0(x) = Lbrw2(x,−3.0), x ∈ [−5.0, 5.0], (3.7)

and

Slb(t) = Sirw(−5.0, t), Llb(t) = Lbrw2(−5.0, t), t ∈ [−3.0, 3.0],

Sub(t) = Sirw(5.0, t), Lub(t) = Lbrw2(5.0, t), t ∈ [−3.0, 3.0].
(3.8)

By means of Matlab, we discretize the exact intermediate-bright RWs Sirw and Lbrw2

by utilizing the traditional finite difference scheme on even grids, and obtain the original
training data which only contains initial data (3.7) and boundary data (3.8) by divid-
ing the spatial region [−5.0, 5.0] into 2000 points and the temporal region [−3.0, 3.0] into
1000 points, the remaining data will be used to obtain training errors by comparing with
predicted intermediate-bright RWs. After that, we generate a smaller training dataset
containing initial-boundary data by randomly extracting Nq = 2000 from original training
dataset and Nf = 30000 collocation points produced via LHS in the corresponding spa-
tiotemporal region. Then, the intermediate-bright RWs S(x, t) and L(x, t) have been suc-
cessfully learned by imposing a 9-hidden-layer improved PINN with 40 neurons per layer,
and the related loss functions are optimized through 20000 Adam iterations and 50000
L-BFGS iterations. The relative L2 errors of the improved PINN model are 1.168852e-03
for S(x, t) and 6.766132e-03 for L(x, t), the total number of iterations is 70000.

Figs. 4 - 5 display the training results of the data-driven intermediate-bright RWs
S(x, t) and L(x, t) based on the improved PINN related to the initial boundary value
problem (3.7) and (3.8) of the YO system (1.1). The left panels of Fig. 4 depicts various
dynamic density plots and sectional drawing at different moments, in which the panel
(a) corresponds to short-wave intermediate RW S(x, t) and panel (c) corresponds to the
long-wave bright RW L(x, t) for the YO system (1.1). As we can see from the right panels
in Fig. 4, the 3D plots of the intermediate-bright RWs are shown in Fig. (b) and Fig. (d)
respectively. Apparently, from Figs. 4, one can see that the maximum amplitudes of short
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wave RW and long wave RW are lower than those of the two RWs in Figure Figs. 2. Fig.
5 showcases curve plots of the loss function after 20000 Adam optimization iterations and
50000 L-BFGS optimization iterations in improved PINN framework. Different from the
curve plots of the loss function in Figs. 3, the loss function curves of Adam optimization
for the intermediate-bright RWs descend steadily. However, in the process of optimizing
the loss function using the L-BFGS optimizer, the loss function curve descends faster after
about 20000 iterations, which is different from Figure Fig. 3.
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Figure 4: (Color online) The data-driven intermediate-bright RWs S(x, t) and L(x, t)
resulted from the improved PINN with the randomly chosen initial and boundary points
Nq = 2000 which have been shown by using mediumorchid “ × ” in learned dynamics ,
and Nf = 30000 collocation points in the corresponding spatiotemporal region: (a) and
(c) The exact, learned and error dynamics density plots with five distinct tested times t =
−2.00,−1.00, 0.00, 1.00 and 2.00 (darkturquoise dashed lines), as well as sectional drawings
which contain the learned and explicit intermediate-bright RWs at the aforementioned five
distinct times; (b) and (d) The 3D plot for the data-driven intermediate-bright RWs.

3.3 The data-driven dark-bright RWs

Similarly, considering the initial condition and Dirichlet boundary condition of the YO
system to obtain the dark-bright RWs by using the 9-layer improved PINN with 40 neurons
per layer, the [X0, X1] and [T0, T1] in Eq. (1.1) are taken as [−5.0, 5.0] and [−3.0, 3.0],
respectively. We immediately obtain the initial value conditions

S0(x) = Sdrw(x,−3.0), L0(x) = Lbrw3(x,−3.0), x ∈ [−5.0, 5.0], (3.9)
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Figure 5: (Color online) The loss function curve figures of the intermediate-bright RWs
S(x, t) and L(x, t) arising from the improved PINN with the 20000 steps Adam and 50000
steps L-BFGS optimizations: (a) The loss function curve for the 20000 Adam optimization
iterations; (b) The loss function curve for the 50000 L-BFGS optimization iterations.

and the Dirichlet boundary conditions

Slb(t) = Sdrw(−5.0, t), Llb(t) = Lbrw3(−5.0, t), t ∈ [−3.0, 3.0],

Sub(t) = Sdrw(5.0, t), Lub(t) = Lbrw3(5.0, t), t ∈ [−3.0, 3.0].
(3.10)

Similarly, discretizing exact dark-bright RWs Sdrw and Lbrw3 with the aid of the
traditional finite difference scheme on even grids, and we obtain the original training data
which contain initial data (3.9) and boundary data (3.10) by dividing separately the spatial
region [−5.0, 5.0] into 2000 points and the temporal region [−3.0, 3.0] into 1000 points.
Then, one can generate a smaller training dataset that contains partial initialCboundary
data by randomly extracting Nq = 2000 from original dataset and Nf = 30000 collocation
points which are produced by the LHS. After that, the latent dark-bright RWs S(x, t) and
L(x, t) have been successfully learned by tuning all learnable parameters of the improved
PINN, and the network achieved relative L2 error of 1.964839e-03 for the dark RW S(x, t)
and relative L2 error of 1.692152e-02 for the bright RW L(x, t), and the total number of
iterations is 70000.

Figs. 6 - 7 provide the training results arising from the improved PINN for the data-
driven dark-bright RWs S(x, t) and L(x, t) of the YO system with the initial boundary
value problem (3.9) and (3.10). In the left panels of Fig. 6, the exact, learned and error
dynamics density plots with corresponding amplitude scale size on the right side have
been exhibited, it is worth mentioning that the Nq = 2000 training data points involved in
the initial-boundary condition are marked by mediumorchid symbol “ × ” in the learned
density plots both in (a) and (c) of Fig. 6. Meanwhile, the sectional drawings which
include the learned and exact dark-bright RWs have been shown at the five distinct times
pointed out in the exact, learned and error dynamics density plots by using darkturquoise
dashed lines in the bottom panels of (a) and (c). The right panels of Fig. 6 display the
three-dimensional plots with contour map on three planes of the predicted dark-bright
RWs S(x, t) and L(x, t) based on the improved PINN. Fig. 7 exhibits the loss function
curve figures of the dark-bright RWs S(x, t) and L(x, t) arising from the improved PINN
with the 20000 steps Adam and 50000 steps L-BFGS optimizations on the loss function
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L̃ (Θ̄).
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Figure 6: (Color online) The data-driven dark-bright RWs S(x, t) and L(x, t) resulted
from the improved PINN with the randomly chosen initial and boundary points Nq =
2000 which have been shown by using mediumorchid “ × ” in learned dynamics , and
Nf = 30000 collocation points in the corresponding spatiotemporal region: (a) and (c)
The exact, learned and error dynamics density plots with five distinct tested times t =
−2.00,−1.00, 0.00, 1.00 and 2.00 (darkturquoise dashed lines), as well as sectional drawings
which contain the learned and explicit dark-bright RWs at the aforementioned five distinct
times; (b) and (d) The 3D plot for the data-driven dark-bright RWs.

In addition, a large number of experimental data show that the training error of
improved PINN with parameter regularization (α = 0.0001) is smaller than that of PINN
without parameter regularization (α = 0). Tab. 2 gives the training error of three different
types of RWs with and without parameter regularization. From table 1, once the hyper-
parameter α is small enough, one can see that the training error of the improved PINN
model with parameter regularization is mostly lower than that of the PINN model without
parameter regularization.

Table 2: Relative L2 errors of three different RW types in different PINN types

PINN Types

RW Types
Bright-bright RWs Intermediate-bright RWs Dark-bright RWs

Hyper-parameter α = 0
S(x, t): 7.566667e-04
L(x, t): 2.414187e-03

S(x, t): 1.975757e-03
L(x, t): 8.500360e-03

S(x, t): 1.788549e-03
L(x, t): 1.286998e-02

Hyper-parameter α = 0.0001
S(x, t): 4.968430e-04
L(x, t): 1.763312e-03

S(x, t): 1.168852e-03
L(x, t): 6.766132e-03

S(x, t): 1.964839e-03
L(x, t): 1.692152e-02
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Figure 7: (Color online) The loss function curve figures of the dark-bright RWs S(x, t)
and L(x, t) arising from the improved PINN with the 20000 steps Adam and 50000 steps
L-BFGS optimizations: (a) The loss function curve for the 20000 Adam optimization
iterations; (b) The loss function curve for the 50000 L-BFGS optimization iterations.

4 The inverse problem of the YO system

In this section, we focus on the inverse problem of the YO system, that is parameter
discovery problem for a data-driven YO system model (1.1) by utilizing small data set.
In this situation, λ1 and λ2 are pending parameters to be trained by means of improved
PINN with parameter regularization and partial initial boundary value data points, and
the physics-informed parts Eq. (2.5) of the improved PINN for YO sysem (1.1) become
the following formula

fu := −vt + λ1uxx + uL, fv := ut + λ1vxx + vL, fL := Lt − λ2(2uux + 2vvx). (4.1)

In order to learn the parameter λ1 and λ2 in Eq. (1.1) with the aid of the improved
PINN with neuron-wise locally adaptive activation function and parametric regularization
term with different trade-off coefficients, and considering the initial conditions and Dirich-
let boundary conditions of Eq. (1.1) arising from the bright-bright RWs (3.4) by using the
9-layer improved PINN with 40 neurons per layer, we set the spatial and temporal regions
(x, t) ∈ [−5, 5]. After that, the corresponding initial conditions can be written as belows

S0(x) = Sbrw(x,−0.5), L0(x) = Lbrw1(x,−0.5), x ∈ [−5.0, 5.0], (4.2)

and the Dirichlet boundary conditions

Slb(t) = Sbrw(−5.0, t), Llb(t) = Lbrw1(−5.0, t), t ∈ [−0.5, 0.5],

Sub(t) = Sbrw(5.0, t), Lub(t) = Lbrw1(5.0, t), t ∈ [−0.5, 0.5].
(4.3)

Here, employing the same data discretization method in section 3, and producing the
training data which consists of initial data (4.2) and boundary data (4.3) by dividing the
spatial region [−5.0, 5.0] into 2000 points and the temporal region [−0.5, 0.5] into 1000
points. We generate a smaller training dataset that containing initial-boundary data by
randomly extracting Nq = 2000 from original dataset and Nf = 30000 collocation points
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which are generated by the LHS method. After giving the dataset of initial and bound-
ary points, the latent data-driven unknown parameters λ1 and λ2 have been successfully
learned by tuning all learnable parameters of the improved PINN and utilizing 20000
Adam iterations and different number of L-BFGS iterations to regulate the loss function
L̃ (Θ̄). The unknown parameters λ1 and λ2 are initialized to λ1 = λ2 = 0. the relative
error of unknown parameters is defined as RE = (|λ̂κ − λκ|/λκ) × 100% (κ = 1, 2) with
the predicted value λ̂κ and true value λκ. All noise interference in this part is added to
the randomly chosen small data set, the details are as shown below

Data−train =Data−train+ noise ∗ np.std(Data−train) ∗ np.random.randn
(Data−train.shape[0], Data−train.shape[1]),

(4.4)

where Data−train and noise represent a small randomly chosen training data set and
the noise intensity, respectively. The np.std(·) returns the standard deviation of an ar-
ray element, and np.random.randn(·, ·) returns a set of samples with a standard normal
distribution.

Next we analyze the training result of the NN from different perspectives, such as the
size of hyper-parameters α, intensity of noise and the anti-interference ability. In order to
more directly verify the effect of improved PINN with parameter regularization, we first
showcase the training effect of PINN without parameter regularization (namely α = 0)
in Fig. 8. In the absence of a parametric regularization strategy, (a) and (b) of Fig. 8
describe the numerical variation curves of unknown parameters λ1 and λ during iteration,
one can find that λ1 increases from 0 to more than 0.3 during the previous 20000 Adam
optimizations, while λ2 hardly increases significantly in the aforementioned iterations.
Instead, λ1 increases slowly to about 0.5 in the later L-BFGS optimization process, while
λ2 increases sharply to about 1.0 in this iterative process. The panel (c) of Fig. 8 indicates
that the greater the noise intensity, the more intense the fluctuation of the loss function
curve in the first 20000 Adam optimization processes, and the larger the overall value of
the loss function in the later L-BFGS optimization processes. Fig. 8 (d) shows that the
relative error of λ2 is more sensitive to the change of noise intensity than that of λ1.

Next, we impose a parametric regularization strategy to the improved PINN with
a penalty coefficient α = 0.0001, the corresponding training results are shown in Fig. 9.
Due to the introduction of parameter regularization, the load of loss function will increase,
thus the number of iterations will be greater than that in the PINN without parameter
regularization strategy in some cases, but the maximum number of iterations is artificially
set to 70000 (including 2000 Adam optimizer iterations and 50000 L-BFGS optimizer
iterations). Fig. 9 (a)-(b) show the variation curves of unknown parameters λ1 and λ2

in the iterative process under different noise intensity conditions, in which both figures
indicate that there is little difference between the final learning results of parameters λ1

and λ2 to be learned in the case of noise and no noise. Interestingly, panel (b) of Fig.
9 demonstrates that the value of λ2 learned with 2% noise intensity is closer to the real
value than that learned without noise case. Different from Fig. 8 (c), the Fig. 9 (c) shows
that the relationship between the fluctuation degree of the loss function curve and the
noise intensity is not obvious. Fig. 9 (d) exhibits that in improved PINN with parameter
regularization strategy, the relative error of parameter training results to be learned is the
smallest when the noise intensity is 2%, which further reveals that improved PINN with

19



0 5000 10000 15000 20000 25000 30000 35000

iterations

0.0

0.1

0.2

0.3

0.4

0.5

si
ze
(λ

1
)

λ1(α=0,noise=0%)

λ1(α=0,noise=1%)

λ1(α=0,noise=2%)

λ1(α=0,noise=3%)

28000 30000 32000 34000

0.48

0.49

0.50

(a)

0 5000 10000 15000 20000 25000 30000 35000

iterations

0.0

0.2

0.4

0.6

0.8

si
ze
(λ

2
)

λ2(α=0,noise=0%)

λ2(α=0,noise=1%)

λ2(α=0,noise=2%)

λ2(α=0,noise=3%)

28000 30000 32000 34000

0.7

0.8

0.9

(b)

0 5000 10000 15000 20000 25000 30000 35000

iterations

10−3

10−2

10−1

100

101

102

lo
ss

Loss(α=0,noise=0%)

Loss(α=0,noise=1%)

Loss(α=0,noise=2%)

Loss(α=0,noise=3%)

10000 11000 12000 13000 14000 15000

0.005

0.010

(c)

0 1 2 3

noise(%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

er
ro
r(
%
)

λ1(α=0)

λ2(α=0)

(d)

Figure 8: (Color online) The parameter discover resulted from the PINN without param-
eter regularization (α = 0): (a)-(b) the variation of unknown coefficients λ1 and λ2 with
different noise intensity; (c) the variation of loss function with different noise intensity;
(d) unknown coefficient λ1 and λ2 error variation under different interference noise.
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parameter regularization has the ability to suppress data noise interference.
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Figure 9: (Color online) The parameter discover resulted from the improved PINN with
parameter regularization (α = 0.0001): (a)-(b) the variation of unknown coefficients λ1

and λ2 with different noise intensity; (c) the variation of loss function with different noise
intensity; (d) unknown coefficient λ1 and λ2 error variation under different interference
noise.

Furthermore, we expand the weight coefficient of parameter regularization by one
order of magnitude, namely α = 0.001. Fig. 10 displays the dynamic behavior similar
to that the case of α = 0.0001 in Fig. 9, except that when the noise intensity is 1%,
the relative training error of parameters to be learned is smaller than that in the other
three cases. In order to further understand the influence of parameter regularization with
larger weight ratio on improved PINN, we again expand the weight coefficient by one order
of magnitude, that is, α = 0.01, and obtain the corresponding inverse problem training
results of YO system in Fig. 11. Fig. 11 (a)-(b) showcase the parameter discovery curves
of λ1 and λ2, where panel (b) indicates that there is a large gap between the training value
and the actual value of λ2 when the noise intensities are 1% and 2%, and combined with
panel (d) of Fig. 11, one can observe that the relative error of λ2 is very large at this time.
This also means that the larger the trade-off coefficient is not always better. As shown in
Fig. 11, once it is expanded to a certain extent, the training effect is not ideal. Therefore,
the selection of the value for the trade-off coefficient is very important for the parameter
regularization strategy.
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Figure 10: (Color online) The parameter discover resulted from the improved PINN with
parameter regularization (α = 0.001): (a)-(b) the variation of unknown coefficients λ1

and λ2 with different noise intensity; (c) the variation of loss function with different noise
intensity; (d) unknown coefficient λ1 and λ2 error variation under different interference
noise.
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Figure 11: (Color online) The parameter discover resulted from the improved PINN with
parameter regularization (α = 0.01): (a)-(b) the variation of unknown coefficients λ1 and
λ2 with different noise intensity; (c) the variation of loss function with different noise
intensity; (d) unknown coefficient λ1 and λ2 error variation under different interference
noise.
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So to summarise, this section mainly describes the results and corresponding analysis
when the parameter regularization method is not used and the parameter regularization
technology with different weight ratio is used both in improved PINN model to study the
inverse problem of YO system. One can also find that when using the parameter regu-
larization strategy with appropriate weight coefficients α (generally, α should not be too
large), the training effect of parameter discovery is much better than that without param-
eter regularization strategy, especially after adding the influence of noise with standard
normal distribution. This shows that improved PINN with L2 norm parameter regular-
ization can not only prevent over fitting, but also have effective anti noise ability. Finally,
we provide a summary of all the aforementioned training results in following Tab. 3.

Table 3: Comparison of correct YO system and identified YO system obtained by means
of the PINN with different noise intensities and weight hyper-parameters α.

YO system

hyper-parameters
α = 0 α = 0.0001 α = 0.001 α = 0.01

Correct YO system

iSt + 0.5Sxx + SL = 0
iLt − (|S|2)x = 0
λ1 error: 0%
λ2 error: 0%

iSt + 0.5Sxx + SL = 0
iLt − (|S|2)x = 0
λ1 error: 0%
λ2 error: 0%

iSt + 0.5Sxx + SL = 0
iLt − (|S|2)x = 0
λ1 error: 0%
λ2 error: 0%

iSt + 0.5Sxx + SL = 0
iLt − (|S|2)x = 0
λ1 error: 0%
λ2 error: 0%

Identified YO system (clean data)

iSt + 0.496981Sxx + SL = 0
iLt − 0.940780(|S|2)x = 0
λ1 error: 0.603867%
λ2 error: 5.922013%

iSt + 0.498461Sxx + SL = 0
iLt − 0.990150(|S|2)x = 0
λ1 error: 0.307775%
λ2 error: 0.984997%

iSt + 0.497624Sxx + SL = 0
iLt − 0.978666(|S|2)x = 0
λ1 error: 0.475115%
λ2 error: 2.133435%

iSt + 0.493709Sxx + SL = 0
iLt − 0.941199(|S|2)x = 0
λ1 error: 1.258254%
λ2 error: 5.880136%

Identified YO system (1% noise)

iSt + 0.487918Sxx + SL = 0
iLt − 0.793893(|S|2)x = 0
λ1 error: 2.416390%
λ2 error: 20.610661%

iSt + 0.496775Sxx + SL = 0
iLt − 0.983750(|S|2)x = 0
λ1 error: 0.645000%
λ2 error: 1.625025%

iSt + 0.500531Sxx + SL = 0
iLt − 0.990297(|S|2)x = 0
λ1 error: 0.106263%
λ2 error: 0.970280%

iSt + 0.429766Sxx + SL = 0
iLt − 0.473574(|S|2)x = 0
λ1 error: 14.046884%
λ2 error: 52.642570%

Identified YO system (2% noise)

iSt + 0.492921Sxx + SL = 0
iLt − 0.871463(|S|2)x = 0
λ1 error: 1.415741%
λ2 error: 12.853670%

iSt + 0.501098Sxx + SL = 0
iLt − 1.007344(|S|2)x = 0
λ1 error: 0.219584%
λ2 error: 0.734389%

iSt + 0.498522Sxx + SL = 0
iLt − 0.988062(|S|2)x = 0
λ1 error: 0.295609%
λ2 error: 1.193810%

iSt + 0.417833Sxx + SL = 0
iLt − 0.335997(|S|2)x = 0
λ1 error: 16.433418%
λ2 error: 66.400314%

Identified YO system (3% noise)

iSt + 0.487733Sxx + SL = 0
iLt − 0.909239(|S|2)x = 0
λ1 error: 2.453375%
λ2 error: 9.076095%

iSt + 0.496592Sxx + SL = 0
iLt − 0.977557(|S|2)x = 0
λ1 error: 0.681674%
λ2 error: 2.244323%

iSt + 0.495939Sxx + SL = 0
iLt − 0.982388(|S|2)x = 0
λ1 error: 0.812221%
λ2 error: 1.761216%

iSt + 0.491294Sxx + SL = 0
iLt − 0.922920(|S|2)x = 0
λ1 error: 1.741284%
λ2 error: 7.707989%

5 General expression analysis of Modulational instability

Modulation instability (MI) is usually used to describe the characteristics of unstable plane
waves, and conversely the one of a stable plane wave is called modulation stability (MS).
The earliest MI study was the pioneering work of Benjamin and Feir in fluid dynamics
in the early 1960s [75]. It is well known that the generation of rogue wave is closely
related to modulation instability (MI). In optical communication systems, the interaction
between dispersion and nonlinear effects will lead to MI, which is a common and very
important physical phenomenon. Therefore, the research of MI is helpful to improve the
performance of optical communication systems. Today, MI has played an important role
in many scientific research fields, such as the fluid dynamics [76], nonlinear optics and
plasma physics [77]. In fact, the MI of background wave of YO system has been studied
in Ref. [78,79]. In this part, we will systematically present the general MI analysis of YO
system (1.1) with unknown parameters λ1 and λ2. The YO system (1.1) have following
accurate plane wave solutions

S = aei(kx−Λt+δ),

L = b,
(5.1)
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here a, b, k, Λ and δ are real constants. Once the spatial period of the plane wave is fixed
to Tpw, then the wavenumber is k = 2π

Tpw
n for n ∈ Z. Substituting Eq. 5.1 into Eq. 1.1, k

and Λ satisfy the following dispersion relation

Λ− λ1k
2 + b = 0. (5.2)

Eq. (1.1) is linearized about the plane wave solution by substitution of

S = aei[kx−(λ1k2−b)t+δ](1 + U),

L = b+ V,
(5.3)

where U , V are small perturbations whose nonlinear contributions are neglected. U(x, t)
is complex valued function, while V (x, t) is real valued function. The linearized equations
are

iUt + λ1Uxx + 2iλ1kUx + V = 0,

Vt − λ2a
2(Ux + U∗x) = 0,

(5.4)

where “ ∗ ” denotes the complex conjugate.

Then by constructing a complete basis for the solutions of the linearized equations
(5.4), the stability of the plane wave solution (5.1) is determined directly. Due to V
is real, it is convenient to construct the small-amplitude Fourier modes in the following
formula [78], that is

U = f+ei
√
µ(x−Ωt) + f∗−e−i

√
µ(x−Ω∗t),

V = gei
√
µ(x−Ωt) + g∗e−i

√
µ(x−Ω∗t),

(5.5)

where
√
µ = 2π

Tpw
m and m ∈ Z. Substituting Fourier modes (5.5) into linearized equations

(5.4), one can obtain following linear system( −λ1µ− 2λ1
√
µk + Ω

√
µ 0 1

0 −λ1µ+ 2λ1
√
µk − Ω

√
µ 1

−ia2λ2
√
µ −ia2λ2

√
µ −iΩ

√
µ

)( f+

f−
g

)
= 0. (5.6)

If µ 6= 0, the linearized dispersion relation can be presented by setting the determinant of
the above matrix to zero, then

Ω
[
(Ω− 2λ1k)2 − λ2

1µ
]
− 2a2λ1λ2 = 0. (5.7)

In general, Eq. (5.7) has three distinct Ω roots, corresponding to three linearly independent
complex-valued vectors (f+, f−, g) satisfying matrix system (5.6), we have( f+

f−
g

)
=

( µΩ(Ω + λ1
√
µ− 2λ1k) + a2√µλ2)
−λ2
√
µa2

−λ2µa
2(Ω + λ1

√
µ− 2λ1k)

)
. (5.8)

The collection of all such Fourier modes composes a wavebasis for the linearized prob-
lem, there is a three-complex-dimensional subspace of eigenmodes (5.5) associated with
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each wavenumber
√
µ 6= 0 by means of the complex-valued vectors (f+, f−, g) and the

linearized dispersion relation (5.7) for Ω. In order to complete the wavebasis of the lin-
earized problem, the three-real-dimensional subspace associated with

√
µ = 0 must also

be constructed, i.e., ( U
V

)
=
( 1

0

)
,
( i

0

)
,
( it

1

)
. (5.9)

Unstable Fourier modes occur if and only if Ω is nonreal. On account of the coefficients
of the linearized dispersion relation are real, nonreal Ω occur in complex conjugate pairs,
with at most one complex conjugate pair possible for any given value µ. Hence, each
unstable wavenumber pair ±√µ has a complex one-dimensional unstable manifold.

We know that the MI arises from a nonreal value of Ω and can be defined via the
growth rate G =

√
µIm(Ω) > 0. Thus, to initiate it, the discriminant of Eq. (5.7),

∆ = 16λ1
4k4µ+ 16λ1

2k3a2λ2 − 8λ1
4k2µ2 − 36λ1

2µk a2λ2 + λ1
4µ3 − 27 a4λ2

2. (5.10)

Thus, for given λ1, λ2 and a, the marginal stability curves occur at ∆ = 0, the MI region
demand ∆ < 0, and the MS region require ∆ > 0, correspondingly.

After setting fixed λ1 and λ2, an asymptotic analysis of the roots µ as k → ±∞ can
be obtained, as shown bellow:

• λ1 = 0.5 and λ2 = 1

The marginal stability curves occur when the discriminant (5.10) satisfy

∆ = −27 a4 + 4 a2ω3 − 9 a2µω + ω4µ− 1

2
ω2µ2 +

1

16
µ3 = 0. (5.11)

Obviously, µ has three roots, thus an asymptotic analysis of the roots as k → ±∞ shows
that the positive roots µ are given by

µ ∼ 4k2 ± 8
√

2a
√
k, k →∞,

µ ∼ −a
2

k

(
1 +

a2

k3

)
, k → −∞.

(5.12)

In other words, independently of the value of a2, Eq. (5.11) has two positive roots and
one negative root as k → ∞ and one positive root and two nonreal roots as k → −∞.
Also µ = 0 occurs at precisely one value of k = kc > 0, where k3

c = 27
4 a

2 (if a = 1,

thus kc = 3
221/3, kn = (2a2)1/3 and kc/kn = 3

2). At (k, µ) = (0, 0), the linearized

dispersion relation (5.7) has one real root (a2/3) and two nonreal roots (−1/2 a2/3 +
1/2 i
√

3a2/3,−1/2 a2/3 − 1/2 i
√

3a2/3) for Ω, that is, there is a one-dimensional unsta-
ble manifold for each

√
µ sufficiently close to zero. In general, the distinguishing features

of the MI in the (k,
√
µ) plane (a deformation of the plane (k, µ)) can be summarized as

follows:
1. There is an interval k ∈ (−∞, kc) for wavenumbers modulationally unstable to long
wavelength perturbations, and this interval always contains the spatially independent
plane waves k = 0.
2. The MI band becomes very narrow as k → −∞ according to the scaling

√
µ ∼ a√

−k .
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3. The narrow bands of unstable intermediate wavelengths asymptotically approach the
line
√
µ = 2k as k →∞.

4. There is an interval of wavenumbers k ∈ (kc,∞) that are unstable to intermediate
wavelength perturbations but stable to long wavelength perturbations.

• λ1 = −1 and λ2 = −4

The marginal stability curves occur when the discriminant (5.10) satisfy

∆ = −64 a2ω3 + 16ω4µ− 432 a4 + 144 a2µω − 8ω2µ2 + µ3 = 0. (5.13)

Obviously, µ has three roots, thus an asymptotic analysis of the roots as k → ±∞ shows
that the positive roots µ are given by

µ ∼ a2

k

(
4− a2

k3

)
, k →∞,

µ ∼ 4k2 ± 8
√

2a
√
−k, k → −∞.

(5.14)

In other words, independently of the value of a2, Eq. (5.13) has one positive root and
two nonreal roots as k → ∞ and two positive roots and one negative root as k → −∞.
Also µ = 0 occurs at precisely one value of k = kc < 0, where k3

c = −27
4 a

2 (if a = 1, thus

kc = −3
221/3). At (k, µ) = (0, 0), the linearized dispersion relation (5.7) has one real root

and two nonreal roots (the form of the three roots is complex and omitted here) for Ω,
that is, there is a one-dimensional unstable manifold for each

√
µ sufficiently close to zero.

In general, the distinguishing features of the MI in the (k,
√
µ) plane (a deformation of

the plane (k, µ)) can be summarized as follows:
1. There is an interval k ∈ (kc,∞) for wavenumbers modulationally unstable to long wave-
length perturbations, and this interval always contains the spatially independent plane
waves k = 0.
2. The MI band becomes very narrow as k →∞ according to the scaling

√
µ ∼ 2a√

k
.

3. The narrow bands of unstable intermediate wavelengths asymptotically approach the
line
√
µ = −2k as k → −∞.

4. There is an interval of wavenumbers k ∈ (−∞, kc) that are unstable to intermediate
wavelength perturbations but stable to long wavelength perturbations.

Next, in order to more intuitively understand the distribution of MI and MS regions,
we exhibit the linear stability diagram and growth rate density plot of two specific examples
for plane-wave solution (5.3) with a = 1 by taking two sets of specific parameters λ1 and λ2

in Fig.12. Specifically, after taking λ1 = 0.5 and λ2 = 1, one can obtain the corresponding
plot in Fig. 12 (a), the region of MI is surrounded by two marginal stability curves (black
dash-dotted curves) and the line µ1/2 = 0, the density plot of the growth rate G in the
whole (k/kn, µ

1/2) plane (for comparing with the results of Ref. [79], we make a scale
transformation on the plane (k, µ)) can be calculated and shown within the MI region
with the ∆ < 0. In the section on the forward problem of YO system, there different RWs
are showcased in different k intervals. Therefore, we also display the areas where these
three different forms of RWs exist, which are separated by pink dotted lines in Fig. 12
(a). It is worth mentioning that these results shown by the aforementioned special case is
consistent with the research results of Chen et al [79].

Similarly, if taking λ1 = −1 and λ2 = −4, we obtain the corresponding region diagram
of MI, MS and three different forms of RWs in the whole (k, µ) plane, as well as the density
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plot of growth rate G are exhibit in Fig. 12 (b). According to the marginal stability curve
on the left when ∆ = 0, one can easily calculate k = −3

221/3 at the intersection of the
aforementioned curve and the horizontal ordinate. From the MI region in Fig. 12 (b), one
can obtain that RWs exist in the region of k > −3

221/3, this result is consistent with the
conclusion obtained by Chen et al. via the analysis of RWs with the aid of KP reduction
method and related characteristic points [72]. In order to reveal the existence regions for
three different forms of RWs in Fig. 12 (b), we showcase the existence ranges for three
kinds of RWs in the MI region of Fig. 12 (b) by means of purple dotted line and the
relevant conclusions of Ref. [72], in which bright-bright RWs: −3

221/3 < k 6 −2
332/3,

intermediate-bright RWs: −2
332/3 < k < 0, dark-bright RWs: k > 0.
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Figure 12: (Color online) MI, MS and RW existence region diagram for the plane-wave
solutions with a = 1, in which the black dash-dotted curves stand for the marginal stability
defined by ∆ = 0, and the contour plot shows the growth rate G of the MI: (a) λ1 = 0.5
and λ2 = 1; (b) λ1 = −1 and λ2 = −4.

6 Conclusions and discussions

In this paper, the data-driven forward-inverse problems and MI analysis of YO system
are showcased by means of deep learning method based on the improved PINN with
parameter regularization strategy, as well as linearized instability analysis technique on
the plane waves. From many of our previous work [34,59,70], we realize that by introducing
scalable hyper-parameters into the activation function, the improved PINN employed to
simulate localized waves of nonlinear integrable systems not only improves the convergence
of the network, but also obtains better accuracy and network performance. Therefore, for
the data-driven forward problems of YO system, we find that improved PINN can well
reveal three different forms of RWs, including bright RW, intermediate RW and dark RW
from the perspective of short wave. Although the relative L2 norm errors of RWs of
YO system simulated arising from improved PINN model are smaller after introducing
L2 norm parameter regularization technique into PINN, the effect is not so obvious, as
shown in Tab. 2. However, in the further study of the inverse problem of YO system, we
find that the data-driven unknown parameters trained by improved PINN with L2 norm
parameter regularization are more accurate than those trained by means of the PINN
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without parameter regularization. Compared with the general PINN model, the improved
PINN with parameter regularization shows excellent noise immunity in the inverse problem
of YO system in section 4. Furthermore, Asymptotic analysis of wavenumber k and the MI
analysis of YO system (1.1) with unknown parameters λ1 and λ2 are derived systematically
by applying the linearized instability analysis on plane wave, and the density plots of MI,
MS and RW regions are vividly displayed in Fig. 12. Moreover, due to the exponential
growth characteristics of MI, it will still develop into a large value after a certain distance
and eventually interfere with the spatiotemporal localized RWs.

The introduction of L2 norm parameter regularization strategy in deep learning is a
very mature and commonly used means. Naturally, we successfully applied this technology
to improved PINN algorithm and found that it has a positive effect in the positive prob-
lem of YO system, and achieves an amazing effect in the parameter discovery process of
inverse problem in this paper. In addition to L2 norm parameter regularization, there are
other parameter regularization strategies, such as L1 norm parameter regularization. In
comparison to L2 regularization, L1 regularization results in a solution that is more sparse,
here sparsity in this context refers to the fact that some parameters have an optimal value
of zero. The L2 regularization does not cause the parameters to become sparse, while
L1 regularization may do so for large enough α. However, when we introduce L1 norm
parameter regularization strategy into improved PINN model, we find that the simulation
effect is not ideal, so how to better combine L1 parameter regularization technology with
improved PINN to deal with the various data-driven problems of nonlinear integrable sys-
tems needs further research. Of course, there are other parameter regularization methods,
but how to properly introduce these regularization methods into deep learning methods
to solve the problem at hand is an eternal topic.
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