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Abstract
Compressed ultrafast photography (CUP) has been shown to be a powerful tool to measure
ultrafast dynamic scenes. In previous studies, CUP used a two-step iterative shrinkage/
thresholding (TwIST) algorithm to reconstruct three-dimensional image information. However,
the image reconstruction quality greatly depended on the selection of the penalty parameter,
which caused the reconstructed images to be unable to be correctly determined if the ultrafast
dynamic scenes were unknown in advance. Here, we develop an augmented Lagrangian (AL)
algorithm for the image reconstruction of CUP to overcome the limitation of the TwIST
algorithm. Our numerical simulations and experimental results show that, compared to the
TwIST algorithm, the AL algorithm is less dependent on the selection of the penalty parameter,
and can obtain higher image reconstruction quality. This study solves the problem of the image
reconstruction instability, which may further promote the practical applications of CUP.

Keywords: compressed ultrafast photography, computational imaging, compressed sensing,
augmented Lagrangian

(Some figures may appear in colour only in the online journal)

1. Introduction

Capturing ultrafast dynamic scenes at high imaging speed has
been a long-term dream of scientists, as it can enable the
discovery of new physical phenomena and the development
of new optical imaging technologies. It has been shown that
charge-coupled device (CCD) or complementary metal oxide
semiconductor (CMOS)-based imaging techniques provide
well-established tools to measure dynamic scenes. Using this
imaging method, the dynamic scene at each moment is
recorded in turn, and thus the acquisition rate is limited by the
on-chip storage and electronic readout speed. So far, the

maximal frame rate of a CCD or CMOS is about in the order
of 107 frames per second (fps) [1]. It is a great challenge to
further increase the imaging speed under the current technical
conditions. Recently, a compressed ultrafast photography
(CUP) technique employed a new imaging strategy to break
this technical limitation [2–6], which recorded the whole
dynamic scene and then recovered it by a computational
imaging method. Now, the imaging speed of CUP can be up
to 1013 fps; it can increase by six orders compared to that of
a CCD or CMOS. The number of reconstructed images
depends strongly on the mathematical processing algorithms
and the temporal sweeping velocity. So far, CUP has been

Journal of Optics

J. Opt. 21 (2019) 035703 (7pp) https://doi.org/10.1088/2040-8986/ab00d9

2040-8978/19/035703+07$33.00 © 2019 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0003-3168-4962
https://orcid.org/0000-0003-3168-4962
mailto:sazhang@phy.ecnu.edu.cn
https://doi.org/10.1088/2040-8986/ab00d9
https://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/ab00d9&domain=pdf&date_stamp=2019-02-14
https://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/ab00d9&domain=pdf&date_stamp=2019-02-14


successfully applied to measuring some typical transient
optical events, such as laser pulse reflection and refraction [2],
photon racing in two media [2], photonic Mach cones [3], and
spatially modulated pulsed laser spots [4].

In CUP, the dynamical scene was encoded with random
codes and decoded using a two-step iterative shrinkage/
thresholding (TwIST) algorithm [7]. However, the selection
of the penalty parameter in the TwIST algorithm will sig-
nificantly affect the image reconstruction quality, which is
unfavorable for determining the unknown dynamic scenes. To
overcome the drawback of the TwIST algorithm, here we
report an augmented Lagrangian (AL) algorithm to recon-
struct the ultrafast dynamic scenes for CUP. To verify the
advantages of the AL algorithm, we numerically simulate a
flashing Shepp–Logan (S–L) phantom and a moving circular
spot in the space, and experimentally measure a collimated
femtosecond laser obliquely illuminating a stripe pattern and
the temporal evolution of a spatially modulated picosecond
laser spot. Both the simulation and experimental results show
that the AL algorithm is almost unaffected by the selection of
the penalty parameter, and can obtain higher image recon-
struction quality compared to the TwIST algorithm.

2. Methods

In CUP, as shown in figure 1, the ultrafast dynamic scene
I(x,y,t) is measured by a CCD after a spatial encoding operator,
C, a temporal shearing operator, S, and a spatiotemporal inte-
gration operator, T. Thus, the measured two-dimensional (2D)
image E(x,y) can be mathematically formulated as [2]

=( ) ( ) ( )E x y TSCI x y t, , , . 1

For convenience, we define O=TSC, thus equation (1) can be
further written as

=( ) ( ) ( )E x y OI x y t, , , . 2

To reconstruct the original ultrafast dynamic scene I(x,y,t), it
needs to inversely solve equation (2). A common method is to
employ a convex total variation (TV) model [8–11], which can

be expressed as
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where Φ(I(x, y, t)) is the form of TV for I(x, y , t). Usually, the
two constrained problems in equation (3) can be optimized by
a Lagrangian function that is defined as [12]

l l= F( ( ) ) ( ( ))‐ ( ( )‐ ( ))
( )

L I x y t I x y t E x y OI x y t, , , , , , , , ,
4

where λ is the Lagrange multiplier matrix. Here, E(x,y)-OI(x, y,
t) is a matrix, but it will be arranged as a vector in operation,
and the same operation is performed for λ. Thus, λ(E(x, y)-OI
(x,y,t)) is a scalar. Only when λ approaches the unique right
matrix due to the linear independence constraint qualification
(LICQ), I(x, y, t) is the solution of equation (3) by minimizing
L(I(x, y, t), λ) [12]. Once L(I(x, y, t),ζ) achieves the minimal
value, the derivative of P(I(x,y,t),ζ) to I(x,y,t) should be zero,
which can be written as

l l = F + =( ( ) ) ( ( )) ( )L I x y t I x y t O, , , , , 0. 5

To deal with the big data problem in equation (4), here a
computational method of quadratic penalty function is used
and written as [12]

z
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where ||·|| is a l2 norm, which is utilized for vectors, and ζ is the
penalty parameter with ζ>0. In the same way, the derivative
of P(I(x,y,t),ζ) to I(x,y,t) is also zero, and it can be formulated
as

z
z
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In previous studies, the image reconstruction method for CUP
was based on the quadratic penalty function, such as TwIST
[2–4] and the fast iterative shrinkage/thresholding algorithm

Figure 1. A schematic diagram of the data acquisition for CUP, where, t, t′: time; x, y: spatial coordinates of the dynamical scene; x′, y′: spatial
coordinates at the streak camera; C: spatially encoding operator; S: temporally shearing operator; and T: spatiotemporally integration operator.
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(FISTA) [5]. Comparing equations (7) and (5), the Lagrange
multiplier λ can be deduced as

l z= - -( ( ) ( )) ( )E x y OI x y t, , , . 8

By rearranging equation (8), we have

z
l- = -( ) ( ) ( )E x y OI x y t, , ,

1
. 9

We can use the value of E(x, y)-OI(x, y, t) to illustrate the
feasibility of the image reconstruction, and the smaller value
corresponds to the greater feasibility. It is easy to see from
equation (9) that the small value ζ will bring great infeasibility.
Increasing ζ can improve the feasibility, but it will cause ill
conditions for the quadratic penalty function [12]. Therefore,
the selection of ζ will greatly affect the image reconstruction
quality. The TwIST algorithm in previous studies was faced
with the problem of image reconstruction instability [2–4]. To
overcome this problem, here we introduce an AL function that
is written as [10, 13–15]
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where γ is a variable Lagrange multiplier matrix. Similarly, the
derivative of La(I(x, y, t), γ, ζ) to I(x, y, t) will be zero when
La(I(x, y, t), γ, ζ) approaches the minimal value, and it is given
by

g z
g z
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, , , , , ,
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By comparing equations (11) and (5), the Lagrange multiplier
λ can be calculated as [12]

l g z= - -( ( ) ( )) ( )E x y OI x y t, , , . 12

Equation (12) can be further formulated as

z
l g- = - -( ) ( ) ( ) ( )E x y OI x y t, , ,

1
. 13

One can see from equation (13) that the value of E(x, y)-OI(x,
y, t) depends on ζ and γ. By optimizing γ in each iteration, it is
easy to minimize E(x, y)-OI(x, y, t). Therefore, the AL-based
image reconstruction method can be independent of the
selection of ζ. Moreover, simultaneously controlling the two
parameters ζ and γ can make the term E(x,y)-OI(x,y,t) easier to
converge, and accordingly improves the image reconstruction
accuracy. Obviously, compared to the previous TwIST algo-
rithm, the proposed AL algorithm is less dependent on the
selection of ζ and can obtain higher image reconstruction
quality.

In the image reconstruction, we initially set ΔLa0=1,
γ0=0, tolerance ρ (0<ρ<10−3), penalty parameter ζ

(ζ>0), and start the point I0. Here, we adopt the AL algo-
rithm framework as follows.

While D -La
i 1>ρ do

Find the minimizer I i of La
i by minimizing equation (10) from I i-1;

Compute ΔLa i= - - -   ( ∣∣ ∣∣ )/L L L ;a
i

a
i

a
i

2
1

2
1

2

Update γ i by γ i=γ i-1-ζ(E(x,y)-OI(x,y,t));
End do

In each iteration, we minimize La(I(x, y, t), γ, ζ) in
equation (10) by utilizing a TVAL3 [13]. Moreover, it should
be noted that γ i is a variable matrix and will be automatically
updated.

3. Results and discussion

We first numerically simulate a simple dynamic scene with a
flashing 200-by-200 S–L phantom. In the dynamic scene, the
intensity of the measured target varies, but the position
remains unchanged. The ultrafast dynamic scene consists of
six frames, and the odd frame is bright while the even one is
dark. Here, we utilize a normalized correlation coefficient
(CC) value to characterize the image reconstruction quality.
In mathematics, the CC is used to describe the image simi-
larity, which can be written as [16]
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where N is the number of total pixels in the image, and an
and ān (or en and ēn) are a pixel value and mean of the
reconstructed image (or base image), respectively. In gen-
eral, the larger the CC value, the higher the image recon-
struction quality. When the flashing S–L phantom is well
reconstructed, the CC value for the bright frame is large
while that for the dark frame is small. Figure 2(a) shows the
base S–L phantom image for the bright (up panel) and dark
(low panel) frames. Figures 2(f) and (g) present the CC
values with the increase in the penalty parameter ζ by the
AL (black line) and TwIST algorithms (red line) for the
bright and dark frames, respectively. With the increase in ζ,
the CC value for the bright (or dark) frame shows an
increase (or decrease) followed by a decrease (or increase)
process for both algorithms. However, the ζ value sig-
nificantly affects the image reconstruction quality for the
TwIST algorithm, but has little effect for the AL algorithm.
Moreover, the maximal (or minimal) CC value for the
bright (or dark) frame is 94.17% (or 11.67%) for the AL
algorithm, while it is 94.08% (or 24.17%) for the TwIST
algorithm. Obviously, compared to the TwIST algorithm,
the AL algorithm can obtain higher image reconstruction
quality. In addition, the CC value for the TwIST algorithm
will experience a mutation phenomenon, but will not for the
AL algorithm. For further comparison of the image recon-
struction results by the two algorithms, we give the best
and worst reconstructed images for the bright and dark
frames by the AL and TwIST algorithms, as shown in
figures 2(b)–(e). By comparing the two algorithms, the
AL algorithm can obtain clearer details of the image
information, especially in the region labelled with arrows.
Furthermore, the dark frame also carries less information
from the bright frame.
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To further illustrate that, compared to the TwIST algo-
rithm, the AL algorithm has the greater advantage in the
image reconstruction for CUP, we simulate another type of
ultrafast dynamic scene: that is, a circular spot with the
Gaussian intensity distribution moving from left to right.

Here, the position of the measured target moves, but the
intensity remains unchanged, which is the opposite of the
dynamic scene above. In our simulation, the ultrafast dynamic
scene contains 20 base images, as shown in figure 3(a).
Figures 3(b) and (c) show the reconstructed images by the AL

Figure 2. Numerical simulation of a flashing S–L phantom: the original bright (up panel) and dark (low panel) phantoms (a); the best
reconstructed phantoms by the AL (b) and TwIST (c) algorithms; the worst reconstructed phantoms by the AL (d) and TwIST (e) algorithms;
the CC values of the reconstructed bright (f) and dark (g) phantoms by the AL (black lines) and TwIST (red lines) algorithms with the
increase in the penalty parameter ζ.

Figure 3. Numerical simulation of a moving circular spot: the original circular spot moving from left to right (a); the reconstructed circular
spots by the AL (b) and TwIST (c) algorithms; the reconstructed circular spots at the tenth frame by the AL (d) and TwIST (e) algorithms
with the penalty parameter ζ from 1 to 5.
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and TwIST algorithms, respectively. As shown in figure 3(b),
these reconstructed circular spots by the AL algorithm keep
the original shape well. However, those reconstructed by the
TwIST algorithm have an obvious deformation, especially in
the front and back of a few of images, as shown in figure 3(c).
That is to say, the TwIST algorithm will affect the spatial
structure of the reconstructed ultrafast dynamic scene, but the
AL algorithm will not. Figures 3(d) and (e) present the tenth
reconstructed images with ζ from 1 to 5 by the AL and TwIST
algorithms, respectively. As expected, the reconstructed cir-
cular spots by the AL algorithm remain the same shape,
which is independent of ζ, but those by the TwIST algorithm
are deformed with the smaller value of ζ. Thus, if the ultrafast
dynamic scene is unknown in advance, the reconstructed
images cannot be correctly determined by the TwIST algo-
rithm. It is obvious that the AL algorithm can solve the
problem of image reconstruction instability in CUP.

As shown above, we have proved from theoretical for-
mulation and numerical simulations that the AL algorithm has
more advantages in the image reconstruction for CUP than the
TwIST algorithm. Next, we further compare the two image
reconstruction methods in experiments. We measure such an
ultrafast dynamic scene with a collimated femtosecond laser
pulse obliquely illuminating a stripe pattern, and the exper-
imental arrangement is shown in figure 4(a). A Ti:sapphire

amplifier (Spectra-physics, Spitfire Ace-35F) is used to gen-
erate the femtosecond laser pulse with a pulse width of about
50 fs, a central wavelength of 800 nm, and repetition rate of
10 Hz. The output femtosecond laser pulse obliquely illumi-
nates a transverse stripe pattern at an angle of ∼38° with
respect to the surface normal. The wavefront movement on
the stripe pattern is imaged via a camera lens and a 4f imaging
system, and then a digital micromirror device (DMD) (Texas
Instruments, DLP LightCrafter) encodes the image. Finally,
the encoded dynamical scene is sent to a streak camera
(Hamamatsu, C7700) for measurement by a beam splitter. In
our experiment, the spatial resolution of the streak camera is
18 lp/mm, and the temporal resolution is 4 ps (i.e. the ima-
ging speed of 2.5×1011 fps). Figures 4(b) and (c) show the
best reconstruction images by the AL and TwIST algorithms,
respectively. As can be seen, both algorithms can recover the
original dynamical scene of the wavefront movement, but the
AL algorithm can better reflect the true situation. Addition-
ally, compared to the TwIST algorithm, less background
noise is involved for the AL algorithm.

What is more, we also perform another experiment to
further show the advantage of the AL-based image recon-
struction method. Here, we measure the temporal evolution of
a spatially modulated picosecond laser spot, and the exper-
imental design is shown in figure 5(a). The output 50 fs laser

Figure 4. The experimental arrangement for CUP to measure a femtosecond laser pulse obliquely illuminating a stripe pattern (a), where, PC
is a personal computer, BS is a beam splitter, L (L1, L2, and L3) is a lens, M (M1 and M2) is a mirror, and DMD is a digital micromirror
device. The best reconstruction images by the AL (b) and TwIST (c) algorithms.
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pulse from the Ti:sapphire amplifier is broadened to 20 ps by
a stretcher, and a thin wire is used to divide the laser spot into
two components in space. The spatially modulated laser spot
illuminates on a thin white paper, and a small fraction of
photons can pass through the thin white paper. Thus, the
temporal evolution of the laser spot can be measured by our
CUP system. The best reconstruction images by the AL and
TwIST algorithms are shown in figures 5(b) and (c), respec-
tively. As expected, the AL algorithm can clearly distinguish
the blocked part in the center of the laser spot, but the TwIST
algorithm does not, especially around the time zero. More-
over, similar to the experimental result in figure 4, more
background noise exists for the TwIST algorithm.

4. Conclusions

In summary, we have developed an AL algorithm for CUP to
reconstruct the ultrafast dynamic scenes. Our theoretical and
experimental results showed that, compared to the TwIST
algorithm, the AL algorithm is less dependent on the selection
of the penalty parameter in the image reconstruction, and can
obtain higher image reconstruction quality. The AL algorithm
overcomes the limitation of image reconstruction instability
demonstrated using the TwIST algorithm in previous studies,
which is very meaningful for correctly identifying the
unknown ultrafast dynamic scenes. Moreover, this study also
presents a clear physical and mathematical insight for the
advantages of the AL algorithm in the image reconstruction of
CUP, which may further promote the future applications of
the AL algorithm in the computational imaging area. In

addition, considering the standard compressed sensing model
in equation (3), some other algorithms can also be used for the
image reconstruction of CUP, such as gradient projection for
sparse reconstruction (GPSR) [17]. In future studies, an
important aim for CUP is to optimize the algorithm to further
improve the image reconstruction accuracy.
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