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This paper considers one-sample testing of a high-dimensional covari-
ance matrix by deriving the detection boundary as a function of the signal
sparsity and signal strength under the sparse alternative hypotheses. It first
shows that the optimal detection boundary for testing sparse means is the
minimax detection lower boundary for testing the covariance matrix. A mul-
tilevel thresholding test is proposed and is shown to be able to attain the
detection lower boundary over a substantial range of the sparsity parameter,
implying that the multilevel thresholding test is sharp optimal in the minimax
sense over the range. The asymptotic distribution of the multilevel thresh-
olding statistic for covariance matrices is derived under both Gaussian and
non-Gaussian distributions by developing a novel U -statistic decomposition
in conjunction with the matrix blocking and the coupling techniques to handle
the complex dependence among the elements of the sample covariance ma-
trix. The superiority in the detection boundary of the multilevel thresholding
test over the existing tests is also demonstrated.

1. Introduction. As part of high-dimensional statistical inference, testing for high-
dimensional covariances has been an active area of statistical research in the last two decades.
Early high-dimensional tests (Chen, Zhang and Zhong (2010), Jiang (2004), Ledoit and Wolf
(2002), Schott (2005)) were largely formulated by modifying the classical fixed dimensional
tests (Anderson (2003), Nagao (1973)), while more general banded covariance structures
were considered in Cai and Jiang (2011) and Qiu and Chen (2012).

The existing formulations of one-sample high-dimensional covariance tests are generally
based on two types of distance measures between the sample and the hypothesized covariance
matrices, namely the sum-of-square (L2) and the maximum (Lmax) statistics as represented,
respectively, by Chen, Zhang and Zhong (2010), Qiu and Chen (2012) for the L2-type and
Cai and Jiang (2011), Jiang (2004) for the Lmax-type. Cai and Ma (2013) and Cai, Liu and
Xia (2013) studied the minimax power of separating the alternative from the null hypotheses
under different signal regimes. They showed that the L2 and Lmax-tests are minimax rate
optimal under the dense signal regime and the sparse and strong signal regime, respectively.
In addition to these results, Arias-Castro, Bubeck and Lugosi (2012) investigated near opti-
mal tests for detecting nonzero correlations in a one-sample setting for Gaussian data with
clustered signals.

In particular, Cai and Ma (2013) considered the minimax power of the one-sample testing
problem of a covariance � being identity under the Gaussian distribution. Let W1,α be the
collection of all α-level test procedures for the null hypothesis H0 : � = Ip , where Ip is the
p-dimensional identity matrix. Let U1(b) = {� : ‖� − Ip‖F ≥ b(p/n)1/2} be the covariances
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at least b(p/n)1/2 apart from the identity matrix in the Frobenius norm, which constitutes the
alternative hypothesis. They showed that there exist positive constants b0 and ω ∈ (0,1) such
that

(1.1) sup
W∈W1,α

inf
�∈U1(b0)

P(W = 1) ≤ 1 − ω,

as n,p → ∞. This indicates that (p/n)1/2 is the minimum rate for the Frobenius distance
between � and Ip such that the minimax risk for testing � = Ip may diminish to 0. Cai
and Ma (2013) also show that the L2-norm based test proposed by Chen, Zhang and Zhong
(2010) is rate optimal under the class U1(b) with power tending to 1 if b → ∞ as n,p → ∞.

The above minimax results provide the rate of the minimum signals that can be detected.
However, the results are not sharp as the expressions of b0 in U1(b0) are unknown. It is of
both theoretical and practical value to derive the sharp optimality result, which shows how
the constant depends on signal strength and sparsity. It is noted that although the aforemen-
tioned L2-type and the Lmax-type tests are rate optimal under the dense signal and the strong
signal regimes, respectively, they may not be sharp optimal, and the minimax results for the
most challenging sparse and weak signal regime has not been studied for high-dimensional
covariance matrix testing.

This study aims at deriving the tight minimax detection boundary for testing a diagonal
covariance matrix as a function of the signal sparsity and strength. Our main findings are the
following:

1. We show that for Gaussian data, the optimal detection boundary DB(β) defined in (2.9)
for testing mean vectors (Donoho and Jin (2004), Ingster (1997)) is the minimax detection
lower boundary for testing a covariance being diagonal against the sparse and weak alterna-
tives as shown in Theorem 1.

2. A multilevel thresholding (MT) test is proposed for Gaussian data, which is shown to
have proper size control (Theorems 2–3) and be able to achieve the minimax detection lower
boundary DB(β) over at least 75% of the sparsity range (Corollary 1), and hence, it is sharp
optimal over the range.

3. Extend the MT test to sub-Gaussian data (Theorems 4–5, Proposition 5) and establish
its detection boundary, which coincides with that for the Gaussian case over at least 50% of
the sparsity range.

The minimax detection lower boundary for a hypothesis testing problem prescribes a re-
gion of signals in terms of the signal sparsity and strength parameters such that no test can
distinguish the null and the alternative hypotheses if the signal strength is below the bound-
ary. Here, a test is said to be able to distinguish the null and alternative hypotheses of a testing
problem if the sum of the probabilities of committing the Types I and II errors diminishes to
zero asymptotically. If a test procedure can attain a minimax detection lower boundary as
its detection boundary in the sense that the test can distinguish the null and the alternative
hypotheses for any combination of signal strength and sparsity above the detection lower
boundary, then we say the minimax detection lower boundary is optimal or tight and the test
procedure is sharp optimal for the testing problem.

Although Donoho and Jin (2004, 2015) and Qiu, Chen and Nettleton (2018) have estab-
lished the tight detection boundary for testing high-dimensional means and regression coef-
ficients, attaining similar results for covariance matrices is more challenging due to the more
complex dependence among the entries of the sample covariances. We propose a new method
to construct the least favorable prior on the sparse and faint nondiagonal covariances, which
leads to the minimax detection lower boundary under the least favorable prior. We develop
a test that achieves the detection lower boundary by conducting multilevel thresholding that
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removes the nonsignal bearing entries of the covariance matrix from the test statistic formula-
tion, and reduces the overall noise (variance) of the test statistic. Since the proposed MT test
is able to attain the detection lower boundary over a large portion of the sparsity range (de-
pending on the relationship between n and p), the derived minimax detection lower boundary
is tight and the proposed test is sharp optimal over this range. Furthermore, we demonstrate
that both the L2 test and Lmax test cannot achieve this detection boundary.

The paper is organized as follows. We present the sparse and weak signal setting for the
high-dimensional covariance testing problem, and the minimax detection lower boundary for
the Gaussian data in Section 2. Section 3 introduces the multilevel thresholding test after
providing the asymptotic distribution of the test statistic. Section 4 reports a power analysis
of the MT test and shows the MT test can attain the minimax detection lower boundary over
at least 75% of the sparsity range. Extension to the sub-Gaussian data is made in Section 5.
Results of simulation studies are reported in Section 6. Technical proofs and other results
are given either in the Appendix or the Supplementary Material (SM) (Chen, Qiu and Zhang
(2023)).

2. Hypotheses and minimax detection boundary. We start with Gaussian data while
the extension to non-Gaussian data is made in Section 5. Suppose there is a random sample of
independent and identically distributed (IID) random vectors X1, . . . ,Xn∼Np(μ,�) drawn
from a p-dimensional multivariate normal distribution with mean μ = (μ1, . . . ,μp)T and co-
variance � = (σj1j2)p×p , where Xk = (Xk1, . . . ,Xkp)T for k = 1, . . . , n. Let � = (ρj1j2)p×p

be the correlation matrix of �. We consider testing

(2.1) H0 : σj1j2 = 0 for all j1 	= j2 vs. Ha : σj1j2 	= 0 for some j1 	= j2

under a high-dimensional setting where p 
 n, as well as a moderate-dimensional setting
where pξ ∼ n for ξ ∈ [1,2]. Here, for two real sequences {an} and {bn}, an ∼ bn means that
there are two positive constants c1, c2 such that c1 ≤ an/bn ≤ c2 for all n.

2.1. Sparse and weak signals. We want to derive the tight detection boundary for testing
the hypotheses (2.1), which is a function of the signal strength and sparsity that separates
the signals into the testable and untestable regions; see Donoho and Jin (2004) and Hall and
Jin (2010) for the detection boundary of testing high-dimensional means. Intuitively, if the
nonzero covariances (signals) are too few and too faint relative to those prescribed by the
boundary, no test can distinguish the null and alternative hypotheses of (2.1).

To this end, we construct the least favorable prior on a subset of the alternatives that consti-
tutes the challenging setting with the number of nonzero σj1j2 being rare and their magnitude
being faint. Let q = p(p − 1)/2 be the number of upper diagonal elements in �. Suppose
that there are ma = �q(1−β)� nonzero σj1j2 with j1 < j2, where β ∈ (1/2,1) is the sparsity
parameter and �·� denotes the floor function. We note that β ∈ (1/2,1) represents the sparse
case of signal detection, while that β ∈ (0,1/2) constitutes the dense signal case where the
number of signals ma is much larger than p. Throughout the paper, we call (1/2,1) as the
sparsity range of the signals. For this sparse case, we consider the strength of signals as

(2.2) |σj1j2 | =
√

2rj1j2 log(q)/n =
√

4rj1j2 log(p)/n
{
1 + o(1)

}
if σj1j2 	= 0

for rj1j2 > 0. Here, the nonzero covariances can be either negative or positive. Note that,
under the covariance class U1(b) = {� : ‖� − Ip‖F ≥ b(p/n)1/2} considered in Cai and Ma
(2013), the signal strength for each nonzero covariance is at least at the order {p/(nma)}1/2 =
n−1/2pβ−1/2 if all the signals have the same strength. Under this case, the minimum signal
strength under the class U1(b) is much larger than n−1/2 if β > 1/2 for the sparse case.
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Meanwhile, it is smaller than n−1/2 if β < 1/2 for the dense case under U1(b). Our setting
reflects signals that are both sparse and weak, which are difficult to be tested.

Let tp = max1≤j1≤p

∑
j2 	=j1

I(σj1j2 	= 0) be the maximum number of nonzero off-diagonal
values in the rows of �, where I(·) is the indicator function. We consider nonstructured
signals such that any component of the random vector is not correlated with many other
components. This implies tp ≤ C1 uniformly for all p and a positive constant C1. For positive
constants C1 and C2, we consider a class of covariance matrices:

U(β, r0, τ ) =
{
� : there are ma = ⌊q(1−β)⌋ nonzero σj1j2 as (2.2) with rj1j2 ≥ r0

for j1 < j2, max
1≤j≤p

σjj ≤ τ, min
1≤j≤p

σjj ≥ C2 and tp ≤ C1

}
.

(2.3)

While the hypotheses in (2.1) offer general alternatives against a diagonal covariance,
U(β, r0, τ ) in (2.3) restricts on the number and magnitude of signals under the alternative
hypothesis. Here, the signal strength parameters {rj1j2} together with the sparsity parameter
β ∈ (1/2,1) constitute the rare and faint signal setting. Compared to the class U1(b) analyzed
in (1.1) based on the Frobenius distance under alternative hypotheses, U(β, r0, τ ) is more
structured that specifies the level of signal strength to facilitate our analysis.

For � = (σj1j2) ∈ U(β, r0, τ ), the standardized signal strength to detect nonzero σj1j2 is

(2.4) r̃j1j2 = rj1j2/(σj1j1σj2j2) for σj1j2 	= 0,

by recognizing that the numerator is the signal strength level in |σj1j2 | and the denominator
is the main order term of the variance of

√
n(σ̂j1j2 − σj1j2) under the Gaussian distribution.

Let A1 = {(j1, j2) : j1 < j2, σj1j2 	= 0}. Define the maximal and minimal standardized signal
strength of � as

(2.5) r̄ = max
(j1,j2)∈A1

r̃j1j2 and ¯r = min
(j1,j2)∈A1

r̃j1j2 .

Since all rj1j2 are larger than r0 and τ is the upper bound of {σjj } in the class U(β, r0, τ ),
the minimal standardized signal strength over U(β, r0, τ ) is min�∈U(β,r0,τ ) ¯r = r0τ

−2. There-
fore, the minimax detection boundary for testing the hypotheses in (2.1) over U(β, r0, τ ) is
characterized by r0τ

−2.

2.2. Detection lower boundary. The key to evaluating the minimax risk is to derive the
Bayes risk under the least favorable prior (Berger (1985), Lehmann (1959)). For that purpose,
we introduce graph notation to construct the least favorable prior. Let [p] = {1, . . . , p} be the
index set of variables and G = (A,U) be a graph built on the nonzero covariances (signals) of
�, where the vertex set A = {j1 : j1 ∈ [p] and σj1j2 	= 0 for some j2 ∈ [p] and j2 	= j1} and
the edge set U = {(j1, j2) : j1, j2 ∈ [p], j1 	= j2 and σj1j2 	= 0} contain the variable indices
and pair of variables with nonzero covariances, respectively. The least favorable prior can be
specified as follows:

the node set A is composed by 2ma vertices selected from [p] uniformly at random,(2.6)

the edge set U is formed by a perfect matching on A uniformly at random,(2.7)

σjj = τ for all j ∈ [p] and σj1j2 =
√

4r0 log(p)/nI
{
(j1, j2) ∈ U

}
,(2.8)

where
√

4r0 log(p)/n is the universal minimum signal strength on U under (2.2) and (2.3).
Here, a perfect matching means each vertex in A is incident to one and only one edge in U .
Random perfect matching means all the vertices in A are randomly paired with each other to
form the edges, and no two edges share common vertices. Under (2.6)–(2.8), the covariance
matrices have diagonal elements being τ , at most one nonzero off-diagonal element in each
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row and each column of �, and random allocations of these nonzero σj1j2 . Note that the least
favorable prior is constructed on the covariance matrices with positive off-diagonal values.

Let Cma be the collection of all the sets that choose 2ma distinct indices from [p]. Let D(A)

be the collections of all edge sets formed by distinct perfect matching of the node set A. It can
be shown that the size of Cma is

( p

2ma

)
, and the number of distinct perfect matching of a given

node set A is N0 = |D(A)| = (2ma)!/(ma!2ma). Let M = {G : G = (A,U),A ∈ Cma ,U ∈
D(A)} be the collection of all graphs that satisfy (2.6) and (2.7). Then the probability of a
graph G being chosen uniformly at random from M is

P(G ∈ M) =
(

p

2ma

)−1

N−1
0 .

Given a graph G, let QG be the joint distribution of the data {Xk}nk=1 from the normal
distribution with mean μ and covariance �G under the alternative hypothesis, where 	G is
generated by the graph G and (2.8). Let

Qa =
(

p

2ma

)−1

N−1
0

∑
G∈M

QG

be the average measure of QG over all graphs in M with the uniform prior. Essentially, this
is the data distribution under the least favorable prior on the covariance class U(β, r0, τ ),
constructed by the random perfect matching of 2ma randomly selected components from
{1, . . . , p}.

Let Q0 denote the distribution of the data {Xk}nk=1 from the normal distribution with the
diagonal covariance σjj = τ for j = 1, . . . , p under the null hypothesis of (2.1). The essence
of deriving the detection lower boundary of (2.1) is to evaluate the Hellinger distance between
Qa and Q0. This amounts to studying the likelihood ratio as a function of β and r0. Due to
involving the inverse of nondiagonal covariances in Qa , the analysis of the Hellinger distance
in our case is much more challenging than that for the means.

Let Wα be the collection of all α level tests for the hypotheses in (2.1) under the Gaussian
distribution. For any W ∈ Wα , W = 1 stands for the rejection of the null hypothesis. Let

(2.9) DB(β) =
⎧⎨⎩β − 1/2 if 1/2 < β ≤ 3/4,

(1 −
√

1 − β)2 if 3/4 < β < 1,

which is the optimal detection boundary for testing means (Donoho and Jin (2004), Ingster
(1997)). The following theorem shows that DB(β) is also the detection lower boundary for
testing (2.1) in terms of the minimax power of all α level tests over the covariance class
U(β, r0, τ ) in (2.3).

THEOREM 1. For logp = o(n1/3) and Gaussian distributed data, if r0τ
−2 < DB(β) and

β ∈ (1/2,1),

(2.10) sup
W∈Wα

inf
�∈U(β,r0,τ )

P(W = 1) ≤ 1 − ω

for any ω ∈ (0,1 − α) as n,p → ∞.

It is noted that Theorem 1 is for the sparse signal setting that β > 1/2. This theorem
indicates that no test can consistently separate Ha from H0 for the hypotheses (2.1) if r0τ

−2

falls below the detection lower boundary DB(β) at a sparsity level β . In the next section, we
construct a sharp optimal test that attains DB(β) as its detection boundary for a major portion
of the sparsity range β ∈ (1/2,1) such that the sum of Type I and Type II error probabilities
of the test will converge to 0 for any � ∈ U(β, r0, τ ) if r0τ

−2 is above the boundary.
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3. Thresholding test. Let X̄ =∑n
k=1 Xk/n = (X̄1, . . . , X̄p)T be the sample mean and

�̂ = (σ̂j1j2)p×p = 1

n

n∑
k=1

(Xk − X̄)(Xk − X̄)T

be the sample covariance matrix. Let θj1j2 = Var{(Xkj1 − μj1)(Xkj2 − μj2)} = σj1j1σj2j2 +
σ 2

j1j2
. As σ̂j1j1 σ̂j2j2/n is a consistent estimator for the variance of σ̂j1j2 under the null hy-

pothesis that prescribes σj1j2 = 0, we define a standardized statistic of σ̂j1j2 as

(3.1) Mj1j2 = nρ̂2
j1j2

, 1 ≤ j1 < j2 ≤ p,

where ρ̂j1j2 = σ̂j1j2(σ̂j1j1 σ̂j2j2)
−1/2 is the sample correlation between Xkj1 and Xkj2 . As the

squared sample covariance is used, it can detect both the positive and negative values of the
nonzero σj1j2 .

We first conduct thresholding on {ρ̂j1j2} to filter out the potential signals and then to ag-
gregate the filtered sample correlations in an L2 formulation. Then a multilevel thresholding
(MT) procedure is applied to enhance the power of the test by utilizing different threshold
levels. We will show that the proposed MT test attains the detection lower boundary in The-
orem 1 over at least 75% of the sparsity range β ∈ (1/2,1), and is more powerful than both
the L2 and Lmax-type tests when the signals are rare and faint.

3.1. Single level thresholding statistic. We first introduce the thresholding statistic with
a single threshold level. By the moderate deviation result in Lemma S2 of the SM, under
Assumptions 1A (or 1B), 2 and H0 of (2.1), P{max1≤j1<j2≤p Mj1j2 > 4 log(p)} → 0 as
n,p → ∞. This implies that a threshold level of 4 log(p) is asymptotically too large un-
der the null hypothesis, and suggests applying a smaller threshold λp(s) = 4s log(p) for a
thresholding parameter s ∈ (0,1). This leads to a thresholding statistic

(3.2) Tn(s) = ∑
1≤j1<j2≤p

Mj1j2I
{
Mj1j2 ≥ λp(s)

}
,

where I(·) denotes the indicator function. Compared with the L2-statistic of Chen, Zhang
and Zhong (2010), Tn(s) keeps only large Mj1j2 after filtering out the potentially insignificant
sample correlations. By removing those smaller Mj1j2 , the variance of Tn(s) is much reduced,
which translates to a higher power.

We make the following assumptions in our analysis.

ASSUMPTION 1A. As n → ∞, p → ∞, logp ∼ n� for a � ∈ (0,1/5).

ASSUMPTION 1B. As n → ∞, p → ∞, n ∼ pξ for a ξ ∈ (0,2].
ASSUMPTION 2. Variances are bounded from above and below such that σjj ≤ τ and

σjj ≥ C2 for all j = 1, . . . , p and positive constants τ and C2.

Assumptions 1A and 1B specify the exponential and polynomial growth rates of p relative
to n, respectively. Assumption 2 prescribes the marginal variances uniformly bounded away
from zero and infinity. These two assumptions are common in high-dimensional literature.
Note that ξ ∈ [1,2] under Assumption 1B prescribes a moderate-dimensional case where
p → ∞ but p is at the same order or smaller than n. The reason to include this setting
is to reflect the impact of dimensionality on the detection boundary of the proposed multi-
thresholding test in (3.7). The detection boundary of this test matches the minimax detection
boundary derived in Theorem 1 over the entire range β ∈ (1/2,1) of sparse signals under
ξ = 2, but it increases with the decrease of ξ as shown in Proposition 3.
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Let E0(·) and Var0(·) denote the mean and variance of the thresholding statistic Tn(s) under
H0, and Ea(·) and Vara(·) denote the mean and variance under the alternative hypothesis in
(2.1), respectively. Notice that

(3.3) E0
{
Tn(s)
}= qE

[
Mj1j2I

{
Mj1j2 ≥ λp(s)

}]= 2nq

∫ 1√
λp(s)

n

r2fρ(r) dr,

where fρ(r) = (1 − r2)
n−4

2 {B(1
2 , n−2

2 )}−1 is the density function of ρ̂j1j2 under the normal
distribution with zero σj1j2 (Hotelling (1953)), and B(·, ·) is the beta function. Let φ(·) and
�̄(·) be the density and survival functions of N(0,1), respectively. The following proposition
provides expansions of E0{Tn(s)} and Var0{Tn(s)}.

PROPOSITION 1. Under Assumptions 1A or 1B and Assumption 2 and for Gaussian
distributed data and q = p(p − 1)/2, E0{Tn(s)} = μ(s,p){1 + O(λ

3/2
p (s)n−1/2)} where

μ(s,p) = q
{
2λ1/2

p (s)φ
(
λ1/2

p (s)
)+ 2�̄

(
λ1/2

p (s)
)}

.

In addition, under either (i) Assumption 1A with s > 1/2 or (ii) Assumption 1B with s >

1/2 − ξ/4, Var0{Tn(s)} = σ 2(s,p){1 + o(1)} where σ 2(s,p) = q[2{λ3/2
p (s) + 3λ

1/2
p (s)}

φ(λ
1/2
p (s)) + 6�̄(λ

1/2
p (s))].

Proposition 1 suggests that the main order of Var0{Tn(s)} is known and solely determined
by p and s, and hence can be used to estimate the null variance of Tn(s). The following
theorem shows the asymptotic distribution of Tn(s) at a given s under H0.

THEOREM 2. Under the H0 of (2.1), Assumption 2, the Gaussian distribution and either
(i) Assumption 1A with s > 1/2 or (ii) Assumption 1B with s > 1/2 − ξ/4, we have

Var−1/2
0

{
Tn(s)
}[

Tn(s) − E0
{
Tn(s)
}] d→ N(0,1) as n,p → ∞.

Compared with the thresholding statistics on means (Zhong, Chen and Xu (2013)), thresh-
olding on the sample covariance involves a more complex dependency structure. Although
the variables {Xkj }pj=1 are independent under the null hypothesis and Gaussianity, the statis-
tics {Mj1j2} are dependent and display a kind of circular pattern of dependence due to the
nature of sample correlations. For each pair (j1, j2), the number of sample correlations that
are dependent with ρ̂j1j2 is of order p under the null hypothesis. As the covariance be-
tween Mj1j2I{Mj1j2 ≥ λp(s)} and Mj1j3I{Mj1j3 ≥ λp(s)} decreases as the threshold level
s increases for j2 	= j3, to control the dependence, we require a lower bound restriction on
the threshold level s in Proposition 1 and Theorem 2. This restriction on s would affect the
detection boundary of the thresholding test as discussed in Section 4. Under Assumption 1B
that prescribes the polynomial growth of p, the minimum threshold level that guarantees the
Gaussian limit of Tn(s) can be chosen as close to 0 as ξ approaches 2.

The circular dependence among {Mj1j2} also makes the conventional data blocking and
the coupling approach (Berbee (1979)) commonly used for analyzing weakly dependent data
insufficient to establish the asymptotic distribution of Tn(s). To tackle the issue, we view
Tn(s) as a U-statistic with a kernel function of each pair of variables, and derive its asymptotic
normality by the martingale central limit theorem. Different from the classical approach on
the U-statistics built on the permutation of observations, the martingale is constructed on the
σ -field filtration of the variables. The essence is to establish and use the conditional moderate
deviation results of Mj1j2 given either the j1th or j2th variable. Details of this approach are
provided in the proof of Theorem 2 in the SM.
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3.2. Multilevel thresholding test. From Theorem 2, a single level thresholding test rejects
H0 of (2.1) if

(3.4) Tn(s) > E0
{
Tn(s)
}+ zασ (s,p),

where zα is the upper α quantile of N(0,1). Clearly, the power of such a test relies on the
tuning parameter s. In the proof of Proposition 3, it is shown that the test (3.4) can achieve
the minimax detection boundary DB(β) in (2.9) for a range of β at certain threshold level
s that depends on the unknown signal strength and sparsity. This means that the single level
thresholding test is not universally powerful for all signals with different strength and sparsity
under the covariance class U(β, r0, τ ). This motivates us to conduct the testing procedure
with a sequence of threshold levels to suit the situations with unknown signal strength and
sparsity levels. Indeed, utilizing many thresholding levels may capture the sparse and faint
signals as shown in the tests for means (Donoho and Jin (2004), Hall and Jin (2010), Zhong,
Chen and Xu (2013)).

Specifically, let Tn(s) = [Tn(s) − E0{Tn(s)}]σ−1(s,p) be the standardization of Tn(s).
For a threshold lower bound s0 and an arbitrarily small positive constant η, we construct a
multilevel thresholding (MT) statistic

Vn(s0) = max
s∈(s0,1−η]Tn(s)

by maximizing Tn(s) over s ∈ (s0,1 − η]. From Theorem 2, a choice of s0 is either 1/2 or
1/2 − ξ/4 depending on p having the exponential or polynomial growth with respect to n.

Let M(1) ≤ · · · ≤ M(q) be the ordered {Mj1j2 : 1 ≤ j1 < j2 ≤ p}. Note that E0{Tn(s)}
and σ(s,p) are decreasing functions of s. For any two consecutive thresholds s(i) =
M(i)/(4 logp) and s(i+1) = M(i+1)/(4 logp), Tn(s) remains constant for s ∈ (s(i), s(i+1)].
Specifically, if Tn(s(i+1)) > 0, we have Tn(s) ≤ Tn(s(i+1)) over s ∈ (s(i), s(i+1)]; and if
Tn(s(i+1)) ≤ 0, we have Tn(s) ≤ 0 for s ∈ (s(i), s(i+1)]. This means that the maximum of
Tn(s) over the interval (s0,1 − η] can be attained on a discrete set of thresholds determined
by {Mj1j2}. Let

Sn(s0) = {sj1j2 : sj1j2 = Mj1j2/(4 logp) for all 1 ≤ j1 < j2 ≤ p

satisfying s0 < sj1j2 < (1 − η)
}∪ {1 − η}.(3.5)

The multilevel thresholding statistic Vn(s0) can be expressed as

(3.6) Vn(s0) = max
s∈Sn(s0)

Tn(s).

The asymptotic distribution of Vn(s0) is given in the following theorem.

THEOREM 3. Under the conditions of Theorem 2 and H0 of (2.1),

P
{
a
(
log(p)

)
Vn(s0) − b

(
log(p), s0, η

)≤ x
}→ exp

(−e−x),
where a(y) = (2 log(y))1/2 and b(y, s0, η) = 2 log(y) + 2−1 log log(y) − 2−1 log(π) +
log(1 − s0 − η).

This leads to an asymptotic α-level multithresholding test (MT test) that rejects H0 if

(3.7) Vn(s0) >
{
qα + b

(
log(p), s0, η

)}
/a
(
log(p)

)
,

where qα is the upper α quantile of the Gumbel distribution. It is noted that the proposed MT
test in (3.7) is equivalent to conducting a sequence of the single level thresholding tests with
thresholds from Sn(s0) and using the minimum p-value of these tests to make a decision for
the hypotheses (2.1). Comparing to the normal quantile zα used in the single level threshold-
ing test in (3.4), a higher rejection cut-off value at the order {log(logp)}1/2 is needed for the
MT test as prescribed from Theorem 3.
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4. Power analysis and detection boundary of MT test. We evaluate the power perfor-
mance of the proposed MT test in (3.7), which leads to obtaining its detection boundary under
the covariance class U(β, r0, τ ) in (2.3). Using the detection boundary result, we demonstrate
the superiority of the proposed test over the L2 and Lmax type tests.

Under the alternative hypothesis in (2.1), the power of the proposed MT test is

Powern(�) = P
[
Vn(s0) >

{
qα + b

(
log(p), s0, η

)}
/a
(
log(p)

)|�].
Recall that Ea(·) and Vara(·) denote the mean and variance of Tn(s) under Ha in (2.1). Let

SNR(s) = Ea{Tn(s)} − E0{Tn(s)}
Var1/2

a {Tn(s)}
be the signal to noise ratio of Tn(s) under the alternative hypothesis. Since

Vn(s0) = max
s∈Sn(s0)

Var1/2
a {Tn(s)}
σ(s,p)

{
Tn(s) − Ea{Tn(s)}

Var1/2
a {Tn(s)}

+ SNR(s)

}
,

the power of the MT test is critically determined by SNR(s). Let Lp = c̄1 logc̄2(p) be a
multi-log(p) term for two positive constants c̄1 and c̄2 whose values may change in the con-
text. Recall that r̃j1j2 is the standardized signal strength of a nonzero σj1j2 , and r̄ and ¯r are
the maximal and minimal standardized signal strength of �, defined in (2.4) and (2.5). The
following proposition gives the mean and variance of Tn(s) for � ∈ U(β, r0, τ ) under the
alternative hypothesis.

PROPOSITION 2. Under the Gaussian distribution, Assumptions 1A or 1B, for � ∈
U(β, r0, τ ) and β ∈ (1/2,1), Ea{Tn(s)} = E0{Tn(s)} + �(s) where

�(s) = Lp

∑
(j1,j2)∈A1

I(s < r̃j1j2) + Lp

∑
(j1,j2)∈A1

p
−2(

√
s−√

r̃j1j2 )2
I(s > r̃j1j2).

In addition, under either (i) Assumption 1A with s > 1/2 or (ii) Assumption 1B with

s > 1/2 − ξ/4, Vara{Tn(s)} = Lpqp−2s + Lp

∑
(j1,j2)∈A1

p
−2(

√
s−√

r̃j1j2 )2
I(s > r̃j1j2) +

Lp

∑
(j1,j2)∈A1

I(s < r̃j1j2).

It is shown in Section S3 of the SM that the power of the proposed MT test can be bounded
from below (above) via replacing all r̃j1j2 by the minimum (maximum) standardized signal
strength ¯r (r̄). Together with Proposition 2, we obtain the detection boundary of the proposed
MT test in Propositions 3 and 4 below. Define a family of phase transition functions indexed
by ξ ∈ [0,2] that connects p and n via n ∼ pξ :

(4.1) DB∗(β, ξ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
√

4 − 2ξ − √
6 − 8β − ξ)2

8
, 1/2 < β ≤ 5/8 − ξ/16;

β − 1/2, 5/8 − ξ/16 < β ≤ 3/4;
(1 −
√

1 − β)2, 3/4 < β < 1.

Compared with the minimax boundary DB(β) given in (2.9), DB∗(β, ξ) is slightly elevated
over the subinterval β ∈ (1/2,5/8 − ξ/16), which accounts at most 25% of the sparsity
range of β ∈ (1/2,1). This is due to the restriction on the threshold levels that s > s0, which
is needed to control the dependence among the entries of the sample covariance matrix so
that the asymptotic distribution of the test statistic can be established and the thresholding
test can properly control its size.

The following proposition considers the case of n ∼ pξ for ξ ∈ (0,2] as prescribed in
Assumption 1B, which mirrors a case considered in Delaigle, Hall and Jin (2011) for testing
means.



1930 S. X. CHEN, Y. QIU AND S. ZHANG

FIG. 1. The detection boundary DB∗(β, ξ) in (5.3) of the proposed multilevel thresholding test with
s0 = 1/2 − ξ/4 for ξ = 0,0.75,1.5 and n = pξ .

PROPOSITION 3. Under Assumptions 1B with the Gaussian data, for � ∈ U(β, r0, τ ),
β ∈ (1/2,1), s0 = 1/2 − ξ/4, an arbitrarily small ε > 0 and a series of nominal sizes αn =
�̄((logp)ε) → 0, we have as n,p → ∞,

(i) if ¯r > DB∗(β, ξ), the power of the MT test Powern(�) defined in (3.7) converges to 1;
(ii) if r̄ < DB∗(β, ξ), the power of the MT test Powern(�) converges to 0.

Proposition 3 shows that the power of the proposed MT test is characterized by the signal
sparsity β , and the minimum and maximum standardized signal strength. More importantly,
DB∗(β, ξ) is the detection boundary of the MT test. The power converges to 1 if ¯r is above
this boundary, and diminishes to 0 if r̄ is below it, while the size of the test approaches
zero. The detection boundaries DB∗(β, ξ) are displayed in Figure 1 for three ξ values. Note
that DB(β) coincides with DB∗(β,2), the detection boundary of the MT test with ξ = 2
(namely, n ∼ p2) that corresponds to s0 = 0. Restricting s > s0 elevates the detection bound-
ary DB∗(β, ξ) of the proposed MT test beyond DB(β) over the interval β ∈ (1/2,5/8−ξ/16)

as a price for controlling the size of the test.
The following proposition shows that DB∗(β,0) is the detection boundary when dimen-

sion p grows exponentially fast with n, which can be viewed as a degenerated polynomial
growth case with ξ = 0.

PROPOSITION 4. Under the Gaussian distribution and Assumption 1A, for � ∈
U(β, r0, τ ), β ∈ (1/2,1), s0 = 1/2, an arbitrarily small ε > 0, and a series of nominal sizes
αn = �̄((logp)ε) → 0, as n,p → ∞, we have:

(i) if ¯r > DB∗(β,0), the power of the MT test Powern(�) → 1;
(ii) if r̄ < DB∗(β,0), the power of the MT test Powern(�) → 0.

As DB∗(β,0) ≥ DB∗(β, ξ) for any ξ ∈ (0,2], the result also shows that a higher growth
rate of p leads to a higher detection boundary that may be viewed as a sacrifice of the power
due to the higher dimensionality.

Propositions 3 and 4 provide the detection boundary of the MT test for � in the class
U(β, r0, τ ). As discussed after (2.5), min{¯r : � ∈ U(β, r0, τ )} = r0τ

−2, implying that r0τ
−2
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is the minimum standardized signal strength of � over all covariances in the class U(β, r0, τ ).
Combining the results in Theorem 1 and Propositions 3 and 4, we have the following corollary
showing that the MT test can achieve the minimax detection lower boundary in the subinterval
β ∈ (5/8 − ξ/16,1). Recall that Wα is the collection of all α level tests for the hypotheses
(2.1) under the Gaussian distribution.

COROLLARY 1. Under the Gaussian distribution and either (i) Assumption 1A with
5/8 < β < 1 or (ii) Assumption 1B with 5/8 − ξ/16 < β < 1, as n,p → ∞:

(i) if r0τ
−2 > DB(β), inf�∈U(β,r0,τ ) Powern(�) → 1;

(ii) if r0τ
−2 < DB(β), supW∈Wα

inf�∈U(β,r0,τ ) P(W = 1) ≤ 1 − ω for any ω ∈ (0,1 − α).

Corollary 1 suggests that the proposed MT test attains DB(β) as its detection boundary
over the sparsity range β ∈ (5/8 − ξ/16,1) for both the polynomial and the exponential
growth of the dimension p as ξ can be assigned 0 for the exponential growth. As the detection
boundary of the MT test reaches the minimax detection lower boundary derived in Theorem 1
for β ∈ (5/8 − ξ/16,1), the MT test is sharp optimal for testing hypotheses (2.1) against the
sparse and weak signals over this range. There is a sparsity range (1/2,5/8 − ξ/16) of at
most width 1/8 where the sharp optimality of the MT test cannot be established for the same
reason discussed when we introduce DB∗(β, ξ) in (4.1).

Comparing with the existing L2-type tests, it is noted that
∑

j1 	=j2
σ 2

j1j2
= c log(p)q1−β/n

for � ∈ U(β, r0, τ ) and a constant c. Thus, as shown in Cai and Ma (2013), the L2-type
test do not have power beyond the size of the test for β > 1/2. For the Lmax-type test, Cai,
Liu and Xia (2013) showed that the power of the maximum test for the equivalence of two
covariances converges to 1 if the standardized signal strength is over 4, which is equivalent
to r0τ

−2 > 4 in our context. Hence, the signal strength required by the Lmax test is much
stronger than that established in Propositions 3 and 4 as DB∗(β, ξ) ∈ (0,1).

5. Non-Gaussian data. In this section, we extend the MT test to non-Gaussian data.
Recall that θj1j2 = Var{(Xkj1 −μj1)(Xkj2 −μj2)}. As θj1j2 may not equal to σj1j1σj2j2 +σ 2

j1j2
for non-Gaussian data, we estimate θj1j2 by

θ̂j1j2 = 1

n

n∑
k=1

{
(Xkj1 − X̄j1)(Xkj2 − X̄j2) − σ̂j1j2

}2
.

Let M̃j1j2 = nσ̂ 2
j1j2

θ̂−1
j1j2

, where
√

nσ̂j1j2 θ̂
−1/2
j1j2

is the standardization of σ̂j1j2 by θ̂j1j2 under H0

of (2.1). Similar to the thresholding statistic Tn(s) in (3.2), let T̃n(s) =∑1≤j1<j2≤p M̃j1j2 ×
I{M̃j1j2 ≥ λp(s)}. We first show the asymptotic normality of T̃n(s).

To counter the complex dependence among sample covariances under non-Gaussian data,
we assume the variables are weakly dependent after a certain permutation. Let {π�,p}p!

�=1
denote all possible permutations of {1, . . . , p} and Xk(π�,p) be the reordering of Xk cor-
responding to a permutation π�,p . We assume that there is a permutation π�∗,p such that
Xk(π�∗,p) is β-mixing (Bradley (2005)). As the thresholding statistic T̃n(s) is invariant to
permutations of variables, there is no need to know π�∗,p . It is noted that this condition is not
needed for Gaussian data.

Let {Xk} = {Xk(π�∗,p)} to simplify notation, and Fmb
ma (Xk) = σ {Xkj : ma ≤ j ≤ mb} be

the σ -fields generated by {Xk} for 1 ≤ ma ≤ mb ≤ p. The β-mixing coefficients are ζp(h) =
sup1≤m≤p−h ζ {Fm

1 (Xk),Fp
m+h(Xk)}, where for two σ -fields A and B,

ζ(A,B) = 1

2
sup

u1∑
l1=1

u2∑
l2=1

∣∣P(Al1 ∩ Bl2) − P(Al1)P (Bl2)
∣∣.
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Here, the supremum is taken over all finite partitions {Al1 ∈ A}u1
l1=1 and {Bl2 ∈ B}u2

l2=1 of
the sample space, and u1, u2 ∈ Z

+, the set of positive integers. Let ρj1j2,j3j4 = Cor{(Xkj1 −
μj1)(Xkj2 − μj2), (Xkj3 − μj3)(Xkj4 − μj4)}. We make the following assumptions to study
thresholding statistics on sample covariances for non-Gaussian data.

ASSUMPTION 3. There exists a small positive constant ρ0 < 1 such that
θj1j2

σj1j1σj2j2
> ρ0

for any j1 	= j2, and |ρj1j2,j3j4 | < 1 − ρ0 for any (j1, j2) 	= (j3, j4).

ASSUMPTION 4. There exist positive constants η and C such that for all |t | < η,

E
[
exp
{
t (Xkj − μj)

2}]≤ C for j = 1, . . . , p.

ASSUMPTION 5. There is a permutation (π�∗,p) of the data sequences {Xkj }pj=1 such that

the permuted sequences are β-mixing with the mixing coefficients satisfying ζp(h) ≤ Cγ h

for a constant γ ∈ (0,1), any p ∈ Z
+ and positive integer h ≤ p − 1.

Assumption 3 is a technical condition that prescribes θj1j2 being bounded away from zero,

and implies the correlations among {√nσ̂j1j2 θ̂
−1/2
j1j2

} being bounded away from 1. Assump-

tion 4 assumes the distributions of {Xkj }pj=1 are sub-Gaussian which is often assumed in the
high-dimensional literature (Bickel and Levina (2008), Cai, Liu and Xia (2013), Xue, Ma and
Zou (2012)). The β-mixing in Assumption 5 is made for the unknown variable permutation
π�∗,p . Similar mixing conditions for the columnwise dependence were made in Delaigle, Hall
and Jin (2011) and Qiu, Chen and Nettleton (2018) for thresholding tests of means and re-
gression coefficients. If {Xkj }pj=1 is a Markov chain (the vector sequence under the variable
permutation), Theorem 3.3 in Bradley (2005) provides conditions for the processes being
β-mixing. If {Xkj }pj=1 is a linear process with IID innovations, which includes the ARMA
process as a special case. Then it is β-mixing provided the innovation process is absolutely
continuous (Mokkadem (1988)). The β-mixing coefficients are assumed to decay at an expo-
nential rate in Assumption 5 to simplify proofs, while arithmetic rates can be entertained at
the expense of more technical details.

As discussed after Theorem 2, even though the data vector is β-mixing under a permuta-
tion, the vectorization of (M̃ij )p×p is not necessarily a mixing sequence due to the circular
dependence feature of sample covariances. Thresholding tests for covariances involve a more
complex dependency structure than those for time series and spatial data. As non-Gaussian
distributed random variables may not be independent under the null hypothesis, the mar-
tingale approach used to prove Theorem 2 cannot be directly applied here. To tackle these
challenges, we first use a combination of matrix blocking, as illustrated in Figure S1 in the
SM, and the coupling method, which creates independent blocks of variables. Then a novel
U-statistic representation of the thresholding statistic T̃n(s) is constructed based on the inde-
pendent blocks. This allows the use of the martingale central limit theorem on the U-statistic
representation to attain the asymptotic normality of T̃n(s).

The following theorem is the non-Gaussian counterpart of Theorem 2.

THEOREM 4. Suppose Assumptions 2–5 are satisfied. Then, under H0 of (2.1) and either
(i) Assumption 1A with s > 1/2 or (ii) Assumption 1B with s > 1/2 − ξ/4, we have[

Var0
{
T̃n(s)
}]−1/2[

T̃n(s) − E0
{
T̃n(s)
}] d→ N(0,1) as n,p → ∞.

It is shown in Section S4.2 of the SM that Proposition 1 still holds under the conditions
of Theorem 4, and μ(s,p) and σ 2(s,p) in Proposition 1 are still the main order terms of
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E0{T̃n(s)} and Var0{T̃n(s)}, respectively. Similar to Vn(s0) in (3.6), this implies constructing
the analogous multilevel thresholding statistic

(5.1) Ṽn(s̃0) = max
s∈Sn(s̃0)

T̃n(s) for T̃n(s) = σ−1(s,p)
{
T̃n(s) − μ(s,p)

}
,

where s̃0 = 1 − ξ/2. According to the expansion for the mean of the thresholding statistic in
Proposition S1 of the SM, the lower threshold level s̃0 is chosen to guarantee

(5.2)
E0{T̃n(s)} − μ(s,p)

σ (s,p)
= O
{
λ5/4

p (s)p1−sn−1/2},
which converges to zero under Assumption 1B for s > 1 − ξ/2. The threshold bound s̃0
can be lowered to 1/2 − ξ/4 in the Gaussian case if a more accurate estimator Ê0{T̃n(s)}
can be obtained so that Ê0{T̃n(s)} − E0{T̃n(s)} = op{σ(s,p)}. Bootstrap estimators could be
constructed, which correct the bias in the expansions of E0{T̃n(s)}; see Delaigle, Hall and Jin
(2011), which used bootstrap to provide a more accurate estimator for the expectation of the
thresholded t-statistics for means.

The following theorem gives the asymptotic distribution of Ṽn(s̃0) under the sub-Gaussian
distribution, which is a counterpart of Theorem 3 for the Gaussian data.

THEOREM 5. Suppose Assumptions 1B, 2–5 are satisfied, then under H0 of (2.1), we
have

P
{
a
(
log(p)

)
Ṽn(s̃0) − b

(
log(p), s̃0, η

)≤ x
}→ exp

(−e−x),
where s̃0 = 1 − ξ/2, and a(y) and b(y, s̃0, η) are given in Theorem 3.

Similar to (3.7), the MT test based on Ṽn(s̃0) rejects H0 of (2.1) if Ṽn(s̃0) > {qα +
b(log(p), s̃0, η)}/a(log(p)). Theorem 5 indicates that the MT test can asymptotically con-
trol the size for testing (2.1) for the sub-Gaussian distributed data.

Let r̄1 = max(j1,j2)∈A1{rj1j2/θj1j2} and ¯r1 = min(j1,j2)∈A1{rj1j2/θj1j2} be the maximal and
minimal standardized signal strength, respectively, where A1 = {(j1, j2) : j1 < j2, σj1j2 	= 0}.
The sub-Gaussian counterpart of the phase transition function DB∗(β, ξ) is

(5.3) DB∗
1(β, ξ) =

⎧⎪⎪⎨⎪⎪⎩
(
√

1 − ξ/2 −
√

1 − β − ξ/4)2, 1/2 < β ≤ 3/4 − ξ/8;
β − 1/2, 3/4 − ξ/8 < β ≤ 3/4;
(1 −
√

1 − β)2, 3/4 < β < 1.

It differs from the minimax detection lower boundary DB(β) over a wider interval
β ∈ (1/2,3/4 − ξ/8) than (1/2,5/8 − ξ/16) of DB∗(β, ξ) for the Gaussian case, and
DB∗

1(β, ξ) > DB∗(β, ξ) for β ∈ (1/2,3/4 − ξ/8).
The following proposition mirrors Proposition 3 and provides the detection boundary of

the MT test based on Ṽn(s̃0) for the sub-Gaussian data.

PROPOSITION 5. Under Assumptions 1B, 2–5, for � ∈ U(β, r0, τ ), β ∈ (1/2,1) s̃0 =
1 − ξ/2, an arbitrarily small ε > 0 and a series of nominal sizes αn = �̄((logp)ε) → 0, as
n,p → ∞, we have:

(i) if ¯r1 > DB∗
1(β, ξ), the power of the MT test converges to 1;

(ii) if r̄1 < DB∗
1(β, ξ), the power of the MT test converges to 0.

Proposition 5 shows that DB∗
1(β, ξ) is the detection boundary of the MT test based on

Ṽn(s̃0). It is shown in the proof of Proposition 5 that DB∗(β, ξ) < DB∗
1(β, ξ) for β <
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TABLE 1
The empirical sizes of the MT, QC and CJ tests with a nominal level of significance 0.05 for Gaussian and

uniform data and the combinations of the sample size n, the dimension p and the covariance matrix �

σjj = 1 σjj ∼ Uniform(1,5) σjj ∼ Uniform(1,10)

n p MT QC CJ MT QC CJ MT QC CJ

Gaussian distributed data
100 500 0.027 0.077 0.005 0.034 0.058 0.005 0.038 0.034 0.010

1000 0.016 0.041 0.006 0.013 0.056 0.002 0.024 0.057 0.008
1500 0.018 0.072 0.004 0.013 0.050 0.003 0.011 0.052 0

150 500 0.065 0.060 0.021 0.054 0.041 0.016 0.045 0.038 0.011
1000 0.049 0.044 0.020 0.044 0.068 0.015 0.046 0.078 0.009
1500 0.033 0.051 0.014 0.038 0.055 0.016 0.036 0.051 0.012

Uniform distributed data
100 500 0.024 0.055 0.017 0.029 0.067 0.015 0.026 0.048 0.020

1000 0.027 0.054 0.014 0.018 0.064 0.007 0.024 0.072 0.021
1500 0.019 0.050 0.014 0.018 0.058 0.010 0.020 0.034 0.014

150 500 0.058 0.060 0.026 0.044 0.055 0.027 0.028 0.047 0.015
1000 0.025 0.051 0.006 0.041 0.054 0.021 0.026 0.046 0.010
1500 0.028 0.055 0.015 0.019 0.054 0.007 0.029 0.044 0.017

3/4 − ξ/8, which indicates the detection boundary of the MT test under the sub-Gaussian
distribution is higher than that under the Gaussian distribution. This is due to the higher
threshold bound s̃0 = 1 − ξ/2 to ensure (5.2) for the size control under the sub-Gaussian
distribution. It also reflects a price paid in power when the exact expression of E0{T̃n(s)} is
unknown and is estimated by its main order term μ(s,p) under the sub-Gaussian distribution.

6. Simulation results. We evaluate the empirical size and power of the proposed MT
test and compare it with the L2 test in Qiu and Chen (2012) (QC) and the Lmax test in Cai
and Jiang (2011) (CJ) by simulation experiments under high dimensionality.

We generated IID data from a p-dimensional distribution with mean zero and covariance
matrix � = (σj1j2)p×p . We set � = diag(σ11, . . . , σjj ) under the null hypothesis of (2.1).
Three settings of � were designed under the null hypothesis: (i) σjj = 1 for all j = 1, . . . , p,
(ii) σjj ∼ Uniform(1,5) and (iii) σjj ∼ Uniform(1,10). Setting (i) was the homogeneous
case, while settings (ii) and (iii) were the heterogeneous case where the variances were gen-
erated from a super uniform distribution with the minimum value being 1 and the maxi-
mum values being 5 and 10, respectively. Once a covariance was generated, it was kept fixed
through the simulation. We considered two data generation distributions. One was the mul-
tivariate normal distribution where Xk ∼ N(0,�) for k = 1, . . . , n. The other one is the uni-

form distribution where {X0,kj } IID∼ Uniform(−√
3,

√
3) for k = 1, . . . , n and j = 1, . . . , p,

and Xkj = √
σjjX0,kj . The Uniform(−√

3,
√

3) distribution was chosen so that E(X0,kj ) = 0
and Var(X0,kj ) = 1. We set n = 100,150 and p = 500,1000,1500 for size evaluation. Ac-
cording to Theorems 2 and 3, the lower threshold bound s0 in the MT test was set as 0.5, and
η was set to be 0.01. The simulation experiments were replicated 1000 times.

Table 1 reports the empirical sizes of the proposed MT test, and the L2 QC test and the
Lmax CJ test at the nominal level 0.05 under different combinations of n, p, � and data gener-
ation distribution. From the table, we observe that the MT test could control the size around
the nominal level in all the cases. It had a consistently good performance under both the
Gaussian and uniform distributions and the three covariance structures considered. Although
the size of the MT test was a little conservative with the increase of p, it became closer to
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0.05 for the larger sample size n = 150. This lent empirical support for the theoretic results in
Theorems 2–5 under the null hypothesis. At the same time, the QC test also had reasonable
sizes, but was slightly liberal. The maximum CJ test was rather conservative, exhibiting some
size distortion even for the larger sample size.

To evaluate and compare powers under the alternative hypothesis, we set ρjj+1 = ρ1 and
σjj+1 = ρ1(σjjσj+1j+1)

1/2 for j = 1, . . . ,ma and kept all other values of � the same as
those under H0, where ma denotes the number of nonzero off-diagonal elements of �. We
considered three settings ma = p/2,p/5 and p/10 for the number of signals. Note that
q(1−β) ≈ p/

√
2 for β = 0.5, where q = p(p − 1)/2. The settings of ma corresponded to

β > 0.5, representing the sparse signal regime for power evaluation as discussed in Sec-
tions 2 and 4. The correlation ρ1 serves as a measure for signal strength, which ranged from
0.15 to 0.3 by an increment 0.03. Under this setting, there were ma nonzero correlations with
common strength ρ1 on the first off-diagonal of �. Although signals could appear on different
off-diagonals under the alternative hypothesis, only adding signals on the first off-diagonal
easily guarantees the positive definiteness of �. Due to the limited space, we only report the
empirical powers of the three tests under the setting σjj ∼ Uniform(1,5) for the diagonal
values of the covariance matrix.

Figure 2 displays the empirical powers of the three tests with respect to the correlation
ρ1 for signal strength under three levels of signal sparsity. The results in Figure 2 suggest
that the MT test had the best power among the three tests under most of the settings, and
had superior power over the maximal test CJ in all cases. Under ma = p/2, which was the
setting with the most signals, the L2 test QC had a higher power than the MT test for the
smaller correlations ρ1 ≤ 0.18 under n = 100. But the power of the MT test surpassed that
of QC with the increase of ρ1, and quickly reached levels close to 1. Except for the smallest
correlation ρ1 = 0.15, the MT test also became more powerful when n was increased to 150.
The MT test was more powerful than the QC test for the sparser signal settings of ma = p/5
and p/10. Under those two cases, although the powers of the three tests were similar when ρ1
was small, the MT’s power quickly surpassed the other two when ρ1 ≥ 0.27 under n = 100
and ρ1 ≥ 0.21 under n = 150. Compared to QC, the extra power advantage of the MT test
became larger as the correlation ρ1 was increased. Meanwhile, the maximal test CJ had much
subdued power for small signal strength when ρ1 ≤ 0.24 under n = 100. Under n = 150, its
power became comparable to that of the MT test for the cases of larger signal strength with
ρ1 = 0.27 and 0.3 under ma = p/2 and ρ1 = 0.3 under ma = p/5 and p/10.

Comparing the three settings of ma , QC’s power reached 1 for the denser signal setting of
ma = p/2. However, its power declined quickly for ma = p/5 and p/10, which confirmed
that the L2 test has reduced power for sparse signals due to incorporating all the noninfor-
mative components in its formulation that lowered the signal to noise ratio. It is noted that,
under ma = p/10, there were only 50, 100 and 150 nonzero entries among a total of about
124 thousands, half million and one million unique off-diagonal entries of � for p = 500,
1000 and 1500, respectively. The corresponding proportions of signals in � were fairly small,
around 0.04%, 0.02% and 0.013% for the three covariance matrices. The power of QC was
better than that of CJ when the correlation ρ1 was small. However, for larger ρ1, CJ gradually
became more powerful than QC. This reflected the fact that the L2 and Lmax tests work under
different types of signal regimes.

We also compared the power performance of the three tests under the dense signal regime
in Figure 3, where ma = 2p, which corresponds to the sparsity parameter β less than 0.5
and the correlation ρ1 for signal strength ranged from 0.09 to 0.21 by an increment 0.03.
Since the number of signals was larger than p under this case, besides the first off-diagonal,
those nonzero covariances were allocated in the second and third off-diagonals of �. From
Figure 3, the QC test had the highest power and the CJ test had the lowest power under this
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FIG. 2. Empirical powers of the proposed multilevel thresholding (MT) test (red circle line), the L2 test of Qiu
and Chen (2012) (QC, green triangle line) and the Lmax test of Cai and Jiang (2011) (CJ, blue square line) with
respect to the correlation ρ1 (as a measure of signal strength) under three settings ma = p/2,p/5 and p/10 for
the number of signals, normal (upper two panels) and uniform (lower two panels) distributed data, the sample
size n = 100,150, the dimension p = 500,1000,1500 (reflected by different line types) and σjj ∼ Uniform(1,5).
The black dashed lines indicate the nominal level 0.05.
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FIG. 3. Empirical powers of the proposed multilevel thresholding test (MT test, red circle line), the L2 test
of Qiu and Chen (2012) (QC, green triangle line) and the Lmax test of Cai and Jiang (2011) (CJ, blue square
line) with respect to the correlation ρ1 (as a measure of signal strength) under a dense signal setting ma = 2p

for the number of signals, normal and uniform distributed data, the sample size n = 100,150, the dimension
p = 500,1000,1500 (reflected by different line types) and σjj ∼ Uniform(1,5). The black dashed lines indicate
the nominal size of 0.05.

case. The power of the MT test reached to levels close to 1 when ρ1 ≥ 0.18 under n = 100
and when ρ1 ≥ 0.15 under n = 150.

In summary, the MT test showed superior performance under different signal sparsity and
strength in the sparse and weak signal regime. The simulation results supported the theoretical
result that the proposed test has attractive power properties and attains an attractive detection
boundary.

APPENDIX

In this Appendix, we provide the proof of Theorem 1 for the minimax detection lower
boundary. The theoretical proofs for all other propositions and theorems are relegated to the
Supplementary Material. Without loss of generality, we assume μ = E(X1) = 0. Let C be a
positive constant and Lp = c̄1 logc̄2(p) be a multi-log(p) term, which may change from case
to case, where c̄1 and c̄2 are two positive constants. In the proofs, to simplify notation, we
use subscripts (i, j) to denote the pair made by the ith and j th variables.

PROOF OF THEOREM 1. Recall that G = (A,U) is the graph of the nonzero covariances,
M is the set of all graphs satisfying (2.6) and (2.7), QG is the data distribution under the
graph G and (2.8) and Q0 is the data distribution corresponding to the diagonal covariance
with σjj = τ for all j . Recall that Wα is the collection of the rejection functions of all α

level tests for the hypotheses (2.1), and D = diag(σ11, . . . , σpp) is the diagonal matrix of �,
where for W ∈ Wα , W = 1 stands for the rejection of the null hypothesis of (2.1). Let E�

be the expectation with respect to the data under the normal distribution with mean zero and
covariance �. Let EQ0 and EQG be the expectation with respect to the data distributions Q0
and QG under the null and alternative hypotheses of (2.1), respectively. Note that

1 + α − sup
W∈Wα

inf
�∈U(β,r0,τ )

E�(W) ≥ inf
W∈Wα

sup
�∈U(β,r0,τ )

{
EDW + E�(1 − W)

}
≥ inf

W∈Wα

sup
G∈M
{
EQ0W + EQG (1 − W)

}
,

and

inf
W∈Wα

(
p

2ma

)−1

N−1
0

∑
G∈M

{
EQ0W + EQG (1 − W)

}= inf
W∈Wα

{
EQ0W + EQa(1 − W)

}
.
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Thus, the minimax risk is larger than the Bayesian risk with the least favorable prior
Qa .

Let B be a rejection region on the sample space. The optimal sum of Type I and Type II
error probabilities under Q0 and Qa is defined as

E(Q0,Qa) = inf
B

{
Q0(B) + Qa

(
Bc)},

which can be expressed in terms of the total variation distance as E(Q0,Qa) = 1 −
TV(Q0,Qa), where

TV(Q0,Qa) = sup
B

∣∣Q0(B) − Qa(B)
∣∣= 1

2

∫
|dQ0 − dQa|.

Therefore, we have

1 + α − sup
W∈Wα

inf
�∈U(β,r0,τ )

E�(W) ≥ inf
W∈Wα

{
EQ0W + EQa(1 − W)

}≥ 1 − TV(Q0,Qa),

which implies

sup
W∈Wα

inf
�∈U(β,r0,τ )

P (W = 1) ≤ α + TV(Q0,Qa).

To prove Theorem 1, it suffices to show TV(Q0,Qa) → 0 as n,p → ∞, if r0τ
−2 < DB(β).

It is known that the total variation distance is connected with the Hellinger distance be-
tween Q0 and Qa ,

(A.1) H 2(Q0,Qa) =
∫

(
√

dQ0 −√dQa)
2 =
∫ (√

dQa

dQ0
− 1
)2

dQ0.

Their relationship is expressed via the following inequality:

H 2(Q0,Qa)/2 ≤ TV(Q0,Qa) ≤ H(Q0,Qa)

√
1 − H 2(Q0,Qa)/4,

from which we see that TV(Q0,Qa) → 0 if and only if H 2(Q0,Qa) → 0, meaning that no
test can distinguish all the covariances in the class U(β, r0, τ ) under the alternative hypothesis
from the covariance under the null hypothesis of (2.1) if the Hellinger distance between Q0
and Qa diminishes to zero.

Let Zk = D−1/2(Xk −μ) be a standardization of Xk , where Zk = (Zk1, . . . ,Zkp)T. Let Q̃a

be the distribution of the standardized data {Zk}nk=1 under Qa , and Q̃0 be the distribution of
n independent N(0, Ip). By a change of the probability measure, it can be shown that

(A.2) H 2(Q0,Qa) =
∫ (√√√√dQ̃a

dQ̃0
− 1
)2

dQ̃0 = EN(0,Ip)(
√

L − 1)2,

where L = dQ̃a/dQ̃0 is the likelihood ratio comparing the distribution Q̃a with np indepen-
dent standard normal distributions, and EN(0,Ip)(·) denotes the expectation under N(0, Ip).

Let δa =
√

4r0τ−2 log(p)/n. Note that, for a given graph G = (A,U), Cov(Zki,Zkj ) = δa

if (i, j) ∈ U ; otherwise, Cov(Zki,Zkj ) = 0 under (2.8). Therefore, the standardized data Zk

under the graph G = (A,U) and (2.8) can be represented by a mixture of the standard normal
distributions as

Zkih =√δaVkh +√1 − δaṼkih, Zkjh
=√δaVkh +√1 − δaṼkjh

, h = 1, . . . ,ma,

Zkj = Ṽkj for j /∈ A,
(A.3)



SHARP OPTIMAL TEST FOR COVARIANCE 1939

where {(i1, j1), . . . , (ima , jma )} are all edges in U , and Vk1, . . . , Vkma , Ṽk1, . . . , Ṽkp are inde-
pendent N(0,1) random variables.

To evaluate the likelihood ratio L, we utilize the representation (A.3) for Zk . Let f (z; Ip)

be the density function of N(0, Ip), and fa({Zk};G) and fa({Zk}|{Vkh};G) be the density
function of {Zk}nk=1 and the conditional density function of {Zk}nk=1 given {Vkh} in (A.3)
under the graph G, respectively. Let f0({Zk}) =∏n

k=1 f (Zk; Ip) be the density function of
{Zk}nk=1 under the N(0, Ip) distribution. Let L(G) = fa({Zk};G)/f0({Zk}). Since

fa

({Zk}|{Vkh};G)= ∏
i∈Ac

(2π)−
n
2 exp

(
−1

2

n∑
k=1

Z2
ki

)
ma∏
h=1

{
2π(1 − δa)

}−n

× exp
{
−
∑n

k=1(Zkih − √
δaVkh)

2 + (Zkjh
− √

δaVkh)
2

2(1 − δa)

}
,

then

fa({Zk}|{Vkh};G)

f0({Zk}) =
ma∏
h=1

(1 − δa)
−n exp

{
− δa

2(1 − δa)

n∑
k=1

(
Z2

kih
+ Z2

kjh

)− δa

1 − δa

n∑
k=1

V 2
kh

+
√

δa

1 − δa

n∑
k=1

(Zkih + Zkjh
)Vkh

}
.

Let Vh = (V1h, . . . , Vnh)
T. Through the derivation, we note the fact that∫

(2π)
n
2 exp

{
−δa

∑n
k=1 V 2

kh

1 − δa

−
∑n

k=1 V 2
kh

2
+

√
δa

1 − δa

n∑
k=1

(Zkih + Zkjh
)Vkh

}
dVh

=
(

1 − δa

1 + δa

) n
2

exp
{
δa

∑n
k=1(Zkih + Zkjh

)2

2(1 − δa)(1 + δa)

}
,

which implies the unconditional likelihood ratio function L(G) given G = (A,U) as

L(G) = exp

{
−

n∑
k=1

∑
(i,j)∈U

δa(δaZ
2
ki + δaZ

2
kj − 2ZkiZkj )

2(1 − δa)(1 + δa)

}(
1 − δ2

a

)− nma
2

(A.4)

= exp
{
C̃
∑

(i,j)∈U

R̃ij − maB̃

}
,

where, for each pair of indices i, j ∈ [p] and i 	= j ,

R̃ij = −
∑n

k=1(δaZ
2
ki + δaZ

2
kj − 2ZkiZkj − 2δa)√

4n(1 + δ2
a)

,

B̃ = nδ2
a

1 − δ2
a

+ n

2
log
(
1 − δ2

a

)
and C̃ =

√
nδa

√
1 + δ2

a

1 − δ2
a

.

Using (A.5), the likelihood ratio L = dQ̃a/dQ̃0 can be expressed as

(A.5) L =
(

p

2ma

)−1

N−1
0

∑
G∈M

L(G) =
(

p

2ma

)−1

N−1
0

∑
G∈M

exp
{
C̃
∑

(i,j)∈U

R̃ij − maB̃

}
.

Let H 2 = H 2(Q0,Qa) = EN(0,Ip)(
√

L − 1)2, and W = W(Q0,Qa) = EN(0,Ip)(
√

L) be
the Hellinger affinity. It is clear to see that H 2 = 2(1 − W), which means that H 2 → 0 is
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equivalent to W → 1 as n,p → ∞. Directly calculating the first and second moments of L

can only show that the Hellinger distance converges to 0 if r0τ
−2 < β − 1/2 for β ∈ (1/2,1).

Note that this result is suboptimal since β − 1/2 < (1 − √
1 − β)2 when 3/4 < β < 1. The

suboptimality is because the function exp(2C̃R̃ij ) in L2 diverges exponentially fast when R̃ij

is large. See the derivations in the paragraph after (A.13) for details.
Therefore, to show H 2 → 0 if r0τ

−2 < DB(β), we consider the moments of a truncated
likelihood ratio. Let Dp = {R̃ij ≤ √

4 logp for all pairs of i, j ∈ [p] and i < j }. Since there
are q = p(p−1)/2 distinct pairs of variables, by the moderate deviation results on R̃ij , it can
be shown that P(Dc

p) = o(1), and by the Cauchy–Schwarz inequality, EN(0,Ip){L1/2
I(Dc

p)} =
o(1). Let W̃ = EN(0,Ip){

√
LI(Dp)}, we have

W̃ = W − EN(0,Ip)

{√
LI
(
Dc

p

)}= W + o(1).

Now, to prove Theorem 1, it suffices to show W̃ → 1 if r0τ
−2 < DB(β). Since∣∣√LI(Dp) − 1

∣∣≤ ∣∣LI(Dp) − 1
∣∣,

by the Cauchy–Schwarz inequality, we have that

(W̃ − 1)2 ≤ EN(0,Ip)

{
LI(Dp) − 1

}2 = EN(0,Ip)

{
L2

I(Dp)
}− 2EN(0,Ip)

{
LI(Dp)

}+ 1.

Therefore, to show W̃ → 1 if r0τ
−2 < DB(β), it is sufficient to prove that

(A.6) EN(0,Ip)

{
LI(Dp)

}= 1 + o(1) and EN(0,Ip)

{
L2

I(Dp)
}= 1 + o(1).

From Lemma S12 in the SM, we have

(A.7) EN(0,Ip) exp(C̃R̃ij − B̃) = 1 and EN(0,Ip) exp(2C̃R̃ij − 2B̃) = (1 − δ2
a

)−n

for any 1 ≤ i, j ≤ p and i 	= j . To show the first claim of (A.6), noting that I(Dc
p) ≤∑

i<j I(R̃ij >
√

4 logp), given each graph G ∈ M and G = (A,U), we have that

EN(0,Ip)

{
L(G)I

(
Dc

p

)}
(A.8)

≤ ∑
i1<j1

EN(0,Ip)

[
exp
{
C̃
∑

(i2,j2)∈U

R̃i2j2 − maB̃

}
I(R̃i1j1 >

√
4 logp)

]
.

Let r̃0 = r0τ
−2, then δa = √4r̃0 log(p)/n. Through some calculation, it can be shown that

B̃ = 2r̃0 log(p){1 + o(1)} and C̃ = 2
√

r̃0 log(p){1 + o(1)}. By Lemma S14 in the SM and
Lemma A.10 in Hall and Jin (2010), we have

(A.9) EN(0,Ip)

{
exp(C̃R̃i1j1 − B̃)I(R̃i1j1 >

√
4 logp)

}≤ Cp−2(1−√
r̃0)

2

for a positive constant C. Notice that for mutually distinct i1, i2, j1, j2,

Cov(R̃i1j2, R̃i1j1) = δ2
a

(
2 + 2δ2

a

)−1 = O
{
log(p)/n

}
and

Cov(R̃i1j2 + R̃i2j1, R̃i1j1) = O
{
log(p)/n

}
.

By Lemma S15 in the SM and Lemma A.10 in Hall and Jin (2010), it can be shown that for
mutually distinct i1, i2, j1, j2,

EN(0,Ip)

{
exp(C̃R̃i1j2 − B̃)I(R̃i1j1 >

√
4 logp)

}≤ Cp−2(1−Lp/n)2
and(A.10)

EN(0,Ip)

[
exp
{
C̃(R̃i1j2 + R̃i2j1) − 2B̃

}
I(R̃i1j1 >

√
4 logp)

]≤ Cp−2(1−Lp/n)2
,(A.11)

where C is a positive constant and Lp is a multi-logp term.
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Based on the inequalities (A.9)–(A.11), the summation over (i1, j1) on the right-hand side
of (A.8) can be decomposed into four cases: (a) neither i1 and j1 are in the vertex set A;
(b) only one i1 or j1 is in A; (c) both i1 and j1 are in A, and they belong to the edge set
U such that (i1, j1) ∈ U ; and (d) both i1 and j1 are in A, but (i1, j1) /∈ U . The number
of terms in case (a) is at the order (p − 2ma)

2. By (A.7) and the independence between
the pairs within the graph G and outside G, each of the terms in case (a) is bounded by
P(R̃i1j1 >

√
4 logp) = o(p−2). There are 2ma(p − 2ma) terms in case (b), and each term is

smaller than Cp−2(1−Lp/n)2 ≈ Cp−2 by (A.10). Case (c) has ma terms, and each of them is
bounded by the order p−2(1−√

r̄0)
2

according to (A.9). The number of terms in the last case
(d) is less than 4m2

a , and by (A.11), each of those terms is also bounded by Cp−2(1−Lp/n)2
as

those in case (b). Summing all the terms in the four cases together, we have that

EN(0,Ip)

{
L(G)I

(
Dc

p

)}≤ Cp2{1−β−(1−√
r̃0)

2} + o(1)

for all G ∈ M, which implies EN(0,Ip){LI(Dc
p)} ≤ Cp2{1−β−(1−√

r̃0)
2} + o(1). When r̃0 <

DB(β), it can be shown that 1 − β − (1 − √
r̃0)

2 < 0, and hence, EN(0,Ip){LI(Dc
p)} = o(1).

Since EN(0,Ip)(L) = 1, this implies that EN(0,Ip){LI(Dp)} = 1 + o(1).
For the second claim of (A.6), using (A.5), L2 can be expressed as

L2 =
(

p

2ma

)−2

N−2
0

∑
G1=(A1,U1)∈M

∑
G2=(A2,U2)∈M

(A.12)

exp
{
C̃

( ∑
(i1,j1)∈U1

R̃i1j1 + ∑
(i2,j2)∈U2

R̃i2j2

)
− 2maB̃

}
.

The key to evaluating EN(0,Ip){L2
I(Dp)} is to identify the common vertices and edges shared

by any pair of graphs G1 = (A1,U1),G2 = (A2,U2) ∈ M. Let G12 = (A1 ∪ A2,U1 ∪ U2) be
the joint graph of G1 and G2. Since both G1 and G2 are graphs of perfect matching, there is
no vertex in G12 that connects to more than two other vertices. Let G∗

12 be the subgraph of G12
excluding the common edges U1 ∩U2 of G1 and G2. Define (i1, i2, . . . , id0) as a maximal path
of G∗

12 if (i�, i�+1) ∈ U12 for � = 1, . . . , d0 − 1 and there is no additional vertex connecting
to the vertices on this path, where U12 = (U1 ∪ U2) ∩ (U1 ∩ U2)

c. Let P12 be the collection
of all maximal paths of G∗

12, which forms a partition for the edge set U12. Note that any two
paths in P12 do not share common vertices. Let P12,c and P12,ac be the sets of all cyclic and
acyclic paths in P12, such that P12 = P12,c ∪ P12,ac. For example, if (i1, i2), (i3, i4) ∈ U1
and (i2, i3), (i1, i4) ∈ U2, then the path (i1, i2, i3, i4, i1) is cyclic. If (i2, i3), (i4, i5) ∈ U2 and
i5 /∈ A1, the path (i1, i2, i3, i4, i5) is acyclic.

For a given graph G1 and 0 ≤ h0 ≤ ma , let M(G1, h0) = {G2 ∈ M : G2 = (A2,U2), |U1 ∩
U2| = h0} be the subcollection of all graphs from M that share exactly h0 edges with G1.
Let M̃(G1, h0) = {G2 ∈ M : G2 = (A2,U2), |U1 ∩ U2| ≥ h0} be the subcollection of graphs
sharing at least h0 edges with G1. Let Nh0(G1) = |M(G1, h0)| and Ñh0(G1) = |M̃(G1, h0)|.
By direct calculation, it can be shown that

Ñh0(G1) =
(
ma

h0

)(
p − 2h0

2ma − 2h0

) {2(ma − h0)}!
(ma − h0)!2ma−h0

= ma!(p − 2h0)!2h0−ma

{(ma − h0)!}2(p − 2ma)!h0!
for all G1 ∈ M. Note that Nh0(G1) = Ñh0(G1) − Ñh0+1(G1) and

Ñh0(G1)( p

2ma

)
N0

=
{

ma!
(ma − h0)!

}2 2h0

h0!
2h0∏
j=1

1

p − j + 1
.
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Since ma = o(p) for β > 1/2, Ñh0+1(G1) = o(Ñh0(G1)) for 0 ≤ h0 < ma . Therefore,
Nh0(G1) can be approximated by Ñh0(G1), and its proportion to the total size of M is bounded
by

(A.13)
Nh0(G1)( p

2ma

)
N0

≤
(

Cm2
a

p2

)h0 1

h0!
for all G1 ∈ M and a positive constant C.

We further decompose the graphs in M(G1, h0) based on the number of edges that form
cyclic paths with G1. Let

M(G1, h0, k0) = {G2 ∈ M(G1, h0) : k0 edges in G2 form cyclic paths with G1
}
,

and Nh0,k0(G1) = |M(G1, h0, k0)|. It is clear that M(G1, h0) = ⋃ma−h0
k0=0 M(G1, h0, k0).

Given k0 selected edges from G1, there are at most k0!3k0 different ways of constructing
the set P12,c of cyclic paths, allowing multiple disjoint paths in P12,c. Therefore,

Nh0,k0(G1) ≤
(
ma

h0

)(
ma − h0

k0

)(
p − 2h0 − 2k0

2ma − 2h0 − 2k0

) {2(ma − h0 − k0)}!k0!3k0

(ma − h0 − k0)!2ma−h0−k0

= ma!(p − 2h0 − 2k0)!2h0+k0−ma 3k0

{(ma − h0 − k0)!}2(p − 2ma)!h0! ,

and it follows that

Nh0,k0(G1)

Nh0(G1)
≤ {(ma − h0)!}2

{(ma − h0 − k0)!}2

(p − 2h0 − 2k0)!
(p − 2h0)! 6k0 ≤ m

2k0
a 6k0

p2k0

for all G1 ∈ M.
For any pair of graphs G1 = (A1,U1),G2 = (A2,U2) ∈ M(G1, h0), we group the terms in

the summation
∑

(i1,j1)∈U1
R̃i1j1 +∑(i2,j2)∈U2

R̃i2j2 by the common edges of U1 and U2 and
the different paths in P12,ac and P12,c. Therefore,

L(G1)L(G2)I(Dp) = exp
{
C̃

( ∑
(i1,j1)∈U1

R̃i1j1 + ∑
(i2,j2)∈U2

R̃i2j2

)
− 2maB̃

}
I(Dp)

= ∏
(i,j)∈U1∩U2

exp(2C̃R̃ij − 2B̃)I(Dp)

× ∏
(i1,i2,...,id0 )∈P12,ac

exp

(
C̃

d0−1∑
�=1

R̃i�i�+1 − (d0 − 1)B̃

)

× ∏
(i1,...,id̃0

,i1)∈P12,c

exp

(
C̃

d̃0−1∑
�=1

R̃i�i�+1 + C̃R̃i
d̃0

i1 − d̃0B̃

)
I(Dp).

To calculate EN(0,Ip){L(G1)L(G2)I(Dp)}, we first consider the h0 common edges in U1 ∩U2.
Since I(Dp) ≤ I{R̃ij ≤ √

4 logp for (i, j) ∈ U1 ∩ U2}, it is easy to see

EN(0,Ip)

{ ∏
(i,j)∈U1∩U2

exp(2C̃R̃ij − 2B̃)I(Dp)

}

≤ ∏
(i,j)∈U1∩U2

EN(0,Ip)

{
exp(2C̃R̃ij − 2B̃)I(R̃ij ≤

√
4 logp)

}
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Similar as (A.9), by Lemma S14 in the SM, it can be shown that

EN(0,Ip)

{
exp(2C̃R̃ij − 2B̃)I(R̃ij ≤

√
4 logp)

}≤ Cp2d(r̃0)

for (i, j) ∈ U1 ∩ U2, where d(r) = 2rI(r ≤ 1/4) + {1 − 2(1 − √
r)2}I(r > 1/4). Note that

EN(0,Ip){exp(2C̃R̃ij − 2B̃)} = p4r̃0(1 + o(1)). Since 2r̃0 > d(r̃0) when r̃0 > 1/4, the trunca-
tion by I(Dp) leads to a tighter bound on the second moment of the likelihood ratio. Hence,∏

(i,j)∈U1∩U2

EN(0,Ip)

{
exp(2C̃R̃ij − 2B̃)I(R̃ij ≤

√
4 logp)

}≤ Ch0p2h0d(r̃0).

Next, we consider the acyclic paths. For any path (i, j) ∈ P12,ac with length 1, note that
EN(0,Ip) exp(C̃R̃ij − B̃) = 1 from (A.7). For paths (i1, i2, . . . , id0) ∈P12,ac with length longer
than 1, we have

C̃

d0−1∑
�=1

R̃i�i�+1 − (d0 − 1)B̃ = −
∑n

k=1 Z̃k,(i1,...,id0 )

2(1 − δ2
a)

− n(d0 − 1)

2
log
(
1 − δ2

a

)
,

where {Z̃k,(i1,...,id0 )}nk=1 is a sequence of IID random variables with

Z̃k,(i1,...,id0 ) = δ2
aZ

2
ki1

+ δ2
aZ

2
kid0

+ 2δ2
a

d0−1∑
�=2

Z2
ki�

− 2δa

d0−1∑
�=1

Zki�Zki�+1 .

By taking the conditional expectation of the end nodes i1 and id0 given the middle nodes
i2, . . . , id0−1, and recursively applying Lemma S13 in the SM given the middle nodes, we
have

EN(0,Ip) exp
{−Z̃k,(i1,...,id0 )

2(1 − δ2
a)

}
= (1 − δ2

a

)(d0−1)/2
,

which leads to

EN(0,Ip)

{
exp

(
C̃

d0−1∑
�=1

R̃i�i�+1 − (d0 − 1)B̃

)}
= 1.

Lastly, for a cyclic path (i1, . . . , id̃0
, i1) ∈P12,c, d̃0 has to be an even number. We calculate

EN(0,Ip){exp(C̃
∑

R̃i�i�+1 + C̃R̃i
d̃0

i1 − d̃0B̃)I(Dp)} by its conditional expectation with respect
to the i1th variable given all other variables on this cyclic path. By Lemma S16 in the SM,
we have

EN(0,Ip)

{
exp(C̃R̃i1i2 + C̃R̃i

d̃0
i1 − 2B̃)I(Dp)|Zki2,Zki

d̃0
, k = 1, . . . , n

}
≤

n∏
k=1

E
[
exp
{2δaZki1Zki2 + 2δaZki1Zki

d̃0
− 2δ2

aZ
2
ki1

− δ2
aZ

2
ki2

− δ2
aZ

2
ki

d̃0

2(1 − δ2
a)

}∣∣∣∣Zi2,Zi
d̃0

]

× (1 − δ2
a

)−n
I(R̃i2id̃0

≤
√

4 logp)

= (1 − δ4
a

)−n/2 exp
{
δ2
a

∑n
k=1(2Zki2Zki

d̃0
− δ2

aZ
2
ki2

− δ2
aZ

2
ki

d̃0
)

2(1 − δ4
a)

}
I(R̃i2id̃0

≤
√

4 logp),

which is equal to 1 + O(n−1/2(logp)3/2) for all values of {Zk2,Zki
d̃0

}nk=1 under the event

Dp . Therefore, EN(0,Ip){exp(C̃
∑d̃0−1

�=1 R̃i�i�+1 + C̃R̃i
d̃0

i1 − d̃0B̃)I(Dp)} is bounded by

EN(0,Ip)

{
exp

(
C̃

d̃0−1∑
�=2

R̃i�i�+1 − (d̃0 − 2)B̃

)
I(Dp)

}
exp
{
(logp)3/2

n1/2

}
= exp

{
(logp)3/2

n1/2

}
.
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Since different paths in P12 do not share common vertices, all the common edges in U1 ∩
U2 and the different paths in P12 are mutually independent. Based on the above results, for
all G1 ∈ M and G2 ∈M(G1, h0, k0), we have

(A.14) EN(0,Ip)

{
L(G1)L(G2)I(Dp)

}≤ Ch0p2h0d(r̃0) exp
(
k0Lpn−1/2).

Combining (A.12), (A.13) and (A.14), it follows that

EN(0,Ip)

{
L2

I(Dp)
}

≤
(

p

2ma

)−2

N−2
0

∑
G1∈M

ma∑
h0=0

∑
G2∈M(G1,h0)

EN(0,Ip)

{
L(G1)L(G2)I(Dp)

}

≤
(

p

2ma

)−1

N−1
0

∑
G1∈M

ma∑
h0=0

ma−h0∑
k0=0

(
Cm2

a

p2

)h0 p2h0d(r̃0)

h0!
m

2k0
a 6k0

p2k0
exp
(
k0Lpn−1/2)

≤ exp
{
Cm2

ap
2d(r̃0)−2},

where the last inequality is due to
∑ma−h0

k0=0 {6m2
ap

−2 exp(Lpn−1/2)}k0 = 1 + o(1) since ma =
o(p) for β > 1/2. Note that

exp
{
Cm2

ap
2d(r̃0)−2}= exp

{
C
(
p2)2(1−β)−1+d(r̃0)

}
,

which converges to 1 if 1−2β +d(r̃0) < 0. Note that 1−2β +d(r̃0) < 0 is equivalent to r̃0 <

DB(β). Therefore, EN(0,Ip){L2
I(Dp)} ≤ 1+o(1) if r̃0 < DB(β). Since EN(0,Ip){L2

I(Dp)} ≥
E2

N(0,Ip){LI(Dp)}, we have EN(0,Ip){L2
I(Dp)} = 1+o(1) if r̃0 < DB(β). This completes the

proof of (A.6), and the conclusion of Theorem 1 follows from (A.6). �
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