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A.1 Seasonal Characteristics of the Wind in Beijing

Using the data of 60 months since January 2010, we summarize the distribution of wind directions

and average speed for the four seasons in Fig. S1. It shows that the general wind distribution in

Beijing was dominated by NW and SE, with winter by NW and summer by SE. The average speeds

of NW in spring, autumn and winter were significantly higher than those of other directions. In

summer, winds of all directions were calmer. In spring and summer, SE was much stronger than

that in autumn and winter.

Fig. S1: Seasonal wind patterns in Beijing. The distribution of wind directions (shown via the width

of angles) and the average speed (via the length of radius) for the four seasons.

2



A.2 Map of the Northern Part of the North China Plain

Fig. S2: Map of the northern part of the North China Plain. Beijing, in the north-west corner

of the North China Plain, is hemmed in by Taihang Mountains to the west and Yanshan Mountains to

the north. Source: Google Earth.

A.3 Influence of the Northerly Wind

Given the benefit of northerly wind, a natural question is “How long can Beijing’s PM2.5 remain

below 35µg/m3 without substantial northerly wind?”. Fig. S3 reports the lengths of Low PM

periods, after excluding the time under northerly wind above 1.5m/s and 3.3m/s, respectively.

The medians and averages were dramatically shortened to 3 and 5 hours, respectively, if excluding

northerly > 1.5m/s. They became 7 and 10 hours, respectively after excluding northerly >

3.3m/s. These were sharply smaller than 15 and 21 hours respectively for the entire Low PM

period. These statistics indicate that Beijing can hold up for only 3 to 5 hours without the

beneficial northerly wind.
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Fig. S3: Box-plots for the hours in Low PM periods excluding northerly wind > 1.5m/s (left) and 3.3m/s

(middle), and without excluding (right).

A.4 Model Assumptions

We provide the assumptions for the nonparametric estimation of Model (4.2).

We first define some notations.

(i) Denote fX the density of a random variable X.

(ii) For a real valued function f , its ‖ · ‖p-norm is defined as ‖f‖p =
(∫
|f(x)|pdx

)1/p
and its

‖ · ‖∞-norm is defined as ‖f‖∞ = sup|f(·)|. if f is continuous, then limp→∞ ‖f‖p = ‖f‖∞.

(iii) Define σ(Xt, t ∈ A) as the σ-Algebra generated by the random variable Xt, t ∈ A, where A

is an index set of time.

(iv) The α-mixing coefficient of the strictly stationary process Vt = (Yt, Xt) for t ∈ Z is defined

as

α(k) = sup
B∈σ(Vs,s≤t)
C∈σ(Vs,s≥t+k)

|P (B ∩ C)− P (B)P (C)| for k ≥ 1.

The process {Vt} is said to be α-mixing if limk→∞ α(k) = 0.

(v) Denote by C2,d(b) the set of twice continuously differentiable real valued functions f on Rd

such that ‖f‖∞ ≤ b and ‖f (2)‖∞ ≤ b, where f (2) denotes any partial derivative of order 2 for

f .
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For weakly dependent data, Bosq (1998) gives the assumptions for the asymptotic behaviour

of the nonparametric regression estimator for estimating a general conditional mean r(x) =

E(g(Y )|X = x). In our case, g(Y ) = Y and g(Y ) = I(Y < y) for estimating E(Y |X) and

F (Y < y|X), respectively.

Following Bosq (1998), for each month j, year i, the assumptions are given as follows.

(i) The joint density f(Xijs,Xijt) exists for any s 6= t and belongs to C2,2q(b) for a positive constant

b, and

sup
s 6=t
‖f(Xijs,Xijt) − fXijs

fXijt
‖p <∞,

for some p ≥ 2, and q is the dimension of Xijt.

(ii) The residuals {eijt} satisfy E(eijt|Xijt,Wijt) = 0 and the second moment E(e2
ijt|Xijt =

x,Wijt = w) = σ2(x,w) <∞ for any x,w in their respective supports.

(iii) At each wind direction w, Vijt = (Yijt, Xijt) is strictly stationary and α-mixing, and the

α-mixing coefficient given i and j satisfies α(k) ≤ γk−β, for k ≥ 1 and constants γ > 0 and

β > max(2(p−1)
p−2

, q + 2).

(iv) At each wind direction w, fXijt
(x) and φ(x) =

∫
yfVijt(y, x)dy belong to C2,q(b) for a positive

constant b. And fVijt belongs to C2,q+1(b). The density fXijt
(x) > 0 in the support of Xijt.

(v) There exists a positive constant a > 0 such that E{exp(a|Yijt|)} <∞.

(vi) The kernel used for smoothing is a product kernel of a univariate kernel k(·) which satisfies∫
k(v)dv = 1, k(v) = k(−v) and 0 <

∫
v2k(v)dv = κ2 < ∞. And the bandwidth hs =

O(n
−1/(q+4)
ij ) for s = 1, · · · , q.

A.5 Model Diagnostics

We estimated Yijt by Ŷ NP
ijt = m̂ij(Xijt,Wijt) and Ŷ PL

ijt = β̂Yij,t−1 + ĝij(Xijt,Wijt), where the

superscript NP means using the model in (4.2) and PL means the partial linear model in (4.3).

Therefore, we obtained the estimated residuals êNPijt = Yijt − Ŷ NP
ijt and êPLijt = Yijt − Ŷ PL

ijt for each

observation t at year i and month j using the two models.

In order for the kernel regression estimation to work, the residuals {eijt} in (4.2) are required to

be stationary and weakly dependent. Hence, in the following we conducted two diagnostic checks

on the stationarity and one diagnostic on the weak dependence of eijt. The diagnostics were based
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on the estimated residuals êijt = êNPijt and êPLijt under the NP Model (4.2) and PL Model (4.3),

respectively.

For the NP Model (4.2), we first diagnosed on the stationarity of the residuals by the augmented

Dickey-Fuller (DF) test [45] and Phillips-Perron unit root test [46] to test on the null hypothesis

H0: {eijt} is a unit root process versus Ha: {eijt} is a stationary process.

Both the augmented DF test and the Phillips-Perron unit root test are commonly used to test

the stationarity of the residuals of regression models. That conducting both tests is to have extra

insurance.

We performed the two tests on each of the 60 months from January, 2010 to December, 2014

and computed the p-values based on the asymptotic null distributions. For the augmented DF test,

the null hypothesis of unit root was rejected in all the months but April, 2011 at 5% significance

level. At the same time, the Phillips-Perron unit root test rejected the null hypothesis in all the

months at the level of 1%. Both tests produced very consistent results, which constitute a strong

evidence for {eijt} in all the 60 months being stationary.

To check the weak dependence among the residuals, we used the adjusted rescaled range

analysis [47] which is designed to test

H0: {eijt} is a weakly dependent process versus Ha: {eijt} is a long-range dependent process.

The lag parameter chosen to estimate the long-run covariance in the test was q = 10 and

q = 20 to ensure the robustness. Almost all the p-values for q = 10 exceeded 0.05 except those

of March 2010 and May 2012. While in the situation q = 20, all p-values were larger than 0.05.

These results suggest that we can not reject H0 and the residuals were largely weakly dependent.

For the PL Model (4.3), we repeated the above diagnostic testings and reached the same

conclusion as those under the NP model. In conclusion, the diagnostics above show that the

residuals under both models were likely to be weakly stationary series, which is the basic condition

needed for the kernel regression estimation adopted in our study.
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A.6 Selection Frequencies of the Meteorological Variables
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Fig. S4: The frequency of the meteorological variables selected for being useful of each month in five

replications (five years from 2010 to 2014) under each of the wind direction

The bandwidths obtained by the cross-validation for each monthly model (4.2) contain information

on the importance of variables in explaining the PM2.5 concentration. If a covariate is redundant,

the bandwidth selected by the cross-validation will diverge to the upper bound of the allowable

range with probability tending to one; see [37] for details. As all the meteorological variables,

except the wind direction, are continuous, the upper bound is the infinity.

We checked on the cross-validation bandwidths selected under each of the four wind directions

(NW, NE, S, CV) for each month, and employed 15000 as the threshold to judge if a variable is

redundant or not. The use of 15000 was made by the observation that the CV bandwidths were

either small, in the range of 0.2 to 100 (mostly from 0.2 to 10), or above 15000. Fig.S4 reports

the frequency of each variable which was selected for being useful among the 60 months under

each wind direction. It shows that dew point and pressure were the most influential, followed by

temperature and CWP. Rain and snow were significant in the summer and winter, respectively.It

is not surprising to see CWP was less influential under the CV (calm and Variable wind) than the

other wind directions, as it is hard to accumulate for this wind type.
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A.7 Technical Details on the Adjusted Averages

The estimator of µij is given in (5.2) . Taking expectation on both sides of (5.2), we get

E(µ̂ij) = (

n.j∑
a=1

naj)
−1

{
4∑

w=1

nijE (m̂ij(Xijt,Wijt)I(Wijt = w))

+
4∑

w=1

n.j∑
a=1,a 6=i

najE (m̂ij(Xajt,Wajt)I(Wajt = w))

}
. (A.1)

By the assumption of weak stationarity, we have

4∑
w=1

E (m̂ij(Xijt,Wijt)I(Wijt = w)) =
4∑

w=1,a6=i

E (m̂ij(Xajt,Wajt)I(Wajt = w))

=
4∑

w=1

∫
m̂ij(x,w)f·j(x,w)dx. (A.2)

Under the assumptions (i)-(vi) in section A.4, it was proved in [34] that

m̂ij(x,w) = mij(x,w) +Op(n
−2/(q+4)
ij ), (A.3)

where q is the dimension of Xijt.

Plugging (A.3) into (A.2) and (A.1), we get

E(µ̂ij) =
4∑

w=1

∫
mij(x,w)f·j(d)dx+O(n

−2/(q+4)
ij ), (A.4)

which implies

E(µ̂ij) = µij +O(n
−2/(q+4)
ij ). (A.5)

This means that the proposed µ̂ij is an asymptotically unbiased estimator of the true µij. For

the variance of µ̂ij, we can use similar techniques in [37] to prove µ̂ij is a consistent estimator.

A.8 The Adjusted Comparison of PM2.5 between Two Years

In order to make a fair comparison of the average pollution levels by excluding the weather effects

between year i1, i2, we need to compare the average and the percentiles of PM2.5 via controlling the

weather variables. In this section, we concentrate on the averages and the approach for percentiles

is similar.

8



To control weather conditions, we need to compare the averages of PM2.5 given the same

weather variables (Xijt,Wijt) = (x,w) for year i1 and i2, namely,

E(Yi1jt|Xi1jt = x,Wi1jt = w)− E(Yi2jt|Xi2jt = x,Wi2jt = w). (A.6)

Then an aggregated version of the comparison (A.6) concerning all the possible realizations of

the weather variables is

4∑
w=1

∫
{E(Yi1jt|Xi1jt = x,Wi1jt = w)− E(Yi2jt|Xi2jt = x,Wi2jt = w)} f·j(x,w)dx = µi1j − µi2j,

say, the difference of the adjusted averages of PM2.5 in the two years. By plugging in the estimators

we propose, we can get the adjusted comparison as 4µ̂i1−i2,j = µ̂i1j − µ̂i2j.
To quantitatively evaluate the adjusted differences between two months, we need to check if

∆µi1−i2,j is significantly different from zero. Specifically, when ∆µ̂i1−i2j > 0, we construct an

hypothesis testing problem

H0: ∆µi1−i2,j = 0 vs Ha: ∆µi1−i2,j > 0.

While in the situation ∆µ̂i1−i2,j < 0, we use the following test,

H0: ∆µi1−i2,j = 0 vs Ha: ∆µi1−i2,j < 0.

The test statistic is T =
∆µ̂i1−i2,j

−∆µi1−i2,j

σ̂i1−i2,j
where σ̂i1−i2,j is obtained by the block bootstrap

estimation method. The asymptotic null distribution of T is a standard normal distribution

Z v N(0, 1). We reject the null hypothesis when |T | > Zα, where α is the significance level of the

test and Zα is the upper α percentile of the standard normal distribution.
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Table S1: Differences in the adjusted averages, medians and 90th percentiles of PM2.5 concentration

(µg/m3) between year 2013 and year 2012, and between year 2014 and year 2012. The quantities

inside the parentheses are p-values for testing the null hypothesis of no underlying difference versus the

underlying difference being positive or negative depending on the sign of the difference, based on the

block size l = 12 in the bootstrap estimation of the standard error. The zero in the parentheses means

the corresponding p-value being less than 0.01.

(a) 2013-2012

Month 1 2 3 4 5 6

Average 0.7(0.47) 23.8(0) 6.2(0.18) 10.7(0.07) -5.5(0.1) 8.1(0.12)

Median -14.9(0.06) -4.9(0.34) 8.2(0.15) 14.8(0.06) -4.9(0.16) 13.4(0.15)

90th Percentile 10.1(0.39) 96.3(0) -5.1(0.42) -5(0.4) -18.5(0.08) -6.7(0.28)

Month 7 8 9 10 11 12

Average 1.2(0.38) -12(0.02) 20.4(0) 11.2(0.16) 17.7(0.01) 34.3(0)

Median 5(0.11) -3.3(0.3) 23.5(0) 26.6(0.01) 13.3(0.19) 14.6(0.08)

90th Percentile -11.7(0.21) -41.9(0) 36.9(0.02) 5.1(0.43) 65.9(0) 60.8(0)

(b) 2014-2012

Month 1 2 3 4 5 6

Average -8.8(0.24) 47.1(0) 20.3(0.01) 1.2(0.42) -7.9(0.01) -30.3(0)

Median 5(0.35) 31.2(0.01) 23(0.02) 26.3(0) 0(0.5) -26.8(0.01)

90th Percentile -91.2(0.04) 177.4(0) 15.2(0.28) 33(0.14) -30.2(0) -60.4(0)

Month 7 8 9 10 11 12

Average 34.3(0) -6.6(0.11) -2.7(0.21) 17.3(0.01) -0.9(0.46) 2.6(0.35)

Median 37.6(0) 1.7(0.39) -1.7(0.39) 33.2(0) -28.2(0) -4.9(0.32)

90th Percentile 63.8(0) -21.8(0.01) -6.7(0.15) 60.8(0) 70.9(0.01) -5.1(0.44)
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Table S2: Annual adjusted averages and percentiles of PM2.5 concentration (µg/m3) with the block

size l = 12 in the bootstrap estimation of the standard errors. The “Original” and “Adjusted” are the

averages or percentiles before and after the adjustment, respectively. “SE” is the estimated standard

error of the adjusted PM2.5 concentration using the bootstrap.

Average 10% 25% 50% 75% 90%

2010

Original 104.7 21.6 39.1 78.0 147.6 233.1

Adjusted 101.3 20.3 38.9 77.8 146.1 223.4

SE 2.0 0.8 1.6 2.5 3.8 6.1

2011

Original 99.0 18.1 33.4 74.0 145.9 219.8

Adjusted 97.6 15.1 31.1 75.9 147.4 236.2

SE 2.1 1.2 2.0 3.5 3.9 6.5

2012

Original 90.7 13.8 27.1 68.1 135.6 205.2

Adjusted 91.5 14.3 28.3 71.8 136.9 213.8

SE 1.7 0.7 1.4 2.4 3.3 5.2

2013

Original 101.7 16.8 32.6 77.8 150.0 223.8

Adjusted 101.2 16.5 32.7 79.4 151.6 229.4

SE 1.9 0.7 1.4 2.5 4.2 4.7

2014

Original 98.0 15.0 32.5 74.7 145.0 214.9

Adjusted 96.9 14.8 32.3 79.8 149.3 231.0

SE 2.1 0.7 1.9 2.6 5.0 6.7
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Table S3: APEC effect: the original and the adjusted averages and percentiles (standard deviation) of

PM2.5 concentration (µg/m3) with the block size l = 12 in the bootstrap estimation of the standard

errors. The “Original” and “Adjusted” are the averages or percentiles before and after the adjustment,

respectively.

Original Adjusted

Period year Average 50% 75% 90% Average 50% 75% 90%

Nov3-12

2010 95.3 67.0 129.0 217.8 70.2(7.76) 53.5(17.17) 122.8(13.13) 184.9(49.79)

2011 68.5 55.0 90.2 123.0 61.3(5.53) 56.8(5.35) 104.4(11.86) 188.3(47.46)

2012 61.2 39.0 98.2 134.1 70.5(6.19) 65.1(10.25) 96.7(9.49) 134.6(15.1)

2013 85.6 46.5 159.2 190.1 112.2(10.65) 102.7(24.93) 173.2(14.12) 234.2(28.08)

2014 57.7 42.0 80.0 144.2 63.6(8.04) 43.5(12.39) 96.7(15.79) 158.1(26.09)

Nov6-12

2010 97.8 60.5 138.5 241.3 74.3(14.16) 28.6(37.42) 121.1(20.57) 234.2(53.98)

2011 69.8 49.0 90.0 140.5 62.3(6.92) 51.8(5.09) 88.4(13.95) 163.1(43.52)

2012 59.5 48.5 98.2 116.6 62.3(6.34) 58.5(11.73) 90(10.62) 117.8(7.56)

2013 78.6 47.0 148.2 178.3 85.5(9.59) 63.5(25.11) 163.1(15.99) 186.6(29.33)

2014 49.6 41.0 77.0 99.2 52.2(6.72) 40.2(13.71) 88.4(11.39) 112.7(18.33)
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Table S4: Heating effect: the original and the adjusted averages and percentiles (standard deviation) of

PM2.5 concentration (µg/m3) in non-heating and heating period in November with the block size l = 12

in the bootstrap estimation of the standard errors. The “Original” and “Adjusted” are the averages or

percentiles before and after the adjustment, respectively.

Original Adjusted

time Average 50% 75% 90% Average 50% 75% 90%

2010
Nov1-14 81.5 49.5 117.5 186.7 66(5.02) 53.5(7.63) 112.7(10.99) 163.1(21.65)

Nov15-30 179.9 154.0 249.0 399.8 186.9(17.58) 163.1(22.7) 327.7(43.55) 494.9(78.65)

2011
Nov1-14 78.0 56.0 102.0 153.0 71.7(7.66) 70.1(11.59) 124.5(15.05) 201(31.22)

Nov15-30 137.4 123.0 205.0 285.0 129.7(11.65) 129.5(22.8) 221.3(15.2) 302.4(16.18)

2012
Oct20-Nov2 105.6 63.0 171.5 267.7 63.2(7.26) 36.9(7.54) 83.4(19.59) 231.4(29.63)

Nov3-18 69.9 42.5 114.0 169.4 99.2(8.18) 96.7(12.26) 159.7(15.25) 201(13.09)

2013
Nov1-14 115.8 89.5 185.0 266.0 104.1(6.83) 88.4(14.09) 178.2(14.42) 266.9(20.54)

Nov15-30 69.3 33.0 93.8 190.7 136.6(13.37) 119.5(14.53) 231.4(29.83) 348(48.1)

2014
Nov1-14 50.2 34.0 74.0 117.4 50.9(4.94) 33.6(5.98) 81.7(9.05) 139.6(19.33)

Nov15-30 153.0 117.0 254.2 333.9 130.8(10.77) 93.4(22.02) 251.7(30.5) 363.2(20.11)
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Table S5: Heating effect: the original and the adjusted averages and percentiles (standard deviation)

of PM2.5 concentration (µg/m3) in non-heating and heating period in March with the block size l = 12

in the bootstrap estimation of the standard errors. The “Original” and “Adjusted” are the averages or

percentiles before and after the adjustment, respectively.

Original Adjusted

time Average 50% 75% 90% Average 50% 75% 90%

2010
Mar8-22 96.0 67.0 116.0 219.4 115.7(11.75) 70.4(6.58) 116.1(20.28) 216.2(23.91)

Mar23-Apr7 83.7 63.0 110.0 184.0 88.1(5.47) 73.7(6.14) 134.6(10.64) 184.9(10.35)

2011
Mar1-15 62.3 23.0 67.0 209.0 107.5(13.38) 67.1(7.71) 121.1(25.98) 277(50.98)

Mar16-31 52.4 30.0 76.0 121.2 72.8(4.54) 67.1(6.8) 112.7(5.07) 164.8(16.17)

2012
Mar4-18 89.7 70.5 141.5 189.6 113.3(9.58) 93.4(8.25) 166.4(11.4) 282.1(50.24)

Mar19-Apr3 81.4 51.5 108.8 193.0 66(6.48) 44.1(8.9) 86.8(9.95) 149.7(23.62)

2013
Mar3-17 163.5 144.0 235.0 329.5 130.4(9.67) 116.1(12.4) 201(18.36) 292.2(23.79)

Mar18-Apr2 95.7 86.5 128.0 210.0 79.7(5.65) 72.1(8.79) 121.1(9.68) 198.3(19.05)

2014
Mar1-15 94.9 74.0 154.0 225.1 126(10.52) 119.5(19.26) 206.1(18.16) 256.7(13.13)

Mar16-31 125.1 96.0 189.5 277.0 76(9.18) 75.3(13.47) 149.7(15.31) 216.2(29.1)
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Table S6: The Coefficients (p-value) of the linear part in Model (4.3). The zero in the parentheses means

the corresponding p-value being less than 0.001.

Year-Month pm2.5lag

2014-1 0.85(0)

2014-2 0.78(0)

2014-3 0.38(0)

2014-4 0.94(0)

2014-5 0.62(0)

2014-6 0.6(0)

2014-7 0.81(0)

2014-8 0.81(0)

2014-9 0.77(0)

2014-10 0.95(0)

2014-11 0.9(0)

2014-12 1.02(0)

Table S7: The Coefficients (p-value) of the linear part in Model (8.1). The units of linear covariates

are µg/m3 except CO with unit being 100µg/m3. The zero in the parentheses means the corresponding

p-value being less than 0.001.

Year-Month SO2.lag NO2.lag CO.lag

2014-1 -0.15(0.598) 1.24(0) 3.93(0)

2014-2 1.21(0) 1.13(0) 3.52(0)

2014-3 0.17(0) 0.48(0) 0.99(0)

2014-4 -0.01(0.948) 0.07(0.15) 5.74(0)

2014-5 0.82(0.25) 0.18(0.016) 4.28(0.033)

2014-6 0.15(0.201) 0.12(0) 2.39(0)

2014-7 1.18(0.072) 0.03(0.756) 4.46(0)

2014-8 1.1(0.007) 0.16(0.008) 7.19(0)

2014-9 0.08(0.741) 0.31(0) 0.23(0)

2014-10 -0.08(0.827) 0.77(0) 5.64(0)

2014-11 0.91(0) 0.82(0) 3.29(0)

2014-12 1.22(0) 0.98(0) 1.64(0.01)
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Table S8: The Coefficients (p-value) of the linear part in Model (8.2). The units of linear covariates

are µg/m3 except CO with unit being 100µg/m3. The zero in the parentheses means the corresponding

p-value being less than 0.001.

Year-Month pm2.5lag SO2.lag NO2.lag CO.lag

2014-1 0.55(0) 0.11(0.485) 0.82(0) 1.39(0)

2014-2 0.77(0) 0.25(0.118) 0.41(0) 1.31(0)

2014-3 0.22(0) -0.02(0.61) 0.28(0) 1.06(0)

2014-4 0.67(0) 0.03(0.749) 0.1(0.009) 1.86(0)

2014-5 0.52(0) 0.11(0.687) 0.11(0.006) 2.37(0.062)

2014-6 0.61(0) -0.2(0.002) 0.08(0) 0.98(0)

2014-7 0.69(0) 0.28(0.248) 0(0.925) 1.82(0)

2014-8 0.51(0) 0.39(0.229) 0.09(0.163) 4.11(0)

2014-9 0.7(0) -0.08(0.579) 0.18(0) 0.06(0)

2014-10 0.86(0) 0.2(0.034) 0.27(0) 0.34(0.221)

2014-11 0.56(0) 0.4(0) 0.36(0) 1.42(0)

2014-12 0.58(0) 0.78(0.003) 0.61(0) 0.6(0.195)
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