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This Supplementary Material contains seven sections. Section [I| contains the properties of the
naive estimator. In Section [2| we provide results on the properties of the OS-ERM and SU-ERM
estimators when Vj is degenerate. Proofs of some useful lemmas, and theorems related to the
naive estimator, variance estimation and the estimators obtained via the iterative algorithms are
contained in Sections [3]—[6] Section [7] provides details on the computation of running times of the
various estimators.

1 Properties of the naive estimator

In the following theorem and corollaries, we derive the theoretical properties of the naive estimator
Oy = Zk 1 n, including the upper bound and the optimal convergence rate of its MSE, and
the con51stency properties. These results on the naive estimator enable a formal comparison with
the properties of our proposed estimators.

Theorem S1. Let Conditions (C1)-(C6) be satisfied. In particular, there exists ¢ > 0 such that

p = O(ng(lf%g)) if T > 0. Then the MSE of the naive estimator is bounded above by the right-
hand-side of the following inequality:
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where A = E[H[VQEO(G*)]_ g(0%; 2)|13] with g(0%;Z) = E[VL(0*;2,Z')|Z], C is independent of
(K,n,N,p), and nnKp p?/n? +p8/n If one also assumes p = o(n), then
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Corollary S1. Let Conditions (C1)-(C6) be satisfied. The naive estimator Oy is consistent if
p =o(n).

Corollary S2. Let Conditions (C1)-(C6) be satisfied. If pK = O(n), the naive estimator On
achieves the optimal MSE convergence rate E||§ — 0*||3 = O(p/N), i.e., the same MSE convergence



rate of the global estimator QAN. If one also assumes pK = o(n), then
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which is the asymptotic upper bound of the MSE of §N-

Remark S1. Corollaries[1] and [SZ show that if the initial estimator of the proposed SU-ERM and
OS-ERM estimators are chosen such that ||90 — 0*|l = Op((p/n)"/?), then the MSE of the two
proposed estimators and the naive estimator all attain the optimal bound 4A/N under the condition
of pK = o(n). Clearly, this is relevant only when the number of machines and the dimension of
the parameters are small relative to the size of the data on each machine. On the other hand, when
the number of machines and the covariate dimension are large, the naive estimator cannot attain
the optimal rate and the MSE bound, but the SU-ERM and OS-ERM estimators can still achieve
the asymptotic properties of the global estimator O, provided that an initial estimator that satisfies
100 — 0*||2 = Op(K~Y/2) is selected. The MSE bound of our proposed estimators depends crucially
on the wnitial estimator 9\0. A superior initial estimator has the effect of improving the estimation
efficiency. Thus, the rates of convergence of the SU-ERM and OS-ERM estimators will remain
optzmal m the face of a large number of machines if an appropriate initial estimator is chosen, e.g.,
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2 The case of degenerate V)

Theorem I in the main paper focuses on the case where Vj is non-degenerate, and shows that On
and HQ are asymptotlcally equivalent to GN when Vy > 0. The following analysis shows that when

Vb is degenerate, GN and 9N perform dlfferently Note that if V{ is degenerate, then for any vg € R?
(vo # 0) such that vy V2Lo(0*) 1 VoV2Lo (%) tvg = 0, we have
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where Vi = E[VU(0%; Z, Z\NVLT (0% Z, Z")], {Xil}fﬁl are independent x? random variables with one
degree of freedom and {\;}7°, are eigenvalues satisfying
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with {hy,(0%;2), ha (0%; 2)};2, being eigenfunctions. The following theorem, which nests Theorem
[] as a special case, gives the asymptotic distributions of the SU-ERM and OS-ERM estimators
under both the non-degenerate and degenerate cases.

Theorem S2. Let Conditions (C1)-(C6) be satisfied. In particular, there exists ¢ > 0 such

1+¢

that p = O(ng(lfT)) if 7 > 0. Assume the initial estimator 0y lies in U(0~,p), where p =
min{(1 — p)A_8,/(32X4), /(1 — p)A_6,/(32M)} with 6, = min{p, pA_/(4M)}, and ||6p — 6*|]2 =




Op ((p/n)lﬂ). Then the SU-ERM estimator Oy satisfies
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where g(0;2) = E[NVL(0;Z,Z")|Z = z], h(6*; = z) V(0% 2,2 ) — g(0%; 2) — g(6%; %), Gn,K,p(go)
is a random function of 8o satisfying ||Gp, K,p(90)||2 = Op((p/n)l/QHHO — 9*||2) and |jwp, K pll2 =
OP(HQN 0*||2). Furthermore, (i) if Vo is non-degenerate and pK = o(n), then Ox is asymptotically
equivalent to O, and for any vy € RP (vg #0),

VNu] (Ox — 6%)
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2N (0,1);
(ii) on the other hand, if Vi is degenerate and pK = o(n?), then for any vo € RP (vy # 0) satisfying
vg V2Lo(07) Vo V2Lo(0%) " tvg = 0, we have
Nvd (Oy — 6%)
V2EV2Ly (09) Viv2L, (%)

2, N(0,1).

This theorem also holds for the OS-ERM estimator. One can obtain the analogous result for the
OS-ERM estimator by replacing On by 916\2, everywhere in the statements of the theorem and replacing

b € U(6*,p) by b € U(0*,p'), where p' is defined in Proposition .
Remark S2. In Theorem we present the asymptotic normality in the form of \/NUOT@N —0%).

We introduce the vector vy to present the results in a one-dimensional space, because p, the parameter
dimension, is divergent here, being different from the classical U -estimation, where p is fized.

3 Proofs of Lemmas [1] — 3

Proof of Lemma[1. Under Condition (C6), by applying Theorem 1 in|de la Penal (1992) and setting
®(x) = 2%, we obtain
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where {Zz‘,k}?:1 is an independent copy of {Zi,k}?:y From Jensen’s inequality, we have
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Let ¢ be fixed. By the conditional expectation on Z ;, we can write
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By Condition (C6), E [||/pVE(6; Z, 2)|13°] < G'%(z2) for all z € Z. Then by replacing V f(6*; X) by
VPVL(0; Z, z) in the proof of Lemma 7 of [Zhang et al| (2013), we have
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for all z € Z, where C'is a constant unrelated to (n, K, N, p, z). The property that C' does not depend
on any specific z is induced by Theorem 2.1 of [de Acosta; (1981) and the Burkholder’s inequality

~ 2v V2

(Burkholder, |1973)). Hence it can be derived that E Hﬁ Zj# A\ (0*;Zk7i,Zj,k> H2 < Cpnif.
This proves the first result of the lemma.

The second claim on the upper bound on E [Hv?ﬁﬁg (0*) — V2L, (9*)“21 can be obtained by

using the similar techniques of Lemma 7 of Zhang et al. (2013)). In fact, by applying Theorem
A.1(2) of |Chen et al.| (2012)), we obtain
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where e is Euler’s number. When there exists ¢ > 0 such that p = O(ng(l_%)) if 7> 0, it can be

derived that E {Hv?ﬁ?’g (0*) — V3L, (9*)“2”} < ¢ UosP)"H™ 1 ds for v = 8, and hence holds for all

nl/
v =1,2,...,8 by using the Jensen’s inequality. The claims for £y () can be derived analogously
1 1
by recognizing that p = O(ng(l_%{)) implies p = O(Ng(l_%g)). O

Proof of Lemma[3 By applying the union bound, we can write
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Applying Lemmal[l] and using the properties of the higher moments of U-statistics stated in Theorem
1 of [Lee| (2019, Chapter 1.5), we can show that there exists some constant C” independent of

(n, K,p, N) such that
lKl 1" K(logp)8 pS
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This completes the proof of the lemma. O

Proof of Lemmal[3 Along the lines of the proof of Lemma 6 of [Zhang et al. (2013), we first prove
that Sy () is (1 — p)A_-strongly convex over the ball U := {9 ERP:||0—Onl|2 <6 } under the
event £ NE;. Since V2Sx () = V2LL(0), this claim also implies the strong convexity of L1 (6) over
0 € U. In fact, for Vv € U, from the triangle inequality, we have
V2SN (7) = V2Lo (0%) [l2 = V2 Ly (v) — VLo (67) |2
< VL4 () = VELLON) 2 + V2L (On) — VLo (6%) ||2-

Now, consider the first term on the right hand side in the above expression. Under Condition (C5)
and the event &, we have

)\_
IV2LL () — V2LEON) |2 < 2M |y — On ]2 <

Similarly, under Condition (C5) and the event & () &1, we can show that

IV2LL(On) — VLo (0%) |2 < [IV2LL(ON) — V2LE (6%) |12 + | V2LE(07) — V2L (6%) ||
A pA_

i P
< 2M|6 0
[ — 67l + 5 < 22

Therefore, HVQSN(v) - V2L (9*)”2 < pA_. As V2Ly(6*) = A_I, we obtain V2Sx(y) = A\_T —
pA_I = (1 — p)A_1I, implying that Sy is (1 — p)A_-strongly convex on the ball U.

Hence, to prove the result, it suffices to show that |[VSy( é\N) |2 < (1—/))#/\,6;), and the rest of the
derivations follow straightforwardly from Lemma 6 of Zhang et al| (2013). Note that VS N(§N)

VLY (On) — VLY (80) + VL (fo). Denote Hj, = fo V2LE (0% + (6 — 6%))dt and H] = fo V2LE (o +
t(fo — 0*))dt, k =1,..., K. Then we have
IVL(B) — VL3 (B0) 2
<IVLLOx) = VL, (0) ||z + [VL(67) = VLo (00)]2
=|[H](On = 0%z + ||H{ (6o — %)
<IVELL(07) = VLo (07) 218 — 07|z + [ V2L3,(07) = VLo (6%) [l2llfo — 672
+11V2L0 (67) ll2llfx = 012+ 1V°Lo (67) [12llf0 — 072
+2M |0y — 0%||3 + 2M||6p — 67|13, (S.2)
where the equality in the third line in is obtained by using the integral form of Taylor’s
expansion, and the last inequality in holds under Condition (C5) and the event &N E;. Under

Conditions (C3) and (C5), one can readily extend Lemma 6 of Zhang et al.| (2013) to the situation
where the empirical risk is expressed in the form of U-statistics. Hence under the event &,

2[VLN(O)]2 _ 51(p, A, Ay, M).

e @)
[ = 7]l < 220

Therefore, under the event & N &1,
~ ~ 1—p)A_d
|veu@n) - vy @), < (’ZP.
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Similarly, VL (60) = VLN (60) — VLN (6%) + VLN (6*). Note that under the event ﬂle Ek, we
can write

K
(0" 1 ; (1—p)A_$
IVENE)ll2 < 5 > IVLR(O)]y < i

Moreover,

IN
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k=1
+ V2o (67) [121160 — 612 + 2016y — 673}

Now, under the event ﬂle &,

(1- P))\—(sp.

<
- 8

HVEN(§D) ~ VLN (07,

This proves HVSN(é\N)HQ < (l_p)%’é” under the event ﬂ,lfzo Ek.. O

4 Proofs of Theorems Related to the Naive Estimator

Define the following “good” event:

L0 —Vv2Ly (0

e e R

- fon

In the following, we introduce two lemmas useful for proving Theorem

Lemma S1. Assume that Conditions (C1)-(C6) hold and there exists ¢ > 0 such that p =
O(ng(lf%)) if 7> 0. Then there exists a constant C" independent of (n, K, N,p) such that

//p8
P& >1-C 5
Lemma S2. Assume that Conditions (C1)-(C6) hold and there exists ¢ > 0 such that p =

O(nr(l_T)) if 7> 0. Then under the event &,

2/[VLy, (072

7l *
— <



Proof of Lemma[S]]. It can be shown that

P (&)%) <P (M > 2M) + P <HV2£1 0= V220 (0], > pz_>

P (\\w:; )|, > (1‘2’)”—5,)) .

By applying Lemma [I| and using the properties of the higher moments of U-statistics stated in
Theorem 1 of Lee (2019, Chapter 1.5), we can show that there exists some constant C” independent
of (n, K,p, N) such that

8
P((&)) < "

n
This completes the proof of the lemma. O

Proof of Lemma[S3. Lemma [S2] can be obtained along the lines of the proof of Lemma 6 of [Zhang
et al| (2013), by first proving the strong convexity of L1 (6) over the ball U := {# € RP : |0 — 6*|| <
d,}, followed by using a reduction to absurdity argument to derive the claim. O

Proof of Theorem [S1]. Since Oy = K1 Zszl @3, we obtain the following bound on the MSE of fy:

K

* * 1 i *\/ /)] *
|y — 0°13] = 5 BN — 73] + 5 3 EI@E - 0°) (@ — 0)
=1 e

1 * *
B8, = 67113) + @, — 61

Below, we derive the bounds for E[||§} — 6*)|3] and IE(6L — 0*)3.
Let us first consider the bound of E[||§} — 6*||3]. Tt is straightforward to see that

0=VLLOL) = VLLO") + V2LLO) (0}, — 07)
= VLLO%) + (V2LL(0) — V2LL(6))(0) — 67)
+ (V2LL(0%) — V2Lo(67))(0) — 6%) + V2Lo(67)(0) — 67),
where 6" = k0* 4+ (1 — /4;)@11 for some & € [0,1]. Multiplying [V2£o(6*)]~! to both sides of the above
equation, we have
0L — 0" = —[V2Lo(0")] 7'V LLO") + [V2Lo ()] TH(V2LL(07) — V2LL(0'))(0) — 67)
+ [V2Lo(60%)] 7L (V2Lo(07) — V2LL(67))(0) — 67). (S.3)

Under Condition (C2), there exists Co > 0 such that [|6: — 6|2 < Cy. Hence we have

E[||6;, — 03] < CoP((€7)7) + E[I[V>Lo(6")] VL, (6%)]3]
+ 2[[[V2Lo (6] BELIV L (07) — VLo (0" 131165 — 0° (131 (E7)]
+2[|[V2Lo(6")] M BELI V> Lo(6%) = V2L (67151165 — 6¥|I31(€7)]

+ 2H[V2£o(9*)]’1\|2\/E[IIVQGL(@*) = V2LL(0)[13110% — 07131 (E7)]

% \JE[[V2Lo(67)) 1V LA (63
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- 2[V2Lo(6°)) 2/ ELIV2Lo(6%) — V2LL(6) 3118 — 6+[131(E5)]
< JE[[V2Lo(6%)] -1V LL(0)]3] (5.4)

Assuming that Condition (C5) holds, it can be shown that under the event &,
* 1 *
IV2L,0) = V2L @B < o5 >0 M (Zia, Zin)l0y — 0°13.
n1<i<j<n
Hence, by the Cauchy-Schwarz inequality and Lemma [S2] we have

E[[[V2L5,(6%) — V2LL(8) 316, — 0°[I31(E7)]

1 * *
Sg7 Zin, Zi2) |08 — 07 |31(E))
1< <n
1 =
<z ¢ Zi1, Z; ) JELG, — 0* S1(7)]
1<z<]<n
< ThE o %IE Zi, Z;)E|VLL(0)]5.
- ”1<z<]<n

Then by Condition (C5) and Lemma [I} we can write
E[|[V2L(67) — V2L (8) 51168 — 67|31 (E7)] = O(* /).
Analogously, it can be shown that
E[|[V2Lo(6") = 2Ly (0931165 — 67[31(€7)] = O(plog p/n®).

Note that Condition (C3) implies ||[VZLo(0*)] 7|2 < A_, and from Lemma we have P((&7)¢) =
O(p®/n®). Furthermore, by generalizing the properties of U-estimation (Bose and Chatterjee, 2018))
to allow the dimension p to diverge, we obtain

E[||[V2Lo(0")] T VL, (07)][3] = AE[[[V2Lo (0] g(6": 2)|3] + O(plog nloglogn/n?).

Using the above results in (S.4)), we obtain

a1 112 4A 9 N, K.,p plognloglogn
BIIG: - 0718 < 5+ © (2acp + A2 VA 4 EIETCEOER ), ($5)

where A = E[[[[V2Lo(6*)] " 9(6%; Z)|13] and 12, 5, = p*/n? + p*/n®.

Next, we derive the upper bound of ||IE(§71L — 093 Let Q1 = [V2Lo(0%)]71VLL(0%), Q2 =
[V2Lo(6%)]"H(V2LL(0%) — V2LL(6") and Q3 = [V2Lo(0*)] 1 (V2Lo(6%) — V2LL(6%)). From the

expansion in (|S.3]), we have

Oy — 0" = —Q1 + (Q2 + Qs) (6}, — 07)
= Q1+ (Q2+ Q3)(—Q1 + (Q2+ Q3) (0, — 07))
= Q1+ (Q2+ Q3)*(6), — 0") — (Q2+ Q3)Qu.



Denote E*(§) = E[¢1(&7)] for any random vector . Note that EQ; = 0. By Lemma

BB — 6713 < 20[E[(Q2 + Q3)*(B), — 01113 + 2E*[(Q2 + Q)Qu] |13 + CFP((E7)°)
< 2E*(1|Q2 + QalI31E" (1167, — 6*113] + 2E*[1Q2 + Qs(BJE[| Q1 3] + O(p°/n®)
< 16(E*[[|QalI3] + E*[IIQs I3 E*[I16}, — 67]3]
+4(E*[)|Q23] + E*[IQslIEDE* [ Q1113] + O(°/n®). (S.6)

Under Conditions (C3) and (C5), for v =1 or 2,

E[1Q2[13] < AZVE* V2L (607) = V2L (03

)\:QV . .
< Y ENMP(Zia Z50))6, - 673
no1<i<i<n

)\—QV
S VEMY(Ziy, Z;1) (10 — 0|13

no1<i<i<n
M21/
< HW\/E[HV£%(9*)||§W]
=0(p"/n"),

where the last equation holds by virtue of Lemma [l| which also guarantees, for v = 1 or 2, that
* 2v —2v 2 * 2,1 %\ |12V __ v v
E*[ll@s]l5"] < AZTE[V=Lo(0%) — V2L, (67)]2” = O((log p)” /n").

It can be shown from (S.5)) that

. A
B8 - 6181 = 0 (4 + i)

Plugging the above results into (S.6)), we obtain
P’ 77
B@ -0 <0 (4 B) av ol
n n
Combining the bounds of EH@}L — 0% and ||IE(§71L — 0%)|3 leads to

] 4A n
lloy — 013 < 52 +0 (L + ) av oty

N vVnK
2,2 8
Pkp P plognloglogn
C ek .
+ ( n? + n8K + nN
This completes the proof. ]

5 Proofs of Theorems Related to Variance Estimation

Here, we prove the properties on the surrogate U-statistics V2L (gN) and ‘A/N’ K(g ~N) stated in the
main body of the paper.



Proof of Theorem[5 Let us first consider those of V2Ly(fx). Under Condition (C5), it can be
shown that

n 2 " * * *
B[ V2L5(0x) = V2Lo(67)[* < 25 D BIM*(Zig, Zia) |l — 0711%] + 2E[ V2L (6%) — V2L (07)]?

n i<y

<2\/]EM4 Zi s Zj)[EllOn — 0*]14] + 2BV L3(67) — VLo (67)||?

< 2M*\JE[|0 — 6*][4] + 2E| V2L3(67) — VLo (67)]>

By Lemma [1} we have E|V2£E(0*) — V2Lo(6%)||> < Clogp/n. Furthermore, similar to the proofs
of Theorem [I} we can write

2 2
~ « ~ p° log”p ~
Ellfx — 6°|* < C\/E|Gy — 0 usmax{Ng, oL VE6o 6 u8}

P’ { P’ 1Og2p} p? K(logp)®

-l-CmmaX W’T +CW+C TLS

If |6, — 6%||® = O(a%K’p), where oy, g p = \/1/K or y/p/n, then

2 8
. P K(logp)
E[|fy — 07" < Cag ey + O + C— 5.
Hence we have
_ K(1 + 1o
E|V2LE(By) — V2Lo(6%)]? = O (ai,f«,p o f(n(igp) * 5p> ’

which yields

4 4
275 AN o2 (2 _ YK p p (log p) log p
E||V LN (ONn) — VLo (67| —O< % —i—KN—l- VK + ~ |

When oy, x, = \/1/K or \/p/n, the statistic V2Ly(0y) is a consistent estimator of V2Lo(6*).
Next, we turn to the properties of VNK(gN) Let

Vo0, 07) = 3ZZZVMN, ik Zig VO Zigey Zuge) "
i jFi lF#£,j

Then we have

E[[|Vor (0n) — VolI?] < 2E[| Vi (On) — Vi (O, 09)117] + 2E[[| Voo i (O, 0°) — Vo 1?]
= 2(Tnp + My ).

To derive the upper bound of I, x, note that by Lemmas |2 and |[3| and the Jensen’s inequality, we
have, under Condition (C5),

1 N n *
bk =B\ > > VUON: Ziks Zip) {VUON; Zisks Zik) — VO Zig, Zus)}
i j# £
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<E HVE(gN; Zijor Zi i) {NUON; Zigy Zig) — VO ; Zige, Zz,k)}TH2

< E|VUON: Zig, Zip)|PIVUON; Zig Zig) — VOO Zig, Zoi) ||

< 2R VUON; Zik: Zi) — VUO; Zig, Zi ) PNV LON; Zigs Zoe) — VOO Zig, Zo) ||
+ 2E(|NVUO; Zi ke, Zi )PV EON; Ziks Zik) — VO Zig, Zge) |2

< CE|NVUO%; Zig, Zip) PV UON; Zisg, Zk) — VO Zi ey Zi) ||

< CpGE|| V(O Ziks Zog) — VOO Zi g, Zy) ||
9

1 o~ ~
— chQE‘ / V(0" + t(On — 0%); Zi g, Zig)dt(On — 67)
0

K(logp)®

2C’
+ 8

< CpGEIM?(Zie, Zu) | — 0°||'] + CpGE | 926(6°; Zi Z1) B — 07)
- = K(logp)®
< CpG?M*\/E[||0n — 6%|]8] + CpG*H?*\/E[||05 — 0*]|4] + C(;;%p).
Analogous to the proof of Theorem [I} it can be shown that
7 x| ) 16 p* log'p 0. 16
Bl — 6°[1° < C/E|dy — 0% max § £ 2EL 3 [mydy — o)

4 4 4 4 8
p p* log'p p K (log p)
+0N4maX{N4’ nl }*CNHCnS'

If E||fo — 6%||16 = O(arlpr), where ay g, = \/1/K or y/p/n, then

4 8
5 *(|8 16 p K(logp)

Hence we have

VK(logp)*  K(logp)®
In,k—0<ai,z<7p+a§,x,p+f\),+ (4gp) , K(logp)™ )

n n8

Analogously, we can show that II,, ;, has the same rate of convergence as I,, . Hence

K "k TENT R T

4 8
E[||‘7N K(§N) — VO||2] =0 (amK,p O Kp p (10gp)4 (logp)s) '

In particular, when o, k, = \/1/K or \/p/n, the statistic YA/nk(gN) is a consistent estimator of
V2Ly(6*). This completes the proof. O

6 Proofs of Theorems Related to the Iterative Algorithm

Proof of Theorem[f. From Proposition 2 as n — oo, the following inequality holds with probability
approaching unity:

105 — Ol
<Cy (1B — Bnllo + B = "ll2 + [[V2£3 (0%) = V2L (69)],) 160 — Ol
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iel (”90_9*”2+HV2£N 0%) — V2L (07)

) 180 =6
+ |[vLn (o) = VEN ()|

=:R1 + Rs + R3,
where
Ry = Op(an kp + (p/N)/? + (log p/n)"/?) |0 — Ouv]l2,
Ry = O]p(am[(,p + logp/N)Hé\o — é\N”Q + O]p(\/p/N maX{OmeJ), \/ logp/N}) and
R3 = Op(v/p/(nN)).
Therefore,

) 0, lo ) lo
16% — Oxll2 = Os (an,K,p + \/ﬁJr \/?) 100 — Onll2 + Op <\/§max {an,K,p, \/T%f}) .

Repeating this process, we obtain

6% ! lo
||9 _HNHQ =Op ((O‘n Kp T \/> \/@> ) 10— |2+ Op ([max{an K.,p> \/T?}) .

This completes the proof. O

7 Details on Running Time Computation

In this section, we provide details on the method of calculating running times in the simulation
studies in Section [7

e Naive estimator:

(i) For the s-th simulation sample, record the running time for computing @3 = arg ming L% (0)
on the k-th machine, denoted by zok

(ii) The time for computing the naive estimator is given by

1 S K
1ve_KZ_:kZ

e SU-ERM and OS-ERM estimators:

i) For the s-th simulation sample, recor e time for computing the initial estimator,
i) For th th simulati 1 d the ti f ti the initial estimat
denoted by ZMtal If the naive estimator is taken to be the initial estimator, then

K
initial __ 0
el — 377,
k=1

(ii) On the k-th machine, record the running time for computing Vﬁﬁ(go), denoted by 981 ,
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and obtain the average of zlk’s across the K machines:

K
1
rad 1
jsga = ?Zys,k-
k=1

(iii) On the first machine, record the time required for solving the optimization problem
On = argming Sy (0) (in the case of the SU-ERM estimator) or executing the equation
6?]% =0y — V2L (60) "'V Ly (0o) (in the case of the OS-ERM estimator). Denote the time
required as 75 8.

(iv) The time required for computing the SU-ERM estimator or the OS-ERM estimators is

S
1 L
%U/OS _ E § :(%mmal + zgrad + zagg)'

s=1
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