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A B S T R A C T

Motivated by a need to evaluate the effectiveness of a campaign to alleviate the notorious air pollution in China's
Beijing-Tianjin-Hebei (BTH) region, we outline a temporal statistical adjustment method which is demonstrated
from several aspects on its ability to remove the meteorological confounding existed in the air quality data. The
adjustment makes the adjusted average concentration temporally comparable, and hence can be used to evaluate
the effectiveness of the emission reduction strategies over time. By applying the method on four major pollutants
from 73 air quality monitoring sites along with meteorological data, the adjusted averages indicate a substantial
regional reduction from 2013 to 2016 in PM2.5 by 27% and SO2 by 51% benefited from the elimination of high
energy consumption and high polluting equipments and a 20.7% decline of the coal consumption, while average
NO2 levels had been static with a mere 4.5% decline. Our study also reveals a significant increase in the ground
O3 by 11.3%. These suggests that future air quality management plans in BTH have to be based on dual targets of
PM2.5 and O3.

1. Introduction

As China industrializes, chronic air pollution with excessive con-
centrations of pollutants are widely encountered in a substantial part of
the country. The air pollution is known to cause serious health, social
and economic issues. Epidemiological studies show that exposure to air
pollution has significant adverse effects on human health (Pope et al.,
2002; Baccarelli et al., 2014; Dominici et al., 2014; Rich et al., 2015;
Guo et al., 2015). Chen et al. (2013) found a significant negative in-
fluence on life expectancy under sustained exposing to air pollution in
China's Huai River area.

The Beijing-Tianjin-Hebei region is at the heart of the North China
Plain and has experienced the severest air pollution in China. Cities in
BTH ordinarily occupied more than half of the spots in the 10 most
polluted cities in the country. There were in average 6.6 cities from BTH
appeared among the 10 most polluted cities every month from 2013 to
2016. The underlying reason for the problem is excessive emission of

pollutants from vast installations of heavy industries ranging from steel
and iron making to building materials while assisted by increasing
number of motor vehicles. At the same time, the dispersion condition of
the region is not good as the BTH is surrounded by Taihang Mountain
range on the west and Yan Mountain range at the north. This geography
is ideal for fostering secondary generation of fine particulate matters
PM2.5.

To mitigate the notorious air pollution problem, China's State
Council unveiled a “National Ten Point Plan” (China's State Council,
2013) in September 2013 that sets specific reduction targets in terms of
annual PM2.5 averages for various regions of the country by Year 2017.
The reduction target for BTH region is “a 25% reduction over the Year
2012 level by Year 2017”, and that for Beijing is “no more than 60
µg m/ 3”. There have been various strategies implemented by the au-
thorities in BTH to tackle the air pollution problem. One is to curtail
coal consumption by phasing out its use in power plants and in the
winter heating with the natural gas in the 13 prefecture level or above
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cities in BTH. The other is a tougher enforcement on the environmental
laws and more strict crackdowns on excessive emissions by factories.

As the observed air pollution is ordinarily impacted by the me-
teorological condition (Wang et al., 2014; Liang et al., 2015; Tao et al.,
2016), a decrease in observed concentrations may be either due to a
decrease in emission or due to a favorable meteorological condition for
the dispersion of pollutants. The latter is the so-called meteorological
confounding. In order to measure the underlying temporal change in
the pollution concentrations, we need to compare the air quality data of
different years on a common temporal meteorological baseline. As de-
monstrated in this paper, re-calculating the concentrations on the me-
teorological baseline makes air quality statistics (averages and quan-
tiles) comparable over the years, and hence removes the confounding.

Studies on the air quality of a city or region are generally based on
air quality monitoring data obtained from monitoring sites and/or sa-
tellite remote sensing data. Air quality assessments based on data from
a small number of monitoring sites per city was carried out in China's
air pollution studies in recent years. These include Liang et al. (2015)
that evaluated Beijing's air quality from Year 2010 to 2014 using the US
Embassy's PM2.5 data; and Liang et al. (2016) that analyzed PM2.5 ob-
servations from the national pollutant monitoring stations. Also, much
attention has been paid to the composition of the pollutants (Wang
et al., 2007; Yang et al., 2011; Liu et al., 2016) and impacts of me-
teorological variables. Geographical condition is another important
factor that affects the pollutant's concentrations and diffusion. By
analyzing the PM2.5, aerosol optical depth (AOD), and long-term visi-
bility data, along with various climate and meteorological factors and
the boundary layer structure, Wang et al. (2014) found that the un-
favorable geographical condition of BTH region limited the diffusion of
pollutants. In addition, Wang et al. (2014) showed an evidence that
high humidity contributed to the aerosols and secondary transforma-
tion under high emission, leading to severe PM2.5 episodes in Beijing in
January 2013. There also have been studies by analyzing aerosol op-
tical depth (AOD) data from satellite remote sensing. The focus there
was to calibrate the ground-level PM2.5 concentrations from the AOD
(Martin, 2008; Wang et al., 2010; Geng et al., 2015; Van Donkelaar
et al., 2015). This approach provides a well coverage for areas where
ground monitoring sites are not available. Although the calibrated
PM2.5 from the AOD data provide a broad spatial-temporal coverage,
they are subject to relatively large calibration errors, which depend on
meteorological factors and the model used in the calibration (Liu et al.,
2009; Chen et al., 2017).

This current study has two purposes. One is to demonstrate the need
and effects of the meteorological adjustment for air quality assessment.
The other is to conduct air quality assessment over BTH based on data
with much more monitoring sites and meteorological information than
previous studies. The latter is designed to provide a comprehensive
assessment on the concentrations of four air pollutants: PM2.5, sulfur
dioxide (SO2), nitrogen dioxide (NO2), and the ground ozone (O3) for
18 consecutive seasons between spring of Year 2013 and summer of
2017 in the 13 major cities in BTH.

Our study finds significant declines in PM2.5 and SO2 in the region.
It also reveals a significant increase in the ground ozone level at a quite
alarming rate, and a static nitrogen dioxide concentration. These in-
dicate the air quality management in BTH should be transformed from a
sole target of PM2.5 to a new system with dual targets of PM2.5 and O3.
This new dual targets' system should have the list of the primary pre-
cursors extended to include NOx and volatile organic compounds in
addition to SO2, which demands a new strategy in this next phase of air
quality management for BTH.

2. Data

2.1. Air quality data

China established a national air quality monitoring network in

January 2013 that provides hourly recordings on six common air pol-
lutants. Our analysis on BTH is based on hourly concentrations of the
PM2.5, SO2, NO2 and the ground ozone O3 from 73 “Guokong” mon-
itoring sites in BTH with Beijing and Tianjin each having 11 monitoring
sites, and the remaining 51 sites from the 11 prefecture level cities in
Hebei province. “Guokong” means sites are directly managed by the
Ministry of Environment and Protection (MEP) in data collection with
instantaneous transmission to a data centre in Beijing to avoid any
potential local interference. Fig. S1 in the supplementary materials
(SM) displays the locations of the 73 air quality monitoring sites as well
as the 13 cities in the study region.

The first two months of Year 2013 saw the air quality data had high
proportions of missing values, which led us to consider data from March
2013 until August 2017. The time unit of our assessment is season such
as spring from March to May, summer June to August, fall September to
November, and winter December to February next year. This comes
from a consideration that a season in BTH offers quite homogeneous
weather conditions and sufficient amount of data for the meteorological
adjustment. As a result, we use the seasonal year from March to
February next year rather than the calendar year.

2.2. Meteorological data

As the observed pollutants' concentrations are ordinarily impacted
by the meteorological condition, we employ meteorological data at 21
weather observing stations from China Meteorological Administration
(CMA) in the 13 cities. Among the 21 weather stations, 11 were from
the 11 prefecture level cities in Hebei with each city having one station,
7 from Beijing and 3 from Tianjin. Table S1 shows the matching be-
tween air quality monitoring sites and the corresponding meteor-
ological stations. The meteorological data consists of six hourly vari-
ables: air pressure (PRES), temperature (TEMP), dew point (DEWP), wind
direction (W), cumulative wind velocity (CWS) and cumulative precipitation
(R). The wind directions on the rose wind plot are grouped into five
categories ={NW, NE, SW, SE, CV} with NW=(W,N,NW,NNW,WNW),
NE=(NE,NNE,ENE), SW=(SW,SSW,WSW), SE=(E,S,SE,ESE,SSE) and
CV contains both the calm and variable wind as well as the wind whose
speed is less than 0.5m/s. The cumulative wind velocity is defined as
summation of the wind velocity since the hour that a wind direction
was established. The definition of the cumulative precipitation is si-
milar by adding up hourly precipitation amount over consecutive hours
with non-zero precipitation. Any of these two variables is reset to zero
whenever there is a change of wind direction or an hour without pre-
cipitation.

For ground ozone, solar radiation is a significant meteorological
factor that influences its generation. We use the ultraviolet radiation
with wavelengths between 200 and 440 nm, which is termed as UVB by
the European Centre for Medium-Range Weather Forecasts (ECMWF).
The UVB data are provided at a grid size of ×0.25 0.25 at hourly
frequency available over the study region.

The process of O3 generation triggered by the solar radiation has a
delayed effect, which is reflected by the time series of O3 being lagged
behind that of the UVB as shown in Fig. S2 of the SM. We calculate the
correlation between O3 and the cumulative lagged UVBs ranging from 0
to 11 h. Our analysis shows that the maximum correlation between the
ozone concentration within the 8 h between 12:00 and 19:00 and the
cumulative lagged UVBs was attained at lag 7 in the spring, lag 6 in the
summer and the fall, lag 4 for the winter. The detailed correlations are
reported in Table S2 of the SM. Hence, we use these numbers of lagged
cumulated UVB values and take a logarithm transform for the four
seasons as a covariate in the adjustment for O3.

The weather data are from March 2010 to August 2017, three years
more than the timespan of air quality data. The latter is to allow the
construction of a temporally meteorological baseline at each city for the
meteorological adjustments.
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3. Meteorological confounding

A common way to compare air quality between two time periods is
to calculate the raw averages of a pollutant, say PM2.5, from the hourly
concentrations in the two periods. As the raw PM2.5 concentrations are
highly affected by the weather condition, these two averages are not
comparable from the view point of gauging on the underlying pollution
emission, as the weather conditions of the two periods are not the same.

To reveal the drawbacks of the approach, Fig. 1 displays the average
concentrations of PM2.5 under the five wind directions at Beijing
Wanliu site, Shijiazhuang Gaoxinqu and Tianjin Beichen sites, in the
winters of 2015 and 2016, respectively. It shows that PM2.5 is highly
dependent on the wind direction. The concentration is the lowest under
NW for Beijing and Tianjin, and under SE for Shijiazhuang. The wind
direction with low PM2.5 corresponds to the direction of lower emission
area of a city. The concentration is the highest under the CV for the
three cities as CV is associated with static air that is strongly associated
with severe pollution.

Fig. 2 displays the percentage compositions of the five wind direc-
tions and their average cumulative speed of Beijing Wanliu site in the
winters of 2015, 2016 and a baseline constructed from seven winters'
data from 2010 to 2016. Table 1 provides numerical values of the
average PM2.5 under the five wind directions and their percentages
corresponding to Fig. 2. It is obviously that the wind percentages varied
substantially each year. For instance, the winter of 2016 has around 9%
less NW wind than that of the 2015 and the baseline, and also has much
weaker wind speed of NW. The percentage of CV in 2016 is 4% more
than the baseline, and 2.5% more than 2015's. This lower NW and

higher CV for 2016 mean that the pollution level in the winter of 2016
would be higher than that of the 2015.

Indeed, according to Table 1, the raw average in the winter 2016 in
Beijing is 105.7 µg m/ 3, 21.6% more than the winter 2015's average of
86.9 µg m/ 3. However, this 21.6% exaggerated the increase of the un-
derlying emission as part of the increase is due to the winter 2016
having less NW and more CV winds. This shows a confounding of the
observed PM2.5 by wind. The confounding makes the two raw averages
not comparable as far as in reflecting the underlying emission.

A fairer comparison that is designed to measure the underlying
emission level is to compute the potential average for winter 2016
under the 2015's wind composition, which is

= =µ r µ µg mˆ (2016) (2015) ˆ (2016) 98.0 /
w

w w2015
3

where is the set of the five wind directions, and r (2015)w denotes the
2015's percentage of a wind direction w , and µ̂ (2016)w is the
average concentration in winter 2016 for direction w. In statistical
causal inference, µ̂ (2016)2015 is called a counter-factual or potential
average (Morgan and Winship, 2014).

Similarly, the potential average of winter 2015 based on winter
2016's wind composition is

= =µ r µ µg mˆ (2015) (2016) ˆ (2015) 92.9 /
w

w w2016
3

which is comparable with the raw 2016's average of 105.7 µg m/ 3 as
both are based on 2016's wind composition. Thus, the raw 2015's
average of 86.9 µg m/ 3 is comparable with =µ µg mˆ (2016) 98.0 /2015

3 as
both use 2015's wind as the basis.

Fig. 1. Boxplots of PM2.5 concentrations (µg m/ 3) under five wind directions in Beijing Wanliu, Shijiazhuang Gaoxinqu and Tianjin Beichen sites in the winter of 2015
and 2016. The white lines are the medians.

Fig. 2. A comparison of 5 wind directions occupying percentages in the winters of Beijing 2015, 2016 and baseline and the average wind speed. The baseline is the
average level of 7 years from 2010 to 2016. The radius of the each fan-shaped area represent the average wind speed of the wind in the season.
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From the view point of 2015's wind composition, the average PM2.5

in 2016 increased by 11.1 µg m/ 3 which is a 12.8% increase, while from
the view of 2016's wind composition, the average in 2016 increase by
12.8 µg m/ 3at 13.8%. Both are much milder than the 21.6% increase
based on the raw averages. The extra percentages can be regarded as
those contributed by the confounding.

When we compare pollution levels over several years, for instance 4
years in our current study, it is rather cumbersome to compute all pairs
of potential averages. A simple approach is to adjust the averages over a
temporal baseline wind composition that produces only one average per
season per year. Mathematically, let = =r A r a( ) ( )w a

A
w

1
1 be the

average wind distribution based on A years' wind data. The right panel
of Fig. 2 is one such r ( )w based on =A 7 years' data from 2010 to 2016
(to 2017 for spring and summer). Then, average concentration pegged
to the baseline r ( )w for year a is

=µ a r µ aˆ( ) ( ) ˆ ( )
w

w w

Table 1 provides the averages under the 7 years' baseline wind
composition for the winters of 2015 and 2016 along with some other
averages discussed above.

The observed PM2.5 is not only confounded by wind, but also by
other meteorological variables. Fig. 3 displays pair-wise contour plots
of dew point, air pressure and temperature with super-imposed PM2.5

concentration. The confounding of PM2.5 by the dew point is the most
visible, as low (high) PM2.5 is highly associated with low (high) dew
point. And yet, as shown in Panel (d) of Fig. 3, the distribution of the
dew point (and the other two variables) varied substantially among the
winters of 2015, 2016 and the baseline. This implies that µ aˆ( ) is con-
founded by the dew point and other variables as it has only adjusted the
wind composition.

4. Method

As shown in the previous section, in addition to the emission, the
meteorological conditions also impact the pollutant's concentrations
significantly. Indeed, a favorable meteorological condition with high
emission can result in low PM2.5 concentrations, while a static and
stable weather can cause severe pollution even in a low emission re-
gime. Therefore, instead of comparing raw concentrations, a statistical
approach that can correct the meteorological confounding should be
applied. Here, we consider a nonparametric model (Härdle, 1992) on

Table 1
Wind composition statistics and the corresponding raw average PM2.5 concentrations (µg m/ 3) at Beijing Wanliu monitoring site in the winters of 2015 and 2016
together with adjusted averages with respect to the baseline wind composition, the dew point and the full meteorological variables. The adjusted method is in section
4. The last line is the different kinds of seasonal averages. Values under the raw composition is the raw average concentration under the corresponding year wind
composition. And the values under the adjusted block are under the baseline wind composition.

Wind Direction 2015 Winter 2016 Winter

Raw Adjusted Raw Adjusted

Average Composition baseline Dew point Full Average Composition baseline Dew point Full

NW 65.3 31.3% 29.4% 55.9 62.5 58.4 20.7% 29.4% 49.2 54.9
NE 89.8 43.9% 41.1% 86.8 95.3 112.0 42.9% 41.1% 93.4 106.5
CV 123.4 8.2% 6.3% 113.1 115.4 163.2 10.7% 6.3% 139.9 154.9
SW 106.7 10.9% 17.1% 119.6 100.3 116.9 20.5% 17.1% 109.0 123.1
SE 110.0 5.7% 6.1% 109.6 100.7 78.3 5.2% 6.1% 79.7 84.0
Average 86.9 88.8 86.3 88.0 105.7 98.2 85.1 95.8

Fig. 3. The density of PM2.5 concentration with respect to DEWP and PRES (a), DEWP and TEMP (b) and PRES and TEMP (c). Also, (d) shows the differences between
2015, 2016 and baseline of DEWP, TEMP and PRES.
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the pollutant's concentrations, meteorological variables and emission.

4.1. Adjusted averages

In order to neutralize the meteorological effect, we consider a me-
teorological adjustment approach that was first proposed in Liang et al.
(2015) and is refined and better presented here. The approach re-cal-
culates the average concentrations of a pollutant under a temporally
meteorological baseline condition based on the historical meteor-
ological data which can remove the meteorological confounding. It
consists of two key components. One is estimating the nonparametric
regression function for the pollutant with respect to the meteorological
variables, which not only include the wind composition, but also other
related meteorological variables. The second component is to re-cal-
culate the average on a temporal baseline meteorological condition
based on longer weather records.

Let Y s( )ijt denote the concentration of a pollutant, say PM2.5, at hour
t in season j and year i of a monitoring site s, W s( )ijt represent the wind
direction which is a discrete variable and X s( )ijt represent other me-
teorological variables, such as temperature (TEMP) and dew point
(DEWP) etc. nij is the total number of observations in the season. We
use the following model to quantify the relationship between pollutant
concentrations and meteorological variables:

= + =Y s m X s W s s s t n( ) ( ( ), ( ); ) ( ), 1,2, ,ijt ij ijt ijt ijt ij (1)

where s( )ijt is the residual term. As the underlying emission is un-
observable at the hourly frequency, it is not reflected in the model di-
rectly. However, it is implicitly embedded in the regression function
m ( )ij . Also, part of the difference between m ( )i j1 and m ( )i j2 for two
different years i1 and i2 is due to the difference of the underlying
emission in the two years.

Next, we define a common probability baseline density function of
the meteorological variables:

=
=

f x w s M f x w s( , ; ) ( , ; )j
a

M

aj
1

1 (2)

where f x w s( , ; )aj is the probability density function of the meteor-
ological data X W( , ) at season j of year a at site s, and M is the total
number of years of available weather data. In our study, =M 7 or 8 as
we use data from March 2010 to August 2017 to build the weather
baseline while the air quality data were from March 2013 to August
2017.

The key in removing the meteorological confounding is to put the
comparison under the same meteorological baseline f x w s( , ; )j . Hence,
we define the adjusted average concentration of year i at season j with
respect to the baseline probability density f x w s( , ; )j as

=µ s m x w s f x w s dxdw( ) ( , ; ) ( , ; )ij ij j (3)

In contrast, by the law of large numbers, the raw average for season
j of year a is actually the

=
=n

Y s P s m x s f x s dxdw1 ( ) ( ) ( , ; ) ( , ; )
aj t

n

ajt aj aj aj
1

aj

(4)

where s( )aj is calculated under the meteorological condition of year a
only.

Suppose we want to measure the difference between the average
pollution between years i and l. The one based on the adjusted averages
in (3) is

=µ s µ s m x w s m x w s f x w s dxdw( ) ( ) ( ( , ; ) ( , ; )) ( , ; )ij lj ij lj j

which is sole due to the change in the two regression functions
m x w s m x w s( , ; ) ( , ; )ij lj . However, for the one based on the un-ad-
justed version given in (4), it would be

=s s m x w s f x w s m x w s f x w s dxdw( ) ( ) ( ( , ; ) ( , ; ) ( , ; ) ( , ; ))ij lj ij ij lj lj

which unfortunately cannot be attributed solely to the difference be-
tween m x w s( , ; )ij and m x w s( , ; )lj as it may be due to the different
weather conditions expressed by f x w s( , ; )ij and f x w s( , ; )lj in the two
years. Hence, s s( ) ( )ij lj is not suitable for an objective measure on
the underlying emission.

To estimate the adjusted average concentration in (3), we firstly
estimate the m ( )ij function in (1) by using a nonparametric kernel re-
gression estimator (Härdle, 1992; Fan and Yao, 2003):

=
=

=
m x w s

x X s I W s w Y s
x X s I W s w

K
K

ˆ ( , ; )
( ( )) ( ( ) ) ( )

( ( )) ( ( ) )ij
t h ijt ijt ijt

u h iju iju (5)

where I ( ) is the indicator function for wind direction.
=z k z h k z h k z h h h hK ( ) ( / ) ( / ) ( / )/( )h 1 1 2 2 5 5 1 2 5 is a multi-dimensional

kernel function that is a product of the univariate Gaussian kernel
=k u u( ) (2 ) exp( /2)1/2 2 with bandwidths h h h{ , , , }1 2 5 . In practice,

the bandwidths are chosen by the cross validation (CV) algorithm
(Härdle, 1992; Chen and Tang, 2008).

Substituting m x w sˆ ( , ; )ij in Equation (5) to Equation (3), and replace
baseline density f x w s( , ; )j with its empirical version, the adjusted
average µ s( )ij is estimated by

= =
= = =

µ s n m X s W s s I W s wˆ ( ) ˆ ( ( ), ( ); ) ( ( ) )ij
a

M

aj
a

M

t

n

w
ij ajt ajt ajt

1

1

1 1

ij

(6)

To obtain the standard errors of the estimated adjusted average, the
bootstrap re-sampling method is applied to generate repeated copies of
the adjusted means as outlined in the SM.

The adjusted average concentration of a city is obtained by aver-
aging the adjusted averages at all monitoring sites in the city, namely

= =µ S µ sˆ ˆ ( )ij s
S

ij
1

1 , where S is the number of monitoring stations in the
city. In addition to the adjusted average, adjusted 90% quantiles of the
concentrations can be calculated for each city in a similar way which
can measure the 10% most severe pollution concentration. The detailed
composition together with the acquisition of its standard error are also
given in the SM.

4.2. Adjusted curves

In this paper, we propose a new adjusted average function with
respect to a meteorological variable, which we call the adjusted curve.
This curve represents the relationship between a pollutant's average
concentration and a meteorological variable after properly controlling
the rest of meteorological variables. Often one wants to quantify the
relationship between a pollutant's average concentration with respect
to a meteorological variable, such as the dew point or air temperature.
Directly regressing the pollutant data on the dew point without con-
trolling the other meteorological variables will lead to confounded re-
gression estimation. The baseline density function of the weather
variables given in (2) can be used to produce the adjusted curves free of
the confounding by the other variables.

Let X k( ) be a meteorological variable that we would like to produce
the adjusted curve, and X k( ) represent the rest of the meteorological
variables. If X k( ) is not the wind direction, the adjusted average curve
with respect to X k( ) can be defined as

=µ X s m x x w s f X x w s dx dw( ; ) ( , , ; ) ( , , ; )ij
k

ij
k k

j
k k k( ) ( ) ( ) ( ) ( ) ( )

(7)

where the integration is carried out without the x k( ). If =X Wk( ) is a
wind direction, then

=µ W s m x w s f x W s dx( ; ) ( , ; ) ( , ; )ij ij j (8)

To estimate the adjusted curves, if X k( ) is not the wind direction, one
can estimate µ X s( ; )ij

k( ) in (7) by

L. Chen et al. Atmospheric Environment 193 (2018) 290–301

294



= =
=

µ X s
N X b

m X W s I W wˆ ( ; ) 1
( , )

ˆ ( , ; ) ( )ij
k

k
a

M

X A X b w
ij ajt ajt ajt

( )
( )

1 ( , )ajt k( )

(9)

where = = +A X b x x X b x X b( , ) { ( , , ): }k k k k k( ) ( ) ( ) ( ) ( ) is a
cross section of the X-domain which has its k-th component within a b
neighborhood of X k( ), N X b( , )k( ) denotes the number of data that falls
into A X b( , )k( ) , and >b 0 is a smoothing parameter that defines the size
of the cross section.

If =X Wk( ) , then

= =
= =

µ W s
N W

m X W s I W Wˆ ( ; ) 1
( )

ˆ ( , ; ) ( )ij
a

M

t

n

ij ajt ajt ajt
1 1

aj

(10)

where N W( ) denotes the number of data whose =W Wajt . This is ac-
tually the adjusted average for a wind direction appeared in Table 1.
The adjustment under a wind direction with respect either one or the
rest of the meteorological variables can be defined similarly, and have
already appeared in Table 1.

The adjusted average curves provide information on the pollutant's
concentration with respect to the variable X k( ), showing more details
than the adjusted mean µ s( )ij at (3). If one further integrate X k( ) in (7)
or (10) with respect to the marginal baseline probability density of X k( ),
µ s( )ij will be reached.

Figs. 4 and 5 display the averaged raw curves and adjusted curves
for PM2.5 with respect to the dew point and the air temperature in the
four winters from 2013 to 2016 over three air quality monitoring sites
in Beijing and all six sites in Shijiazhuang. The three sites in Beijing and
the six sites in Shijiazhuang shared a common meteorological station
respectively, which we denote as Beijing M54399 and Shijiazhuang.
The raw curves are simply the kernel regression estimation without
adjusting for the other weather variables. These figures show that the
raw curves are much less orderly and consistent over the years com-
paring with the adjusted ones. We find that by removing the con-
founding of the other variables, the adjusted curves have less curvature
and become more consistent over the years. The latter curves for Beijing
and Shijiazhuang show a clearer year separation which was especially
the case for temperature.

Although the four yearly adjusted curves for the dew point is not as
clearly separated as those curves for the temperature, by calculating the
areas under the curves weighted by the baseline probability density
function of the dew point, the overall adjusted averages are 91.6 for

winter 2015, 94.2 and 96.4 for 2014 and 2013 respectively, and 104.0
for 2016, all in µg m/ 3, which follow the same ordering as that of the
temperature.

The raw and adjusted curves of 8-h (from 12pm to 7pm) O3 with
respect to the logarithm of the cumulated UVB for the summers are
shown in Fig. 6. The adjusted curves are more monotone with respect to
the logarithm of the cumulated UVB than the unadjusted ones. They
also display a better separation with respect to the years, which is
especially the case in Shijiazhuang. More comprehensive analysis on
the adjusted 8-h O3 will be made in Section 5.2.

4.3. Limitation of the moving average approach

Moving averages of certain number of years' (say 4–5 years') raw
pollution concentrations have been advocated as a method to remove
the meteorological confounding in China. We are to show that this
approach can not remove the meteorological confounding, nor can it
provide an adequate measure on the underlying changes by the air
quality.

To make the argument concise, our discussion is confined to the
underlying mathematical quantities without getting to empirical esti-
mation. The same argument can be applied to the empirical version of
the argument based on the law of large numbers and the notion of
consistent estimations in statistics. Indeed, as shown in Equation (4), by
the law of large numbers, the raw average concentration of season j in
year i approximates

=s m x s f x s dxdw( ) ( , ; ) ( , ; )ij ij ij

As s( )ij is averaged with respect to f x w s( , ; )ij , the probability
density of year i and season j, it is ordinarily confounded by the weather
condition of year i as revealed in Section 4.1. The moving average es-
timator based on M years' sample averages is

=
=

s M s( ) ( )ij
l

M

i l j
1

0

1

( )

The problem with the moving average is that the yearly changes are
equivalent to

= +s s M s s( ) ( ) { ( ) ( )}ij i j ij i M j1
1

1

which is actually the change in the (confounded) averages between year
i and year +i M( 1), rather than anything on year i and year i( 1).

Fig. 4. Raw and Adjusted curves of PM2.5 with respect to the dew point in winters from seasonal years 2013–2016 of Beijing-M54399 and Shijiazhuang. The curves of
Beijing-M54399 denote the average over three air quality sites: Aotizhongxin, Guanyuan and Wanliu that share the same meteorological data from station 54399,
while the curves of Shjiazhuang are averaged over six air quality sites that all shared the same weather data. The bottom curve under each plot is the baseline
probability density of the dew point in each city.
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Also, all the pollution information in the middle years of the moving
average has been canceled out. Hence, it is not suitable for objectively
measuring the underlying change in the pollution level.

5. Air quality assessment for BTH region

To assess the air quality improvements of the BTH region since
2013, we apply the adjustment method to remove the meteorological
confounding and calculate the meteorological adjustment concentra-
tions for PM2.5, SO2, NO2 and O3 from spring 2013 to summer 2017.
The results presented here are based on the adjusted average con-
centrations. The adjusted 90% quantiles of these four pollutants are
presented in SM.

5.1. PM2.5 and SO2

PM2.5 represents particulate matters (PM) with aerodynamic dia-
meter less than 2.5 μm. It is one of the major urban air pollutants and
can cause various harms to human health (Pope et al., 2002). In 2013,
PM2.5 replaced PM10 as the primary air pollutant in China, and has been

a key target air pollutant in the “National Ten Point Plan”. Sulfur di-
oxide (SO2) is another major air pollutant which is not only harmful to
human (Kampa and Castanas, 2008) but also a key gaseous precursor to
PM2.5 and PM10 (Baker and Scheff, 2007). As coal has been the main
source of energy for industrial and domestic use in BTH and China at
large, SO2 is mainly the result of coal burning for power generation,
winter heating, heavy industrial manufacturing for iron, steel and
building materials.

Fig. 7 displays the seasonally adjusted averages of PM2.5 and SO2 for
the 13 cities in the BTH from spring 2013 to summer 2017.

There are strong seasonality in the PM2.5 and SO2 concentrations
with the winter having the highest level and summer the lowest in most
of the cities in BTH. As shown in Fig. 7, the 13 cities in the BTH region
can be grouped into three sub-regions as cities within the same sub-
region share the similar seasonal variation pattern and concentration
level. The grouping details are shown in Table 2.

The regionalization is highly correlated with the industrial layout in
the BTH region. As for PM2.5, its concentrations in the Northern sub-
region were the lowest due to the sparse intensity of industrial estab-
lishment. In a sharp contrast, the five cities in the Along Taihang sub-

Fig. 5. Raw and Adjusted curves of PM2.5 with respect to temperature in winters from seasonal years 2013–2016 of Beijing-M54399 and Shijiazhuang. The bottom
curve under each plot is the baseline probability density of the temperature in each city. See caption of Fig. 4 for other specifics.

Fig. 6. Raw and Adjusted curves of 8-h O3 with respect to logarithm of the cumulated UVB in summers from seasonal years 2013–2016 Beijing-M54399 and
Shijiazhuang. The bottom curve under each plot is the baseline probability density of the logarithm of the cumulated UVB in each city. See caption of Fig. 4 for other
specifics.
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region endured the severest PM2.5 pollution because of the high emis-
sions by intensively heavy industrial installations as well as the Taihang
mountain effect that creates less dispersive condition. The re-
gionalization for SO2 was a little different from that of PM2.5 as shown
in Table 2. The major change is the steel capital of the world Tangshan
that joins Along Taihang sub-region due to its excessive SO2 from the
large scale steel making operation all year around.

Another different feature between PM2.5 and SO2 is the seasonal
variation that SO2 is larger than that of PM2.5 as represented by the
winter to summer concentration ratios. Cities such as Shijiazhuang,
Handan, Baoding, Beijing and Tianjin have the ratios being around 4. A
reason for the much higher winter to summer ratio is the winter heating
which burns much coal and generate excessive SO2. In cities such as
Tangshan whose seasonal variation is much milder with the winter to
summer ratio ranging only between 1.5 and 2, which is consistent to the
fact that coal-burning is an all year affair for steel and iron production
in Tangshan.

Fig. 8 reports the raw seasonal average of PM2.5 which is an un-
adjusted counterpart of Fig. 7 for PM2.5. By comparing Figs. 7 and 8, the
most noticeable difference between the adjusted and the un-adjusted
raw averages is the elevated adjusted averages for the winter of 2016.
The raw averages suggested a continued downward trend in the winter
of 2016 in the PM2.5 especially in the Along Taihang sub-region.
However, the adjusted concentrations indicate the pollution situation in
the winter of 2016 was actually worse than the winter 2015 if com-
pared under the baseline meteorological conditions. This can be easily
seen from Fig. 9(a) which shows that for Baoding, Handan, Cangzhou,
Langfang and Qinhuangdao, the raw winter averages decreased from
2015 to 2016, while the adjusted averages indicated an increasing in-
stead. This was consistent to a rebound in winter 2016 compared to
2015 in Hebei of the coal consumption for metal and steel production
that increased from 2583.3 to 2644.18 (in unit ten thousand tons) and
from 4486 to 4585 (in unit ten thousand tons) respectively, as shown in
Figs. S10–S11 in the SM. These add more to the need for using the
adjusted averages in additional to what we have presented in Section
4.1.

From Fig. 9, it is observed that the differences between the raw and
adjusted averages were much larger in winter than the other seasons for
both PM2.5 and SO2. The average of the absolute differences for PM2.5

was 20 µg m/ 3 in winter while those for the other three seasons were less
than 5 µg m/ 3, which indicated the influence of meteorological condi-
tions in winter was much larger than the other seasons. This was the
case especially for cities near the Taihang mountain like Baoding,
Shijiazhuang, Xingtai and Handan that are larger than 26 µg m/ 3.

Despite the rise in the winter concentration of 2016 in some cities,
there were obvious declines in PM2.5 and SO2 levels in the BTH region

Fig. 7. Seasonal meteorologically adjusted averages of PM2.5 and SO2 concentrations (in µg m/ 3) from spring 2013 to summer 2017 in BTH region.

Table 2
Cities in each three sub-regions for PM2.5 and SO2 based on the patterns of
seasonal average concentrations.

Sub-region PM2.5 SO2

Along Taihang Baoding, Shijiazhuang,
Xingtai, Handan, Hengshui

Baoding, Shijiazhuang,
Xingtai, Handan, Tangshan

Bo Sea Tangshan, Tianjin, Cangzhou,
Beijing, Langfang

Cangzhou, Tianjin, Hengshui,
Qinhuangdao

Northern Zhangjiakou, Chengde,
Qinhuangdao

Zhangjiakou, Chengde, Beijing,
Langfanng
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in a longer temporal time-span as easily found in Figs. 9 and 7. Fig. 10
displays the cumulative reduction percentages in the annual adjusted
averages over the four seasonal years from 2013 to 2016. It shows that
9 out of the 13 cities had attained the 25% reduction target on PM2.5

which is required by “National Ten Point Plan”. On average, the ad-
justed PM2.5 concentrations had dropped from 100.1 µg m/ 3 in 2013 to
72.5 µg m/ 3 in 2016, representing a 27% reduction. We also note that
despite the declines in PM2.5, the PM2.5 levels are still above the in-
ternational standards, which is 35 µg m/ 3 by the US EPA or 20 µg m/ 3 by

the European Union.
The most striking aspect of the BTH regional air-quality data was a

profound decline in SO2. The regional average of SO2 had dropped from
63.6 µg m/ 3 in 2013 to 31.1 µg m/ 3 in 2016, representing a 51% re-
duction. The substantial decline in SO2 shows the significant achieve-
ment in reducing the consumption of the coal by several initiatives.
These initiatives include the elimination of high energy consumption
and high polluting equipments, efforts to phase out coal with the nat-
ural gas in power generation and winter heating in major cities, and to

Fig. 8. Seasonal raw average time series of PM2.5 (in µg m/ 3) for the 13 cities in BTH region.

Fig. 9. Seasonal raw averages (dashed line) and meteorologically adjusted averages (solid line) time series of PM2.5 and SO2 (in µg m/ 3) from spring 2013 to summer
2017 for the 13 cities in BTH region.
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increase the usage of the natural gas and electricity in the rural do-
mestic cooking and winter heating. These are reflected by a 20.7%
declining in the consumption of coals in BTH from 387 million tons in
2013 to 307 million tons in 2016 as shown in Figs. S7–S10 of SM.

However, the decline in SO2 had not translated to a significant re-
duction in PM2.5 for some cities in BTH, indicating the complexity of
PM generation process and the important roles of other precursors
played in the process.

5.2. NO2 and O3

Nitrogen dioxide (NO2) is a common air pollutant and also a pre-
cursor to nitrates and the ground level O3. Under the strong sunlight,

NO2 reacts with oxygen in the air, producing another air pollutant,
ozone (Toro et al., 2006). Different from the stratospheric ozone that
protects humans from ultraviolet radiation, ground ozone causes harm
to human respiratory and nervous system.

We applied the same adjustment method to the NO2 and the 8-h
(from 12pm to 7pm) ozone data, and calculated their seasonal adjusted
averages which are shown in Fig. 11. In the adjustment of the 8-h
ozone, we use the logarithm of the cumulative UVB to replace PRES as
the correlation between PRES and the O3 levels is small. It is seen from
Fig. 11 that NO2 follows a similar seasonal pattern to PM2.5 and SO2 in
that the concentrations are the highest in winter and the lowest in
summer. The seasonal pattern for O3 is opposite that the highest levels
occurs in summer and spring and the lowest in winter, which is

Fig. 10. Cumulative percentages of reduction in the annually adjusted averages of PM2.5 and SO2 concentrations from 2013 to 2016 in the 13 cities in BTH region.

Fig. 11. Seasonal meteorologically adjusted averages of NO2 and O3 (in µg m/ 3) from spring 2013 to summer 2017.
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consistent to the annual intensity cycle of the ultraviolet radiation from
the sun. The O3 level in the summer could be 5 times of the winter level
in some cities. However, for both NO2 and O3, the significant regional
segmentation observed in PM2.5 and SO2 become less distinct for NO2

and completely disappears for O3.
Fig. 12 reports the time series of the raw and adjusted average

concentrations for both pollutants in each season, allowing a better
view of the trend without seasonal interference. Similar to PM2.5 and
SO2, the difference between the unadjusted and adjusted seasonal
average concentration for NO2 is largest in winter, showing the impact
of the meteorological condition. But for O3, it shows that larger dif-
ferences between the unadjusted and the adjusted 8-h O3 concentra-
tions happened in the spring when it tended to have larger variations

among the key meteorological variables that affect the ozone level.
Fig. 13 presents the cumulative four years' changes in the adjusted

average concentrations. It is observed that the NO2 concentrations in a
majority of the cities in BTH had decreased, but at much smaller rates
compared to those of PM2.5 and SO2. The annual average NO2 con-
centrations of BTH only declined by a mere 4.5% over the four years.
But NO2 concentrations in the three cities (Langfang, Qinhuangdao and
Cangzhou) had increased, and Cangzhou increased the most by 32.4%
over the four years.

The situation for the 8-h O3 is a different scene: a steady regional-
wide increase in the past four years. The annual average of 8-h O3

concentrations in BTH had increased from 81.1 µg m/ 3 in 2013 to 90.3
µg m/ 3 in 2016, representing a 11.3% increase. If we focus on the 8-h O3

Fig. 12. Seasonal raw averages (dashed line) and meteorologically adjusted averages (solid line) time series of NO2 and 8-h O3 (in µg m/ 3) from spring 2013 to
summer 2017 for the 13 cities in BTH region.

Fig. 13. Cumulative percentages of reduction in the annually adjusted averages of NO2 and 8-h O3 concentrations from 2013 to 2016 in the 13 cities in BTH region.
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in the spring and summer, the situation becomes even more alarming.
For spring, BTH's average had increased from 93.0 µg m/ 3 in 2013 to
113.9 µg m/ 3 in 2017, a 22.5% rise that is larger than the increase in the
annual average. The regional 8-h O3 average in summer had already
reached µg m129.8 / 3 in 2013, exceeding the µg m100 / 3 threshold level
specified in the national standard. By the summer of 2017, it had in-
creased to 155.0 µg m/ 3, representing a 19.4% increase over the 2013's
level.

The worsening O3 situation in BTH is also reflected in the 90%
quantiles of 8-h concentration of O3 in summer given in the SM. Indeed,
the average of the 13 cities' 90-percentile of 8-h O3 had increased from
208.1 µg m/ 3 in 2013 to 233.7 µg m/ 3 in 2017, rising by 12.1%. Beijing
endures the highest 90% quantile concentration in BTH in the last five
summers, and reached 270.5 µg m/ 3 in 2017.

It is clear that the ground ozone concentration has worsened sig-
nificantly in the last four and half years, except Qinhuangdao with a
small 1.2% improvement. Ozone has taken over the PM2.5 as the pri-
mary pollutant in summer and spring. NOx and the volatile organic
components (VOC) constitute are known to be the important precursors
of the ground ozone generation (Toro et al., 2006). However, compo-
nents of VOC are not measured by the national air quality monitoring
network. The very limited reduction in NO2 over BTH means that there
had been sustained supply of the precursors for O3 generation. Al-
though NO2 had not increased, the regional-wide reduction in the PMs
had increased the intensity of the ultraviolet radiation, which makes the
oxidization of NO2 for O3 generation more efficient, indicating a ne-
gative effect of improving PM situation on O3. This is inevitable if the
NO2 and its precursors are left to be un-managed, which has been the
case for BTH as reflected by the sluggish results of NO2.

6. Conclusion

The raw observed concentrations of pollutants are highly affected
by the meteorological conditions, which makes the comparison be-
tween raw averages face the confounding problem. Our study adopts a
meteorological method that could remove the meteorological con-
founding and calculates the seasonal adjusted mean for PM2.5, SO2, NO2

and O3 from spring in 2013 to summer in 2017. Our study finds sig-
nificant declines in the particulate matters and sulfur dioxide in BTH. It
also reveals a significant increase in the ground ozone level at alarming
rates and a static nitrogen dioxide concentration over the last four
years. These indicate the air quality management in BTH should be
transformed from a sole target of PM2.5 to a new system with dual
targets of PM2.5 and O3. This new dual target system should have the
list of the primary precursors extended to include NOx and volatile
organic compounds which demand new steps in the next phase of air
quality management for BTH.
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