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Abstract—The aim of the work described here was to develop an ultrasound (US) image�based deep learning model
to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and
Data System (BI-RADS) during the pre-operative US examination. A total of 479 breast lesions diagnosed as BI-
RADS 4A in pre-operative US examination were enrolled. There were 362 benign lesions and 117 malignant lesions
confirmed by postoperative pathology with a malignancy rate of 24.4%. US images were collected from the database
server. They were then randomly divided into training and testing cohorts at a ratio of 4:1. To correctly classify malig-
nant and benign tumors diagnosed as BI-RADS 4A in US, four deep learning models, including MobileNet, Dense-
Net121, Xception and Inception V3, were developed. The performance of deep learning models was compared using
the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predic-
tive value (PPV) and negative predictive value (NPV). Meanwhile, the robustness of the models was evaluated by five-
fold cross-validation. Among the four models, the MobileNet model turned to be the optimal model with the best per-
formance in classifying benign and malignant lesions among BI-RADS 4A breast lesions. The AUROC, accuracy, sensi-
tivity, specificity, PPV and NPV of the optimal model in the testing cohort were 0.897, 0.913, 0.926, 0.899, 0.958 and
0.784, respectively. About 14.4% of patients were expected to be upgraded to BI-RADS 4B in US with the assistance of
the MobileNet model. The deep learning model MobileNet can help to reduce the rate of malignancy among BI-RADS
4A breast lesions in pre-operative US examinations, which is valuable to clinicians in tailoring treatment for suspicious
breast lesions identified on US. (E-mail addresses: jgchen@cee.ecnu.edu.cn jiaweili2006@163.com) © 2022 World
Federation for Ultrasound inMedicine & Biology. All rights reserved.
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INTRODUCTION

According to the report in 2020 from the World Health

Organization International Agency for Research on Can-

cer (IARC), breast cancer has replaced the top-ranked

lung cancer as the most common malignant tumor world-

wide and the leading cause of cancer-related death in

women (Ferlay et al. 2021). The early diagnosis of breast

cancer plays an essential part in improving prognostic

outcomes. Ultrasound (US) is an important screening
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and diagnostic tool complementary to mammography

(MG) for the early diagnosis of breast cancers. Com-

pared with MG, US is more sensitive in identifying intra-

ductal lesions and nodular lesions. It is even superior to

MG in young and pregnant women. In China, US is

equivalent to MG for the screening of breast cancers,

considering the low sensitivity of MG for breast tissues

with high density, which are common among Chinese

women (Lian and Li 2020). In addition, clinicians prefer

to combine the findings of both US and MG to make

treatment plans for suspicious breast lesions.

In 2013, the American College of Radiology (ACR)

updated the Breast Imaging Reporting and Data System

(BI-RADS) for US imaging (Mendelson et al. 2013).
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The BI-RADS lexicon helps US physicians and breast

surgeons in standardizing the probability of malignancy

for breast lesions. It also facilitates breast surgeons in

planning proper treatments according to the BI-RADS

score. Therefore, the BI-RADS lexicon is widely

accepted by US physicians and breast surgeons (Mer-

cado 2014). However, because of the high heterogeneity

and variety of breast lesions, the cutoff point for adjacent

BI-RADS scores is ambiguous but important, especially

for BI-RADS 3/4A and 4A/4B (Stavros et al. 2017;

Shang et al. 2019; Mei et al. 2020).

BI-RADS 4A is the crucial cut point in determining

treatment strategy at our breast cancer center. For BI-

RADS 3 lesions, surgeons usually recommend follow-up

or minimally invasive surgery through the Mammotome

System in the outpatient unit, whereas for BI-RADS 4A

breast lesions, surgical resection at the day surgery ward

is usually performed. Patients with BI-RADS 4B lesions

are accepted as inpatients to prepare for malignant breast

tumors. The treatment for BI-RADS 4A lesions may dif-

fer from that at other breast cancer centers where core

needle biopsies are recommended. Because there is no

pre-operative biopsy for BI-RADS 4A lesions at our cen-

ter, US physicians are very cautious with the report as it

determines the clinical decisions.

On the basis of the statistics gathered at our cancer

center, the malignancy rate among BI-RADS 4A breast

lesions on US was about 20%�30%, which is much

higher than the 2%�10% recommended by ACR. This

means approximately 20% of breast lesions with BI-

RADS 4A were underestimated at our center, which may

delay the treatment for those malignant tumors as the

paraffin pathology results are not available until 14 d

after surgery. Thus, in contrast to previous studies in

which auxiliary methods were used to downgrade a por-

tion of BI-RADS 4A breast lesions to BI-RADS 3 (Koh

et al. 2019; Zheng et al. 2019), we intended to upgrade a

portion of BI-RADS 4A breast lesions to BI-RADS 4B

to reduce the malignancy rate among BI-RADS 4A

breast lesions.

The evaluation of US images is generally subjective

and is probably affected by US physicians' experience.
Computer-aided techniques, especially deep learning,

overcome these shortcomings in subjectivity (Zheng

et al. 2020; Zhou et al. 2021). In this study, we aimed to

evaluate the performance of the deep learning model in

reducing the malignancy rate among BI-RADS 4A

lesions to achieve more accurate risk stratification.
METHODS

Patients

The ethics committee of Fudan University Shanghai

Cancer Center approved this retrospective study with
written informed consent waived. From August 2013 to

December 2020, a total of 479 lesions in 477 patients

diagnosed as BI-RADS 4A on US before core needle

biopsy or surgery were enrolled. For each breast lesion,

at least two US images were selected to obtain the opti-

mal diagnostic performance for deep learning. Finally,

1748 images were included in this study. The inclusion

criteria were as follows: (i) classification of the lesion as

BI-RADS 4A by two US physicians; (ii) clarity of

lesions in gray-scale images without measurement labels

or sample window of color Doppler; (iii) lesion size <5

cm; (iv) pathological confirmation. Patients were

excluded from this study if only one image was available

in the database or the tumor could not be confirmed path-

ologically.
Image acquisition and processing

All US images in our study were from the Fudan

University Shanghai Cancer Center and acquired with

different equipment, including the IU-22 and EPIQ7

(Philips Medical Systems, Andover, MA, USA),

LOGIQ-E9 (GE Healthcare, Hatfield, UK), Toshiba-

Aplio500 (Canon Medical Systems, Tokyo, Japan),

Mindray-Resona7 (Mindray Medical, Shenzhen, China)

and MylabTwice (Esaote-Biomedica, Genoa, Italy).

Two radiologists experienced in breast US performed all

examinations. All lesions were evaluated and scored as

BI-RADS 4A in accordance with the US BI-RADS lexi-

con, and were confirmed by post-operative pathology

(Figs. 1 and 2).

We randomly split all US images into a training

data set and an independent testing data set with a ratio

of 4:1. The training data set was used to train all deep

learning models, and the model with the best perfor-

mance was selected as the final model. The independent

testing data set was used to verify the performance of all

deep learning models that had been trained.
Deep learning model

The deep learning model was employed as a com-

puter-aided tool in the present study. Other than extract-

ing features manually in traditional machine learning,

the “end-to-end” deep learning models contribute to

mining features automatically with a sophisticated net-

work structure. In detail, the relevant features were auto-

matically extracted from the US images. In addition,

complex function mapping between the US imaging data

and the pathological classification of breast cancer was

established. The deep learning model contains multiple

hidden layers. It combines low-level breast image fea-

tures together automatically and forms a more abstract

high-level representation to discover the actual category

of US data.



Fig. 1. Thirty-seven-year-old woman with malignant breast lesion (invasive ductal carcinoma, grade II)
0.8 £ 0.6 £ 0.5 cm. (a) Gray-scale US image. (b) Hematoxylin and eosin (HE) staining. Original magnification: £ 100.

(c). HE staining. Original magnification: £ 200. (d) HE staining. Original magnification: £ 400.
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To develop the end-to-end mapping of breast US

images of BI-RADS 4A, we used five-fold cross-valida-

tion to compare the performance of four models includ-

ing the mature lightweight convolutional neural network

MobileNet, the well-known complex deep learning

model with fewer parameters DenseNet121, the SOTA

multi-scale convolutional neural network InceptionV3

and the most widely used image classification model

Xception. In five-fold cross-validation, the ratio of train-

ing data (1398 images) to validation data (350 images)

was 4:1. In Each data set was equally split into five folds.

One of the folds was selected as the validation set and

the other folds as the training set to develop the model.

This process was repeated five times. The MobileNet

model with the best performance (see Results) was

selected as the model used in the present study. We used

the Tensorflow (Google, Mountain View City, CA,

USA) framework to code all the deep learning models.

The workflow of our research is illustrated in Figure 3.

The MobileNet model is based on a depthwise sepa-

rable convolution (Fig. 4) and shortcut connection (San-

dler et al. 2018). Depthwise separatable convolution

combines different feature channels. It also significantly

reduces the number of model parameters and the
computational complexity. The shortcut connection

structure significantly eliminates the difficulty of training

deep neural networks and allows MobileNet to capture

more abstract features.

The theoretical basis of MobileNet is that the fea-

tures of each channel can be mapped to a manifold

region in a low-dimensional subspace. After completing

the convolution operation, a layer of activation function

was usually added to increase the non-linearity of the

features. As long as the high-dimensional input data can

be restored through the feature map, the computational

complexity is vastly reduced. The MobileNet model

relies on the fundamental assumption in data science that

high-dimensional data must have a low-dimensional

structure. Therefore, the high-dimensional breast US

image data can be reduced to a low-dimensional comput-

able subspace through MobileNet to accurately classify

benign and malignant tumors.
Statistical analysis

The performance of deep learning models was eval-

uated with respect to sensitivity, specificity, positive pre-

dictive value (PPV), negative predictive value (NPV)



Fig. 2. Forty-four-year-old woman with begin breast lesion (fibroadenoma) 1.5 £ 1.4 £ 1.4cm. (a) Gray-scale US
image; (b) Hematoxylin and eosin (HE) staining. Original magnification: £ 100. (c). HE staining. Original

magnification: £ 200. (d) HE staining. Original magnification: £ 400.

Fig. 3. Workflow of use of deep learning model to classify malignant and benign breast tumors among Breast Imaging
Reporting and Data System 4A nodules.
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and area under the receiver operating characteristic curve

(AUROC).
RESULTS

Four hundred seventy-nine breast lesions from 477

female patients aged between 16 and 90 y were scored
as BI-RADS 4A (mean § standard deviation: 44.3 §
13.1). Table 1 outlines the pathological subtypes of all

breast lesions. There were 362 cases of benign tumors

(75.6%) and 117 cases of malignant tumors (24.4%).

Most benign tumors were fibroadenoma (153 out of 362,

42.3%), and most malignant tumors were invasive ductal

carcinoma (71 out of 117, 60.7%).



Fig. 4. Depthwise separable convolution.
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Performance in the five-fold cross-validation is out-

lined in Tables 2 and 3. MobileNet's training prediction

accuracy is 94.3%, 98.3%, 91.7%, 94.6% and 95.7%,

respectively; its validation prediction accuracy is 90.5%,

90.2%, 90.6%, 90.6% and 90.1%, respectively. Figure 5

illustrates the ROC curves in the cross-validation.

MobileNet’s AUROC in the cross-validation is 89.2%,

86.6%, 82.2%, 89.7% and 88.9%, respectively.

Depicted in Table 4 are the results of the testing

data set in the four models. Among the four types of

models, MobileNet had the best diagnostic performance

with an AUROC of 89.7% and an accuracy of 91.3% in

the testing data set. The AUROCs of the other three

models ranged from 75.2%�78.7%. Figure 6 illustrates
Table 1. Pathological types of benign and malignant breast
lesions

Pathological types Number Percentage
Benign lesions
(362 cases)

Fibroadenoma 153 31.9%
Adenosis 131 27.3%
Inflammation 18 3.8%
Intraductal papilloma 54 11.3%
Others 6 1.3%

Malignant lesions
(117 cases)

Invasive ductal carcinoma 71 14.8%
Ductal carcinoma in situ 30 6.3%
Ductal papillary carcinoma 4 0.8%
Others 12 2.5%
the confusion matrix, which evaluated the model in the

testing data set by comparing the predictions with the

facts. In the matrix, the columns represent the real labels

of the malignant and benign classes, and the rows repre-

sent the classes predicted by the MobileNet model. In

Figure 7 is the ROC curve in the testing data set. The

AUROC of the MobileNet model was 89.7%, which

was higher than those of the other three deep learning

models.
DISCUSSION

In the present study, 24.4% of breast lesions were

malignant carcinomas. This rate is much higher than the

malignancy rate of 2%�10% for BI-RADS 4A breast

lesions defined by the ACR BI-RADS lexicon. This

study was designed to establish and validate an US imag-

ing�based deep learning model that differentiates

benign and malignant tumors among BI-RADS 4A

breast lesions. Among the four models, the MobileNet

model had the optimal performance with an AUROC of

0.897, indicating that the MobileNet model could help

US physicians in controlling the malignancy rate to be

less than 10% among BI-RADS 4A breast lesions by

upgrading some BI-RADS 4A lesions to BI-RADS 4B.

US is recommended primarily for screening and

pre-operative examinations of breast lesions. The BI-

RADS score provides a valuable reference for breast sur-

geons in determining the treatment strategy for breast

lesions. Among BI-RADS 3, 4A and 4B, BI-RADS 4A

is a vital cut point at our cancer center in tailoring treat-

ment for breast lesions to be followed up (BI-RADS 3)

or surgical resection (BI-RADS 4A), and surgery as an

outpatient (BI-RADS 4A) or inpatient (BI-RADS 4B).

Most previous research paid much attention to studying

the necessity for downgrading BI-RADS 4A lesions to

BI-RADS 3 with the assistance of multiple new technol-

ogies, such as elastography, contrast-enhanced ultraso-

nography (CEUS) and computer-aided techniques to

avoid unnecessary biopsies for breast lesions (Li et al.

2016; Koh et al. 2019; Zheng et al. 2019; Weismann

2021). For example, Koh et al. (2019) used strain elas-

tography to downgrade category 4A breast lesions with

respect to personal risk factors. This kind of research

work was quite necessary at some breast disease centers

as most of breast surgeries were performed for benign

lesions. US physicians at these centers are usually very

cautious with suspicious breast lesions, so that the BI-

RADS 4A is quite common rather than BI-RADS 3 for

benign breast tumors. As a result, the proportion of

benign breast tumors among BI-RADS 4A is usually

quite high, requiring the downgrading of BI-RADS 4A

to BI-RADS 3 for some breast lesions to avoid unneces-

sary surgeries.



Table 2. Five-fold cross-validation of the training data set

Model Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4 Accuracy 5
MobileNet 94.3% 98.3% 91.7% 94.6% 95.7%
DenseNet121 80.0% 82.6% 81.3% 80.2% 85.1%
Xception 79.7% 87.7% 89.4% 89.8% 90.5%
Inception V3 85.7% 90.9% 87.4% 90.0% 94.6%

Table 3. Five-fold cross-validation of the validation data set

Model Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4 Accuracy 5
MobileNet 90.5% 90.2% 90.6% 90.6% 90.1%
DenseNet121 79.2% 80.6% 83.1% 83.6% 83.1%
Xception 86.3% 87.2% 90.5% 91.2% 92.7%
Inception V3 85.6% 86.1% 87.3% 89.4% 89.3%

Fig. 5. Receiver operating curves (ROCs) for the four models in the five-fold cross-validation.

Table 4. Diagnostic performance of the deep learning models for the testing data set

Model Accuracy Sensitivity Specificity PPV NPV AUROC
MobileNet 91.3% 92.6% 89.9% 95.8% 78.4% 89.7%
DenseNet121 86.7% 95.3% 59.7% 88.2% 79.4% 77.0%
Xception 83.6% 87.9% 69.5% 90.3% 64.0% 78.7%
Inception V3 85.1% 93.9% 56.5% 87.5% 74.3% 75.2%

AUROC = area under the receiver operating characteristic curve; NPV = negative predictive value; PPV = positive predictive value.
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Fig. 6. Confusion matrix of MobileNet in the testing data set.

Fig. 7. Receiver operating curves (ROCs) for the four models in the testing data set.
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In Fudan University Shanghai Cancer Center, one

of the largest breast cancer centers in China, about half

of breast surgeries were conducted for malignant breast

tumors. The challenge for US physicians is to recognize

malignant breast tumors with untypical sonographic fea-

tures (BI-RADS 4A or BI-RADS 3) to avoid the second

surgery after the local resection. On the basis of our sta-

tistical data, we found that the problem of underestima-

tion for BI-RADS 4A breast lesions is common among

US physicians at our center. The malignancy rate among

BI-RADS 4A breast lesions was about 20%�30% per

US physician (unpublished data). Most of these patients

with malignant breast tumors accepted surgical resection

as outpatients and then mastectomy for standard breast

cancer treatment. This may increase the chance of hema-

togenous metastasis (Hu et al. 2003; Ismail et al. 2004;
Li et al. 2019). Even for very experienced US physicians,

differentiating with the naked eye the subtle difference

between benign and malignant breast tumors with simi-

lar sonographic appearance is very challenging. There-

fore, the precise differentiation of benign and malignant

breast tumors among BI-RADS 4A breast lesions

reported by US physicians is crucial in optimizing the

treatment strategy and improving the clinical outcome.

In this study, we applied deep learning, an artificial

intelligence technique, to solve this clinical issue for the

first time. Artificial intelligence, including radiomics,

machine learning and deep learning, has played an impor-

tant role in computer-aided diagnosis of breast lesions.

The computer is superior to US physicians as it has lower

subjectivity and more robust operational capability

(Munir et al. 2019; Tagliafico et al. 2020). Numerous
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studies have proved that artificial intelligence based on

MG, magnetic resonance imaging (MRI) or US imaging

can differentiate malignant from benign breast lesions

(Dogan et al. 2010; Shia et al. 2021; Zhang et al. 2021).

Lee et al. (2018) tried to use US radiomics to distinguish

fibroadenomas and triple-negative breast cancers. Fleury

and Marcomini (2019) compared the performance of five

machine learning methods in quantifying the five BI-

RADS radiomic sonographic features with the specified

region of interest (ROI) selected. The outlined ROI ena-

bles the exact localization of breast tumors; however, it

demands great human effort. Meanwhile, in radiomics,

the margin of breast lesions needs to be manually out-

lined, which may bring out inter- and intra-observer varia-

tions, especially for those lesions with indistinct margins

(Valdora et al. 2018; Isik et al. 2020; Conti et al. 2021). In

contrast, the deep learning model can automatically learn

and extract features from US images. Deep learning has

been used widely to differentiate benign and malignant

tumors in breast and thyroid lesions (Niu et al. 2020;

Zhou et al. 2020a; Ha and Baek 2021), to predict underes-

timation in ductal carcinoma in situ (Qian et al. 2021) and

to predict axillary lymph node metastasis in breast cancers

(Zhou et al., 2020b).

In the present study, we built a lightweight deep

neural network based on MobileNet to differentiate

benign and malignant breast tumors among BI-RADS

4A lesions. Compared with the other three deep learning

models, MobileNet had the following advantages: (i)

Depthwise separable convolutions were used to build a

lightweight deep neural network, which could be embed-

ded in handheld US equipment to be used freely. (ii)

MobileNet requires fewer computing resources and can

be applied in the hospital environment. To the best of

our knowledge, this is the first trial using the MobileNet

model to help risk stratification of BI-RADS 4A breast

lesions with promising results. The robustness and accu-

racy of MobileNet are excellent. Exploration of clinical

applications is warranted, with collaboration between

US physicians and biomedical engineers. Still, some lim-

itations of this study need to be considered. First, this

was a retrospective study, which may weaken the confi-

dence level of our results. Second, the number of breast

lesions was relatively small for the deep learning model.

Finally, data were from a single center with no external

verification set. These limitations are expected to be

overcome in future studies.
CONCLUSIONS

The deep learning MobileNet model based on US

images had stable performance in differentiating benign

and malignant tumors among BI-RADS 4A breast

lesions. This approach may serve as a complementary
tool to assist clinical decision-making by US physicians

when there is a need to upgrade BI-RADS 4A lesions to

4B to reduce underestimations.
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