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Abstract
Background: Auxiliary diagnosis and monitoring of lung diseases based on
lung ultrasound (LUS) images is important clinical research. A-line is one of
the most common indicators of LUS that can offer support for the assessment
of lung diseases. A traditional A-line detection method mainly relies on experi-
enced clinicians, which is inefficient and cannot meet the needs of these areas
with backward medical level. Therefore, how to realize the automatic detection
of A-line in LUS image is important.
Purpose: In order to solve the disadvantages of traditional A-line detection
methods, realize automatic and accurate detection,and provide theoretical sup-
port for clinical application,we proposed a novel A-line detection method for LUS
images with different probe types in this paper.
Methods: First, the improved Faster R-CNN model with a selection strategy of
localization box was designed to accurately locate the pleural line.Then,the LUS
image below the pleural line was segmented for independent analysis excluding
the influence of other similar structures.Next, image-processing methods based
on total variation, matched filter, and gray difference were applied to achieve
the automatic A-line detection. Finally, the “depth” index was designed to verify
the accuracy by judging whether the automatic measurement results belong to
corresponding manual results (±5%). In experiments, 3000 convex array LUS
images were used for training and validating the improved pleural line localiza-
tion model by five-fold cross validation. 850 convex array LUS images and 1080
linear array LUS images were used for testing the trained pleural line localiza-
tion model and the proposed image-processing-based A-line detection method.
The accuracy analysis, error statistics, and Harsdorff distance were employed
to evaluate the experimental results.
Results: After 100 epochs, the mean loss value of training and validation set of
improved Faster R-CNN model reached 0.6540 and 0.7882, with the validation
accuracy of 98.70%. The trained pleural line localization model was applied in
the testing set of convex and linear probes and reached the accuracy of 97.88%
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2 A-LINE DETECTION METHOD

and 97.11%, respectively, which were 3.83% and 8.70% higher than the original
Faster R-CNN model. The accuracy, sensitivity, and specificity of A-line detec-
tion reached 95.41%, 0.9244%, 0.9875%, and 94.63%, 0.9230%, and 0.9766%
for convex and linear probes, respectively. Compared to the experienced clini-
cians’ results, the mean value and p value of depth error were 1.5342 ± 1.2097
and 0.9021, respectively, and the Harsdorff distance was 5.7305 ± 1.8311. In
addition, the accumulated accuracy of the two-stage experiment (pleural line
localization and A-line detection) was calculated as the final accuracy of the
whole A-line detection system. They were 93.39% and 91.90% for convex and
linear probes, respectively, which were higher than these previous methods.
Conclusions: The proposed method combining image processing and deep
learning can automatically and accurately detect A-line in LUS images with
different probe types, which has important application value for clinical
diagnosis.
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1 INTRODUCTION

Being convenient, radiation-free, cost-effective, fast, and
safe, ultrasound has been an effective means for the
diagnosis of different clinical diseases.1,2 In recent
years, lung ultrasound (LUS) is gaining increasing
recognition as a useful tool for assessing lung patho-
physiology.A decade of clinical and physical studies has
clearly shown that LUS is able to detect lung diseases,2,3

such as pulmonary edema, pneumothorax, and chronic
obstructive pulmonary disease, especially in the epi-
demic of the coronavirus disease-19 (COVID-19).4–7

The bedside LUS has become the only imaging equip-
ment to enter the intensive care unit in the epidemic
areas and played an important role in the real-time
observation of lung disease development.8–14

In the LUS imaging, LUS scoring is commonly used
to evaluate the clinical severity based on deep learn-
ing, which combined the A-lines, B-lines, pleural lines,
and consolidation. However, these methods were based
on the label scored by human vision and manual
calculation,15,16 which have some similar limitations. For
example, (1) lots of samples need to be labeled man-
ually, which is time-consuming and labor-intensive; (2)
manual scoring is subjective and experience depen-
dent. They also may cause significant errors and have
strong influence on the clinical diagnosis.Therefore,how
to detect the A-lines, B-lines, and pleural lines auto-
matically and independently is important for the LUS
diagnosis in clinic.

Recently, there were many papers about the detection
and extraction of B-lines and pleural lines,such as rough
detection method, radon transform, and hidden Markov
model,17–24,26 whereas the research of fast and accu-
rate detection of A-line in different probe types is still
under exploration.A-lines are kinds of linear hyper echo
beneath and parallel to the pleural line, which are pro-

duced by multiple reflections of reverberation artifacts
when the sound beam is perpendicular to the pleu-
rae. Although the majority (94%) of healthy, nonsmoker
elderly subjects (mean age 79-year old) showed no A-
lines,A-lines always present in the LUS examinations of
the healthy younger subjects (<50-year old).25 There-
fore, the consecutive pleural line and existent A-lines
could be regarded as the important indicator to repre-
sent a healthy lung condition, serving as an important
condition for the discharge of patients with COVID-
19 pneumonia or other lung diseases.15,26 Although
the detection of A-lines is more straightforward and
easier than other LUS features, for example, B-lines,
consolidation, it is not easy for the novice. Accurate
detection also required special skills and rich experi-
ence in clinic.27 Moreover, in special scenarios, such
as battlefields, areas with poor health care, and even
future home inspections, the fast, accurate, and auto-
matic detection of A-lines is very important, which can
preliminarily judge the possibility of a patient suffering
from pneumonia, pneumothorax, or other diseases. It
also improves the efficiency of medical auxiliary diagno-
sis.Therefore,it is also calling for the automatic detection
of A-lines in LUS images.

In this aspect, some researchers focused on image
analysis to achieve A-line detection in the past sev-
eral years. Anantrasirichai et al.21 found the possible
A-line occurrences according to the distance between
skin and pleural lines. Karakus et al.28 reconstructed
the Radon space information via the Cauchy Proximal
Splitting algorithm to detect the pleural line and roughly
located A-lines by detecting those lines that parallel to
the pleural line. Susanti et al.29 proposed a pleural line
extraction method based on morphological grayscale fil-
ter and adaptive low-pass filter with considering shape
framework and then detected the A-line according to
the parallel lines with fixed distance. These methods
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depended on the measurement accuracy of the dis-
tance between pleural line and A-lines, which need to
know the distance between skin and pleura in advance
and require the high-quality LUS images. However, in
most cases, due to the influence of clinician’s manipu-
lation, patient’s posture, and other factors, the resolution
of the acquired LUS images may not meet the needs
of distance measurement. As a result, these methods
were easily influenced by other similar structures and
may produce some errors. What is more, Gare et al.30

used the pretrained U-Net deep learning model for A-
line detection, this method needed lots of labels for
training,whereas the manual marking of A-lines was dif-
ficult and inefficient, which was also vulnerable to some
similar structures.

For addressing these problems, we proposed a novel
method in this paper for the automatic detection and
analysis of A-lines. In detail, the proposed method con-
sists of two stages. The first stage was the localization
of the pleural line based on the improved faster region-
based convolutional neural network (Faster R-CNN)
model and the segmentation of region of interest (ROI)
beneath the detected pleural line.The second stage was
the automatic detection of A-lines, which was mainly
based on the total variation (TV) filter and matched filter.
The main contributions of this study can be summarized
as follows:

1. The two-stage analysis method can effectively
reduce the influence caused by other similar struc-
tures and directly analyze the ROI where A-lines
located.

2. The combination of image processing algorithms can
achieve the unsupervised detection for A-lines,which
does not require high-quality LUS images and need
to know in advance the distance from pleura line to
skin surface,which facilitates the analysis of different
scenes and different patients.

3. The proposed A-line detection method has good uni-
versality and can be widely used in LUS images of
different probe types.

The paper is organized as follows.Section 2 illustrates
the patients and methods. Section 3 reports the exper-
iments and results. Section 4 addresses the discussion
with Section 5 as the conclusion.

2 METHODS

2.1 Patients

The experiment involved 61 patients from two differ-
ent hospitals. Among them, 31 patients were admitted
to the Wuhan Huoshenshan Hospital and confirmed as
COVID-19 pneumonia with computed tomography (CT,
United Imaging, uCT760) and positive RT–PCR test.

The LUS images were collected by ultrasound equip-
ment LOGIQ e (GE Healthcare, Wauwatosa, WI, USA),
which was utilized and equipped with a convex probe
of low frequency transducer (1–5 MHz). Another 30
patients were admitted to the Zhejiang University School
of Medicine and confirmed as pneumothorax with CT.
The LUS images were collected by the ultrasound equip-
ment CX50 (Philips Healthcare, Bothell, US), which was
utilized and equipped with convex and linear probe
of central frequency transducer (7.5 MHz) for 25 and
5 patients, respectively. Considering that the patient
number in this paper was not large, the analysis was
given per image in this experiment. Clinicians usually
analyze the lung disease by judging whether the A-
lines existed in the real-time imaging video. Therefore,
when the proposed method was used in a clinic, if A-
line and pleural line are detected in some frames of
the video, we can know that the patient’s condition is
improved.

In this experiment, a total of 3000 convex probe LUS
images selected from different imaging regions of 39
patients (COVID-19 pneumonia: 31, pneumothorax: 8)
were used for the training and validation of the proposed
deep learning–based pleural line localization model. A
total of 1930 LUS images (convex: 850; linear: 1080)
collected from another 22 pneumothorax patients were
used for the testing of the trained pleural line localization
model and A-line detection method. There was no inter-
section between them. In other words, there were no two
or more images with high similarity between the training
set and the testing set. In addition, LUS images from the
same scanning video were continuously selected at an
interval of 10 frames to reduce the similarity among the
adjacent images, for example, the 1st and 11th frames
were selected as the first and second frame of the image
for processing. They had the similarity less than 0.9,
which was calculated by the entropy cross-correlation
in the following equation:

S(A, B) = 1 −
||||E(A)−E(B)

E(A)

||||
E =

255∑
i=0

−Pi log Pi

(1)

where E is the entropy of the collected image, Pi rep-
resents the proportion of pixels with gray value i in the
image.

In this study, the gender, age, living environment,
and past medical history were not considered. This
study was approved by the Ethics Committee of
Huoshenshan Hospital, Wuhan, China (Approval num-
ber: HSSLL030) and the Ethics Committee of Affil-
iated Zhejiang Hospital, Zhejiang University School
of Medicine, Hangzhou, China (Approval number:
310013).
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F IGURE 1 Structure schematic diagram of a LUS image

2.2 Localization of pleural lines

There are some line objects shown in Figure 1 the pleu-
ral line such as fascial line, which are similar to the
morphology of A-line and may be mistakenly recog-
nized as the A-line, making the judgment of A-line of
low confidence, especially for the novice. Therefore, it is
necessary to prioritize the positioning of the pleural line
before detecting the A-lines,so we can achieve the inde-
pendent detection of the A-line in the area below the
pleural line with less influence from other line objectives
in LUS images.

Our previous pleural line detection method based on
Radon transform mainly focused on the analysis of LUS
images collected by linear probe,which could not directly
analyze the LUS images collected by convex probe.24

Carrer et al. proposed a pleural line detection method
by combing a local scale hidden Markov model and the
Viterbi algorithm for the analysis of LUS images col-
lected by linear and convex probes, the results showed
that the global accuracy for the convex case was less
than the linear one, and it was also influenced by the
image quality.26 Inspired by these object detection tasks
in the field of computer vision,we directly used the deep
learning-based method to detect the pleural line region
in LUS images, which cannot be affected by subjective
and objective factors such as image quality. Therefore,
in this paper, an improved Faster R-CNN deep learning
model31,32 was designed to locate the pleural line auto-
matically and accurately in those LUS images collected
by convex and linear probes. The schematic diagram of
this model is shown in Figure 2, which consists of five
parts: feature extraction, region proposal network (RPN)
model, ROI pooling, classifier, and selection strategy of
localization box.

2.2.1 Feature extraction

The backbone model was mainly composed of ResNet-
50 model for the extraction of feature maps, which
consists of conv and identify blocks, including con-
volution layer, pooling layer, batch normalization layer,

and ReLU activation function, and was applied for a
subsequent RPN layer and a fully connected (FC) layer.

2.2.2 RPN model

The model was mainly used to adjust and select the
anchor boxes that were generated from the feature
maps. These anchor boxes were first convoluted with
a kernel size of 3 × 3 and ReLU activation function to
increase the range of receptive field. Then, two different
branches were generated for foreground classification
and regression using the convolution layer with a kernel
size of 1 × 1, respectively. The upper branch contains
18 channels,whereas the next branch contains 36 chan-
nels.This is because for feature map,each pixel has nine
anchors, two classifications (foreground/background),
and four coordinate points for regression; thus, the upper
one has 2 × 9 channels and the lower one has 4 × 9
channels. Next, the reshape layer was employed to
adjust the matrix [1, 2 × 9, H, W] to [1, 2, H × 9, W], which
can meet the needs of classification task with SoftMax.
The second reshape was used to recover the matrix to
an original shape.Finally, the proposal layer was used to
select the positive anchor box using the intersection over
union index. The non-maximum suppression algorithm
was employed in this layer to select the most accurate
proposal position.

2.2.3 ROI pooling

This layer used the proposals generated by RPN and
the feature map obtained by the last layer of ResNet-50
to get the proposal feature map with a fixed size. After
entering the ROI pooling, it could use the FC operation
to identify and locate the target.

2.2.4 Classifier

The ROI pooling layer was formed into a fixed size
feature map for FC operation. The SoftMax with cross-
entropy loss function was used to classify specific
categories. The smooth L1 loss was used to com-
plete the bounding box region regression operation and
obtain the accurate position of the object. The total loss
function is shown in the following equation:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p∗i ) + 𝜆
1

Nreg

∑
i

p∗i Lreg(ti , t∗i )

(2)

where pi is the probability that the anchor is predicted as
the target. ti is a vector that represent anchor. Ncls and
Nreg are the number of anchor and the size of feature
map,respectively.λ is a constant representing the weight
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F IGURE 2 Schematic diagram of improved Faster R-CNN

of two loss and equal to 1 in this experiment. Lcls and
Lreg are the cross-entropy loss and the smooth L1 loss,
respectively, as shown in the following equation:

Lcls(pi, p∗i ) = − log[p∗i pi + (1 − p∗i )(1 − pi)] (3)

Lreg(ti , t∗i ) =

⎧⎪⎨⎪⎩
0.5(ti − t∗i )2

× (1∕𝜎2) if |||ti − t∗i
||| < (1∕𝜎2)

|||ti − t∗i
||| − 0.5 otherwise

(4)

where σ is the constant used to control the smooth
region and equal to 3 in this experiment.

2.2.5 Selection strategy of localization
box

Because A-lines are kinds of linear hyper echo of pleu-
ral lines, their morphological structures are similar to
the pleural line, as a result of the previous steps, more
than one localization box may be located,whereas there
is only one for the pleural line. Thus, these erroneous
results may have an impact on the second stage of the
experiment.However, referring to clinical experience, the

real pleural line commonly has the highest recognition
accuracy and minimum depth in the LUS images. (Depth
refers to the distance between the pleural line and the
surface of the skin, which is reflected in the ordinate at
the position of the pleural line on the image.) Meanwhile,
these similar structures,such as A-lines,commonly have
the lower identification accuracy and higher depth than
the real pleural lines. Therefore, according to this prin-
ciple, a strategy shown in Figure 3 was proposed to
improve the original Faster R-CNN model for selecting
the only one correct pleural line localization box in the
experimental task. Based on the experimental results
from the improved Faster R-CNN model, if the box with
the minimum depth and the box with the highest accu-
racy were the same, the detected object was considered
the pleural line; otherwise, it was discarded.

2.3 Automatic detection of A-lines

After the localization of the pleural line, the area below
the localization box was segmented to obtain a new
LUS image for the A-line detection and analysis. The
matched filtering algorithm was used to process the
denoised images that were preprocessed by the TV fil-
ter, and then we could get the candidates of the A-line.
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Same?

Output the 
location and class

Faster RCNN

YES

Bbox_pred Cls_prob

Keep box with 
minimum location  

Keep box with 
highest accuracy  

Error
NO

F IGURE 3 Flowchart of selection strategy

Furthermore, a gray difference algorithm was designed
to compare the initial output A-lines and the original
segmented image. As a result, the A-lines were finally
detected with the pseudo-A-lines removed in the images
outputted from the matched filter.The whole flowchart of
A-line detection is shown in Figure 4.

2.3.1 Image preprocessing

Image denoising is important for medical image anal-
ysis, especially for these ultrasound images with low
resolution. Most denoising methods filter out important
information such as edges, while filtering out noise
information, such as Gaussian filtering algorithm and
neighborhood filtering algorithm, which will affect the
detection of A-lines. In our experiment, we fully consider
the characteristics of local smoothing and nonlocal sim-
ilarity, and the restore part of the original information on
the basis of smoothing the images. Thus, we introduced
the partial differential equation into the LUS image
denoising task. As an important solution method, the
TV filter33,34 was used for the initial LUS image denois-
ing in the preprocessing process, whose mathematical
model is shown as Equation (5), including regular term
and fidelity term. The regularization term mainly plays
the role of smoothing, and the fidelity term mainly
reduces the image distortion by retaining the origi-
nal image features. Its corresponding Euler–Lagrange
partial differential equation is shown as follows:

J(u) = min∬
Ω

|∇u|dxdy + 𝜆

2 ∬
Ω

(u − u0)2dxdy (5)

−∇

(
∇u|∇u|

)
+ 𝜆(u − u0) = 0 (6)

where u and u0 are logarithm transformation of original
image and mixed noise image, respectively.λ is the equi-
librium parameters.Ω is the definition domain of image.
|▽u| is the L1 norm of the gradient vector. 1/|▽u| is the
diffusion coefficient.

Because ▽u value of the edge is large, and the diffu-
sion coefficient is small, the diffusion of edge direction
is weak. The edge can be well preserved. However, in
order to reduce the processing error caused by the
model treating the noise as an edge region, the idea of
isotropy was introduced into the original TV filter model.
Thus, the novel isotropic diffusion model and the cor-
responding partial differential equation are shown as
follows:

J(u)′ = min
1
2∬
Ω

|∇u|2dxdy + 𝜆

2 ∬
Ω

(u − u0)2dxdy (7)

−∇(∇u) + 𝜆(u − u0) = 0 (8)

Therefore, the TV filter can de-noise the smooth area.
Combining the characteristics of LUS image and A-line,
this method denoised the LUS images and enhanced
the A-lines.

2.3.2 A-line detection

In the LUS images, the A-line a higher pixel gray value,
whereas the upper and lower regions have a low pixel
gray value; thus, it conforms to the Gaussian distribu-
tion in the vertical direction. Meanwhile, considering that
the curvature of A-line is small and the thickness varia-
tion is small, we introduced matched filter algorithm35,36

with Gaussian kernel function to fit A-line. The areas in
LUS image with high response that matched the filter
scale may contain the candidates of the A-line. In order
to match with the A-lines with different directions caused
by the LUS imaging, the Gaussian kernel function was
rotated using the rotation matrix to design the kernel
function templates in different directions,as shown in the
following equation:

Ki(x, y) = −exp(−𝜇2∕2𝜎2),∀pi ∈ N

N = {(u, v)||u| ≤ 3𝜎, |v| ≤ L∕2}
(9)

where (u,v) is the rotated coordinates. σ is the scale
parameter of the filter, the 3σ contains most of the infor-
mation. L is the length of the filter template assuming a
fixed direction. Ki (x, y) is the ith kernel function. N is the
value range of neighborhood.

In addition, for making the filtering response of the
filter template to the uniform background region zero,
the kernel function was further modified to obtain
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F IGURE 4 Flowchart of A-line detection

TABLE 1 Gray difference method

Discriminant
Conditions Results Range of i and j

Iseg (i,j) ≥ P IAL(i,j) = IMF (i,j) i∈[1,N]

Iseg (i,j) < P IAL(i,j) = 0 j∈[1,M]

Note: The size of segmented LUS image Iseg(i,j) is M × N. IAL(i,j) and IPL(i,j) are
the final A-line image and the result image of matched filtering, respectively.

the final convolution mask, as shown in the following
equation:

K′
i (x, y) = Ki(x, y) − Ai

Ai =
∑

(u,v)∈N

Ki(x, y)∕A
(10)

where Ai is the average value of kernel function.A is the
number of pixels in N.

Therefore, when the output response of the matched
filter exceeded the preset threshold, the pixel was
marked as a part of A-line to achieve the purpose of
extracting A-line. As a result, we got the initial detec-
tion results containing pseudo-A-lines. In addition, the
gray difference method,37 as shown in Table 1, was
proposed to remove pseudo-A-line and obtain the final
real A-line image. The output detection images from
matched filter were fused with the segmented prepro-
cessed images, if the gray value of A-lines at the
position of the segmented image corresponding to the
matched filter output images was higher than the pre-
set threshold, it was the real A-line; otherwise, it was the
pseudo-A-line.

2.3.3 Validation of A-line detection
method

We designed the “depth” index of A-lines to evaluate the
accuracy of the proposed automatic detection method.
This evaluation method mainly depended on whether

the depths of the existed A-line measured using the
proposed method were close to the corresponding man-
ual measurement (±5%). If all automatic measurement
results were close to the corresponding manual mea-
surement results, the detection was correct. If there was
no corresponding manual measurement result for any
automatic measurement result, the detection was wrong.
The flowchart of the evaluation method was shown
in Figure 5. The measurement of depth by the auto-
mated and manual method was shown in the following
equation:

hi =

N∑
p=1

yp∕N p ∈ [1, N] (11)

Hj = (C1 + C2)∕2 (12)

where N is the number of pixels in the A-line, yp is the
depth of the pth pixel, C1 and C2 are the results from
two different experienced clinicians.

3 EXPERIMENTAL RESULTS

The proposed method has been tested on the data set
collected from the 31 patients with COVID-19 pneu-
monia and 30 patients with pneumothorax. There were
totally 4930 LUS images (convex: 3850; linear: 1080),
and every two images were picked up from the same
clip by every 20 frames to reduce the similarity between
images, and we also used the entropy cross-correlation
to ensure that the similarity of the two adjacent images
from the same patient was less than 0.9, as shown in
Table 2.

A number of 3000 convex probe LUS images col-
lected from 39 patients were used for the training of
the pleural line localization model, the fivefold cross-
validation method was used to verify the trained model.
Another 1930 LUS images (convex: 850, linear: 1080)
collected from 22 patients were applied for testing the
trained pleural line localization model and the proposed
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F IGURE 5 Flowchart of evaluation method

TABLE 2 Comparison of images in different frames of the same clip

Order 1 2 3

Example-1

Entropy 4.41 3.86 5.11

Similarity (<0.9) 0.87 –

– 0.76

Example-2

Entropy 5.56 4.06 4.90

Similarity (<0.9) 0.73 –

– 0.83

image processing-based A-lines detection method. In
addition, the position of pleural line and A-lines was
marked by two experienced clinicians (>6 years in using
LUS). The depth measurement of A-line was performed
by the two experienced clinicians,independently,with the

mean value as the gold standard. The image process-
ing and deep learning were performed using MATLAB
2020a and Pytorch framework, respectively, running on
a computer with a CPU: Intel Xeon Gold 6248R, RAM:
256G, GPU: Tesla V100.
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F IGURE 6 (a) Training loss and (b) validation loss of the Faster R-CNN model

TABLE 3 Experimental results of fivefold cross validation

Loss
Order Train Validation Accuracy (%)

1 0.6814 0.7689 98.33

2 0.6697 0.8109 98.33

3 0.6610 0.8006 99.17

4 0.6315 0.7861 99.33

5 0.6268 0.7748 98.33

Average 0.6540 0.7882 98.70

3.1 Localization of pleural lines

The improved Faster R-CNN model with ResNet-50 was
used for the localization of pleural lines, the training
parameters including epoch, batch size, learning rate,
and optimizer were set as 100, 4, 0.0001, and Adam
optimizer, respectively. A total of 3000 LUS images were
randomly divided into 5 copies, each with 600 images.
Four of them were selected for training, the other one
for validation, and the experiment was repeated for
five times. The experimental process and results were
shown in Figure 6 and Table 3, respectively. The mean
value of training and validation loss reached 0.6540 and
0.7882, respectively.The average validation accuracy of
pleural line localization was 98.70%.

Another 1930 LUS images (convex: 850, linear: 1080),
which were not involved in the training process of
improving Faster R-CNN model, were used to test the
trained model in each experiment, and the test results
were shown in Table 4. It proved that the trained pleu-
ral line localization model could get the great effect with
the accuracy of 97.88% and 97.11% for convex and
linear probes, respectively. Through the proposal box,
non-maximal suppression, and the proposed selection

TABLE 4 Experimental results in external data set

Accuracy (%)
Probe type 1 2 3 4 5 Average

Convex 97.76 97.76 98.11 98.00 97.76 97.88

Linear 96.48 96.39 97.41 97.69 97.59 97.11

strategy in Section 2.2, we obtained the final localiza-
tion of the pleural line, as shown in Figure 7. However,
there were some erroneous recognition results, which
was because some A-lines closing to the pleural line
were similar to the pleural line,and the recognition accu-
racy was higher than the real pleural line, resulting in
false recognition after the proposed selection strategy,
as shown in Figure 8.

In addition, the original Faster R-CNN model with-
out the designed selection strategy of localization box
was trained and tested using the same data set and
fivefold cross-validation experiments; the experimental
results were shown in Table 5, with the accuracy for
convex probe images and linear probe images being
94.05% and 88.41%, respectively, which was lower than
the improved Faster R-CNN model in this paper.

3.2 Detection of A-lines

After the localization of the pleural line, we cut out the
area beneath the pleural line for the detection of A-
lines. This operation reduced the influence of some
similar structure from other regions. Taking the linear
probe and convex probe LUS images shown in Figure 9a
as an example, the segmented images (Figure 9b)
were first processed by the TV filter, which denoised
the smooth area and preserved the edge area in LUS
images. Then, the denoised LUS images (Figure 9c)
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F IGURE 7 Detection results of pleural line: (a) convex and (b) linear

F IGURE 8 Wrong recognition of multiple pleural lines

were subsequently put into the matched filter with the
scale parameter, the length of the filter template, and
the numbers of rotation angle were 3, 5 (fine-tuning
may be required in some images), and 12, respectively.
The output of matched filter was shown in Figure 9d.
Next, by comparing the result image and segmented
image, it could be seen that there were some lines
marked with red boxes that may not belong to the
real A-line. Therefore, the gray difference method was
applied for the result image of matched filter and the

TABLE 5 Experimental results of original Faster R-CNN model

Accuracy (%)
Probe type 1 2 3 4 5 Average

Convex 94.00 93.53 94.71 94.24 93.76 94.05

Linear 87.87 88.06 88.70 88.98 88.43 88.41

segmented image, we could remove the pseudo-A-line
in the output images of matched filter, as shown in
Figure 9e,f .As a result,we could get the final real A-lines
accurately.

Meanwhile, the experiment results for those LUS
images without A-lines by using the proposed method
were shown in Figure 10.There were no A-lines in exper-
imental result images, which was consistent with the
facts. Thus, the proposed A-line detection method also
can accurately determine the absence of A-line.

All images in the testing set of pleural line localiza-
tion were used to verify the image processing-based
A-line detection method. The correct images of pleu-
ral line recognition were directly cropped to obtain the
lower region, and the wrong images were manually
cropped to obtain the lower region. A total of 1930 seg-
mented LUS images were employed in the experiment
of A-line detection and evaluation. Among them, the
number of convex probe LUS images was 850, with 450
images containing A-lines. The number of linear probe
LUS images was 1080, with 610 images containing A-
lines. All detection results were validated by the index
of “depth.” Meanwhile, we used three indexes, including
accuracy (ACC), sensitivity (SEN), and specificity (SPE)
(Equations 13–15) to evaluate the detection method.
The experimental results were shown in Table 6. The
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F IGURE 9 Process images of A-line detection (the process images were displayed in the same size): (a) original image; (b) segmented
image; (c) TV filter; (d) matched filter; (e) gray difference; and (f) final result

F IGURE 10 Detection process and results of the LUS images without A-lines: (a) original image; (b) pleural line localization; (c) segmented
image; and (d) final result

accuracy, sensitivity, and specificity of A-line detection
reached 95.41%, 0.9244, 0.9875, and 94.63%, 0.9230,
0.9766 for convex and linear probe images, respectively:

ACC =
TP + TN

TP + TN + FP + FN
(13)

SEN =
TP

TP + FN
(14)

SPE =
TN

TN + FP
(15)

where TP, TN, FP, and FN are true positives, true nega-
tives, false positives, and false negatives, respectively.

TABLE 6 A-line detection results of testing set

Convex probe image Linear probe image

Results A-line
Without
A-line A-line

Without
A-line

Total 450 400 610 470

All correct
identification

416 395 563 459

Include error
identification

27 5 38 11

Unrecognized 7 / 9 /

Accuracy (%) 95.41 94.63

Sensitivity 0.9244 0.9230

Specificity 0.9875 0.9766
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TABLE 7 Statistical analysis of partially identified correct A-lines

Index Clinician-1 Clinician-2 Average

Error statistics Mean value 1.5897 1.4786 1.5342

Standard 1.2045 1.2148 1.2097

p Value 0.9131 0.8889 0.9021

Harsdorff
distance

Mean value 5.4696 5.9914 5.7305

Standard 1.7435 1.9186 1.8311

Note: p Value represents the statistics difference of two methods, and there is
statistical significance when the value is less than 0.05.

For these correctly identified A-lines, the error of
depth measured by the automatic method and its cor-
responding manual measurement results measured by
two different experienced clinicians was analyzed using
mean value, standard, and p value in the experiments.
Meanwhile, the Harsdorff distance was adopted to ana-
lyze the similarity between the automatically detected
A-line and the manually drawn by two experienced clin-
icians. Experimental results were shown in Table 7. In
these successful cases, the errors all were below 5%
with the average ± standard and p value of 1.5342 ±

1.2097 and 0.9021, respectively. The average ± stan-
dard of Harsdorff distance was 5.7305 ± 1.8311. They
all proved that the proposed A-line detection had good
performance.

3.3 Comparison with other methods

For evaluating the whole system of A-line automatic
detection, the accumulated error of the two-stage (pleu-
ral line localization and A-line detection) was calculated
in the experiment, which was 6.61% and 8.10% for
convex and linear probes, respectively. In other words,
the final accumulated accuracy of the whole system
was 93.39% and 91.90% for convex and linear probes,
respectively. In addition, we compared our method with
two main detection methods using the same LUS test-
ing set, including the equidistance method proposed by
Anantrasirichai et al.21 and the U-Net detection method
proposed by Gare et al.30 Their detection accuracies
all were evaluated using the “depth” index introduced in
Section 2.3.3, whose experimental results were shown
in Figure 11. The comparison results showed that our
method was better than the previous classical methods
on both linear array and convex array probes.

4 DISCUSSION

In this study, we developed a novel method for the auto-
matic detection of the A-lines using deep learning and
image processing methods. The innovations of the pro-
posed method were summarized as follows: (1) It was
not affected by the type of imaging probe and had good

equidistance U-Net Ours
60

80

100

91.90
93.39

70.16

66.22

88.52

 Convex array image
 Linear array image

% / ycarucc a noitce te
D

Different A-line detection methods

92.44

F IGURE 11 Comparison of different A-line detection methods

robustness. (2) It reduced the influence of human inter-
vention or objective factors and improved the detection
accuracy. With further tests on the large number of data
set, the proposed method may have high applicability
and improve the efficiency of the clinical procedures.

As we all know, the Faster R-CNN model has a sta-
ble performance in object detection, in this experiment,
its accuracy in the pleural line localization was 94.05%
and 88.41% for convex and linear probes in testing set,
respectively. However, there were some structures sim-
ilar to pleural lines in LUS images, such as A-line, it
may lead to some erroneous recognition of multiple
pleural lines.Therefore,we proposed the selection strat-
egy of localization box after Faster R-CNN effectively to
solve the previous problems and obtained more accu-
rate pleural line localization results, with the accuracy
of 97.88% and 97.11% for convex and linear probe LUS
images in testing set, respectively.Meanwhile,compared
with our previous pleural line detection method based on
radon transform,24 the proposed deep learning-based
method had better performance, no matter what type of
LUS images. It also showed good predictability even if
the contrast of pleural line in the LUS image was not
high and was least interfered by other reflection inter-
faces, such as the muscle fibers, fat-muscle interface.
In addition, the accurate localization of pleural line also
provides effective help for the subsequent analysis of
pleural line segmentation and thickness measurement.
A-line detection data set contained 1930 LUS images,
including linear and convex probe images, as well as
images with and without A-line. These experimental
results shown in Figures 9 and 10 confirmed that this
image-processing-based method had a good effect on
detecting A-lines in LUS images in the aspect of image
representation. At the same time, quantitative analy-
sis of detection accuracy including accuracy, sensitivity,
specificity,error statistics,and Harsdorff distance shown
in Tables 6 and 7 also proved the proposed method
had great performance and close to the clinicians’ judg-
ment. In addition, because our method was composed
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of two stages: pleural line localization and A-line detec-
tion; thus, we employed the accumulated accuracy of
the two-stage to evaluate the error of whole system
in the experiment, the results showed that our method
was less affected by image quality and had higher A-
line detection accuracy compared with Anantrasirichai’s
equidistance method21 and Gare’s U-Net method.30

What is more, this method adopted the non-radiative
and noninvasive automatic diagnosis image-based
method for the A-line and pleural line detection to obtain
the accurate characteristics of lung status. Compared
with these inspection methods, including chest CT,38,39

chest X-ray,40 and blood test,41 the proposed method
provided a novel idea that was more convenient, fast,
and suitable for clinical application.

Above all, the method proposed in this paper had good
effect and robustness for detection of pleural line and
A-lines. It could not only help the inexperienced clini-
cians to diagnose some clinic disease, such as pneu-
monia and pneumothorax, but also built the confidence
when the automatic approach agrees with the visual.

There are some limitations of the study. First, the
image-processing algorithms involved in this paper need
to be set the certain threshold. It was commonly set by
the empiric value and may cause some error on the
detection result of A-line. Second, considering the fail-
ure cases in this study, the proposed method may need
to be improved for these LUS with serious rupture of
pleural line. Third, the absence of A-lines is not mutually
exclusive to the presence of B-lines or other pathologic
conditions, the automatic detection of A-lines should
consider other LUS indicators. In the future, we will
improve the proposed method to design more advanced
image-processing algorithm with adaptive threshold and
collect more ultrasound images, including convex or lin-
ear probe, multicenter, and multistructure to verify this
A-line detection model and achieve best performance.
We will also study other LUS indicators and explore the
detection or localization of the artifactual patterns asso-
ciated with pathological conditions to better meet the
clinical needs.

5 CONCLUSION

The detection of A-lines is important for the auxiliary
diagnosis of LUS in clinic. In this paper, we proposed
an automatic A-line detection method based on deep
learning and image-processing methods,which consists
of Faster R-CNN model, TV filter, matched filter, and
gray difference. The designed method was evaluated
in the self -defined LUS data set from different probe
types, patients, diseases, and hospitals. Experimental
results showed that the method had a good perfor-
mance, which was close to the gold standard and better
than the previous methods. However, these existed lim-
itations also require us to improve this method and test

on more diverse data set in the future study. Ultimately,
this method is potentially applicable to the clinic on
various occasions.
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