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Introduction

The pleura is the lining of the lung and often appears as a 
bright line in ultrasound scans. As a key anatomical land-
mark, the pleural line plays an important role in lung ultra-
sound. It not only indicates the interface between the chest 
wall and lung anatomically, but associates with many lung 
pathologies, for example, pleura thickening and pleural 
effusion.1-3 The detection of the pleural line is the starting 
point for evaluating several ultrasonic features of the 
lung,1,3-6 including (i) lung sliding that appears at the pleurae 
as part of pneumothorax examinations7; (ii) B line that starts 
from the pleural line for evaluating the pulmonary edema 
and fibrosis8-10; and lung pulse that is associated with the 
heart activity at the pleural line.11 Pleural line is also the 
basis for the diagnosis of pleural diseases and guiding the 
interventional therapy, such as ultrasound-guided needle 
biopsy (UGNB).2,3,12

Currently, the detection and evaluation of the pleural line 
are conventionally through visual ultrasonography which, 
however, has some limitations. Firstly, the pleural line is eas-
ily mistaken for the interface of the chest muscle and fat 
layer on the ultrasound images. Secondly, the pleural line may 

show irregular shapes under pathologies, making its evalu-
ation time-consuming and experience-dependent.1 Thirdly, 
the quantitative assessment of the pleurae is difficult, for 
example, measuring the pleurae thickness, especially when 
the pleurae is unclear at pathological status.1,7 A method for 
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Abstract
It is of vital importance to identify the pleural line when performing lung ultrasound, as the pleural line not only indicates 
the interface between the chest wall and lung, but offers additional diagnostic information. In the current clinical practice, 
the pleural line is visually detected and evaluated by clinicians, which requires experiences and skills with challenges for the 
novice. In this study, we developed a computer-aided technique for automated pleural line detection using ultrasound. The 
method first utilized the Radon transform to detect line objects in the ultrasound images. The relation of the body mass 
index and chest wall thickness was then applied to estimate the range of the pleural thickness, based on which the pleural 
line was detected together with the consideration of the ultrasonic properties of the pleural line. The proposed method was 
validated by testing 83 ultrasound data sets collected from 21 pneumothorax patients. The pleural lines were successfully 
identified in 76 data sets by the automated method (successful detection rate 91.6%). In those successful cases, the depths 
of the pleural lines measured by the automated method agreed with those manually measured as confirmed with the Bland-
Altman test. The measurement errors were below 5% in terms of the pleural line depth. As a conclusion, the proposed 
method could detect the pleural line in an automated manner in the defined data set. In addition, the method may potentially 
act as an alternative to visual inspection after further tests on more diverse data sets are performed in future studies.
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automated pleural line detection could not only make the 
detection of the pleural line objective but also realize quanti-
tative assessment of the pleurae. In addition, the automated 
detection of the pleural line may contribute to the diagnosis 
of some pleural diseases, including pleural inflammation,13 
pleural fibrosis,14 and pleural thickening,15 as well as some 
guidance procedure, like UGNB.12

On the other hand, ultrasound automation has recently 
drawn great attention in virtue of the operator-dependent 
nature of ultrasound. Many smart algorithms have been 
developed for automated ultrasound measurement for differ-
ent parameters, for example, blood vessel diameter and wall 
thickness.8,16-23 Biswas et al.17 applied deep learning for auto-
mated lumen characterization of carotid artery using ultra-
sound. Our previous work focused on developing smart 
algorithms for automated inferior vena cava identifications22 
and measurements.21 In the field of lung ultrasound, endeav-
ors were focused on the detection of different lung ultra-
sound artifacts, for example, B-lines and pleural lines. 
Brusasco et al.8 and Moshavegh et al.24 attempted to provide 
quantitative measure for the number of B-lines present in 
lung ultrasound images. Moshavegh et al.25 attempted to 
delineate the pleural line based on the confidence map esti-
mation in which the random walks framework considering 
ultrasound specific constraints was adopted. Anantrasirichai 
et al.26 applied the Radon and Hough transforms to identify 
line objects in an ultrasound image, and then differentiate the 
pleural line, B-line, A-line, and Z-line with several con-
straints that were artificially determined in part.

Toward automated pleural line detection with least human 
decision, in this study, we proposed a method for automated 
pleural line detection based on the Radon transform, taking 
advantages of the anatomical and ultrasonic properties of the 
pleural line. As an innovation, the relation of the body mass 
index (BMI) and chest wall thickness (CWT) was considered 
as the input for the proposed algorithm for accurate pleural 
line detection.

Materials and Methods

Subjects

Twenty-one pneumothorax patients with moderate injuries 
(the air pocket occupied part of the left or right lung as CT 

confirmed) were enrolled in the study with the height and 
weight recorded, as listed in Table 1. An ultrasound machine 
CX50 (Philips Healthcare, Bothell, US) equipped with a lin-
ear probe (L12-3, central frequency 7.5 MHz) working under 
the penetration mode were used for data collection at a frame 
rate of 25 frame per second. Note that in the penetration 
mode the transmit frequency of the probe is close to the 
lower edge of the frequency range to enhance the penetration 
of the ultrasound waves. The patients were asked to sit or 
stand during the data collection. Two clinicians with more 
than 6 years’ experience in ultrasound conducted the study, 
with one (Clinician A) performed the ultrasound scan and the 
other (Clinician B) interpreted the collected data. Ultrasound 
cine loops with a duration of 4 seconds were collected in 
transverse scans in the anterior upper and lower chest areas 
of both sides of each patient following the BLUE Protocol.2,27 
Data collections were repeated three times at each area, 
resulting in 83 datasets (249 ultrasound cine loops) in terms 
of the measurement site with one excluded due to the poor 
image quality. Note that the image data collected from a 
patient included at least one for pneumothorax which was 
confirmed by Clinician A. The collected data thus included 
at least two important types of lung conditions, that is, lung 
sliding (normal) and no lung sliding (pneumothorax).28 All 
the ultrasound images were collected with the requirement 
that the pleural line should be under good visualization and 
occupy more than 2/3 of the width of the screen. The data 
sets were stored in the format of dynamic digital imaging 
and communications in medicine. A group of 16 consecutive 
ultrasound frames (denoted as Group-16) was randomly 
selected from each cine loop for the following manual and 
automated measurements. The study was approved by the 
ethics committee of East China Normal University, 
Shanghai, China. All patients provided written informed 
consents.

Manual Pleural Line Detection

The pleural line in each cine loop was randomly and blindly 
detected on the first frame of Group-16 by Clinician B. As an 
example, Figure 1(a) representatively shows an ultrasound 
image with the pleural line displayed (indicated by an arrow 
in the figure). The depth of the detected pleural line was 

Table 1. Patent Information.

P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A 38 27 45 49 26 60 29 55 49 32 33 47 33 36 39 28 56 38 43 44 29
S M F F M M F M M F M M M F F M F M F M F F
H 1.65 1.74 1.60 1.72 1.63 1.59 1.76 1.68 1.69 1.78 1.64 1.73 1.61 1.72 1.80 1.56 1.75 1.62 1.68 1.58 1.59
W 52.0 70.0 55.4 67.7 54.8 53.3 77.8 83.9 64.3 84.3 64.9 74.6 67.7 81.7 91.7 90.1 94.0 91.4 91.7 68.1 82.9
B 19.1 23.1 21.6 22.9 20.6 21.1 25.1 29.7 22.5 26.6 24.1 24.9 26.1 27.6 28.3 37.0 30.7 34.8 32.5 27.3 32.8
C 15.6 19.2 18.3 20.3 14.5 17.3 24.3 30.5 16.3 22.2 19.8 22.8 21.0 25.4 26.0 33.4 31.5 35.7 28.2 27.3 34.6

Note. P = patient; A = age; S = sex; H = height (m); W = weight (kg); B = body mass index; C = chest wall thickness (mm).
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manually measured along the middle line of the image width. 
The measured depths in each data set (containing three cine 
loops) were averaged as the depth of the corresponding mea-
sured site, and subsequently compared with those measured 
used the automated method.

Automated Pleural Line Detection

In the automated approach, each Group-16 was averaged to 
create an averaged 2D ultrasound image (Figure 1(b)). This 
operation could avoid the case that the pleural line is unclear 
or missing in some frames of the group, and make the image 
more smooth that facilitated the following image processing. 
Then the Radon transform was applied to detect the line 
objects on the ultrasound image as the candidates of the pleu-
ral line.

Radon transform. The Radon transform is widely applied to 
detect lines, circles, or ellipses in kinds of images.29,30 In 
automated analysis of digital images, edge detectors can be 
used as a pre-processing step to obtain points or pixels that 
belong to the desired curves. However, there may be missing 
points or pixels on the desired curve, and spatial deviations 
between the ideal line/circle/ellipse and the noisy edge 
points. The purpose of the Radon transform is to perform 
grouping of the extracted edge features to an appropriate set 
of lines, circles, or ellipses.31

The Radon transform is an integral transform. It performs 
a line integrate to a function f x y( , )  which is defined on a 
two-dimensional plane along any line on a plane. It is equiv-
alent to do CT scans. As a basic application, the Radon trans-
form is used to reconstruct f x y( , )  before projection based 
on the transmitted light intensity of CT.

Consider f x y( , )  have compact support in R2 , the Radon 
transform is defined as

          R s a f x y x y s dxdy
R

( , ) ( , ) ( cos sin - )= +∫∫
2

δ α α  (1)

where R is the Radon transform operator, s is the distance of 
a line to the origin, α is the angle of the line referring to the 
direction of x+.

Procedure of automated algorithm. The Radon-transform-
based method was developed for automated pleural line 
detection using Matlab (The MathWorks, Natick, MA, USA). 
The method comprises the following steps:

1. Removing one third of Figure 1(b) vertically from 
the lower end of the image, as shown in Figure 1(c). 
Note that the removal of part of the image that is not 
likely to contain the pleural line would reduce the 
computation load, which may make the algorithm 
eligible for mobile ultrasound that has limited com-
puting resources.

2. Applying the Radon transform to Figure 1(c) to 
obtain an intensity image (Figure 2). The peaks in the 
figure (indicated as green circle) corresponded to line 
objects in Figure 1(c) which served as candidates of 
the pleural line. Note that the x coordinate of a peak 
in the figure indicated the angle of the corresponding 
line in Figure 1(c) according to the direction of x+. 
While the y coordinate of a peak indicated the inter-
cept of the corresponding line in Figure 1(c) with the 
coordinate origin being the center of the figure. Thus, 
the depth of a line in Figure 1(c) can be derived with 
the x and y coordinates of its corresponding peak in 
Figure 2.

3. With the above information, the peak corresponding 
to the pleural line was picked up from all the candi-
dates by considering the following pre-knowledge:
(a) The pleural line was most continuous across the 

screen among other candidates. As a result, the 
gray value of the peak corresponding to the 
pleural line is normally high, ranking top posi-
tions among all the peaks;

Figure 2. The intensity image of Radon transform of Figure 1.
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(b) The depth of the pleural line is equal to the 
CWT.3 A personalized CWT could be estimated 

via a linear relationship of the BMI (defined as 

W

H 2
, where W and H is weight [in kilograms] 

and height [in meters], respectively), and CWT 
(details please refer to Graphs 1 and 2 in (3)). 
With the range of the possible depths of the 
pleurae, the searching range of the pleural line 
could be much shrunk, facilitating the localiza-
tion of the pleural line.

With the above process, the peak for the pleural line was 
picked up and indicated as P0 in Figure 2. The angle of the 
pleural line is θ = 91° in the case as displayed in Figure 2.

4. Applying the rotation algorithm in Matlab (i.e., 
“imrotate[F, θrotation ],” where F represents the image 
data to process, θ θrotation = −90 ) to Figure 1(c). A 
new rotated image was obtained and shown in Figure 
3 in which the pleural line is horizontally placed.

5. Summing the pixel’s gray values of Figure 3 along 
the transverse direction to obtain a lateral intensity 
projection curve (denoted as LIPC-1, blue line in 
Figure 4). For the sake of comparison, the lateral 
intensity project curve of Figure 1(c) is also plotted 

in Figure 4 (denoted as LIPC-2, red dash line in 
Figure 4). The peak of the projection curve corre-
sponding to the pleural line could be located auto-
matically with the positional information of P0 in 
Figure 2. In this case, the max peak of either LIPC-1 
or LIPC-2 corresponded to the extracted pleural line. 
In addition, the peak for the pleural line in LIPC-1 is 
much higher than that in LIPC-2, indicating that the 
rotation method could highlight the position of the 
pleural line.

6. Extracting two troughs beside the peak for the pleural 
line in LIPC1 as indicated by two dash lines in 
Figure 4. The range between the two troughs (i.e., 
[2.72, 3.07]) is the lateral projection range of the 
pleural line. Thus, the pleural line could be automati-
cally extracted by locating the pixel of maximum 
gray value within the corresponding range in Figure 3. 
Figure 5 shows the detection result with the pleural 
line highlighted by a red line.

7. Rotating Figure 3 to the original angle together with 
the identified pleural line, as shown in Figure 6. The 
depth of the pleural line was automatically measured 
in the middle of the image width, which is in line 
with the manual measurement.

The steps of the above procedure were performed automati-
cally in the study. The proposed method for pleural line 
detection could be considered as fully automated. The mea-
sured depths of the pleural lines in each data set using the 
automated approach were averaged and compared with those 
manually measured.

Statistics. The repeatability of three manual and automatic 
measurements at the same measurement site was tested using 
intra-class correlation coefficient (ICC) with its 95% confi-
dence interval (CI) calculated with SPSS 22.0 for Windows 
system (SPSS Inc., Chicago, IL, USA). Considering the 
repeated measurement, the two-way mixed effect model with 
the consistency option ICC (3, k) was utilized.28 Bland-Alt-
man analysis was used to plot the difference of manual and 
automatic measurements against their mean values to inves-
tigate the agreement between the manual and automatic mea-
surements for pleural lines. The mean difference between 
the manual and automatic measurements ( d ), the standard 
deviation of d  (SD d ), the standard error of d  (SE d ), the 
95%CI of d , the coefficient of repeatability (CR), and the 
95% limits of agreement were calculated.

Results

In this study, the pleural lines were successfully identified in 
76 data sets using the automated method (successful rate 
91.6%). While the clinician identified pleural lines in all the 
data sets (successful rate 100%). Taking the average of three 
measurements in each data set as the depth at the 

5

Figure 3. The rotated image of Figure 2 with the pleural line 
horizontally placed.
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measurement site, Figure 7(a) shows all the depths of the 
pleural lines measured using automated and manual meth-
ods. The accuracy of the automated method is shown in 
Figure 7(b) with the manual measurement as the gold stan-
dard. The ICC value was 0.986 (95%CI 0.979–0.991) for the 
three repeated measurements with the manual method and 
0.998 (0.997–0.999) for the three repeated measurements 
with the automated method. The agreement of the automated 
and manual methods in measuring the depth of the pleural 
line was analyzed via Bland-Altman as shown in Figure 8 
and Table 2. All data points were within the 95% limits of 
agreement. Indicated by the 95% limits of agreement, the 
difference between automatic and manual measurements 
was less than 0.92 cm. The maximum measurement error 
was less than 5%. Figure 9 representatively shows two 
images in which the proposed algorithm failed to detect the 
pleural lines.

Discussion

In this study, we developed a method for automated detection 
of the pleural line using the Radon transform. The innovation 
of the study included the application of a personalized con-
straint (i.e., the BMI-CWT relationship) together with the 
ultrasonic visualization of the pleura for precise detection of 
the pleural line. With further tests on a more diverse data set, 
the proposed method may potentially increase the confidence 

2.72 3.07

Figure 4. The lateral intensity projection curve of Figure 1 (red dash line) and Figure 3 (blue line). For interpretation of the references 
to colors in this figure legend, refer to the online version of this article.

3.07

2.72

5

Figure 5. The rotated image with the identified pleural line 
highlighted by a red line (two dash lines indicate the lateral projection 
range of the pleural line). For interpretation of the references to 
colors in this figure legend, refer to the online version of this article.
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of inexperienced users for daily clinical practice and improve 
the efficiency of the clinical procedures. In addition, the 
automated pleural line identification is fundamental to many 
other smart methods that can be implemented in the area of 
lung ultrasound.

The method was evaluated by testing 83 data sets collected 
from 21 pneumothorax patients. The successful identification 
rate for pleural lines is 91.6% using the automatic method. 
This is comparable with the previous study conducted by 
Anantrasirichai et al.26 in which a similar accuracy was 
achieved for detection of the pleural line in 100 lung ultra-
sound images. Furthermore, the depths of the detected pleural 
lines measured using the automated method were comparable 
with those manually measured, as shown in Figure 7(a). It 
could be seen that the depths of the pleural lines measured by 
the automated approach were close to those manually mea-
sured except for those failure cases. The measurement errors 
of the automated method were below 5% for the successful 
cases, as indicated in Figure 7(b). Automated and manual 
measurements also showed good agreement as analyzed by 
Bland-Altman shown in Figure 8. It thus validated the pro-
posed method as a potential alternative to the manual method, 
although the automated method failed in detecting the pleural 
line in seven data sets (failure rate 8.4%).

Figure 6. The original image with the pleural line identified (the 
pleural line is highlighted by a red line). For interpretation of 
the references to colors in this figure legend, refer to the online 
version of this article.

(a)

(b)

0

10

20

30

40

Manual Auto

Figure 7. (a) Pleural depths measured by manual (blue circle) 
and automated (orange rectangle) methods. (b) accuracy of the 
automated method. For interpretation of the references to colors 
in this figure legend, refer to the online version of this article.

Figure 8. Bland-Altman plot of the automated approach 
referencing to the manual method.
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Normally the lung is identified by respiration-related 
movements of the visceral pleura, that is, lung sliding.1 
However, when the lung is abnormal, like the pneumothorax, 
the lung sliding is missing. Under such a circumstance, the 
identification of the lung is most dependent on the visualiza-
tion. In addition, the pleural line was easily mistaken for 
other reflection interfaces on ultrasound images, such as the 
muscle fibers, fat-muscle interface, and fascia. Experiences 
and skills were thus required for identifying the pleura, and 
then the lung. In this respect, with an attempt to offer an 
approach for automated pleural line detection, this study 
could help the inexperienced clinicians to identify the pleu-
rae and build confidence when the automated approach 
agreed with the visual detection.

The proposed approach for the automated detection of pleural 
lines may contribute to the diagnosis of some pleural diseases. 
For example, in pleural inflammation, the pleurae may have 
irregular margins in ultrasound visualization13; in pleural 
fibrosis, the pleural line may show mixed echogenic or hypo-
echoic appearance that did not vary in shape and location14; 
in pleural thickening, the pleural line may displayed as a belt 
with lower echogenicity than that in normal cases15; in pleural 
neoplasia, an appearance of round or oval-shaped, well 
encapsulated or demarcated mass may indicate as benign 

lesions, while that of thickening of the pleurae with irregular 
outline and a heterogeneous echo pattern may indicate as 
malignant lesions.32 Thus, identification of the pleural line in an 
automated manner may assist in the diagnosis of those diseases. 
Taking the pleural thickening as an example, the distance 
between the two troughs as highlighted by two dash lines in 
Figure 4 may indicate the pleural thickness, which could be 
further used for the evaluation of the pleural thickening, a 
significant indicator for pleurisy.

In addition, the detection of pleural line may be beneficial to 
the procedure of UGNB. The differentiation between benign 
tumors and malignancies for neoplasitic pleural diseases is 
commonly associated with UGNB.12 However, the tendency 
of the tissue lesions to dislocate under the pressure of the 
needle due to its elastic property increases the challenge for 
UGNB.1 In this regard, automated pleural line detection may 
offer a real-time feedback of the position of the target, which 
may not only help optimize the guidance procedure and ele-
vate the confidence of the clinicians, but increase the success 
rate of the biopsy. In addition, the proposed approach may 
provide assistant information to guide the medical robot to 
perform automated needle biopsy.

Moreover, the proposed method may provide fundamen-
tal technical reference for developing advanced automation 
techniques for pulmonary diagnosis. For example, a recent 
study conducted automated B-line counting8 and lung sliding 
quantification.33 The approach for automated pleural line 
detection may contribute to the work since the pleura is the 
start of the B line and where the lung sliding takes place.

In this study, the proposed automated approach failed to 
detect the pleural line in seven data sets. The failure cases 
can be divided into two categories: (1) the pleura was of 
lower echogenicity (Figure 9(a)), and (2) the pleural line was 
discontinued (Figure 9(b)), as representatively demonstrated 
in Figure 9. In those cases, the pleural line was mistaken for 
other tissues, for example, the muscle fibers. The failure 
cases may be attributed to inadequate scanning angles or 
pressures of the probe or pathologies of the pleurae, for 
example, pleural effusion.

The primary computation load of the proposed method is the 
Radon transform which could be much optimized by reducing 
the size of the input image. In this regard, the reduction of the 
size of the input image as described in Step-1 of “Procedure of 
Automated Algorithm” could be performed more precisely. 
That’s to say, more portions of the original image could be 
removed to reduce the computing load, taking advantage of the 
knowledge of BMI-CWT relationship.3 With optimization in 

Table 2. Bland-Altman Analysis for the Depth Measurement of Pleural Line in Terms of Agreement Between the Manual and 
Automated Methods.

Mean d SD d SE d 95%CI of d CR 95% Limits of agreement

Manual-automated 24.72 0.49 0.22 0.03 0.44 to 0.54 2.39 0.06 to 0.92

Figure 9. Failure cases in which the proposed approach failed 
to detect the pleural line. (a) No pleural line detected. (b) Wrong 
detection.
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computation load, the proposed approach is expected to be used 
with mobile ultrasound instrument which has limited computing 
resources. On the other hand, also capable of line detection, the 
Hough transform is of faster processing speed than the Radon 
transform.34 However, the reason why the Hough transform was 
not chosen for the current study relied on the considerations that 
(i) applying the Hough transform is not straightforward in noisy 
images, particularly for multiplicative speckle noise, such as the 
ultrasound images; (ii) the Hough transform requires the 
processed image to be binarized which may be not appropriate 
for the current study where the lung ultrasound images are of 
low contrast.26

In the study, the ultrasound machine was set as the penetra-
tion mode with the central frequency of the probe in the 
lower range, approximately around 3.5 MHz. Such an opera-
tion was under the consideration that the pleural line is most 
appeared among other structures on ultrasound images at the 
frequency of 3.5 MHz.35 This contributed to the high success 
rate in the pleural line detection in the study. However, more 
lines may be displayed in higher frequency range, for exam-
ple, the chest muscle fibers. In those cases, the proposed 
method may warrant further improvement.

There are some limitations of the study. Firstly, only the 
transverse scan was adopted to collect ultrasound data in the 
study. While in the longitudinal view, considering the rib 
shadows may affect the applicability of the proposed 
approach, improvement to the algorithm may be warranted 
for the accurate detection of the pleura. Secondly, the data 
tested in this study were collected under good control with 
the pleurae under good visualization and shown as micro-
curved line. Thirdly, the data used for validating the pre-
sented algorithm is not general, for example, the pleural lines 
covered at least two third of the lateral width of the image. 
Such an appearance was unusual and not generally expected 
in general clinical scan sessions, potentially limiting the util-
ity of the performance evaluation of the algorithm presented. 
Fourthly, considering the failure cases in the study, the pro-
posed approach may be inappropriate to be used when the 
pleural line is unclear or discontinued, or with other artifacts 
that may be encountered in practice. In summary, the study is 
limited in its scope and general utility to the field.

In our continued future studies, the general performance 
of the proposed algorithm will be thoroughly analyzed based 
on data of larger scope toward clinical applications.

Conclusions

Detection of the pleural line is of vital importance when per-
forming lung ultrasound. In this study, we developed an 
automated approach for pleural line detection using the 
Radon transform in pneumothorax patients. The proposed 
method could detect the pleural line in an automated manner 
in the defined data set, and potentially act as an alternative to 
visual inspection with further tests on more diverse data sets 

in future studies. We do not guarantee that the proposed 
method in the study is the best, but wish this work evoke 
efforts in the direction of ultrasound automation, in particu-
lar for the lung ultrasound.
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