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Abstract— As being radiation-free, portable, and capable
of repetitive use, ultrasonography is playing an important
role in diagnosing and evaluating the COVID-19 Pneumo-
nia (PN) in this epidemic. By virtue of lung ultrasound
scores (LUSS), lung ultrasound (LUS) was used to esti-
mate the excessive lung fluid that is an important clin-
ical manifestation of COVID-19 PN, with high sensitivity
and specificity. However, as a qualitative method, LUSS
suffered from large interobserver variations and require-
ment for experienced clinicians. Considering this limitation,
we developed a quantitative and automatic lung ultrasound
scoring system for evaluating the COVID-19 PN. A total
of 1527 ultrasound images prospectively collected from
31 COVID-19 PN patients with different clinical conditions
were evaluated and scored with LUSS by experienced clini-
cians. All images were processed via a series of computer-
aided analysis, including curve-to-linear conversion,pleural
line detection, region-of-interest (ROI) selection, and feature
extraction. A collection of 28 features extracted from the ROI
was specifically defined for mimicking the LUSS. Multilayer
fully connected neural networks, support vector machines,
and decision trees were developed for scoring LUS
images using the fivefold cross validation. The model with
128 × 256 two fully connected layers gave the best accuracy
of 87%. It is concluded that the proposed method could
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assess the ultrasound images by assigning LUSS automati-
cally with high accuracy, potentially applicable to the clinics.

Index Terms— Automated scoring, COVID-19 pneumonia,
lung ultrasound, quantitative analysis.

I. INTRODUCTION

ULTRASONOGRAPHY is a radiation-free, easy to
use, and portable imaging modality that competes

the magnetic resonance imaging (MRI) and computed
tomography (CT) in emergency and intensive care [1]. In this
epidemic of COVID-19 Pneumonia (PN), ultrasonography
was the only imaging modality with the access to the intensive
care unit (ICU) and used as bedside supports in infected areas.
Lung ultrasound (LUS) is appealing for PN diagnosis with
the sensitivity and specificity superior to bedside chest X-ray,
even close to CT [1], [2]. LUS has been intensively explored
in evaluation of lung properties and increasingly applied in
diagnosis of various lung diseases, including COVID-19 PN
[3]–[10]. There existed several protocols for LUS evaluation
of the COVID-19 PN, the impacts of which were analyzed by
Mento et al. [11]. Lung ultrasound score (LUSS) is utilized
in clinics for semiquantitative assessment of pulmonary
edema with good correlation with excessive lung fluid
[12], [13], which is an important clinical manifestation of
COVID-19 PN [14].

In clinical practice, there existed different methods to
calculate the LUSS. As the most exhaustive method, the
28-sector approach accumulated all the numbers of B-lines in
the 28 intercostal spaces to achieve a score [11]. Alternatively,
a method calculated the LUSS by dividing the chest wall
into eight zones, including two anterior and two lateral zones
of each hemithorax, with the B-lines evaluated in one space
of each zone [15]. In other practices, the clinicians assigned
one of the four numbers (0, 1, 2, and 3) to an ultrasound
image as the LUSS, depending on the observation of B-lines
(appearance, number, and confluence) [16], [17]. Other
methods for calculating the LUSS could be referred to [18]
and [19]. Although the methods for assigning LUSS provided
semiobjective quantitative assessment for pulmonary edema,
they suffered from subjectivity and large interobserver varia-
tions [16], [20], [21]. In addition, accurate assignment of the
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LUSS depended on the experience of clinicians, which limited
the efficacy of LUSS in clinics, especially for caring patients
with COVID-19 PN where the medical staffs are lacking [21].

Recently, some computer-aided methods have been pro-
posed for quantitative analysis on LUS images for objec-
tive assessment of the lung conditions [9], [20]–[23].
Brattain et al. [23] developed an image processing algorithm
to detect the number of B-lines along angular slices to deter-
mine LUSS. Corradi et al. [21] proposed to quantitatively
analyze the LUS images containing consolidation based on
frequency distribution of gray scales. Brusasco et al. [20]
developed an image segmentation method for automated detec-
tion of B-lines. Zong et al. [16] developed an animal model for
quantitative evaluation of the pulmonary water content using
LUSS. Recent endeavors were focused on the application of
different classifiers for assigning the LUSS, including machine
learning and deep learning [24], [25]. Although existing tech-
niques provided objective lung evaluations with success to
different extents, there is a lack of methods for automated
B-line scoring that may be most potentially applicable to the
clinics.

In view of this, we developed a quantitative and automatic
LUS scoring system using multilayer fully connected neural
networks for evaluating the LUS of COVID-19 PN.

II. MATERIALS AND METHODS

A. Experiment Design

From February 23, 2020 to April 2, 2020, 31 patients (age:
55 ± 21 years old, male: 19, and female: 12) admitted to the
ICU ward of Huoshenshan Hospital, a newly built hospital
specialized for caring patients with COVID-19 PN in Wuhan,
were included. All the patients had the symptoms of fever
and dyspnea. Chest CT (United Imaging, uCT760) showed
bilateral ground-glass opacities with peripheral, posterior, and
basal predominance, which was in line with the international
agreement [26]. The patients were confirmed as affected by the
COVID-19 virus with a positive RT-PCR test after admission
to the hospital. In addition, the patients were confirmed with
COVID-19 PN of different conditions: critical (ten cases,
32.3%), severe (nine cases, 29.0%), common (seven cases,
22.6%), and mild (five cases, 16.1%) according to the diagno-
sis and treatment standard for COVID-19 PN in China [27].
The height and weight of the patients were recorded for the
calculation of body mass index (BMI) (height: 168 ± 13 cm
and weight: 70 ± 18 Kg). All patients were monitored in terms
of oxygen index, positive end-expiratory pressure, static lung
compliance, respiratory index, blood pressure, and body tem-
perature. Conditions of all patients were evaluated daily by the
clinicians. The study was approved by the Ethics Committee
of Huoshenshan Hospital, Wuhan, China (Approval number:
HSSLL030). All patients provided written informed consents
by themselves or family members.

All patients underwent LUS examinations for 12 standard
fields on both hemithorax, including the upper and lower
halves of the anterior, lateral, and posterior fields [28].
Repeated examinations were performed for part of the
patients whose conditions changed during the treatment.

A total of 45 patient times were finally performed with
eight patients scanned twice and three patients scanned three
times. The ultrasound equipment LOGIQ e (GE Healthcare,
Wauwatosa, WI, USA) was utilized with a curved array
low-frequency transducer (1–5 MHz) with acquisition details
as image depth of 15 cm, focal depth of 7.5 cm, mechanical
index (MI) of 1.2, thermal index (TI) of 0.7, and operation
mode: penetration. Three ultrasound images that contained
A-lines or B-lines were collected in each field and stored in
the DICOM format. All scans were operated in the transverse
plane to avoid the acoustic shadows of ribs. The time gain
compensation was maintained the same for all patients in
order to minimize variations in intensity among the collected
images. A total of 1620 images were collected and scored
blindly by two experienced clinicians (>6 years in using
LUS) following the criteria as Score 0: normal defined as
absence of B-lines and appearance of A-lines, Score 1: septal
syndrome defined as B-lines at regular distances of about
7 mm, Score 2: interstitial-alveolar syndrome defined as the
B-line distance less than 7 mm with some confluent, and
Score 3: white lung designated for coalesced B-lines with the
confluence more than 80% [17]. As an assistant, the distance
between two adjacent B-lines whose distance was visually
the maximum among others on an image was measured when
determining different scores, in particular for Scores 1 and 2.
The measurement was performed by placing two points on the
middle of the B-linewidth along the middle line of the image
height on the ultrasound machine. Images that were assigned
with different scores by the two clinicians were discarded
(see Fig. 1). Finally, there were 1527 images assigned with
scores and included in the study with the composition of
Score 0: 413 (27.0%), Score 1: 370 (24.2%), Score 2: 417
(27.3%), and Score 3: 327 (21.4%). The data will be provided
on our lab website in the future (ht.tps://bio-hsi.ecnu.edu.cn/).
Fig. 2(a)–(d) representatively shows the ultrasound images
with Scores 0, 1, 2, and 3, respectively.

B. Ultrasound Image Processing and Automated
Scoring

The collected LUS images were automatically processed
via four steps: 1) curve-to-linear conversion; 2) pleural line
detection; 3) region-of-interest (ROI) selection; and 4) feature
extraction, to extract features for the subsequent classification
task.

1) Curve-to-Linear Conversion: The ultrasound images
(see Fig. 2) were converted to the linear format through
the curve-to-linear conversion in an automated manner
using a customized MATLAB code. Considering a matrix
containing a curved ROI denoted as Cmatrix [see Fig. 3(a)]
and its corresponding linear matrix denoted as Lmatrix
[see Fig. 3(b)]. The conversion from Cmatrix to Lmatrix is
realized by the following steps:

1) To extract the ROI of Cmatrix from the image, namely
Region A-B-C-D.

2) To extract the coordinates of four endpoints A, B, C,
and D of the ROI.
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Fig. 1. Procedure of LUSS assignment.

Fig. 2. Ultrasound images of COVID-19 PN with LUSS of (a) 0, (b) 1,
(c) 2, and (d) 3.

3) To calculate the angle of the ROI by the slope of Lines
A–C and B–D, denoted as � AO’B.

4) To calculate the distance between pixels by

Dp = L A−C/(NA−C − 1) (1)

where Dp, L A−C , and NA−C is the distance between
adjacent pixels, length of Line A-C, and number of
pixels along Line A–C, respectively.

5) To project the pixels in Cmatrix in polar coordinates
[see Fig. 3(a)] to those in Lmatrix in Cartesian
coordinates [see Fig. 3(b)], e.g., projecting the arcs
A–B and C–D in Fig. 3(a) to Lines A–B and C–D in
Fig. 3(b), respectively. The point P in Fig. 3(a) and (b)
demonstrated the position of one pixel before and
after the conversion. The calculation of the pixels’

Fig. 3. Illustration of the curve-to-linear conversion. (a) Curved image.
(b) Linear format after conversion.

gray values after the conversion involved bilinear
interpolation [29]. Thereby, the image quality remained.
Applied the curve-to-linear conversion, the images in
the curve format in Fig. 2 were converted to their
corresponding linear format, as shown in Fig. 4.

2) Pleural Line Detection: Our previous work described an
automated method for the pleural line detection in the linear
images as simplified in the following steps [30].

1) To apply Radon transform to the ultrasound image to
extract all line objects serving as candidates for the
pleural line. The resultant of the Radon transform is
an intensity image with peaks condescending to the line
objectives in the original image. The position of the peak
reflected the depth and angle of the line.

2) The peak corresponding to the pleural line was picked
up from all the candidates by considering the following
preknowledge:

a) The pleural line was normally more continuous
than other candidates. As a result, the peak in the
Radon-transformed intensity image corresponding
to the pleural line normally has high value, ranking
top positions among all the candidates.

b) The depth of the pleural line is equal to the
chest wall thickness (CWT) [31]. A person-
alized CWT could be estimated via a linear
relationship of the BMI (defined as weight [in
kilograms]/(height × height) [in square meters])
and CWT (details please refer to Graphs 1 and
2 in [31]). With the range of the possible depths
of the pleurae, the searching range of the pleural
line could be much shrunk.

3) The depth of the pleural line was then determined based
on the position of the peak selected for the pleural line
in the previous steps.

3) ROI Selection: According to the depth of the pleural
line, a rectangular ROI (120 × 200 pixels, corresponding to
a physical area of 55.4 × 92.3 mm2, to cover most B-lines
in the images) was automatically selected (see Fig. 4) via
two steps: 1) the vertical position of the rectangular was
5 pixels below the pleural line and 2) the lateral position
of the rectangular was determined where the average gray
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Fig. 4. Ultrasound images of COVID-19 PN with ROI selected in the
linear format with LUSS of (a) 0, (b) 1, (c) 2, and (d) 3.

value inside the rectangle was the maximum when shifting
the rectangle from the left to right with the depth of the
rectangle kept constant as determined in Step 1. The vertical
position was chosen 5 pixels below the pleural line with two
considerations: 1) it could avoid covering part of the pleural
line which had certain thickness and 2) 5 pixels could be long
enough to make the ROI away from the pleural line.

4) Ultrasound Image Feature Extraction: Two curves were
created by averaging all the pixels’ intensity of the ROI along
each row and column in horizontal and vertical directions and
normalized with respect to the maximum intensity of the ROI,
denoted as CH and CV , respectively. The normalization was
intended to avoid the influence of variations in intensity level
among the images. Figs. 5 and 6 show the curves of CH and
CV correspondingly obtained from the ROIs in Fig. 4, respec-
tively. The peaks of the curves were automatically detected
and indicated by red circles in the figures. Recognizing that
the bases for LUSS include the presence of A-lines (Score: 0)
and B-lines (Scores: 1-3), as well as the confluent degree of
B-lines are a kind of 1-D problem; 28 features from the CH ,
CV , and the ROI were creatively extracted in an automated
manner and grouped into four categories: peak information
in the horizontal direction, peak information in the vertical
direction, area under the curve, and image feature, as listed in
Table I. Noted that the peaks were detected via several steps:
1) filtering the projection curves using “Gaussian” filter, mak-
ing the curve smooth; 2) removing the mean value or linear
trend of the signal using MATLAB command: “detrend;” and
3) detecting the peaks by moving a window (three points in
size) along the curve to detect the peaks. A peak was detected
when the value of the middle point was higher than that of
the left and right points with a predefined constraint, i.e., the
peak value should be higher than 0.1 to avoid the influence of
noises.

The features were intentionally to mimic the clinician’s
interpretation when assigning the B-line scores, e.g., the num-
ber of peaks in CH represented the number of B-line; the
average distance between peaks and average area between
peaks in CH reflected the convergence of B-lines.

5) Classification Model: With the features extracted from
the ROI as input, we applied one- and two-layer fully
connected neural networks to learn the data with a set of
different number of hidden nodes, including one layer with 4,

Fig. 5. Projection curves of the ROI in the vertical direction with LUSS
of (a) 0, (b) 1, (c) 2, and (d) 3, corresponding to the graphs in Fig. 4. The
curve is normalized with respect to the maximum intensity of the ROI.

25, 256, and 1024 hidden nodes, two layers with 4 × 8,
128 × 256, and 512 × 1024 hidden nodes. Adam optimizer
was applied to fit the data with ReLU as the activation
function, learning rate as 0.0001, batch size as 32, and epoch
as 1000. In addition, machine learning models, including
support vector machine (SVM) with linear and Gaussian cores
and decision trees of 4 and 8 layers, were applied to the data.
All the proposed models were evaluated via the fivefold cross
validation, i.e., the data were randomly divided into five equal
parts with four as the training data sets and the other one
as the testing data set. Such a division between the training
and testing data sets was repeated five times under each
of the two configurations: 1) based on patient information,
i.e., there were no data from the same patient falling in both
the training and testing data sets (Config-1) and 2) based on
all the data neglecting patient information (Config-2). The
neural networks have been developed under both Config-1 and
Config-2. In addition, machine learning models were trained
under Config-1. The model was developed on the platform
of Pytorch 1.4 with Python 3.7 and trained on a personal
computer (CPU: amd4800u, RAM: 16 g 4266 MHz). As an
example, the development of the 512 × 1024 neural network
with 1000 epochs costs 198 s.

As a summary, the proposed method included five steps:
1) curve-to-linear conversion; 2) pleural line detection; 3) ROI
selection; 4) ultrasound image feature extraction; and 5) clas-
sification. Each step of the process was essential to perform
the whole analysis.

1) Step (1) transferred all the images from curve to linear,
which made all B-lines parallel to each other, and
A-lines straight. This would benefit for the subsequent
feature extraction from the projection curves in the
vertical and horizontal directions.

2) Step (2) performed the pleural line detection that sup-
ported for the succedent ROI selection.
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Fig. 6. Projection curves of the ROI in the horizontal direction with LUSS
of (a) 0, (b) 1, (c) 2, and (d) 3, corresponding to the graphs in Fig. 4. The
curve is normalized with respect to the maximum intensity of the ROI.

3) Step (3) selected the ROI from which the features were
extracted for the classification task.

4) In Step (4), a total of 28 defined features that mimicked
the human interpretation were extracted.

5) In Step (5), the deep learning model for automated lung
ultrasound scoring was developed.

C. Statistics

Statistical analysis was performed using SPSS 22.0 for
Windows system (SPSS Inc., Chicago, IL, USA). For a number
of peaks, the Kruskal–Wallis test was used for the comparison
among the four scoring subgroups, while one-way analysis of
variance (ANOVA) was used for data comparison for all other
quantitative parameters listed in Table I. The testing results of
the fivefold cross validation of all the proposed models were
compared using one-way repeated measures ANOVA. It was
considered statistically significant if the P value was less than
0.05.

III. RESULTS

The statistical analysis indicated that all features showed
a statistically significant difference among the four scoring
subgroups (P < 0.05). Representatively, Fig. 7(a)–(c) shows
the average number of peaks, average distance between peaks,
and average area between peaks in CH and CV of all the
images in terms of LUSS:0 ∼ 3, respectively. The accuracies
of different neural networks developed under Config-1 and
Config-2 were plotted in terms of the computing epoch in
Fig. 8(a) and (b), respectively. It is noted that the reported
performances of the proposed models were the averages of all
the testing results of the cross validation. Statistical analysis
showed that the testing results of the cross validation of
different models presented a significant difference (p < 0.001).
In addition, the accuracies of different neural networks trained

TABLE I
FEATURES EXTRACTED FROM CH, CV, AND ROI

under Config-1 and Config-2 were compared in Fig. 8(c). For
each neural network, the accuracy of the model trained under
Config-2 was higher than that under Config-1. All the models
trained under Config-1, including the SVM and decision tree,
were compared in Fig. 9, in which the neural network with
128 × 256 neurons gave the highest accuracy of 87%.

IV. DISCUSSION

In this study, we proposed several classification models for
automated scoring of LUSS using the fivefold cross valida-
tion. The ultrasound images were collected from 31 COVID-
19 PN patients with different conditions and labeled as Scores
0 ∼ 3 by experienced clinicians. A collection of 28 fea-
tures were predefined and extracted from the ROI and
ROI-generated curves for the classification task. Several clas-
sification models were trained and evaluated. The performance
of the model (two layers with 128 × 256 hidden neurons) in
the testing data demonstrated high accuracy for scoring LUS,
indicating the promise for clinical applications.

A. Ultrasound Image Feature Selection

The statistical analysis indicated that each feature used in
the study was sensitive to different subgroups and may be
used to statistically discriminate images with Scores 0 ∼ 3.
As representatives, three features (number of peaks, average
distance between peaks, and average area between peaks)
were plotted in Fig. 7. The number of peaks in CH and
CV in Fig. 7(a) potentially mirrored the number of B-lines
and A-lines in the ROI, respectively. In Fig. 7(a), significant
distinction can be found between Score 0 and Scores 1–3 for
the number of A-lines (i.e., peaks in CV ) and between Scores
1 and 2 for B-lines (i.e., peaks in CH ). A-lines demonstrates
as parallel lines horizontally, resulting in multiple distinct
peaks in CV , as shown in Figs. 4(a) and 6(a). While displayed
as vertical lines/beams, B-lines rarely show peaks in CV ,
as shown in Figs. 4(b) and (c) and 6(b) and (c). The signifi-
cant difference between A-lines and B-lines in the horizontal
direction guaranteed the obvious distinction in peak number in
CV for different LUSSs as learned from Fig. 7(a). The same
pattern also applied to the vertical direction for both A-lines
and B-lines.

The observations form Fig. 7(a) may also be applied to
Fig. 7(b) and (c), which shows the average distances and areas
between peaks in CH and CV , respectively. It is deserved to
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Fig. 7. (a) normalized number of peaks, (b) normalized average distance
between peaks, and (c) normalized area between peaks in CH and CV
for different LUSSs.

discuss that the average distances and areas between peaks
in CH decreased as the LUSS increased from 1 to 3. Such
a phenomenon was because B-lines were getting closer and
more confluent when the LUSS increased (i.e., more edema),
as shown in Fig. 5(b)–(d). In addition, B-lines rarely had peaks
in CV , resulting in almost zero value for average distance and
area between peaks in CV , as shown in Fig. 7(b) and (c).

Fig. 8. Accuracies of different models: (a) models trained under
Config-1, (b) models trained under Config-2 (legend shows the number of
hidden neurons in each layer of the models), and (c) models under both
Config-1 and Config-2.

Note that the appearance of B-lines may be affected
by the imaging frequency and bandwidth of the ultrasound
probes/scanners [32]. Although this problem was mitigated in
the study since the same probe was used, it is worth noting that
counting the artifacts does not provide an absolute measure but
only for a relative one. The change in B-line number may be
more important than the number itself in the clinical practice.
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Fig. 9. Accuracies of different models including neural networks, SVM,
and decision tree trained under Config-1.

It is noticed from Fig. 8(c) that the accuracy of the model
trained under Config-2 was higher than that under Config-1 for
each neural network. Such a phenomenon may be attributed
to the fact that in Config-2, the training and testing data
sets were divided without considering patient information,
making those trained under Config-2 overfitting, since the data
collected from the same patient may be of high similarity
and grouped into the training and testing data sets. With
such a consideration, the models trained under Config-1 were
preferred. Among all the models trained under Config-1,
the neural network with 128 × 256 neurons gave the highest
prediction accuracy of 87% (see Fig. 9).

One innovation of the study is the introduction of features
extracted from 1-D curves obtained by projecting the pixels’
intensities in the ROI in horizontal and vertical directions.
Such an operation is based on the instinctive observation from
the LUS images, e.g., B-lines are shown as parallel vertical
lines/beams that can be imagined as a curve with several
crests if looking from the bottom edge of the image toward
the pleural line; the same applies to the A-line if looking
from the left to the right side of the image, as shown in
Figs. 4–6. In this study, 28 features that were well defined
by mimicking the visual observations of the clinicians were
extracted for training the classification models. In virtue of
such an operation, the proposed model showed good per-
formance based on the simple model structure and limited
training data. It is noted that the curve-to-linear conversion
is an important process to transfer all the curved images to
linear, making the B-lines vertical and parallel to each other.
The curve-to-linear conversion made the 2-D problem of the
B-line evaluation in curved images to the 1-D problem of the
projection curve analysis in linear images.

B. Advantage of Neural Networks for Classification

Classification approaches have been applied to analyze
ultrasound images and recently utilized to detect and evaluate
the B-lines in an automated manner [20], [23], [33]–[36].
Brusasco et al. [20] applied the K-means classification to
divide pixels in a filtered image into two subsets, i.e., B-lines

and no B-lines. However, the method was validated on a
small number of subjects, weakening its potential for real
clinical applications. Brattain et al. [23] detected the B-lines
via classification based on five features extracted from
the angular slices. The limited number of features was not
enough to depict the characteristics of the B-lines. In addition,
the study did not mention any intelligent models for the
classification. Soummer et al. [28] developed a sophisticated
deep learning model for classification and localization of
ultrasound COVID-19 markers by training on both ultrasound
frames and videos. The model contained many hidden
neurons which required data of a large number and powerful
computing capability for training.

In this study, we tried different classification models with
artificial feature extraction as an anterior step to undertake the
task of the classification with the advantages of: 1) no depen-
dence on arbitrary and human-decided thresholds; 2) capabil-
ity of getting robust classification models based on limited
training data sets; and 3) avoiding overfitting by considering
several parameters including the activation function, learning
rate, batch size, and epoch. The accuracy of the neural network
with 128 × 256 two fully connected layers trained under
Config-1 was as high as 87% after the 700th epoch, indicating
that the neural network could provide good performance for
scoring LUS with high accuracy and low computation load.
The model could then be potentially integrated into mobile
ultrasound for clinical applications.

C. Limitations and Future Study

There are several limitations of the study. First, the LUSS
used in the study was only focused on the B-lines without
considering the subpleural consolidations, which is not spe-
cially designed for the COVID-19 PN and may not fully
reflect the status of the disease. Second, the study relied on
visual determination of the B-score that is not a reliable gold
standard. Third, the features to portray the LUS images were
limited to 28 predefined parameters, which may be not enough
for the current classification task although the proposed model
showed good accuracy. In future studies, the scoring system
developed specifically for COVID-19 PN will be applied as
suggested by Perrone et al. [37]. In addition, the proposed
technique needs to be improved with validation on reliable
gold standard, e.g., using the postmortem gravimetry in animal
studies or with the thermodilution in human studies as the
reference in the future [20], [38].

V. CONCLUSION

In this study, we proposed an automated scoring method
to evaluate the ultrasound images of COVID-19 PN using
different classification models. The results unveiled that the
proposed method could assign LUSS for LUS images of
COVID-19 PN with high accuracy, making it promise for
automated LUS scoring. In addition, the proposed automated
LUSS model has the potential to be integrated into portable
and mobile ultrasound equipment for clinical use in hospitals
of different levels as well as prehospital settings such as the
ambulance.
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