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A B S T R A C T   

Background: The neonatal respiratory morbidity that was primarily caused by the immaturity of the fetal lung is 
an important clinical issue in close relation to the morbidity and mortality of the fetus. In clinics, the amnio-
centesis has been used to evaluate the fetal lung maturity, which is time-consuming, costly and invasive. As a 
non-invasive means, ultrasonography has been explored to quantitatively examine the fetal lung in the past 
decades. However, existing studies required the contour of the fetal lung which was delineated manually. This 
may lead to significant inter- and intra-observer variations. 
Methods: We proposed a deep learning model for automated fetal lung segmentation and measurement, which 
was constructed combined U-Net with Graph model and pre-trained Vgg-16 network. The graph connection 
would extract stable feature for final segmentation and pre-trained method could speed up convergence.The 
model was trained with 3500 datasets augmented from 250 ultrasound images with both the fetal lung and heart 
delineated manually, and tested on 50 ultrasound images. In addition, the correlation between the size of fetal 
lung/heart as delineated by the model with gestational age was analyzed. 
Results: The fetal lung and cardiac area were segmented automatically with the accuracy, average Intersection 
over Union(IoU), sensitivity and precision being 0.991, 0.818, 0.909 and 0.888, respectively. In addition, the size 
of fetal lung/heart was well correlated with the gestational age, demonstrating good potentials for assessing the 
fetal development. 
Conclusions: This study proposed a new robust method for automatic fetal lung segmentation in ultrasound 
images using Vgg16-GCN-UNet. Our proposed method could be utilized potentially not only to improve existing 
research in quantitative analyzing the fetal lung using ultrasound imaging technology, but also to alleviate the 
labor of the clinicians in routine measurement of the fetal lung/cardiac.   

1. Introduction 

The development of the lung occurs almost last among the organs 

during the prenatal stage. In actuality, they do not reach complete 
maturity until the end of pregnancy. By doing a longitudinal study of 
healthy lung maturation, it is possible to gain a deeper understanding of 
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the pulmonary anatomy in the premature newborn. [1]Any abnormity 
associated with the fetal lung development, in particular the lung 
immaturity, may lead to serious mortality and morbidity, such as res-
piratory distress syndrome or transient tachypnea of the newborn [2]. 
According to DeSilva et al. [3], pulmonary surfactant is the primary 
factor that determines the development of the fetal lungs and could only 
be measured through laboratory testing on amniotic fluid. Now, the 
necessity for non-invasive methods to accurately estimate lung maturity 
has become apparent.. Although the gestational age was commonly used 
as an important indicator for the lung immaturity, itsuffered from low 
correlation in between. Alternatively, the size or volume of the fetal lung 
was measured to assess the fetal lung development using medical im-
aging technologies, e.g., magnetic resonance imaging(MRI) and ultra-
sound [4–7]. Therein, ultrasound was considered as a promising means 
for assessing the lung immaturity due to its economic efficiency and easy 
operation. 

However, precise evaluation of lung maturity using ultrasound 
highly relied on the experience of the sonographers. To alleviate such a 
dilemma, various computer-assisted methods were applied to quantita-
tively analyze fetal lung evaluation. Feingold et al. [8]analyzed the ratio 
of the ultrasonic reflectivity of the fetal lung to the liver with the aim of 
quantitatively assess the fetal lung maturity.Mottetet al. [9]evaluated 
the stiffness of the fetal lung which was correlated with the fetal lung 
development using shear wave elastography. Tekesin et al. [10] 
analyzed the histogram of the fetal lung area in the ultrasound images to 
perform quantitative ultrasonic tissue characterization to evaluate the 
fetal lung development. Palacio et al. [11] attempted to assess the 
maturity of the fetal lung by analyzing the texture information of the 
fetal lung using ultrasound, which was considered changing at different 
gestational weeks. Such a change could not be interpreted by humans 
but computers with intelligent algorithms. However, existing methods 
were dependent of the lung region delineation on human [11–13] which 
was labor-intensive and error-sensitive. In addition,inter-operator de-
viation and bias may exacerbate the accuracy of the final evaluation. 

To discriminate between the regions of interest and the background 
organs and tissues that can be disregarded in US images, segmentation 
techniques could be used. Also, this method can offer imaging bio-
markers for forecasting fetal development and prognosis. To evaluate 
the health of the fetus and forecast problematic pregnancies, it is 
possible to quantify the shape, volume, morphometry, and texture of the 
fetal organs while they are developing [14]. New chances to intervene 
and safeguard at-risk fetuses are created by early biomarkers of prenatal 
organ illness that may harm fetal growth and wellbeing. 

With the low signal-to-noise ratio of US images [15], segmenting the 
fetal lung has become a challenging undertaking. Fetal chest ultrasound 
is particularly affected by speckle noise and signal dropout, which 
causes weak contrast and fuzzy borders (poor image quality) [16]. 
Because the tissue densities of the fetal lung and heart myocardium are 
similar [17], segmenting the fetal lung effectively is similarly chal-
lenging. In this research, we focused on the intelligent segmentation of 
fetal lung and heart and evaluation their development. 

Recent advance in image segmentation focused on the the applica-
tion of the deep learning. In this respect,Havaei et al. [17] attempted 
tosegment the brain tumor in a fully automatic manner using deep 
neural networks. Hossain et al [18] developed a method with a modified 
U-Net network for segmenting micro-calcification regions of mammo-
gram images. Hu et al. [19] tried to segment the lung region on 
Computed Tomography(CT) images using region convolutional neural 
networks(Mask R-CNN) associated with supervised and unsupervised 
machine learning. In our previous work, the region of the fetal lung was 
automatically segmented using U-Net with pre-trained Vgg-16 network. 

In the fetal lung segmentation field, Kainz et al. created the first semi- 
automatic technique for fetal thorax examination [20]. To train a forest 
ensemble approach for the localization of the spina cord, a fast rotation 
invariant spherical harmonic descriptor was created. To perform a 
geodesic active contours segmentation, voxels that were initial 

foreground/background constraints for each class were created. This 
method requires too much manual post-processing by experts and 
cannot form an automatic semantic segmentation model. In Chikop 
et al.’s rendering of a lung volume to illustrate the biometric measure-
ments necessary to ascertain fetal developmental rates in pathology 
characterization, an active contour method was also used [21]. After 
segmentation, morphological methods were used to eliminate erroneous 
regions. Using the use of Haar wavelet and Fourier transform filtering, 
the banding artifact was removed. The above method relied on a-priori 
information of the image based on hyper intensities and were multi- 
stage models. 

A straightforward CNN segmentation model created by Rajchl et al. 
[22]was influenced by LeNet architecture. They chose a CRF with 
several connections was one of the post-processing steps. They could not 
use deep learning models to form an end-to-end segmentation method. 
In Wang et al. [23] a deep-learning framework was also used to generate 
a 2D segmentation of the embryonic brain, placenta, and lungs. In a 
bounding box and a pipeline based on scribbles, authors linked CNNs. 
Due to a weighted loss and an image-specific fine-tuning, the suggested 
method outperforms conventional interactive segmentation approaches. 
The algorithms were common CNN methods, which will face the chal-
lenge of poor US image quality. 

In this work, we proposed the U-shaped Graph Convolution Network 
(GCN) with Visual Geometry Group 16 layers module (VGG16), which is 
a novel segmentation model by segmenting the fetal lung. It consisted of 
a VGG16 blocks as the encoder, convolution blocks as the decoder, and 
skip-connections with a GCN as the bridge. In the encoder, we replaced 
the convolutional module in original UNet with a VGG16 module to 
enhance the local feature extraction capability while obtaining abstract 
feature. The bridge with GCN connection optimized the fusion of long- 
range information and context information between the encoder and 
the decoder [24]. GCN continuously strengthened the representation of 
intermediate feature maps to find a low-dimensional invariant topology, 
improving the extrapolation of segmentation models. GCN bridge will 
build relationship in pixels of image, which is stable topological feature 
(structure feature). [25–27]Our model leveraged advantages of both 
convolutions and graph models, i.e., proper generalization ability and 
sufficient model capacity [28]. 

2. Materials and methods 

2.1. Image acquisition and ROI labeling 

The data was retrospectively collected from the Department of 
Medical Ultrasound, Nanjing Medical University Affiliated Suzhou 
Hospital, Suzhou, China. The ultrasound equipment is WS80A with Elite 
(Samsung Medison, Seoul, Korea) equipped with a curved array ultra-
sound probe (CA1-7A). Totally 300 ultrasound images were collected at 
the four-chamber view in the conditions ofi) the fetal heart at the 
diastole phase; ii) one half of the fetal lung close to the probe, and iii) the 
fetal spine at the direction of either 3 or 9o’clock. The data were stored 
as Digital Imaging and Communications in Medicine (DICOM) format. A 
sonographer in fetal ultrasound field with over6-year experience 
delineated the fetal lung and heart regions using Labelme [29], showed 
in Fig. 1. The annotation of fetal lung and heart region was served as the 
ground truth for evaluating the performance of the automated seg-
mentation technique subsequently. The input of our model is fetal US 
image stacked in three channels as shown in Fig. 1 a. The outputs are the 
segmentation results of Lung and Heart in US image as show in Fig. 1 b. 
This study was approved by the ethics committee of Nanjing Medical 
University Affiliated Suzhou Hospital, Suzhou, China, with the written 
informed consent waived ((Approval number: K2016038). 

2.2. Image processing and data augmentation 

Every image read in the DICOM format was cropped with the field of 
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ultrasound image remain. One of the three RGB channels was chosen for 
the following process. Subsequently, data augmentation was applied to 
the training data set via rotation, flip, and shift transformation which is 
broadly used in deep learning [30], to increase the quantity of training 
data and improve the robustness of the model. Such a progress increased 
the image number from 250 to 3500 (50 original images for test 
remaining). 

2.3. UNet model with pre-trained Vgg-16 network 

Large medical data are difficult to collect in healthcare. In the study, 
the proposed model for the semantic segmentation of fetal lung images 
was based on the U-Net network recognizing its good performance 
insegmentation of medical images [31]. 

The full convolutional network (FCN) [32] was the foundation of U- 
Net. U-Net executed skip connections at the same stage between the 
encoding and decoding as FCN and had four decoding modules in 
comparison [33]. As a result, it could be ensured that the final restored 
feature map may fuse multi-scale features to provide multi-scale pre-
diction and deep supervision in addition to combining high-resolution 
and high-level semantic information. 

Four encoding modules and four decoding modules were applied in 
this investigation. A max-pooling layer, two 3x3 convolution layers, and 
an up-sampling operation were included in each encoding module and 
each decoding module, respectively. As a result, the resolution of the 
output feature matched that of the input feature. Each convolution layer 
was followed by a rectified linear unit (ReLU) function and a batch 
normalization layer [34–35] to ensure convergence [36]. Fig. 2 

Fig. 1. A. fetal ultrasound image at four-chamber view; b. region of labels, green: fetal lung, red:fetal heart. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 2. U-net network architecture.  
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illustrates the design of the U-Net employed in this investigation. 
To extract features for large-scale images, VGG-Net used deep con-

volutional layers [37]. VGG-Net, which is a derivative of Alex-Net [38], 
employed tiny (3x3) convolutional filters in every layer. One 5x5 con-
volutional layer and two cascaded 3x3 convolutional layers have the 
same effective reception field, but the later architecture has less pa-
rameters to train [39]. In this study, we merged the U-Net down- 
sampling architecture with the VGG16 network, which had 13 con-
volutional layers and 3 fully connected layers. Furthermore, in order to 
speed up the training process and reduce over-fitting, transfer learning 
[40] was applied in our work. 

2.4. GCN bridge 

We multiplied feature map with its transposed to get node features 
after encoder. Global relationship node feature will be updated by two 
layers of GCN blocks. Finally, the final feature map could be fused be-
tween origin encoder output and global relationship node feature. The 
Graph bridge is shown in Fig. 3. 

Our model aimed to cluster the hidden feature map’s graph which 
encoded by VGG16-U-Net by GCN. This part would be based on spectral 
graph convolutional operation, which means to extract the properties of 
graph by the eigenvalues and eigenvectors of the Laplacian matrix of the 
graph. 

According to the convolution theorem Eq. (1), the graph convolution 
operation could be changed to find the inner production of two signals’ 
Fourier transformation. 

F(k(t1)*k(t2) ) = K1(w)K2(w) (1) 

When the input graph would be decomposed, it will get linearly in-
dependent vectors which compose the orthogonal basis of Fourier 
transformation. The Fourier transform on graph is formulated as: 

k̂ = UT k (2) 

Hence, the GCN block is formulated as: 

H(L+ 1) = σ
(

D− 1
2LD− 1

2H(L)W
)

(3) 

A local feature map Xr in the latent space is fed to two convolutional 
layers in parallel to generate two maps: one feature map with reduced 
dimension and one projection matrix. After that, the reduced dimension 
feature is reshaped, while the projection matrix is reshaped and trans-
posed to Xa. A matrix multiplication between Xr and Xa is then per-
formed to obtain a node feature map before its being sent to a GCN 
block. 

GCN models are a special form of Laplace smoothing. It combined the 
structure of the graph and the features of the vertices in the convolution, 
and the features of the unlabeled vertices are mixed with the adjacent 
marked vertices, and then propagated on the network through multiple 

layers [41]. Laplacian smoothing computed a new feature of a pixel, 
which was a weighted average of the pixel itself and its neighbors. 
Because pixels of the same cluster tended to be more closely connected. 
But if there were more than two GCN layers, it would be difficult to train. 
And repeated use of Laplacian smoothing may mix the features of 
vertices in different clusters, making them indistinguishable. 

There are two novelties in our proposed model. Firstly, we proposed 
GCN connection to replace skip connection in bridge of encoder and 
decoder. GCN bridge could combine the similar feature to build the 
stable topology feature in segmentation task. Secondly, we used pre-
trained VGG model to extract the US images feature. Pre-trained model 
has been trained in a very large dataset which included natural images, 
which can discover the high-dimensional features of the data, and the 
features required by the target task can be extracted from these high- 
dimensional features. Therefore, freezing the weight of the pre- 
training layer would reduce the amount of the whole parameters. It 
can help the model accelerate convergence and overcome the obstacle of 
over-fitting. 

3. Results 

The performances of all the proposed models were compared, as 
listed in Table 1 and Table 2. Three segmentationresultsare shown in 
Fig. 4 and Fig. 5, representatively. Figs. 6 and 7illustrate the Bland- 
Altman analysis for testing the agreement between the automated and 
manual segmentations of the fetal lung and heart, respectively. The 
changes of the sizes of the fetal lung and heart extracted from the seg-
mentation results were plotted in terms of gestational age (31st to 41st 
week), as shown in Figs. 8 and 9. The size of fetal heart increased 
gradually with the development of fetus from week 31 to week 41 (P <
0.0005). Post-hoc comparisons showed statistical difference between 
week 31 and weeks 38 to 41 (P = 0.005 for week 31 vs week 38, P =
0.019 for week 31 vs week 39, P = 0.001 for week 31 vs week 40, P =
0.045 for week 31 vs week 41) and week 32 and weeks 38 to 41 (P =

Fig. 3. GCN bridge.  

Table 1 
Comparative Experiment in Validation set.  

Method Metric  
Accuracy Recall Precision IOU 

U-Net without cardiac 0.993 0.838 0.825 0.702 
U-Net with cardiac 0.988 0.842 0.880 0.751 
Vgg16-UNet without cardiac 0.995 0.860 0.873 0.757 
Vgg16-UNet with cardiac 0.990 0.883 0.882 0.786 
Attention-U-Net without cardiac 0.994 0.730 0.930 0.683 
Attention U-Net with cardiac 

GCN U-Netwithout cardiac 
GCN U-Netwith cardiac 
VGG16-GCN U-Netwithout cardiac 
VGG16-GCN U-Netwith cardiac 

0.989 
0.994 
0.988 
0.995 
0.991 

0.853 
0.860 
0.828 
0.850 
0.909 

0.884 
0.839 
0.891 
0.892 
0.888 

0.762 
0.736 
0.751 
0.765 
0.812  
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0.003 for week 32 vs week 38, P = 0.013 for week 32 vs week 39, P =
0.001 for week 32 vs week 40, P = 0.038 for week 32 vs week 41). 

4. Discussion 

The difficult and important step of fetal lung segmentation from ul-
trasound pictures is necessary for the computer-aided assessment of the 
fetal lung maturity. We proposed a novel automated technique for the 

segmentation of fetal lungs in ultrasound images. This research would 
help assess fetal development in terms of the physical characteristics of 
fetal organs as well as the quantitative analysis of fetal organs. 

By training on 3500 annotated ultrasound images with 50 epochs, 
our proposed model demonstrated good performance in fetal lung seg-
mentation with regard to accuracy, precision, recall, and IOU. Addi-
tionally, in validation dataset, theperformance of the Vgg16-GCN-UNet 
model was the best because its IOU and recall were higher than those of 
the competitors, as shown in Table 1. The generalization error plots of 
our model without cardiac and with cardiac have shown in Fig. 10 and 
Fig. 11. The Vgg16-GCN-UNet model outperformed the U-Net by 6.3% 
and 6.1% in IOU with and without cardiac annotations, respectively.In 
test dataset, the performance of the Vgg16-GCN-UNet model was also 
the best as shown in Table 2. The Vgg16-GCN-UNet model outperformed 
the U-Net by 9.8% and 7.3% in IOU testing with and without cardiac 
annotations, respectively. 

We trained the Vgg16-GCN-UNet using the fetal lung ultrasound 
images with and without the cardiac annotation to examine the effects of 
the cardiac annotations on the segmentation of the fetal lungs. The 
contribution of cardiac area annotation to the lung segmentation can be 
shown by the comparison in Table 1 and Table 2. All the models that 
were trained using the data set with cardiac annotations outperformed 

Table 2 
Comparative Experiment in Test set.  

Method Metric  
Accuracy Recall Precision IOU 

U-Net without cardiac 0.980 0.514 0.831 0.481 
U-Net with cardiac 0.961 0.611 0.868 0.560 
Vgg16-UNet without cardiac 0.983 0.622 0.833 0.582 
Vgg16-UNet with cardiac 0.964 0.647 0.874 0.599 
Attention-U-Net without cardiac 0.977 0.367 0.856 0.355 
Attention U-Net with cardiac 

GCN U-Netwithout cardiac 
GCN U-Netwith cardiac 
VGG16-GCN U-Netwithout cardiac 
VGG16-GCN U-Netwith cardiac 

0.957 
0.981 
0.961 
0.982 
0.967 

0.564 
0.598 
0.616 
0.614 
0.675 

0.863 
0.830 
0.863 
0.844 
0.892 

0.518 
0.555 
0.566 
0.579 
0.633  

Fig. 4. Examples of fetal lung segmentation in Validation set.  

Fig. 5. Examples of fetal lung segmentation in Test set.  
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their counterparts, as compared to the equivalents trained using the data 
set without cardiac annotations. These findings lead to the conviction 
that the lung annotations, when paired with cardiac region annotations, 
and Vgg16-GCN, both aided in the segmentation of the fetal lung. To 
execute the segmentation and interpret the data for the subsequent 
assessment of fetal development, our model Vgg16-GCN-UNet trained 
using fetal cardiac area annotations was deemed to be the best. In Fig. 4 
and Fig. 5, the segmentation pictures of validation set and test set are 

displayed. In comparison to the actual data, the results demonstrate how 
correctly the suggested model can partition the lung area. 

The recent similar works’ performance in US has shown in Table 3. In 
recent similar studies, Li et. al. proposed a new method for semi- 
automatic segmentation of fetal lungs from fetal chest ultrasound im-
ages [42]. They applied the Expectation-Maximization (EM) algorithm 
to identify and obtain interesting frontiers. Their results presented were 
qualitative and no performance measures. They relied too much on the 

Fig. 6. Bland-Altman test for testing the agreement of fetal lung size between manual and auto segmentations.  

Fig. 7. Bland-Altman test for testing the agreement of fetal cardiac size between manual and auto segmentations.  
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final manual selection of experts, not the fully automatic segmentation 
algorithm we proposed. Xi et al proposed a model, which yielded a IoU 
of 77.0% for the segmentation of fetal lung [43]. Yin et al. proposed a U- 
net model to segment fetal lung with cardiac [44], which achieved a IoU 
of 79.0%. Our method achieved more IoU in the same task. Wang et al. 
provided a 2D segmentation of the fetal lungs in MRI, which coupled 
CNNs incorporated into a bounding box and a scribble-based pipeline 
[23]. The unsupervised DC is 0.85 ± 0.06 for the lungs. However, they 
used MRI which has no speckle noise and signal dropout of US to 
segment the fetal lung. 

Healthy cardiorespiratory development is crucial to the life safety of 
the fetus. A multitude of pregnancy issues (e.g., Intrauterine Growth 
Restriction, Preeclampsia and Preterm Birth) may result in poor early 
heart development, eventually leading in fetal growth restriction or 
even death [45]. Fetal lung immaturity may produce Neonatal Respi-
ratory Morbidity (NRM), described as neonatal respiratory distress 
syndrome or transitory shortness of breath, which may also lead to fetal 
morbidity or death [46]. Invasive evaluation procedures like 

amniocentesis may induce physical pain and a miscarriage risk of 
roughly 1.5% connected with the treatment [47]. Therefore, screening 
of prenatal cardiorespiratory problems utilizing non-invasive current 
medical imaging methods may be effective for assessing cardiorespira-
tory development and timely treatment of unwell fetus without dis-
turbing the fetal development environment. Fetal lung segmentation 
would not only support computer-aided fetal lung assessment, such as 
texture analysis for predicting fetal lung maturity, but also help monitor 
fetal development. 

Chen et. al. developed a deep learning model to evaluate fetal lung 
maturity using ultrasound images of four-cardiac-chamber view plane, 
with the hypothesis that the development of fetal lung maturity may be 
related to the texture information of the ultrasound images has been 
preliminarily proven [48]. However, the approach was challenged due 
to the difficulty in correctly determining gestational age. Nurmaini et. 
al. suggested a deep learning model for standard view segmentation of 
fetal cardiac echocardiogram, with well performed accuracy as 98.3% 
and 82.42% in intra-patient and inter-patient situations, respectively 
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Fig. 8. Distribution of fetal lung size by gestational age. Box plot shows the variation of the fetal lung size by gestational age. X shape at each center of box denotes 
50th percentile. Horizontal line inside the box represents mean value of fetal lung size. The top line and bottom line represent max and min value, respectively. 
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Fig. 9. Distribution of fetal cardiac size by gestational age.  
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[49]. However, the research did not employ abnormal data such as 
VSDs, which may lead to biased outcomes. Dozen et. al. devised a unique 
U-net-based approach for segmenting the ventricular septum, termed 
crop-segment-calibration (CSC) [50]. Although the effectiveness of this 
approach is outstanding, it was cost-intensive and labor-intensive with 
its repeatability unproven. 

In this study, we analyzed the fetal development in terms of the fetal 
lung/heart size at different gestational ages, taking advantages of the 
proposed model. Our results showed an increasing fetal lung size during 
31st- 34th weeks and a subsequent decrease during 34th − 37th weeks 
and keep a steady state after 37th week which correlated with the pre-
vious publication [51]. Meanwhile, as showed in Fig. 9, the mean fetal 
cardiac area increased gradually with the development of the fetus from 
week 31 to week 41 (P < 0.0005), indicating that the fetal cardiac area 

may be potentially used to predict the gestational age. In clinics, the 
fetal heart size measurements can also be applied to predict the homo-
zygosity for α-thalassemia-1 in mid-pregnancy effectively and non-
invasively [52]. 

We proposed anovel automated model for segmenting the fetal lung 
in ultrasound images. The advantages included (1) Conventional CNN- 
based segmentation models Convolution neural network-based seg-
mentation models only take care of local dependencies since convolu-
tional kernel only sees visual information within the receptive field [53]. 
They ignore the full picture as a whole [54]. Our model could extract 
global features’ relationship by GCN. (2) There is no fixed shape in 
human anatomies. The topological relationship extracted by GCN while 
performing representation learning has been proved stable against 
various application scenarios than that of the geometric relationship of 
general vision models, i.e., CNNs and ViTs [55]. In addition to the local 
features extracted by CNNs, GCN is also modeling the relationship 
among different local features. It optimizes local features of low-quality 
images by Laplacian smoothing to a certain extent [24], beneficial to 
promoting generation across data from different domains. (3) VGG16 
could extract more abstract feature than normal CNN models, which has 
better respective field and performance. 

However, the study had some limitations. First, GCN aggregates pixel 
blocks of the same category, but for small target segmentation with 
fewer pixels, the aggregation effect is not significant, and the improve-
ment of semantic segmentation is limited. Second, the study’s data 
analysis excluded the stage of rapid fetal lung development [5] and 
covered a limited range of gestational ages.Finally, our proposed model 
relies on a large set of manually annotated images for training that are 
expensive to acquire [56–58]. 

In future, we will introduce transformers architecture in our pro-
posed model to model the small target in ultrasound images firstly. We 
will also collect data from multiple centers and multiple gestational 
weeks to increase the robustness of our proposed model and prepare for 
the actual landing deployment considering the above limitations. 

5. Conclusions 

In this paper, we proposed a novel U-shaped pre-trained architecture 
with a GCN bridge. It is capable of segmenting the fetal lung and heart 
across different scanners. Specifically, We employed a graph convolu-
tion network (GCN), a novel GCN-based bridge, to optimize the global 
space of intermediate feature layers. Empirical experiments on our 
dataset have demonstrated the effectiveness and robustness of the pro-
posed architecture in fetal lung and heart segmentation. The limations of 
the work include (1) there were too many learnable parameters in this 
designed GCN bridge; (2) this study used single static ultrasound images 
as the input which may contain limited information. In the future, we 
may consider some easy Weisfeiler-Lehman algrithm to replace GCN 
model and video data as input. T. 
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