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Abstract—Recent research has revealed that COVID-19 pneumonia is often accompanied by pulmonary edema.
Pulmonary edema is a manifestation of acute lung injury (ALI), and may progress to hypoxemia and potentially
acute respiratory distress syndrome (ARDS), which have higher mortality. Precise classification of the degree of
pulmonary edema in patients is of great significance in choosing a treatment plan and improving the chance of
survival. Here we propose a deep learning neural network named Non-local Channel Attention ResNet to analyze
the lung ultrasound images and automatically score the degree of pulmonary edema of patients with COVID-19
pneumonia. The proposed method was designed by combining the ResNet with the non-local module and the
channel attention mechanism. The non-local module was used to extract the information on characteristics of A-
lines and B-lines, on the basis of which the degree of pulmonary edema could be defined. The channel attention
mechanism was used to assign weights to decisive channels. The data set contains 2220 lung ultrasound images
provided by Huoshenshan Hospital, Wuhan, China, of which 2062 effective images with accurate scores assigned
by two experienced clinicians were used in the experiment. The experimental results indicated that our method
achieved high accuracy in classifying the degree of pulmonary edema in patients with COVID-19 pneumonia by
comparison with previous deep learning methods, indicating its potential to monitor patients with COVID-19
pneumonia. (E-mail: jgchen@cee.ecnu.edu.cn) © 2022 Published by Elsevier Inc. on behalf of World
Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

The outbreak of COVID-19 pneumonia (PN) worldwide

has rapidly become a major concern. As an infectious

disease, COVID-19 PN is highly contagious, has a rapid

onset and presents with symptoms such as fever, dry

cough and shortness of breath. As of September 24,

2021, the total number of patients with COVID-19 PN
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had risen sharply to 231,410,702, with 4,742,994 (2.0%)

deaths worldwide (https://sa.sogou.com/new-weball/

page/sgs/epidemic?type_page=VR). At the same time,

some researchers (Roy et al. 2020; Salehi et al. 2020)

have started to investigate the solutions for the assisted

diagnosis of lung diseases and achieved valuable results.

Relevant data reveal that coronavirus-associated

pneumonia is often accompanied by excessive lung

water and pulmonary edema (Jin et al. 2020). Lung

edema is a manifestation of acute lung injury (ALI), and

may progress to hypoxemia and potentially acute respi-

ratory distress syndrome (ARDS), which have higher
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mortality (Li et al. 2020). Accurate classification of the

degree of pulmonary edema in patients provides mean-

ingful guidance in formulating a treatment plan. For

example, in the early stages of pulmonary edema, treat-

ment with systemic and/or local glucocorticoids or

patients might be helpful in alleviating pulmonary

inflammation and edema, which may decrease the devel-

opment and/or consequences of ARDS (Li et al. 2020).

Because of the sudden increase in COVID-19 cases,

medical resources have been rapidly depleted in many

regions. Therefore, promptly and accurately making an

appropriate decision for the subsequent treatment is cru-

cial to saving more lives. Lung ultrasound (LUS) is useful

for management of patients with COVID-19 PN

(Peng et al. 2020; Poggiali et al. 2020;

Soldati et al. 2020), from diagnosis to monitoring and fol-

low-up. Compared with computed tomography (CT) and

magnetic resonance imaging (MRI), LUS is cheaper and

more convenient to use. More importantly, it can provide

much faster imaging, which makes it more suitable in

intensive care and emergency situations (Saraogi 2015;

Francisco et al. 2016; Alzahrani et al. 2017;

Mayo et al. 2019) and, hence, as a bedside tool for clinical

monitoring any time.

A lung ultrasound score (LUSS) has been proposed

for the semi-quantitative assessment of pulmonary

edema (Noble et al. 2009; Corradi et al. 2013;

Picano and Pellikka 2016; Gattupalli et al. 2019). How-

ever, with respect to visual detection of the distribu-

tions of A-lines and B-lines, that is, the maximum

number of B-lines, visual percentage of lung area occu-

pied by B-lines, and so on, different clinicians may

assign different LUSSs to the same LUS image. In addi-

tion, accurate assignment of the LUSS depends greatly

on the experience of the radiologist. However, experi-

enced clinicians are extremely inadequate during out-

breaks of COVID-19 PN.

In recent years, a few computer-aided methods have

been developed for quantitative analysis of the distribu-

tions of A-lines and B-lines to determine the LUSS

(Brattain et al. 2013; Corradi et al. 2013, 2015, 2016,

2020; Brusasco et al. 2019). In one pioneer attempt,

Brattain et al. (2013) proposed five features and the

threshold method to detect whether there are B-lines in

one frame. An image frame was scored by summing the

number of detections in that frame and then applying

thresholds to the sum to map to a B-line score

Brusasco et al. (2019). developed a K-means-based image

segmentation method for automated detection of B-line

areas and then calculated the percentage of B-line areas of

LUS images Corradi et al. (2013., 2016) proposed a quan-

titative method to analyze the LUS images based on the

frequency distribution of gray scales in the region of inter-

est (ROI).
Compared with the physician’s observation, the afore-

mentioned computer-aided diagnosis methods are often

more objective and faster and can reduce observer bias.

However, these methods depend on manually extracted

features and need to maximize resolution of images and

select the ROI, introducing additional workload in clinical

use. Recently, methods based on deep learning that detect

and locate B-lines to evaluate lung ultrasound are emerging

(van Sloun and Demi 2019), but these methods just focus

on detecting the number or position of B-lines instead of

grading the degree of pulmonary edema.

Unlike the studies mentioned above, we skipped the

detection of B-lines or the calculation of the number of B-

lines in this study. Instead, as deep learning models often

have excellent capability for feature extraction and repre-

sentation, we proposed a non-local channel attention

ResNet architecture (NCA-ResNet)�based automated

LUS scoring system following the LUSS criteria

(Li et al. 2018). Non-local channel attention (NCA) com-

prises a non-local module and channel attention mecha-

nism to extract the potential information on

characteristics of A-lines and B-lines, respectively, and

hence can emphasize the channels of higher importance.

Compared with the traditional methods mentioned above,

our model was developed based on an end-to-end archi-

tecture and can directly output the degree of pulmonary

edema defined by the LUSS criteria (Li et al. 2018).

Therefore, our model can be used to monitor the degree

of pulmonary edema in patients with COVID-19 PN, thus

facilitating clinicians’ adoption of appropriate treatments

for the patients.
METHODS

In this study, 31 patients affected by COVID-19

with a positive reverse transcription polymerase chain

reaction (RT-PCR) test (age: 55 § 21 y, men: 19,

women: 12) admitted to the intensive care unit (ICU) of

Huoshenshan Hospital from February 23, 2020, to April

2, 2020, were recruited. According to the diagnosis and

treatment standard for COVID-19 PN (National Health

Commission & State Administration of Traditional Chi-

nese Medicine 2020), these recruits could be character-

ized by four conditions: critical (10 cases, 32.3%),

severe (9 cases, 29.0%), common (7 cases, 22.6%) and

mild (5 cases, 16.1%). After chest CT (uCT760, United

Imaging, Los Angeles, CA, USA), the patients were

found to have bilateral ground-glass opacities with

peripheral, posterior and basal predominance, which was

in line with the international agreement.

All patients underwent LUS examinations for 12

standard fields on both hemithoraces, including the upper

and lower halves of the anterior, lateral and posterior

fields (Soummer et al. 2012). The ultrasound equipment
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(LOGIQ e, GE Healthcare, Wauwatosa, WI, USA) was

used with a curved array low-frequency transducer (1�5

MHz) with an image depth of 15 cm, focal depth of

7.5 cm, mechanical index (MI) of 1.2 and thermal index

(TI) of 0.7, and the operation mode was penetration.

These parameters all were safe for all the patients.

Considering that there would be a large discrepancy

in images collected from 12 different regions of a

patient, lung edema scores were given per region (one

image standing for one region) in this experiment. Fur-

thermore, the images with the scores only were used to

train the model. When the model was used in the clinic,

it was also based on clinical diagnostic principles that

the maximum scores in the 12 different regions were the

final diagnostic results. Therefore, we would take the

highest score as the severity of patients. Repeated exami-

nations were performed for patients whose conditions

changed during treatment, and finally a total of 2220

LUS images were selected, about 60�80 images per

patient. In total, 1860 LUS images collected from 25

patients (critical: 8, severe: 7, common: 6, mild: 4) were

used for training the scoring model, and 360 LUS images

collected from another 6 patients (critical: 2, severe: 2,

common: 1, mild: 1) were used to test the model. To
Fig. 1. Typical ultrasound images corresponding to scores 0 (a
lines are absent and A-lines are present. (b) Septal syndrome. B
septa. (c) Interstitial-alveolar syndrome. B-lines are confluent.

echographic lung field that is a
avoid the high similarity between adjacent LUS images

of a cine loop, the images were picked up every 30

frames, their similarity was less than 0.9 as calculated

using cross-correlation (Chen et al. 2021). Two clini-

cians each with more than 6 y of experience in using

LUS and blinded to the clinical background scored these

2220 LUS images according to the LUSS criteria

(Li et al. 2018). If two clinicians had the same score on

an LUS image, that score was assigned to the LUS

image. Otherwise, the LUS image was removed from the

data set. According to their evaluation, the degree of pul-

monary edema in each LUS image was graded from 0 to

3. In clinic, we scored the LUS images collected from 12

different regions, respectively, and took the highest score

as the severity. The four scores corresponded to normal

lung, septal syndrome, interstitial-alveolar syndrome and

white lung, respectively. In Figure 1 are four typical

LUS images with scores of 0, 1, 2 and 3, respectively.

By excluding the images that were assigned different

scores by the two clinicians, finally, 2062 scored images

(training set: 1735, testing set 327) were used for this

study. The proportions of the four degrees of pulmonary

edema (scores 0, 1, 2, 3) in the training set were 18.6%

(323 images), 25.2% (437 images), 27.7% (480 images)
), 1 (b), 2 (c) and 3 (d), respectively. (a) Normal lung. B-
-lines are about 7 mm apart, corresponding to subpleural
(d) White lung. B-lines have coalesced, resulting in an
lmost completely white.



Fig. 2. A-lines (a) and B-lines (b) in lung ultrasound (LUS) images. The curved red lines in (a) represent A-lines, and the
straight red lines in (b) represent B-lines. The yellow rays indicate the potential dependencies between the pixels repre-
sented by blue points in image. Long-range dependencies contain the information of A-lines and B-lines; that is, the
points corresponding to these two red curves have potential dependencies that can help the network to identify the
appearance of A-lines. The dependencies between points 1 and 5 can help the network to identify the appearance of B-
lines. The dependencies between point 1 and points 2�4 correspond to the density of B-lines, indicating the degree of

pulmonary edema.
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and 28.5% (495 images), respectively. The proportions

for the counterparts in the testing set were 17.1% (56

images), 18.1% (59 images), 31.2% (102 images) and

33.6% (110 images), respectively. The data and codes

will be provided on the website in the future (https://bio-

hsi.ecnu.edu.cn/). This study was approved by the ethics

committee of Huoshenshan Hospital, Wuhan, China

(Approval No. HSSLL030). All patients or their family

members provided written informed consent.

In the work described here, we used the deep-lear-

ning�based classification model to evaluate LUSS men-

tioned above. Our model is based on residual structures

(He et al. 2016). The residual structures can effectively

alleviate the problem of gradient disappearance and

improve classification performance; thus, it is widely

used in computer vision tasks. Although stacking convo-

lution operations (Fukushima and Miyake 1982;

LeCun et al. 1989) can expand the receptive field,

because of the fixed receptive field, it is difficult for
Fig. 3. Framework of our method. Conv = convolution operati
traditional residual structures to extract the dependencies

between distant pixels which are essential for classifica-

tion of the degree of pulmonary edema, as illustrated in

Figure 2. Moreover, traditional residual structures assign

the same weights to the channels; therefore, they cannot

emphasize specific key channels. To solve these two

problems, our model is further augmented by adding a

non-local module and channel attention mechanism,

respectively Figure 3. illustrates the main architecture

with the modules of the non-local and channel attention

proposed in this article.

Non-local module

We used the non-local module proposed by

Wang et al. (2018) to capture long-distance dependen-

cies which are essential for classifying the degree of pul-

monary edema, thus improving the classification

accuracy. Wang et al. designed a generic non-local oper-

ation that can be defined as
on; BN = batch normalization; NCB = non-local module.

https://bio-hsi.ecnu.edu.cn/
https://bio-hsi.ecnu.edu.cn/


Fig. 4. The non-local module. The softmax operation is performed on each row. The gray boxes denote the feature maps
produced by 1 £ 1 convolution.⨂ = matrix multiplication;⨁ = element-wise sum.

Fig. 5. Different regions in ultrasound images with different
contributions to the classification. Region A is relatively more

significant, whereas region B is relatively insignificant.
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yi ¼ 1P
8 jf xi; xj

� �X 8 jf xi; xj
� �

g xj
� �

: ð1Þ

where x and y are input and output, respectively; i and j

represent the spatial position of the input; xi is a vector

with the same dimension as the channel number of the

input x; f is a function for calculating the similarity rela-

tionship between any two points; and g is a mapping

function that maps a point to a number, which can be

regarded as calculating the characteristics of one point.

The non-local module can be easily implemented, as

illustrated in Figure 4. The input feature map is denoted

as X 2RH 0�W 0�C0
, where H 0, W 0 and C0 are the height,

width and number of channels of the feature map. As a

convenient explanation, we let C0=1. To implement the

function f, we take two parallel 1 £ 1 convolution opera-

tions; as a result, we can obtain two feature maps, that is,

u and f. Then we shape them into vectors of dimension

N = H*W named as u0 and f0, respectively. Now, we can
obtain the dependency matrix M 2RN�N as a result of

softmaxðu0Tf0Þ. For the element ofM ,

mi;j ¼
exp u0i ¢f0

j

� �
PN

j¼1 exp u0i ¢ u0j
� � : ð2Þ

Equation (1) is equivalent to

yi ¼
X

8 jmijgj: ð3Þ

We can easily implement the function g by feeding

X to a 1 £ 1 convolution layer and then reshaping it to

vector of dimension N named q; thus, yi is the ith ele-

ment ofMqT .

For 8 i, by adding weighted yi to the corresponding

feature of the ith pixel, the feature map will consequently

have long-range dependencies.

Channel attention module

The characteristics of A-lines and B-lines are impor-

tant in the classification of pulmonary edema. In LUS

images, the regions that most influence the classification
result usually occupy a part of the image (e.g., region A in

Fig. 5). However, not all semantic feature channels clearly

pay more attention to region A. Unfortunately, some of

the channels pay more attention to the insignificant

regions (e.g., region B in Fig. 5). Because most deep-

learning networks (Simonyan and Zisserman 2014) assign

proportional weights to channels, the influence of those

feature channels that contain discriminative information

is reduced. The channel attention module (Hu et al. 2018)

can change the proportion of different channels to selec-

tively emphasize useful informative features and suppress

less useful features Hu et al. (2018). proposed the

Squeeze-and-Excitation (SE) Blocks adaptively recali-

brating channel-wise feature responses by explicitly

modeling the interdependencies between different chan-

nels. Specifically, it can automatically obtain the impor-

tance of each feature channel through learning, and then

use this importance to enhance key features and suppress

features that are not useful for the current task. The typical

SE block is depicted in Figure 6.



Fig. 6. Architecture with the channel attention module in a parallel manner. H, W and C represent the height, width and
channel of the feature map, respectively.
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Given an input feature map U 2RH�W�C ,

U ¼ fu1; u2; u3; . . . . . . ucg, where ui 2RH�W represents

a channel. The variables H, W and, C are the height,

width, and number of channels, respectively. Taking the

mth channel as an example, the global average pooling is

performed on each channel map with respect to the equa-

tion

zm ¼ 1

H �W

XH

i¼1

XW

j¼1
umði; jÞ: ð4Þ

Equation (4) is the spatial squeeze operation which

can collect global spatial information and then embed to

the vector z. A fully connected layer is used to calculate

the impact of each channel on other channels and further

generate the weight of each channel by adding another

fully connected layer, which is denoted as

~uc ¼ s
�
W2dðW1zcÞ

�
uc: ð5Þ

where ~U c ¼ f~u1; ~u2; . . . . . . ~ucg, W1 and W2 are the two

fully connected layers, d is the ReLU activation function

and s is the sigmoid function. Finally, the features of

each channel are scaled up or down by the normalized

weights. We use the channel attention module after each

residual unit in ResNet, which helps increase the propor-

tion of the feature channel containing more information

about the A-line and B-line.
EXPERIMENTS AND RESULTS

For model training, we used the stochastic gradient

descent (SGD) as the optimizer. The model was devel-

oped on the platform of Pytorch 1.8.1 with Python 3.8
Table 1. Performance comparison for diffe

Method Accuracy (%) F1

Ours 92.34 9
ResNet 90.79 9
VGGNet 26.66 1
Densenet 201 18.63
Inception-V3 57.84 3
InceptionResnet-V2 55.88 3
(Facebook Open Source) and trained on a personal com-

puter (CPU: amd4800u, RAM: 16g 3200 MHz). All

training and test images were resized to 300 £ 300, and

the learning rate was set at 0.01. To evaluate the perfor-

mance of our method, we carried out the following

experiments. We used accuracy, F1 score, precision and

recall as the indices to measure the performance

(Xi et al., 2020a, 2020b) of the proposed method. Fur-

thermore, we compared the proposed method with other

classification methods including VGGNet

(Simonyan and Zisserman 2014), ResNet

(He et al. 2016), Densenet 201 (Soret et al. 2015), Incep-

tion-V3 (Chollet 2016) and InceptionResnet-V2

(Szegedy et al. 2017). Through the training and testing

of these six methods using 1735 and 327 LUS images,

respectively, these experimental results were evaluated

by four indicators including accuracy, F1 score, preci-

sion and recall. It can be seen in Table 1 that our method

outperforms the other methods, with the four indicators

being 92.34%, 92.05%, 91.96% and 90.43%, respec-

tively.

Interpretability of the model can be enhanced by

viewing the class activation map (CAM)

(Zhou et al. 2016). Here, we selected four typical images

in categories 0, 1, 2 and 3, respectively, from the data set

Figure 7. contains the four images as well as their corre-

sponding CAMs.

As illustrated in row 1 of Figure 7(a), the

highlighted region of the image plays an important role

in classification of LUSS. In row 3 of Figure 7(a), we

can see that A-lines exist in the highlighted region of

row 1, Figure 7(a), indicating that the appearance of A-
rent methods under different metrics

(%) Precision (%) Recall (%)

2.05 91.96 90.43
0.56 89.15 89.19
0.52 6.19 25.00
9.83 40.62 19.21
9.46 81.86 59.04
3.47 82.88 55.64



Fig. 7. Ultrasound images of classified pulmonary edema and their corresponding classification activation maps
(CAMs). (a), (b), (c) and (d) correspond to ultrasound image categories 0, 1, 2 and 3, respectively. Row 1: CAMs pro-
duced by our model; row 2: CAMS produced by our model without using the non-local module; row 3: original images.
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lines is evidence that the patients with COVID-19 PN

did not have pulmonary edema with respect to the LUSS

criteria. Likewise, we can see B-lines in the highlighted

region in Figure 7(b�d).

To determine the effectiveness of the non-local

module for extracting the potential characteristics of A-

lines and B-lines, we removed the non-local module to

produce the CAMs and compared the results with those

produced by the model with the non-local module. As

illustrated in Figure 7, the highlighted parts of the CAMs

in row 1 (produced by our model with the non-local

module) are more focused on the regions where the A-

lines or B-lines appeared than those of the CAMs in row

2 (produced by our model without the non-local mod-

ule). This indicates that our model using the non-local

module can extract more focused information for predic-

tion of the degree of pulmonary edema from the charac-

teristics of A-lines or B-lines.
DISCUSSION

Relevant data revealed that in the patients, COVID-

19 PN was often accompanied by excessive pulmonary

edema, which is a manifestation of ALI, and the accurate

classification of the degree of pulmonary edema in

patients provides very important guidance for choosing

the treatment plan and thus improving the survival rate.

LUS can be used in different regions, including low- to

middle-income areas; it can quickly facilitate diagnosis
and therefore is suitable for monitoring the degree of

pulmonary edema at any time. The LUSS has been used

in clinics for the semi-quantitative assessment of pulmo-

nary edema. However, accurate assignment of the LUSS

depends greatly on the experience of clinicians, who are

scarce during outbreaks of COVID-19 PN.

Some computer-aided methods have been proposed

for quantitative analysis of LUS images. Nevertheless,

these methods depend on manually extracted features or

need to select the ROI, therefore increasing the workload

in the clinic. Recently, methods based on deep learning

that evaluate lung ultrasound by detecting local B-lines

have emerged; however, these methods focus only on

detecting the number or position of B-lines instead of

grading the degree of pulmonary edema.

In this study, we did not directly detect B-lines or

calculate the number of B-lines. Instead, following the

LUSS criteria, we proposed an automated LUS scoring

system to directly output the degree of pulmonary edema

in patients with COVID-19 PN. Through use of the

deep-learning method, our model is fully automatic and

does not manually extract features or select ROIs.

The framework of our network is based on the

ResNet and augmented by adding the non-local and

channel attention mechanisms. The non-local mecha-

nism is used to extract the long-range dependencies

which can preserve the characteristics of A-lines/B-lines

and the density of B-lines, improving classification accu-

racy. The channel attention mechanism is used to
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emphasize the important channels that pay more atten-

tion to the ROI. With the two aforementioned mecha-

nisms, our model performs well and has no need to

select an ROI or manually extract features. This design

can thus directly output the degree of pulmonary edema

defined by the LUSS criteria. Furthermore, when used

clinically, our model can highlight the region that plays

a more important role in deciding. According to the

experiments, the highlighted regions often contain the

A-lines/B-lines, which can improve the interpretability

of the proposed model and therefore help convince the

clinicians. According to the quantitative evaluation

results, the proposed method outperforms the other four

famous deep learning models, that is, VGGNet

(Simonyan and Zisserman 2014), ResNet

(He et al. 2016), Densenet 201 (Soret et al. 2015) and

Inception-V3. It is also better than the model described

in our previous article and has an accuracy of 87%

(Chen et al. 2021), indicating its usefulness in classifica-

tion of LUS scores for patients with COVID-19.

However, there are two main limitations of this

study. First, the labels of the data (i.e., the LUSS for

each image) were assigned blindly by two clinicians. In

practice, however, the degree of pulmonary edema

should be judged by considering the clinical symptoms,

which are difficult to obtain. Second, our data set is far

from sufficient to ensure the generalization ability of our

model. That requires the collection of more images. In

our future work, we will therefore focus on collecting

more data and training our model with more accurate

labels with respect to the LUSS criteria. With the recov-

ery of medical resources, we will collect LUS images

from multiple hospitals, and try to redefine LUSS criteria

with considering the clinical symptoms.
CONCLUSIONS

We have proposed an automated method called

NCA-ResNet model to evaluate the degree of pulmonary

edema in patients with COVID-19 PN. This method

combines the ResNet model with the non-local module

and the channel attention mechanism, which extract the

features of A-lines and B-lines and assign more weights

to decisive channels, respectively. The results indicated

that this method performs well in the automatic scoring

of LUS images, and could be used for the analysis and

diagnosis of the severity of pulmonary edema. It also

proved that this method is potentially applicable in clin-

ics.
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