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Abstract

Breast cancer, which is the most common type of malignant tumor among humans, is a leading cause
of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery,
postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for
individual patients. Such personalized therapies have tremendously reduced the threat of breast
cancer in females. Furthermore, early imaging screening plays an important role in reducing the
treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial
intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this
review, we introduce the necessity of incorporating Al into breast imaging and the applications of Al
in mammography, ultrasonography, magnetic resonance imaging, and positron emission tomogra-
phy/computed tomography based on published articles since 1994. Moreover, the challenges of Al in
breast imaging are discussed.

Abbreviations

Abbreviation Full Term

ABVS Automated Breast Volume Scanning
Al Artificial Intelligence

ALN Axillary Lymph Node

ALNM Axillary Lymph Node Metastasis
AUC Area Under the Curve

BI-RADS Breast Imaging Reporting and Data System
CAD Computer-Aided Diagnosis

CNNs Convolutional Neural Networks
CSCO Chinese Society of Clinical Oncology
DCE Dynamic Contrast-Enhanced

DCIS Ductal Carcinoma in Situ

DL Deep Learning
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DWI Diffusion-Weighted Image

FDA Food and Drug Administration

FUSCC Fudan University Shanghai Cancer Center
HER2 Human Epidermal Growth Factor 2

HR Hormone Receptor

MG Mammography

ML Machine Learning

MRI Magnetic Resonance Imaging

NAC Neoadjuvant Chemotherapy

pCR Pathological Complete Response
PET/CT Positron Emission Tomography Combined with Computed Tomography
Us Ultrasonography

SUV hax Maximum Standardized Uptake Value

3D Three-Dimensional

TNBC Triple-Negative Breast Cancer

TIWI T1-Weighted Image

T2WI T2-Weighted Image

1. Introduction

Breast cancer, which was previously the most common type of malignant tumor among females, has become the
top-ranking malignant tumor in humans overall (Ferlay et al 2021). However, the mortality rate of 15.5% is
much lower than the incidence rate of 24.5% among females (Ferlay et al 2021). The promising prognosisis a
result of the efforts of scientists and breast physicians, who have worked on understanding precise subtypes and
personalized therapy in the past two decades. Specialists have found that breast cancer is a disease with the
prospect of precise therapy. Breast cancer can be divided into unique groups using the immunohistochemical
expression profile typically based on estrogen/progesterone receptor statuses, and expression of human
epidermal growth factor 2 (HER2) (Goldhirsch et al 2013). Each subtype exhibits specific biological tumor
characteristics. The significant advancements in surgery, radiotherapy, endocrine therapy, chemotherapy, and
targeted treatment of patients based on molecular subtypes have laid the foundation for the precise classification
and personalized treatment of breast cancer. Despite this progress in the treatment of breast cancer, tumor
heterogeneity, the diversity within the tumor and/or among different patients (Turashvili and Brogi 2017) isa
non-negligible factor in determining optimal treatment strategies and prognosis of breast cancer (Coates et al
2015, Pratetal 2015, Harbeck and Gnant 2017). The luminal subtype is characterized by a high incidence of
long-term recurrence (Gao and Swain 2018), the HER2 subtype is likely to be resistant to targeted therapeutic
medicine (Ocafia ef al 2020), and the triple-negative subtype has a poor prognosis within five years (Hwang et al
2019). In addition, according to the authors’ experience, tumor heterogeneity is an obstacle to the accurate and
early diagnosis of certain atypical breast tumors (Li et al 2018). Delayed diagnosis may inevitably affect the timely
treatment of breast cancer patients.

Imaging plays an important role in breast cancer screening and diagnosis. Mammography (MG) and
ultrasonography (US) are the preferred techniques for breast cancer screening and diagnosis. Magnetic
resonance imaging (MRI) provides high sensitivity for breast cancer detection and diagnosis. Positron emission
tomography combined with computed tomography (PET/CT) is important in the management of breast cancer
patients. With the recent advancements in imaging technologies, most breast cancers can be recognized with
prompt diagnosis and efficient consecutive therapies. However, as mentioned above, tumor heterogeneity isa
major obstacle to the precise diagnosis of certain atypical or very early breast cancers, such as triple-negative
breast cancer (TNBC) (Li et al 2018), mucinous breast cancers (Ginter et al 2020, Pintican et al 2020), and ductal
carcinoma in situ (Watanabe et al 2017). In these cases, physician experience is of limited value, as human eyes
cannot differentiate the subtle differences in the images.

To assist radiologists, scientists have been trying to introduce the intelligent algorithms that can respond in a
similar manner as human beings, which is known as artificial intelligence (AI). As a branch of computer science,
Al is atechnological process that simulates, extends, and expands human cognitive thinking to complete a task
through extracting and synthesizing abstract information.The application of Al to the medical imaging field was
first proposed in the 1990s (Shen et al 2021Db). As breast cancer is the most common malignant tumor in females,
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Figure 1. Schematic outline of the article.

early and precise diagnosis and treatment have a significant potential impact on patients, thereby motivating
innovation in the application of Al techniques (Morgan and Mates 2021). Al has been proved to be valuable for
breast cancer screening, detection, differential diagnosis, molecular subtyping, treatment response and
prognosis prediction, etc, regarding to the commonly used breast imaging techniques. Recently, as summarized
by Bahl, there have been about twenty Al applications that are approved by the Food and Drug Administration
(FDA) for MG, breast US, and breast MRI (Bahl 2022).

In the literature, there have been a number of review articles about Al applications in breast imaging written
from multiple perspectives (Le et al 2019, Mendelson 2019, Bahl 2020, Hickman et al 2021, Morgan and
Mates 2021, Bitencourt et al 2021). Compared with previous reviews, in this article, we will address the issue of
tumor heterogeneity which is one of the most important justifications for introducing Al in breast imaging. In
addition, the applications of Al in breast PET/CT are summarized in the present article.

1.1. Outline of review

A schematic outline of this review is presented in figure 1. In the Introduction section, the applications of in vivo
patient imaging techniques for breast diseases are highlighted, followed by the introduction of Al into breast
imaging. Based on published articles since 1994, the following sections of the article present the applications of
Al in breast imaging, which include: (1) common Al methods that are used for breast imaging, (2) applications
of Alin MG, (3) applications of Al in breast US, (4) applications of Al in breast MRI, and (5) applications of Al in
breast PET/CT. Subsequently, the technical and clinical challenges of Al in breast imaging are discussed,
followed by an outline of future work and conclusions.
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Figure 2. Digital MG, US, MRI and PET-CT scans of a 42 y old woman with an infiltrating ductal carcinoma in the left breast,
indicated with the white arrows. (a): MG, (b): US, (c): MRI, (d): PET-CT.

1.2. Application of imaging techniques for breast diseases

MG and US have been recognized as the most common imaging techniques for the detection of breast cancer
(Guo etal2018a). MG is the primary diagnostic technique that is used in screening programs, particularly in
Western countries. MG can detect microcalcifications that are invisible in US (Jackson 2004). Nevertheless, it
exhibits certain limitations in the case of dense breasts, which are common in Asian women and young women.
US is complementary to MG in the detection of breast cancer. In China, US is usually recommended as an
effective combination with MG as the first choice for breast screening and the differential diagnosis of benign
and malignant breast masses (CSCO 2021 ). As no radiation-related damage occurs, it is suitable for any age and
physiological period of females, particularly for pregnant or lactating women. US also offers advantages in the
detection of potentially malignant changes in axillary lymph nodes (Guo et al 2018a).

Among the available imaging modalities, MRI provides the highest sensitivity for breast cancer detection and
diagnosis (Mann et al 2019). It is currently used as an adjunct to MG screening, especially for high-risk patients.
As stratified by American Cancer Society, the risk factors for breast cancers mainly include genetic mutations,
family history, and clinical risk factors such as thoracic radiotherapy, lobular neoplasia, ductal hyperplasia, and
high mammographic density (Saslow et al 2007). Furthermore, it is an indispensable tool for assessing the
preoperative stage, evaluating the treatment response, and diagnosing difficult and complicated cases (Mann
etal2019). MRI can provide more detailed information through a variety of scanning sequences compared to
other imaging modalities. The dynamic contrast-enhanced (DCE) image and post-contrast T1-weighted image
(T1WI), which provide the morphological and kinetic features of breast lesions observed after contrast material
administration, form the basis for breast MRI protocols. The T2-weighted image (T2WI) enables the
visualization of cysts, edema, and necrosis owing to their liquid nature, and such information is important for
prognostic assessment. The diffusion-weighted image (DWTI) quantifies the random movement of water
molecules in tissues, which is associated with tissue microstructure and cell density (Mann et al 2019). However,
owing to its high cost and long image acquisition time, MRI is not as popular as MG and US imaging.

PET/CT can provide three dimensional (3D) map of the activity distribution of a radioactive tracer, which in
the case of '"®F-FDG can be used to estimate the glucose metabolism in tissues and standard metabolic
parameters, including the maximum standardized uptake value (SUV ;,.,), metabolic tumor volume, and total
lesion glycolysis. However, compared with US, MG, and MRI, PET/CT is not suitable for breast cancer
screening because of its high cost and radiation exposure. Its main applications include the staging and
evaluation of the treatment response and suspected recurrence or metastasis (Fowler and Cho 2021, Kikano et al
2021, Sarikaya 2021).

In clinical practice, MG, US, MRI and PET-CT are applied selectively and complimentarily to aid in the
screening, diagnosis, treatment response monitor and prognosis prediction (figure 2). With the advancement of
imaging technology, the amount of data is increasing which is time consuming for radiologists. For example,
with the introduction of digital breast tomosynthesis, a stack of 2D slices of the imaged breast, although the
diagnostic performance is increased, the interpretation time for radiologists almost doubles compared with MG
(Skaane et al 2013). The similar issue also arises for automated breast volume scanning (ABVS) (Ibraheem et al
2022) and multi-parametric MRI imaging comprising ~5 imaging sequences (Mann et al 2019). Therefore,
automated methods of interpreting these images are highly demanded to reach a balance between diagnostic
performance and interpretation time. On the other hand, the performance of breast imaging is closely related to
the heterogeneity of breast cancers especially for the prediction of treatment response and prognosis. Due to the
heterogeneity, human interpretation without powerful computation is limited to achieve the best performance
for differentiating different biological subtypes with a variety of possible treatments, predicting the response to
therapy and overall survival. These noninvasive observations and predictions which are beyond traditional
detection and diagnosis are important parts in the era of individualized and precision medicine. Al has been
introduced in the context of advanced imaging and the demand of powerful computations.
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1.3. Necessity of introducing Al into breast imaging

In 2021, the Chinese Society of Clinical Oncology guidelines stressed the important role of Al in the field of
tumor diagnosis and treatment with an increasing application in clinical practice (CSCO 2021). Al is gaining
attention in the diagnosis and treatment of breast cancer, the prediction of survival prognosis, and the prediction
of treatment response after neoadjuvant chemotherapy (NAC) owing to its powerful computing and learning
ability (Bahl 2020).

In recent years, Al-assisted imaging diagnosis has flourished with the evolution of big data and
computational frameworks. The role of conventional computer-aided diagnosis (CAD) is expanding beyond
screening and differential diagnosis toward applications in therapy evaluation and risk assessment (Giger 2010,
Mendelson 2019). Moreover, intelligent output can be obtained from automated analysis based on images that
are collected by radiologists to assist in detecting lesion, determining the lesion malignancy rate, evaluating the
response to therapy, and predicting the prognosis.

Al may reduce human efforts in terms of detecting suspicious nodules or masses in US or MG images in the
screening field. At the authors’ institute, an US Al equipment has been developed for the automatic location of
suspicious areas during US scanning which is valuable for inexperienced physicians (Hou et al 2022).
Meanwhile, the commercial S-Detect technology has been used clinically to increase the confidence of US
physicians in diagnosing breast nodules (Kim et al 2017, Sun et al 2022a).

The role of imaging has expanded from screening and diagnosis to the prediction of treatment efficacy and
prognosis, considering the vast information that is hidden in the images. However, human eyes have a limited
ability to achieve advanced predictions without the aid of Al such as the prediction of response to chemotherapy
and prognosis of breast cancer based on imaging information (Galati et al 2022).

1.3.1. Tumor heterogeneity

Itis well known that breast cancer is a type of heterogeneous malignant tumor comprising multiple distinct
subtypes that differ on the clinical, histopathological, and genetic levels (Roulot et al 2016). Tumor heterogeneity
is characterized by inter- and intra-tumor heterogeneity.

Inter-tumor heterogeneity has been described as the variety among different tumors, and it was extensively
characterized in the 2000s owing to the development of high-throughput analyses (Zardavas et al 2015, Roulot
etal2016). Inter-tumor heterogeneity has implications for guiding the treatment of the four breast cancer
subtypes (Goldhirsch et al 2013). Each subtype has specific biological characteristics and clinical behaviors,
which provide the foundations for the precise treatment of breast cancer with a promising prognosis.

Intra-tumor heterogeneity has been identified within the different regions of the tumor (spatial
heterogeneity), along with tumor progression (temporal heterogeneity). Pathological and
immunohistochemical results that are obtained from a biopsy or a small portion of tumor specimens may not
represent the overall tumor composition owing to the spatial heterogeneity. Therefore, it is important to
recognize the spatial heterogeneity as it may be indicative of treatment effectiveness, with evidence that increases
heterogeneity corresponds to a reduced likelihood of pathological complete response (pCR) (Januskeviciené and
Petrikaité 2019). Furthermore, tumors with more prominent heterogeneity may be resistant to therapy as they
adapt to new microenvironmental conditions more easily (Issa-Nummer et al 2013, Almendro et al 2014).

In the era of precision medicine, it is important to capture the heterogeneity of each specific molecular
subtype, as this biological variance enables such heterogeneity to be anticipated and adaptive therapeutic
strategies to be sought. The imaging appearance is an integral phenotype of all proteomics and genomics
(Aerts 2016). Therefore, the imaging feature of the breast mass is an important supplement to the local
pathological and immunohistochemical characteristics in the development of precision medicine and
personalized treatment. Al is expected to facilitate this integration because of the vast amount of information
hidden in the images that it conveys.

1.3.2. Precision medicine and personalized treatment

Evidence-based medicine that results from a precise subtype of breast cancer can provide sufficient details for
precision medicine in breast cancer. However, inter-and intra-tumor heterogeneity is an obstacle to the efficient
treatment of all breast cancers. Thus, personalized treatment is in high demand to improve the outcome of
breast cancer further (Jiang et al 2021d). Advanced research in multi-omics analysis and intra-tumor interaction
with the microenvironment is warranted to enrich the evidence for personalized treatment.

Precision tumor medicine refers to the use of various omics detection technologies, including proteomics,
transcriptomics, genomics, epigenemics, and metabonomics, to obtain tumor-related biological information
for guiding tumor screening, diagnosis, and treatment (Pinker et al 2018, Sachdev et al 2019). Multigene
mutation detection offers significant value for molecular subtyping, breast cancer risk prediction, and the
selection of precise treatment plans. For example, the Fudan University Shanghai Cancer Center (FUSCC)
subtype of TNBC has been established based on proteomics (Zhao et al 2020, Gong et al 2022), transcriptomics
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Figure 3. The relationships between AI, ML, DL and CNN. They can be used in CAD with three common methods: supervised
learning, unsupervised learning and reinforcement learning.

(Liuetal 2016), genomics (Jiang et al 2019), and metabolomics (Gong et al 2021). It has been proven that the
combination of Al imaging and multiple omics may achieve an FUSCC subtype more rapidly and easily (Jiang
etal2022a).

Precision medicine should consider the static omics of individual breast cancers as well as the dynamic omics
during treatment and follow-up (Pinker et al 2018). Breast imaging offers the advantage of the dynamic
surveillance of breast tumors throughout the whole process of screening, diagnosis and post-operative follow
up. Therefore, in addition to biological omics, Pinker et al proposed the combination of quantitative radiomics
which can extract valuable quantifiable data from digital medical images with multiple biological omics to
provide dynamic surveillance for breast cancer (Pinker et al 2018). This approach is known as radiogenomics,
which maylink the complete imaging appearance with genetic information. Radiogenomics can quantify lesion
characteristics to stratify benign and malignant breast tumors more effectively, thereby enabling precise
diagnosis. It can also reflect the genetic information of a heterogeneous tumor and guide tailored therapy. After
the therapy, radiogenomics can also incorporate imaging biomarkers with phenomics and genomics to predict
recurrence risk.

2. Applications of Al in breast imaging

2.1. Common Al methods in breast imaging

The most frequently concerned Al models are machine learning (ML), deep learning (DL) and convolutional
neural networks (CNNs) (Castiglioni et al 2021). The relationships between Al, ML, DL, and CNN s are depicted
in figure 3. They are different in terms of the capability, complexity, interpretability, and the types of problems
they’re best suited for.

ML models primarily include support vector machines and random forests. Support vector machines group
data into two or more classes through a ‘hyperplane’ that separates the categories as far as possible by analyzing
numerous features (Kohli er al 2017). Random forests employ a collection of decision trees based on a random
subset of features that are extracted from the training data. When a new input appears, the model makes a
prediction (e.g. ‘positive’ or ‘negative’) for each tree and the voted result from all trees is considered as the best
solution. These models are relatively straightforward and work well with structured, tabular data. They are less
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complex, easier to understand, and often provide good baseline models. However, they might not perform as
well with extremely complex tasks or very large datasets. They also struggle with unstructured data, such as
images or text.

DL, which is a subset of ML and offers the capability to cluster data and make predictions, uses neural
networks to mimic the human brain (Tang et al 2018). The neural network consists of multiple layers of
connected nodes, each of which receives input from other nodes with weights that are set randomly. DL models,
can handle much more complex tasks and are particularly good at working with unstructured data like images,
text, and audio. They can automatically learn and extract features from raw data, a process known as
representation learning. However, they require large amount of data and computational resources. The
complexity of DL models also makes them prone to overfitting if not properly regularized. Meanwhile, DL
models are often referred to as ‘black boxes’ because it can be difficult to understand why they’re making certain
decisions. Some progress has been made in improving the interpretability of DL models (like attention
mechanisms, feature visualization, etc), but it’s still a significant challenge compared to traditional ML models.

As asubset of DL and the most common type of neural network, the CNN is suited to identify particular
patterns in images which can occur at different locations because the convolution operation is spatially invariant
(Burt etal 2018, Robertson et al 2018). In a systemic review, Nasser and Yusof found that CNN model has the
most accurate performance with the most extensive application for breast cancer diagnosis (Nasser and
Yusof2023). A CNN consists of three layers: an input layer, a hidden layer (one or more hidden convolutional
layers), and an output layer (Pesapane et al 2018). Although the performance of the CNN may improve with
deeper architectures, this may result in network overfitting. An appropriate network design significantly
contributes to the final performance (Abdelhafiz eral 2019).

Data are indispensable for training a sophisticated model. An Al model can be trained in three manners:
supervised, unsupervised, and reinforcement learning (figure 3). Supervised learning creates a model to predict
the outcomes based on labeled data. Unsupervised learning determines the patterns and associations in
unlabeled data to create groups and clusters. Reinforcement learning takes advantage of the reward mechanism
for training feedback to achieve a desirable or undesirable state.

Figure 4 presents the workflow of Al models. Most Al models in the breast imaging literature use supervised
learning; for example, benign and malignant breast tumors are differentiated with breast images that are labeled
as positive or negative. ML algorithms rely on hand-engineered (or hand-designed) features based on the
knowledge and experience of the clinician (such as the density or shape), whereas DL algorithms learn the
features automatically. Given a sufficiently large training dataset, DL-based Al systems may be able to classify
data better than methods that use hand-designed features (Chartrand et al 2017).

2.2. Applications of Alin MG
Two main types of lesions appear on mammograms: calcification clusters and soft tissue findings (masses,
distortions, and asymmetries). The significant advantage of MG is its high sensitivity in detecting calcifications,
particularly microcalcifications, which are usually invisible in other imaging modalities such as US or MRI
(Jackson 2004).

The earliest research on CAD in MG was conducted in 1967 by Winsberg et al with the motivation of
liberating radiologists from the large volume of screening mammograms in asymptomatic women (Vyborny
and Giger 1994). Subsequently, numerous trials have been conducted to develop CAD for MG. These trials can

7



10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

256

)
13
e
)
-
-«

256 128 2

Weight e ) 8857
( Sharing ’) \L} i )

256

Downsampling ' FC + ReLu

Strided Conv + ReLu ‘ 50% Dropout
@ Concatenation
/
[ Softmax

Figure 5. The architecture of the classification model based on MG to predict pCR in breast cancer patients. Reproduced fromfrom
Skarping etal (2022). CCBY 4.0.

ResNet Block

=

H
@ 7x7 Conv + BN + ReLu

be categorized into computer-aided detection (CADe) and computer-aided diagnosis (CADx) (Sechopoulos et al
2021). CADe is aimed at detecting suspicious lesions in MG, which may be calcification clusters and/or soft
tissue lesions. CADx algorithms estimate the pathological nature of a detected lesion as benign or malignant.
These CAD algorithms have been studied intensively with promising results in clinical practice (Warren
Burhenne et al 2000, Birdwell et al 2001, Freer and Ulissey 2001, Destounis et al 2004). However, it was proven
that the expected value of CAD was overestimated with the recognition of the significant variety in MG features
in studies with large sample sizes (Fenton et al 2007, Lehman et al 2015). Finally, the application of CAD in MG
has not involved extensive clinical practice (Sechopoulos et al 2021).

Driven by the CNN model, Al has revolutionized the image interpretation of digital MG in recent years
(Geras et al 2019). The applications thereof mainly focused on tumor screening (Kooi et al 2017, Al-Masni et al
2018, Leetal 2019, Rodriguez-Ruiz et al 2019, Kim et al 2020), tumor differentiation (Al-Masni et al 2018,
Rodriguez-Ruiz et al 2019, Sasaki et al 2020), and cancer risk prediction (Arieno et al 2019, Yala et al 2019,
Dembrower et al 2020). Skarping et al used DL-based method for automatic analysis of digital MG of primary
breast tumors to predict pCR with an area under the curve (AUC) of 0.71. Figure 5 illustrates the use of DL to
predict response to NAC based on MG (Skarping et al 2022). Table 1 summarizes the published studies that have
evaluated the performance of CNN models in MG for breast cancer screening and detection. Moreover, several
commercial products, such as Transpara™ (Rodriguez-Ruiz et al 2019, Rodriguez-Ruiz et al 2019) and
MammoScreen™ (Pacile ef al 2020) have been incorporated with Al learning models. These above two products
have been approved by the FDA.

2.3. Applications of Al in breast US

Al-assisted systems have improved the performance of US in terms of the automatic identification of breast
lesions, differential diagnosis between benign and malignant breast cancers, correlation between US imaging
features and histopathological characteristics, and prediction of NAC and tumor recurrence (Akkus et al 2019,
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Table 1. CNN framework-based Al studies in MG for screening and detection of breast cancers.

References Dataset CNN model Main finding Performance
Kooietal (2017) Self-collected data Deep CNN model The CNN model trained on a large data set of mammographic lesions The area under the curve (AUC) for CNN and CAD was 0.929 and
outperforms the CAD system. There was no significant difference 0.910, respectively; the AUC for CNN and radiologists was 0.852
between CNN model and certified radiologists. and 0.911, respectively

Rodriguez-Ruiz et al An enriched dataset with Deep CNN model Al may help radiologists to improve the cancer detection at mammo- The AUC and sensitivity were higher with Al support than with

(2019) screening detected cancers graphy without requiring additional reading time. unaided reading (0.89 versus 0.87 for AUC; 0.86 versus 0.83 for
sensitivity)
Rodriguez-Ruiz et al Multi-center data Deep CNN model The Al system has similar performance for detecting breast cancer in The Al system had a higher AUC than the average of 101 radiologists

(2019)

Sasaki et al (2020)

Kim et al (2020)

Self-collected data

Multi-center data

Transpara 1.4.0

Deep CNN model

CNN model ResNet-34

MG compared with an average of 101 radiologists. This finding was
consistently validated in a large, heterogeneous, multi-center, multi-
vendor, and cancer-enriched cohort.

The diagnostic performance of Al system was statistically lower than
that of human readers

Al is able to detect early-stage breast cancer in MG especially in dense
breast compositions. Meanwhile, the performance of radiologists was
significantly improved with the aid of AI

(0.840 versus 0.814). The Al system had an AUC higher than 61.4%
ofthe 101 radiologists

The AUG, sensitivity and specificity for Al were all lower than that of
human readers (0.706 versus 0.816 for AUC, 0.85 versus 0.89 for
sensitivity, and 0.67 versus 0.86 for specificity)

AT had good performance on all the three datasets: South Korea
dataset (AUC 0.970), USA dataset (AUC 0.953), and UK dataset
(AUCO0.938)

The performance of human readers was poorer than Al standalone
(0.810 versus 0.940 for AUC)

suiysiiand dol
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Table 2. Selected Al studies in breast US regarding to tumor differentiation, biological property evaluation and prognosis prediction.

References Application Al'model Main finding
Shenetal Breast tumor DL model In aretrospective reader study, the Al achieves a higher AUC than
(2021a) identification the average of ten breast radiologists (0.962 versus 0.924). This
indicates the potentials of using Al in breast US diagnosis
Hanetal (2017) Breast tumor GoogLeNet CNN The networks showed an accuracy of about 0.90, a sensitivity of
classification model 0.86 and a specificity of 0.96. The limitation of the study is that
target regions of interest need the manual selection of radiologists
Ciritsis et al Breast tumor Deep CNN model To differentiate BI-RADS 2-3 versus BI-RADS 4-5 in an external
(2019) classification dataset, the CNN model had an accuracy of 95.3% compared
with the accuracy 0of 94.1% on human readers
Zhao et al (2022) Breast tumor DL model The MobileNet model had the best diagnostic performance to
classification (MobileNet) identify malignant tumors among BI-RADS 4A lesions with an
AUC 0f89.7% and an accuracy of 91.3% in the testing dataset
(Zhou et al Molecular subtyping Assembled CNN The CNN model based on multiple modes of grayscale, color
2021a) model Doppler flow imaging, and shear-wave elastography images has
good performance (AUC 0.89-0.96) to predict the four-classifi-
cation breast cancer molecular subtypes
Zhou et al (2020) ALNM prediction DL CNN model The Inception V3 CNN model achieved an AUC of 0.89 in the
(Inception V3) prediction of the final clinical diagnosis of ALNM in the indepen-
dent dataset
Zhenget al ALNM prediction DL radiomics model The combination of clinical parameter and DL radiomics model
(2020) yields the best diagnostic performance in predicting ALNM status
withand AUC of 0.902 in the test cohort
Jiang et al Therapy response DL radiomic The developed model can predict the pathological complete
(2021a) evaluation nomogram response (pCR) status accurately with an AUC 0f 0.94 in the vali-
dation cohort
Yuetal (2021a) Prognosis prediction Radiomic nomogram The radiomics nomogram performed better than the clin-

icopathological nomogram (0.796 versus 0.761 for C-index)

Guand Jiang 2022). In this section, we present a comprehensive review of these applications, with selected
references indicated in table 2.

2.3.1. Automatic identification and segmentation
The hand-crafted outlining of breast lesion contours is time consuming and subjective, particularly for those
without distinct margins. Therefore, the automated identification of lesions is desirable for efficient Al analysis.
Researchers have developed various automated Al detection models for breast lesions in US images (Marcomini
etal 2016, Yap etal 2018, Cao etal 2019, Qietal 2019, Lee et al 2020, Shen et al 2021a, Chen et al 2022b) ,
including 3D breast US images (Gu et al 2016).
Marcomini et al first developed an identification model for tissue-mimicking phantoms with nodules
similar to breast lesions, and subsequently applied the algorithms to clinical images (Marcomini et al 2016). The
neural multilayer perceptron classifier achieved an accuracy of 81% for breast lesion identification in clinical
practice. The most suitable Al model for a specific clinical dataset needs to be selected among the vast number of
available models. Cao et al evaluated the performance of four training protocols for object detection (Cao et al
2019). Shen et al developed an Al system to identify breast cancer in US images using the largest dataset to date,
and the accuracy thereof could reach the level of radiologists (Shen et al 202 1a). This demonstrates the potential
of Al in future clinical practice.

2.3.2. Differential diagnosis
The detection of suspicious breast lesions in US images is the first step for US physicians. However, the most
important aspect is the accurate diagnosis of the pathological properties; that is, whether the nodule is benign or
malignant. Many Al models have been developed to assist US physicians in the differentiation of breast lesions
(Haneral 2017, Xiao etal 2018, Byra et al 2019, Choi et al 2019, Ciritsis et al 2019, Fujioka et al 2019, Hejduk et al
2022). The performance of Al models varies significantly as a result of the different dataset sources and
algorithms that are adopted. Most studies have affirmed the auxiliary diagnostic value of Al models for US
physicians. A commercial US system that incorporated an Al module was launched and exhibited promising
results, which further confirmed the clinical potential of Al technology (Kim et al 2017, Di Segni et al 2018).

In the authors’ view, the differential diagnosis of most breast lesions with typical malignant sonographic
features is not challenging for qualified US physicians. However, Al-assisted differential diagnosis is desirable for
lesions with atypical US features. The authors’ group previously evaluated the value of DL models in reducing
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the malignancy rate among breast imaging reporting and data system (BI-RADS) 4A lesions to achieve more
accurate risk stratification (Zhao et al 2022). A further study is being conducted to evaluate the value of Al for
diagnosing malignant breast tumors with atypical sonographic features using a large dataset from multiple
centers.

2.3.3. Correlation with tumor invasive properties

Medical images were previously treated as gross anatomical images of tissues, organs, or lesions, in which the
information of morphological changes was focused. However, in addition to displaying these conventional
descriptive signs, medical images contain extremely large amounts of digital information that can be deeply
excavated (Aerts et al 2014, Gillies et al 2016). The digital information is correlated with the molecular subtypes
(Guoetal2018b, Wuetal 2021, Zhou et al 20214, Jiang et al 2021b), and histopathological variables (Cui et al
2021, Lietal 2022a) of breast cancer, as well as axillary lymph node metastasis (Sun et al 2020, Zheng et al 2020,
Zhou et al 2020).

Breast cancer is a highly heterogeneous disease with four common molecular subtypes. Thus, the variety in
imaging is expected to be a result of the heterogeneity of the biological properties. It has been found that
sonographic radiomics can classify the molecular subtypes of both invasive breast cancer and ductal carcinoma
in situ (Guo et al 2018b, Wu et al 2021, Zhou et al 202 1a, Jiang et al 202 1b). However, according to our
experience, caution should be exercised in that the molecular subtypes overlap with one another in terms of the
sonographic features. The classification potential of Al algorithms for molecular subtypes should be rationally
examined (Shietal 2021).

The axillary lymph node (ALN) status is crucial in determining the tumor stage and subsequent treatment
strategy. The presence and load of ALN metastasis (ALNM) are dependent on the primary breast tumor.
Therefore, the prediction of ALNM based on sonographic features using Al algorithms has been highlighted in
various research articles (Yu etal 2019, Guo et al 2020, Zheng et al 2020, Lee et al 2021a, 2021b, Zhou et al 202 1c,
Jiang et al 2022b). Although the performance of these models is acceptable, it has been suggested that the
prediction should also consider clinicopathological features to achieve satisfactory performance (Guo et al 2020,
Zheng et al 2020, Lee et al 202 1a). Meanwhile, the perineural region (Moon et al 2017, Sun et al 2020) and
elastography (Jiang et al 2022b) are also valuable for predicting the ALNM status.

2.3.4. Prediction of treatment response and recurrence

US has traditionally been the major screening and diagnostic tool for breast cancer. However, an increasing
number of studies have demonstrated that US features, particularly radiomics features, are potential imaging
biomarkers for predicting the treatment response to NAC (Byra et al 2021, Jiang et al 2021a, Gu et al 2022) and
the risk of postoperative recurrence of breast cancer (Xiong et al 2021, Yu et al 2021a, Sheng et al 2022). Although
the studies to date have been promising, robust results that have been verified using a large dataset remain
lacking. Furthermore, it should be acknowledged that imaging information is not beyond clinicopathological
factors, such as the molecular subtype, metastatic load in the axilla, and NAC regimen, which should be
considered when designing similar studies.

2.4. Applications of Al in breast MRI

Al techniques that aid in MRI image analysis can facilitate radiologists in clinical decision-making with
enhanced diagnostic efficiency and precision. Such techniques have mainly been applied to lesion detection, risk
assessment, and treatment response prediction (Sheth and Giger 2020, Bitencourt et al,, Satake et al 2022).
Selected articles relating to MRI-based Al studies are summarized in table 3.

2.4.1. Detection and classification

Al based on breast MRI has mainly been used to aid in classifying breast lesions as benign or malignant (Zhang
etal 2020, Potsch et al 2021, Sun et al 2021, Jiang et al 202 1 ¢, Altabella et al 2022, Daimiel Naranjo et al 2022,
Militello et al 2022). Most of these studies achieved comparable classification efficacy to radiologists using an ML
model (Daimiel Naranjo et al 2022) or a DL CNN model (Truhn et al 2019, Chung et al 2022, WitowsKki et al
2022). Ultrafast MRI, which reduces the image acquisition and interpretation time, has attracted increasing
attention in recent years (Jing et al 2022). The DL model can be used for the automatic identification of normal
scans in ultrafast breast tissue, thereby greatly decreasing the MRI screening time and costs (Ayatollahi et al 2021,
Jing et al 2022). Figure 6 shows the process of using DL to exclude lesions with ultrafast breast MRI to shorten
acquisition and reading time. Al has also been used to diagnose clinically challenging lesions, such as non-mass-
like lesions, sub-centimeter lesions, and lesions in patients with dense breasts (Lo Gullo et al 2020, Verburg et al
2022, Wanget al 2022a).
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Figure 6. (A) schematic illustration of the ultrafast breast DCE-MRI classification system, which includes three main stages: breast
region segmentation, maximum intensity projection generation and abnormality prediction. Reproduced from Jing et al (2022). CC
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Table 3. Selected Al studies in breast MRI regarding to tumor detection, classification and prediction.

References Application Al model Main finding
Ayatollahi et al Breast tumor detection A modified 3D Retina- The DL model can efficiently detect benign and malig-
(2021) Net DL model nant lesions on ultrafast DCE-MRI. The model can also
help to detect those less visible hard-to-detect malignant
breast lesions
Jiang et al Breast tumor classification Computer-assisted diag- Al software for MRI can improve radiologists’ perfor-
(2021¢) nostic software (QuantX)  mance with an average AUC of all readers improved from
0.71t0 0.76 in the task of differentiating benign and
malignant breast lesions
Jiang et al Breast tumor classification Radiomics model Radiomics were able to identify TNBC and predict
(2022a) and prognosis prediction TNBC molecular subtypes. Furthermore, radiomics
quantifying the heterogeneity in peritumoral regions can
represent tumor metabolism and immune response pat-
terns, and predict patient outcomes
Zhanget al Molecular subtyping CNN model Deep learning based on MRI can differentiate three kinds
(2021b) of molecular subtypes of breast cancer. The recurrent
neural network has a better performance compared with
conventional CNN model
Bitencourt et al Prediction for biomarker ML radiomics model The ML model incorporating both clinical and MRI
(2020) and treatment response radiomics features, can be used to assess the expression
level of HER2 and can predict the possibility of pCR after
NAC in HER2 overexpressing breast cancer patients
Yuetal (2021b) ALNM prediction ML radiomics model The multiomics incorporating MRI radiomics of tumor
and axillary lymph node, clinicopathologic character-
istics, and molecular subtypes achieved an AUC 0f0.91
to predict ALNM in the external validation cohort
Sutton et al Therapy response ML radiomics model The combination of MRI radiomics and molecular sub-
(2020) evaluation type can predict the pCR after NAC withan AUC 0f 0.78
in the validation set
Lietal (2016) Recurrence risk prediction Radiomics model Breast MR imaging radiomics have the potential to pre-

dict the risk of breast cancer recurrence derived from
MammaPrint, Oncotype DX, and PAMS50 gene assays

Another application of Al is the classification of the pathological or molecular subtypes of breast cancer.
Multiclass molecular subtype differentiation is a substantially more challenging task than diagnosis. Many

studies have explored the potential of radiomics or DL models to classify breast cancer subtypes (Zhang et al
2021b, Zhou etal 2021b, Lee et al 2022, Tsuchiya et al 2022, Yin et al 2022, Sun et al 2022b, Lafc1 et al 2023). In
addition to the molecular subtype, MRI Al can classify the Ki-67 expression and histological grade, which are
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important factors in estimating the biological behavior and treatment sensitivity (Liu et al 2021, Song et al 2021,
Zhang et al 2022, Fan et al 2022b).

2.4.2. Prediction

Similar to the application of Al in breast US, many investigators have evaluated Al techniques for breast MRI in
predicting the ALNM status (Yu et al 2020, Zhang et al 2021a, Yu et al 2021b, Gao et al 2022, Zhan et al 2022, Li
etal 2022b, Wang et al 2022b, Li et al 20223) as well the response to NAC (Braman et al 2017, Banerjee et al 2018,
Braman etal 2019, Liu et al 2019b, Bitencourt et al 2020, Sutton et al 2020, Choudhery et al 2022, Massafra et al
2022, Caballo et al 2023). A recently published study explored the potential of four-dimensional (4D, 3D + time)
ML radiomics based on spatiotemporal information from pretreatment DCE-MRI to identify patients who
achieved pCR following NAC (Caballo et al 2023). Although Al techniques are unlikely to replace invasive
biopsies, they offer the advantage of providing prognostic information that is derived from the entire tumor,
whereas biopsy sampling only represents a small part of the tumor. This may be particularly useful for
monitoring biological changes during treatment.

Al-enhanced MRI has been investigated as a noninvasive predictor of breast cancer prognosis (Eun et al
2021, Maetal 2022, Thakran et al 2022, Fan et al 2022a, Chen et al 2022¢). Fan et al found that the radiogenomic
signature of the texture and morphological features was positively associated with the Oncotype DX RS, and a
predicted RS that was greater than 29.9 was related to poor recurrence-free survival (Fan ef al 2022a). In certain
studies, MR images have been associated with other types of genetic testing, such as the 50-gene PAM50 and
Curebest 95-gene assays, to identify radiogenomics signatures and provide alternatives for patients who did not
undergo gene testing (Li et al 2016, Tokuda et al 2020). Ma et al developed a radiomics model using pre- and
post-NAC DCE-MRI features to predict systemic recurrence in TNBC patients (Ma et al 2022). The radiomics
achieved better predictive performance than the clinical model in predicting the recurrence risk within three
years following NAC, with an AUC 0f 0.933. Thakran et al concluded that the radiomics features of parametric
response maps that were derived from DCE-MRI kinetic maps achieved the best predictive performance for
recurrence risk, with a C-statistic of 0.72 (Thakran et al 2022).

2.5. Applications of Al in breast PET/CT imaging

Breast imaging Al models based on PET /CT have also been studied in recent years (Romeo et al 2021,
Sadaghiani etal 2021, Urso et al 2022). Applications of PET/CT include tumor staging, the evaluation of the
treatment response, and suspected disease recurrence (Fowler and Cho 2021, Kikano et al 2021, Sarikaya 2021).
Table 4 listed some elected Al studies in breast PET-CT or PET-MRI regarding to tumor detection, classification
and prediction.

Krajnc et al established an ML model based on PET/CT to aid in the differentiation of benign and malignant
tumors. Their method achieved an AUC of 0.81 for the differentiation and could identify TNBC with an AUC of
0.82 (Krajnc etal 2021). The PET and MRI-derived radiomic features were found to be associated with the tumor
grade, overall stage, subtypes, prognosis (Huang et al 2018), and hormone receptors (Umutlu et al 2021).
However, Araz et al found that all radiomics parameters from PET/CT failed to predict the hormone receptors
(Araz etal 2022). PET-derived radiomics has also been applied to the prediction of other rare malignant breast
cancers, such as breast lymphoma (Ou et al 2019).

As mentioned previously, ALNM is one of the most important clinical factors in determining treatment
strategies and prognostic outcomes. PET/CT provides high specificity but relatively low sensitivity for ALNM
evaluation. Advanced Al techniques have been applied to address this issue and promising results have been
achieved (Lietal 2021, Song 2021, Chen et al 2022a). Chen et alused PET /CT radiomics to identify occult
ALNM in clinically node-negative patients (Chen et al 2022a). The developed model improved the diagnostic
performance of occult ALNM, with a mean AUC 0f 0.817 and mean accuracy of 0.812. With the prevalence of
COVID-19 mRNA vaccinations in recent years, the correct differentiation between metastatic and reactive ALN
has become a new challenge. Eifer et al found that the radiomics features that were extracted from PET/CT
performed effectively in differentiating between breast-related ALNM and COVID-19 vaccine-related axillary
lymphadenopathy (Eifer et al 2022).

The application of PET-based Al models for further identification of patients who may benefit from NAC at
the early stage is an area of significant interest owing to the capability to quantify metabolic activity in breast
tumors (Antunovic etal 2019, Yoon et al 2019, Li et al 2020, Roy et al 2022, Umutlu et al 2022, Yang et al 2022).

3. Challenges of Al in breast imaging

In addition to screening and detection, the ideal roles of Al in breast imaging include aiding radiologists in
reaching the most appropriate diagnosis, assisting clinicians in creating the best treatment plan, and
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Table 4. Selected Al studies in breast PET-CT or PET-MRI regarding to tumor detection, classification and prediction.

References Application Al model Main finding
Krajncetal Breast tumor detection and ML model The ML model yielded good performance for cancer detection
(2021) differentiation (80% sensitivity, 78% specificity, 80% accuracy, 0.81 AUC), and

for the identification of TNBC (85% sensitivity, 78% specificity,
82% accuracy, 0.82 AUC). which is higher than the SUV(max)
model (0.76 AUC in cancer detection and 0.70 AUC in predict-

ing TNBC)
Umutluet al Molecular subtyping and ML radiomics MR and PET data provided good prediction for hormone recep-
(2021) tumor decoding model tor status and proliferation rate (estrogen receptor AUC 0.87,

progestorone receptor AUC 0.88, Ki-67 AUC 0.997) as well as
lymphonodular (AUC 0.81) and distant metastatic spread

(AUC0.99)
Song (2021) ALNM prediction ML radiomics The ML-based 18F-FDG PET/CT radiomics model showed
model good performance for the prediction of ALN metastasis in the

test cohorts with the sensitivity, specificity, and accuracy of
90.9%, 71.4%, and 80%, respectively

Chenetal Occult ALNM detection ML radiomics Radiomics features based on the random forest model could
(2022a) model predict the occult ALNM in infiltrative ductal carcinoma
patients (mean AUC, 0.817; mean accuracy, 81.2%)
Umutlu et al pCR prediction ML radiomics The combined '*F-FDG PET/MRI radiomics features enables
(2022) model the prediction of pCR in breast cancer patients, especially in
those with HR+/HER2- receptor status (AUC 0.94)
Yang (2022) pCR prediction ML radiomics The PET/CT-based radiomics analysis might provide efficient
model predictors of pCR in patients with breast cancer with the AUC

ranging from 0.819 to 0.849 in the validation cohort

incorporating other clinical-pathological-immunohistochemical variables to predict the risk of recurrence or
metastasis. Thus, breast imaging Al is expected to contribute to precision medicine and personalized treatment.
However, various technical and clinical challenges exist in the sustainable development of breast imaging Al.

3.1. Technical challenges

First, big data forms the basis of Al in breast imaging. However, clinical breast images are not rich enough at one
center. Multicenter studies are required to address this problem. Moreover, this challenge may be reinforced by
the nonstandard nature of ultrasound images, e.g. deviations in the image collection, equipment, and image
setting. This may be alleviated through accumulating enough data from various ultrasound equipment at
different settings and developing sophisticated Al models to tolerate those interferences.

Second, the uninterpretability of current DL models that are applied to breast imaging makes it challenging
to transfer the technique from research to real clinical practice despite of the applications commercial Al
products. Such a challenge may be alleviated by the development of interpretable DL models in the future (Liu
etal2019a, Vellido 2020).

Third, as most current DL models are supervised, the model training process relies on well-defined training
data. Thus, all regions of interest on the breast images should be well delineated, which requires substantial labor
and is sensitive to subjective errors. The requirement of manually delineated labels in breast imaging may pose a
significant challenge for along time (Bi et al 2019). This challenge may be mitigated using unsupervised DL
models which get rid of the delineation of labels (Chen ef al 2023).

3.2. Clinical challenges
Although Al s a robust tool for dealing with complicated tasks, the integration of the computing resources that
are required by Al necessitates human input, especially in the training stage. However, clinicians have limited
time to collect massive amounts of data, which is why most related Al studies include a limited number of cases
or focus on specific medical information (Nagendran ef al 2020). Most studies evaluated the applications of Al
based on one imaging modality. The combination of multiple imaging modalities is desired (Romeo et al 2021).
Furthermore, the ethical issues relating to patient privacy and data security in breast imaging Al cannot be
ignored. The protection of data security is critical when sharing data, especially in multicenter studies (Hickman
etal2021).

Tumor heterogeneity is a major obstacle for radiologists to give accuate diagnosis for each single case in the
clinical circumstance as a result of variable imaging apperances, but also provides an opportunity for the
continuous exploration of Al in breast imaging. It is difficult for radiologists to determine the pathological
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nature of certain atypical breast lesions owing to the high heterogeneity of cancer. Thus, Al is desirable for aiding
radiologists in reaching the most appropriate diagnosis for such breast lesions. Moreover, Al is expected to aid in
evaluating the prospects, success, and failure of treatment outcomes based on learning from the successful
treatment of clinical cases (Maddox et al 2019). However, the challenge from tumor heterogeneity also exists for
Al to reach perfect computation results and agreement among different studies. An integrated model to
incorporate imaging data with clinical-pathological-immunohistochemical-genetic information is desired to
overcome the effec of tumor heterogeneity.

The role of Al systems in diagnosis applications has been disputed (Giger 2010). Should Al be used as the
second reader or replace human readers if its standalone performance is comparable or superior to that of
radiologists? Furthermore, when a controversy arises between Al and human readers, which diagnostic
conclusion should be the final one? These questions need to be answered before Al can be applied extensively in
clinical practice.

Breast imaging is useful for preoperative diagnosis, and its significance in guiding treatment strategies and
prognosis prediction should also be explored. However, it is difficult to integrate breast imaging Al with clinical
datasets without the support of clinicians. Fortunately, an increasing number of breast clinicians are focusing on
the integration of imaging data and other related information into Al models to cater to personalized treatment
and precision medicine (Jiang et al 2022a). Moreover, multi-omics studies have become a hot topic for
characterizing the molecular biology of tumors, including the genomics, transcriptomics, proteomics, and
metabolomics (Ponzi et al 2021). Current evidence suggests that the clinical transformation of most developed
high-performance Al algorithms remains in the initial stages (Nagendran et al 2020). It is expected that all
information of each specific patient will be consolidated to build a large data archive for training robust Al
models at all institutions in the near future. Personalized treatment and prognosis prediction for subsequent
breast cancer patients can hopefully be realized using such models.

4, Future work

Breast imaging Al is not expected to exceed radiologists for lesions with typical benign or malignant imaging
features in the diagnosis of breast cancer; however, it can offer significant advantages for lesions that are difficult
for radiologists to differentiate. Therefore, further studies to evaluate the performance of Al in the diagnosis of
atypical breast lesions are warranted. Furthermore, the combination of multiple imaging modalities may
provide beneficial reference resources for clinical decisions.

AT has also undergone rapid development in medical fields other than medical imaging in recent years.
Imaging data, pathological sections, and gene sequencing of patients have become important prerequisites for
the accurate diagnosis and treatment of tumors. However, most Al models that have been proposed by
researchers to date are based on a single imaging system and lack model training in combination with
information from other imaging methods as well as information from electronic medical records. Therefore, the
integration of this information with Al models is of great importance for the development of individualized
treatment strategies. To this end, Al is expected to be incorporated into clinical practice and to become routinely
used by clinical workers.

5. Conclusions

In this article, we have justified the necessity of introducing Al techniques into breast imaging, reviewed the
applications of Al in breast imaging modalities, and presented technical and clinical challenges in this area. The
key conclusions can be summarized as follows: (1) Breast imaging Al is clinically necessary and practically
feasible in the era of precision medicine and personalized treatment. (2) The expectation should be for Al to aid
radiologists in dealing with difficult cases, rather than to replace radiologists, in the diagnosis of breast cancer. (3)
The future integration of multiple imaging modalities as well as radiomics with clinical data and multi-omics is
warranted.

Acknowledgments
We thank Miss Yuechen Huang from the Department of Industrial Design, Xi’an Jiaotong-Liverpool University

for her contribution in designing the graphs for the article. We would like to thank Editage (www.editage.cn) for
English language editing.

15


http://www.editage.cn

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary
information files).

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 81830058, 81901760,
82102070, 82151318), Pilot Medical Construction Project of Fudan University (Grant IDF 152076), and
Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant
202275QD07), Scientific Development funds for Local Region from the Chinese Government in 2023 (Grant
No. XZ202301YD0032C), Jilin Province science and technology development plan project (Grant No.
20230204094YY).

Conflict of interest

None.

ORCID iDs

Jia-wei Li ® https://orcid.org/0000-0003-4270-0681
Jian-gang Chen @ https:/orcid.org/0000-0001-8775-0282
Cai Chang @ https:/orcid.org/0000-0003-4914-733X

References

Abdelhafiz D, Yang C, Ammar R and Nabavi S 2019 Deep convolutional neural networks for mammography: advances, challenges and
applications BMC Bioinf. 20(Suppl 11) 281

Aerts HJ 2016 The potential of radiomic-based phenotyping in precision medicine: a review JAMA Oncol. 2 1636—42 JAMA Oncol.

Aerts HJ et al 2014 Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach Nat. Commun. 54006

Akkus Z, CaiJ, Boonrod A, Zeinoddini A, Weston A D, Philbrick K A and Erickson BJ 2019 A survey of deep-learning applications in
ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow J. Am Coll. Radiol. 16 1318-28

Al-Masni M A, Al-Antari M A, ParkJ M, Gi G, Kim T'Y, Rivera P, Valarezo E, Choi M T, Han SM and Kim T S 2018 Simultaneous detection
and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system Comput. Methods Programs
Biomed. 157 85-94

Almendro V et al 2014 Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and
phenotypic cellular diversity Cell Rep. 6 514—27

Altabella L, Benetti G, Camera L, Cardano G, Montemezzi S and Cavedon C 2022 Machine learning for multi-parametric breast MRI:
radiomics-based approaches for lesion classification Phys. Med. Biol. 67 15TR01

Antunovic Letal 2019 PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant
chemotherapy Eur. J. Nucl. Med. Mol. Imaging 46 1468—77

Araz M, Soydal C, Giindiiz P, Kirmiz1 A, Bakirarar B, Dizbay Sak S and Ozkan E 2022 Can radiomics analyses in (18)F-FDG PET/CT images
of primary breast carcinoma predict hormone receptor status? Mol. Iinaging Radionucl. Ther. 31 49-56

Arieno A, Chan A and Destounis S V 2019 A review of the role of augmented intelligence in breast imaging: from automated breast density
assessment to risk stratification Am. J. Roentgenol. 212 259—70

Ayatollahi F, Shokouhi S B, Mann R M and Teuwen ] 2021 Automatic breast lesion detection in ultrafast DCE-MRI using deep learning Med.
Phys. 48 5897-907

Bahl M 2020 Artificial Intelligence: a primer for breast imaging radiologists J. Breast Imaging 2 304—14

Bahl M 2022 Updates in artificial intelligence for breast imaging Semin. Roentgenol. 57 160—7

Banerjee I, Malladi S, Lee D, Depeursinge A, Telli M, Lipson ], Golden D and Rubin D L 2018 Assessing treatment response in triple-negative
breast cancer from quantitative image analysis in perfusion magnetic resonance imaging J. Med. Imaging (Bellingham) 5 011008

BiW Letal 2019 Artificial intelligence in cancer imaging: clinical challenges and applications CA Cancer J. Clin. 69 127-57

Birdwell R L, Ikeda D M, O’Shaughnessy K F and Sickles E A 2001 Mammographic characteristics of 115 missed cancers later detected with
screening mammography and the potential utility of computer-aided detection Radiology 219 192-202

Bitencourt A, Daimiel Naranjo I, Lo Gullo R, Rossi Saccarelli C and Pinker K 2021 Al-enhanced breast imaging: where are we and where are
we heading? Eur. J. Radiol. 142 109882

Bitencourt A G V et al 2020 MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after
neoadjuvant therapy in HER2 overexpressing breast cancer EBio. Medicine 61 103042

Braman N et al 2019 Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for
HER?2 (ERBB2)-positive breast cancer JAMA Netw. Open 2 192561

Braman N M, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, Plecha D and Madabhushi A 2017 Intratumoral and peritumoral
radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-
MRI Breast Cancer Res. 19 57

BurtJ R, Torosdagli N, Khosravan N, RaviPrakash H, Mortazi A, Tissavirasingham F, Hussein S and Bagci U 2018 Deep learning beyond cats
and dogs: recent advances in diagnosing breast cancer with deep neural networks Br. J. Radiol. 9120170545

16


https://orcid.org/0000-0003-4270-0681
https://orcid.org/0000-0003-4270-0681
https://orcid.org/0000-0003-4270-0681
https://orcid.org/0000-0003-4270-0681
https://orcid.org/0000-0001-8775-0282
https://orcid.org/0000-0001-8775-0282
https://orcid.org/0000-0001-8775-0282
https://orcid.org/0000-0001-8775-0282
https://orcid.org/0000-0003-4914-733X
https://orcid.org/0000-0003-4914-733X
https://orcid.org/0000-0003-4914-733X
https://orcid.org/0000-0003-4914-733X
https://doi.org/10.1186/s12859-019-2823-4
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1038/ncomms5006
https://doi.org/10.1016/j.jacr.2019.06.004
https://doi.org/10.1016/j.jacr.2019.06.004
https://doi.org/10.1016/j.jacr.2019.06.004
https://doi.org/10.1016/j.cmpb.2018.01.017
https://doi.org/10.1016/j.cmpb.2018.01.017
https://doi.org/10.1016/j.cmpb.2018.01.017
https://doi.org/10.1016/j.celrep.2013.12.041
https://doi.org/10.1016/j.celrep.2013.12.041
https://doi.org/10.1016/j.celrep.2013.12.041
https://doi.org/10.1088/1361-6560/ac7d8f
https://doi.org/10.1007/s00259-019-04313-8
https://doi.org/10.1007/s00259-019-04313-8
https://doi.org/10.1007/s00259-019-04313-8
https://doi.org/10.4274/mirt.galenos.2022.59140
https://doi.org/10.4274/mirt.galenos.2022.59140
https://doi.org/10.4274/mirt.galenos.2022.59140
https://doi.org/10.2214/AJR.18.20391
https://doi.org/10.2214/AJR.18.20391
https://doi.org/10.2214/AJR.18.20391
https://doi.org/10.1002/mp.15156
https://doi.org/10.1002/mp.15156
https://doi.org/10.1002/mp.15156
https://doi.org/10.1093/jbi/wbaa033
https://doi.org/10.1093/jbi/wbaa033
https://doi.org/10.1093/jbi/wbaa033
https://doi.org/10.1053/j.ro.2021.12.005
https://doi.org/10.1053/j.ro.2021.12.005
https://doi.org/10.1053/j.ro.2021.12.005
https://doi.org/10.1117/1.JMI.5.1.011008
https://doi.org/10.3322/caac.21552
https://doi.org/10.3322/caac.21552
https://doi.org/10.3322/caac.21552
https://doi.org/10.1148/radiology.219.1.r01ap16192
https://doi.org/10.1148/radiology.219.1.r01ap16192
https://doi.org/10.1148/radiology.219.1.r01ap16192
https://doi.org/10.1016/j.ejrad.2021.109882
https://doi.org/10.1016/j.ebiom.2020.103042
https://doi.org/10.1001/jamanetworkopen.2019.2561
https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.1259/bjr.20170545

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

Byra M, Dobruch-Sobczak K, Klimonda Z, Piotrzkowska-Wroblewska H and Litniewski ] 2021 Early prediction of response to neoadjuvant
chemotherapy in breast cancer sonography using Siamese convolutional neural networks IEEE J. Biomed. Health Inform 25 797-805

Byra M, Galperin M, Ojeda-Fournier H, Olson L, O’Boyle M, Comstock C and Andre M 2019 Breast mass classification in sonography with
transfer learning using a deep convolutional neural network and color conversion Med. Phys. 46 74655

Caballo M, Sanderink W B G, Han L, Gao Y, Athanasiou A and Mann R M 2023 Four-dimensional machine learning radiomics for the
pretreatment assessment of breast cancer pathologic complete response to neoadjuvant chemotherapy in dynamic contrast-enhanced
MRIJ. Magn. Reson. Imaging 57 97—110

CaoZ,DuanL, Yang G, Yue T and Chen Q 2019 An experimental study on breast lesion detection and classification from ultrasound images
using deep learning architectures BMC Med. Imaging 19 51

Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, Gallivanone F, Cozzi A, D’Amico N C and Sardanelli F 2021 AI
applications to medical images: from machine learning to deep learning Phys. Med. 83 9-24

Chartrand G, Cheng P M, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S and Tang A 2017 Deep learning: a primer for radiologists
Radiographics37 2113-31

ChenK, Yin G and Xu W 2022a Predictive value of (18)F-FDG PET/CT-based radiomics model for occult axillary lymph node metastasis in
clinically node-negative breast cancer Diagnostics (Basel) 12 997

Chen X, ZhouBY, Xiong L F, Zhao CK, Wang L F, Zhang Y W and Xu H X 2022b Balancing regional and global information: an interactive
segmentation framework for ultrasound breast lesion Biomed. Signal Process. Control 77 103723

ChenY, Tang W, Liu W, Li R, Wang Q, Shen X, Gong J, Gu Y and Peng W 2022¢ Multiparametric MR imaging radiomics signatures for
assessing the recurrence risk of ER+/HER2- breast cancer quantified with 21-gene recurrence score J. Magn. Reson. Imaging 28 28547

Chen Y X, Feng D and Shen H B 2023 Cryo-EM image alignment: from pair-wise to joint with deep unsupervised difference learning
J. Struct. Biol. 215 107940

Choi] S,Han BK,Ko ES, BaeJM, Ko EY, Song SH, Kwon MR, Shin ] H and Hahn S Y 2019 Effect of a deep learning framework-based
computer-aided diagnosis system on the diagnostic performance of radiologists in differentiating between malignant and benign
masses on breast ultrasonography Korean J. Radiol. 20 749-58

Choudhery S, Gomez-Cardona D, Favazza C P, Hoskin T L, Haddad T C, Goetz M P and Boughey ] C 2022 MRI radiomics for assessment of
molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant
chemotherapy Acad. Radiol. 29 S145-54

Chung M, Calabrese E, Mongan J, Ray K M, Hayward ] H, Kelil T, Sieberg R, Hylton N, Joe BN and Lee A' Y 2022 Deep learning to simulate
contrast-enhanced breast MRI of invasive breast cancer Radiology 15 213199

Ciritsis A, Rossi C, Eberhard M, Marcon M, Becker A S and Boss A 2019 Automatic classification of ultrasound breast lesions using a deep
convolutional neural network mimicking human decision-making Eur. Radiol. 29 5458—68

Coates A S, Winer E P, Goldhirsch A, Gelber R D, Gnant M, Piccart-Gebhart M, Thurlimann B and Senn HJ 2015 Tailoring therapies—
improving the management of early breast cancer: St Gallen International Expert Consensus on the primary therapy of early breast
cancer 2015 Ann. Oncol. 26 1533—46

CSCO 2021 2021 guidelines for the diagnosis and treatment of breast cancer by Chinese Society of Clinical Oncology (CSCO) China
Oncology 31 954—1040

Cui H, Zhang D, Peng F, Kong H, Guo Q, Wu T, Wen X, Zhang L and Tian ] 2021 Identifying ultrasound features of positive expression of
Ki67 and P53 in breast cancer using radiomics Asia Pac. J. Clin. Oncol. 17 e176-84

Daimiel Naranjo I, Gibbs P, Reiner J S, Lo Gullo R, Thakur S B, Jochelson M S, Thakur N, Baltzer P A T, Helbich T H and Pinker K 2022
Breast lesion classification with multiparametric breast MRI using radiomics and machine learning: a comparison with radiologists’
performance Cancers (Basel) 14 1743

Dembrower K, Liu Y, Azizpour H, Eklund M, Smith K, Lindholm P and Strand F 2020 Comparison of a deep learning risk score and
standard mammographic density score for breast cancer risk prediction Radiology 294 26572

Destounis S V, DiNitto P, Logan-Young W, Bonaccio E, Zuley M L and Willison K M 2004 Can computer-aided detection with double
reading of screening mammograms help decrease the false-negative rate? Initial experience Radiology 232 578-84

Di Segni M et al 2018 Automated classification of focal breast lesions according to S-detect: validation and role as a clinical and teaching tool
J. Ultrasound 21 105-18

Eifer M efal 2022 FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19
vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study Eur. Radiol. 32 5921-9

EunNL, KangD, SonEJ, Youk ] H, Kim J A and Gweon H M 2021 Texture analysis using machine learning-based 3-T magnetic resonance
imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy Eur. Radiol. 31 6916-28

Fan M, CuiY, YouC, LiuL, GuY, Peng W, Bai Q, Gao X and Li L 2022a Radiogenomic signatures of oncotype DX recurrence score enable
prediction of survival in estrogen receptor-positive breast cancer: a multicohort study Radiology 302 51624

Fan M, Yuan C, Huang G, Xu M, Wang S, Gao X and Li L 2022b A framework for deep multitask learning with multiparametric magnetic
resonance imaging for the joint prediction of histological characteristics in breast cancer IEEE J. Biomed. Health Inform. 26 3884-95

Fenton ] ] et al 2007 Influence of computer-aided detection on performance of screening mammography New Engl. . Med. 356 1399-409

FerlayJ, Colombet M, Soerjomataram I, Parkin D M, Pifieros M, Znaor A and Bray F 2021 Cancer statistics for the year 2020: an overview
Int. J. Cancer. 149 778-89

Fowler AM and Cho SY 2021 PET imaging for breast cancer Radiol. Clin. North Am 59 725-35

Freer T W and Ulissey M ] 2001 Screening mammography with computer-aided detection: prospective study of 12,860 patients in a
community breast center Radiology 220 781-6

Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kasahara M, Oda G, Ishiba T, Nakagawa T and Tateishi U 2019 Distinction between
benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network Jpn. J.
Radiol. 37 46672

Galati F, Moffa G and Pediconi F 2022 Breast imaging: beyond the detection Eur. J. Radiol. 146 110051

GaoJ etal 2022 Attention-based deep learning for the preoperative differentiation of axillary lymph node metastasis in breast cancer on
DCE-MRIJ. Magn. Reson. Imaging 11 28464

GaoJJand Swain SM 2018 Luminal a breast cancer and molecular assays: a review Oncologist 23 556—65

Geras KJ, Mann RM and Moy L 2019 Artificial intelligence for mammography and digital breast tomosynthesis: current concepts and future
perspectives Radiology 293 24659

Giger M L2010 Update on the potential of computer-aided diagnosis for breast cancer Future Oncol. 6 1-4

Gillies R J, Kinahan P E and Hricak H 2016 Radiomics: images are more than pictures, they are data Radiology 278 56377

Ginter P S, Tang X and Shin S ] 2020 A review of mucinous lesions of the breast Breast J. 26 1168—78

17


https://doi.org/10.1109/JBHI.2020.3008040
https://doi.org/10.1109/JBHI.2020.3008040
https://doi.org/10.1109/JBHI.2020.3008040
https://doi.org/10.1002/mp.13361
https://doi.org/10.1002/mp.13361
https://doi.org/10.1002/mp.13361
https://doi.org/10.1002/jmri.28273
https://doi.org/10.1002/jmri.28273
https://doi.org/10.1002/jmri.28273
https://doi.org/10.1186/s12880-019-0349-x
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1016/j.ejmp.2021.02.006
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.3390/diagnostics12040997
https://doi.org/10.1016/j.bspc.2022.103723
https://doi.org/10.1002/jmri.28547
https://doi.org/10.1016/j.jsb.2023.107940
https://doi.org/10.3348/kjr.2018.0530
https://doi.org/10.3348/kjr.2018.0530
https://doi.org/10.3348/kjr.2018.0530
https://doi.org/10.1016/j.acra.2020.10.020
https://doi.org/10.1016/j.acra.2020.10.020
https://doi.org/10.1016/j.acra.2020.10.020
https://doi.org/10.1148/radiol.213199
https://doi.org/10.1007/s00330-019-06118-7
https://doi.org/10.1007/s00330-019-06118-7
https://doi.org/10.1007/s00330-019-06118-7
https://doi.org/10.1093/annonc/mdv221
https://doi.org/10.1093/annonc/mdv221
https://doi.org/10.1093/annonc/mdv221
https://doi.org/10.19401/j.cnki.1007-3639.2021.10.013
https://doi.org/10.19401/j.cnki.1007-3639.2021.10.013
https://doi.org/10.19401/j.cnki.1007-3639.2021.10.013
https://doi.org/10.1111/ajco.13397
https://doi.org/10.1111/ajco.13397
https://doi.org/10.1111/ajco.13397
https://doi.org/10.3390/cancers14071743
https://doi.org/10.1148/radiol.2019190872
https://doi.org/10.1148/radiol.2019190872
https://doi.org/10.1148/radiol.2019190872
https://doi.org/10.1148/radiol.2322030034
https://doi.org/10.1148/radiol.2322030034
https://doi.org/10.1148/radiol.2322030034
https://doi.org/10.1007/s40477-018-0297-2
https://doi.org/10.1007/s40477-018-0297-2
https://doi.org/10.1007/s40477-018-0297-2
https://doi.org/10.1007/s00330-022-08725-3
https://doi.org/10.1007/s00330-022-08725-3
https://doi.org/10.1007/s00330-022-08725-3
https://doi.org/10.1007/s00330-021-07816-x
https://doi.org/10.1007/s00330-021-07816-x
https://doi.org/10.1007/s00330-021-07816-x
https://doi.org/10.1148/radiol.2021210738
https://doi.org/10.1148/radiol.2021210738
https://doi.org/10.1148/radiol.2021210738
https://doi.org/10.1109/JBHI.2022.3179014
https://doi.org/10.1109/JBHI.2022.3179014
https://doi.org/10.1109/JBHI.2022.3179014
https://doi.org/10.1056/NEJMoa066099
https://doi.org/10.1056/NEJMoa066099
https://doi.org/10.1056/NEJMoa066099
https://doi.org/10.1002/ijc.33588
https://doi.org/10.1002/ijc.33588
https://doi.org/10.1002/ijc.33588
https://doi.org/10.1016/j.rcl.2021.05.004
https://doi.org/10.1016/j.rcl.2021.05.004
https://doi.org/10.1016/j.rcl.2021.05.004
https://doi.org/10.1148/radiol.2203001282
https://doi.org/10.1148/radiol.2203001282
https://doi.org/10.1148/radiol.2203001282
https://doi.org/10.1007/s11604-019-00831-5
https://doi.org/10.1007/s11604-019-00831-5
https://doi.org/10.1007/s11604-019-00831-5
https://doi.org/10.1016/j.ejrad.2021.110051
https://doi.org/10.1002/jmri.28464
https://doi.org/10.1634/theoncologist.2017-0535
https://doi.org/10.1634/theoncologist.2017-0535
https://doi.org/10.1634/theoncologist.2017-0535
https://doi.org/10.1148/radiol.2019182627
https://doi.org/10.1148/radiol.2019182627
https://doi.org/10.1148/radiol.2019182627
https://doi.org/10.2217/fon.09.154
https://doi.org/10.2217/fon.09.154
https://doi.org/10.2217/fon.09.154
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1111/tbj.13878
https://doi.org/10.1111/tbj.13878
https://doi.org/10.1111/tbj.13878

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

Goldhirsch A, Winer E P, Coates A S, Gelber R D, Piccart-Gebhart M, Thurlimann B and Senn H ] 2013 Personalizing the treatment of
women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast
cancer 2013 Ann. Oncol. 24 2206-23

Gong T Q et al 2022 Proteome-centric cross-omics characterization and integrated network analyses of triple-negative breast cancer Cell
Rep. 38 110460

GongY et al 2021 Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets Cell Metab. 33
51-.e9

GuJand Jiang T 2022 Ultrasound radiomics in personalized breast management: current status and future prospects Front. Oncol. 12
963612

GuJ, Tong T, He C, XuM, Yang X, Tian ], Jiang T and Wang K 2022 Deep learning radiomics of ultrasonography can predict response to
neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study Eur. Radiol. 32 2099109

GuP, Lee WM, Roubidoux M A, Yuan J, Wang X and Carson P L 2016 Automated 3D ultrasound image segmentation to aid breast cancer
image interpretation Ultrasonics 65 51-8

Guo R, Lu G, Qin B and Fei B 2018a Ultrasound imaging technologies for breast cancer detection and management: a review Ultrasound
Med. Biol. 44 37-70

Guo X et al 2020 Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in
primary breast cancer EBioMedicine 60 103018

GuoY,HuY, Qiao M, WangY, Yu]J, LiJ and Chang C 2018b Radiomics analysis on ultrasound for prediction of biologic behavior in breast
invasive ductal carcinoma Clin. Breast Cancer 18 e335-44

Han S, Kang HK, JeongJ Y, Park M H, Kim W, Bang W Cand Seong Y K 2017 A deep learning framework for supporting the classification of
breast lesions in ultrasound images Phys. Med. Biol. 62771428

Harbeck N and Gnant M 2017 Breast cancer Lancet 389 1134-50

Hejduk P, Marcon M, Unkelbach J, Ciritsis A, Rossi C, Borkowski K and Boss A 2022 Fully automatic classification of automated breast
ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network Eur. Radiol. 32 4868-78

Hickman S E, Baxter G Cand Gilbert F] 2021 Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and
limitations Br. J. Cancer 125 15-22

HouY Z, TianY, Bai Z, MiM, Wu Y L, Zhang X, Chang C and Zhou S C 2022 Application of artificial intelligence ultrasound in breast cancer
screening in Shigatse Tibet Chin. J. Ultrasonogr. 31 927-32

Huang SY etal 2018 Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis NPJ Breast Cancer
424

Hwang SY, Park S and Kwon Y 2019 Recent therapeutic trends and promising targets in triple negative breast cancer Pharmacol. Ther. 199
30-57

Ibraheem S A, Mahmud R, Mohamad Saini S, Abu Hassan H, Keiteb A S and Dirie A M 2022 Evaluation of diagnostic performance of
automatic breast volume scanner compared to handheld ultrasound on different breast lesions: a systematic review Diagnostics (Basel)
12541

Issa-Nummer Y et al 2013 Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in
HER2-negative breast cancer—a substudy of the neoadjuvant GeparQuinto trial PLoS One 8 €79775

Jackson V P 2004 Diagnostic mammography Radiol. Clin. North Am 42 85370

Januskevi¢iene I and Petrikaité V 2019 Heterogeneity of breast cancer: the importance of interaction between different tumor cell
populations Life Sci. 239 117009

Jiang L et al 2022a Radiogenomic analysis reveals tumor heterogeneity of triple-negative breast cancer Cell Rep. Med. 3 100694

Jiang M, Li CL, Luo XM, Chuan Z R, Chen RX, Tang S C, Lv W Z, Cui X W and Dietrich C F 2022b Radiomics model based on shear-wave
elastography in the assessment of axillary lymph node status in early-stage breast cancer Eur. Radiol. 32 2313-25

JiangM, LiCL, Luo XM, Chuan ZR, Lv W Z, Li X, Cui X W and Dietrich C F 2021a Ultrasound-based deep learning radiomics in the
assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer Eur. J. Cancer 147
95-105

Jiang M, Zhang D, Tang S C, Luo X M, Chuan Z R, Lv W Z, Jiang F, Ni X J, Cui X W and Dietrich C F 2021b Deep learning with convolutional
neural network in the assessment of breast cancer molecular subtypes based on US images: a multicenter retrospective study Eur.
Radiol. 31 367382

Jiang Y, Edwards A V and Newstead G M 2021c Artificial intelligence applied to breast MRI for improved diagnosis Radiology 298 38—46

Jiang Y Z et al 2021d Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast
cancer: the FUTURE trial Cell Res. 31 178-86

Jiang Y Z et al 2019 Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies Cancer Cell 35
428-40

Jing X, Wielema M, Cornelissen L], van Gent M, Iwema W M, Zheng S, Sijens P E, Oudkerk M, Dorrius M D and van Ooijen P M A 2022
Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time Eur. Radiol. 32
8706-15

Kikano E G, Avril S, Marshall H, Jones R S, Montero A J and Avril N 2021 PET/CT variants and pitfalls in breast cancers Semin. Nucl. Med.
51474-84

Kim HE, Kim H H, Han B K, Kim K H, Han K, Nam H, Lee E H and Kim E K 2020 Changes in cancer detection and false-positive recall in
mammography using artificial intelligence: a retrospective, multireader study Lancet Digit. Health 2 e138—48

Kim K, Song M K, Kim E K and Yoon J H 2017 Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the
diagnostic performance and agreement with a dedicated breast radiologist Ultrasonography 36 3—9

Kohli M, Prevedello L M, Filice R W and Geis ] R 2017 Implementing machine learning in radiology practice and research Am. J. Roentgenol.
208 75460

KooiT, Litjens G, van Ginneken B, Gubern-Mérida A, Sdnchez CI, Mann R, den Heeten A and Karssemeijer N 2017 Large scale deep
learning for computer aided detection of mammographic lesions Med. Image Anal. 35 303—12

Krajnc D efal 2021 Breast tumor characterization using [(18)F]JFDG-PET/CT imaging combined with data preprocessing and radiomics
Cancers (Basel) 13 1249

Lafc1 0, Celepli P, Seher Oztekin P and Kosar P N 2023 DCE-MRI radiomics analysis in differentiating Luminal A and Luminal B breast
cancer molecular subtypes Acad. Radiol. 30 229

LeEPV,WangY, Huang Y, Hickman S and Gilbert F ] 2019 Artificial intelligence in breast imaging Clin. Radiol. 74 35766

18


https://doi.org/10.1093/annonc/mdt303
https://doi.org/10.1093/annonc/mdt303
https://doi.org/10.1093/annonc/mdt303
https://doi.org/10.1016/j.celrep.2022.110460
https://doi.org/10.1016/j.cmet.2020.10.012
https://doi.org/10.1016/j.cmet.2020.10.012
https://doi.org/10.3389/fonc.2022.963612
https://doi.org/10.3389/fonc.2022.963612
https://doi.org/10.1007/s00330-021-08293-y
https://doi.org/10.1007/s00330-021-08293-y
https://doi.org/10.1007/s00330-021-08293-y
https://doi.org/10.1016/j.ultras.2015.10.023
https://doi.org/10.1016/j.ultras.2015.10.023
https://doi.org/10.1016/j.ultras.2015.10.023
https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
https://doi.org/10.1016/j.ebiom.2020.103018
https://doi.org/10.1016/j.clbc.2017.08.002
https://doi.org/10.1016/j.clbc.2017.08.002
https://doi.org/10.1016/j.clbc.2017.08.002
https://doi.org/10.1088/1361-6560/aa82ec
https://doi.org/10.1088/1361-6560/aa82ec
https://doi.org/10.1088/1361-6560/aa82ec
https://doi.org/10.1016/S0140-6736(16)31891-8
https://doi.org/10.1016/S0140-6736(16)31891-8
https://doi.org/10.1016/S0140-6736(16)31891-8
https://doi.org/10.1007/s00330-022-08558-0
https://doi.org/10.1007/s00330-022-08558-0
https://doi.org/10.1007/s00330-022-08558-0
https://doi.org/10.1038/s41416-021-01333-w
https://doi.org/10.1038/s41416-021-01333-w
https://doi.org/10.1038/s41416-021-01333-w
https://doi.org/10.3760/cma.j.cn131148-20220319-00186
https://doi.org/10.3760/cma.j.cn131148-20220319-00186
https://doi.org/10.3760/cma.j.cn131148-20220319-00186
https://doi.org/10.1038/s41523-018-0078-2
https://doi.org/10.1016/j.pharmthera.2019.02.006
https://doi.org/10.1016/j.pharmthera.2019.02.006
https://doi.org/10.1016/j.pharmthera.2019.02.006
https://doi.org/10.1016/j.pharmthera.2019.02.006
https://doi.org/10.3390/diagnostics12020541
https://doi.org/10.1371/journal.pone.0079775
https://doi.org/10.1016/j.rcl.2004.06.002
https://doi.org/10.1016/j.rcl.2004.06.002
https://doi.org/10.1016/j.rcl.2004.06.002
https://doi.org/10.1016/j.lfs.2019.117009
https://doi.org/10.1016/j.xcrm.2022.100694
https://doi.org/10.1007/s00330-021-08330-w
https://doi.org/10.1007/s00330-021-08330-w
https://doi.org/10.1007/s00330-021-08330-w
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1016/j.ejca.2021.01.028
https://doi.org/10.1007/s00330-020-07544-8
https://doi.org/10.1007/s00330-020-07544-8
https://doi.org/10.1007/s00330-020-07544-8
https://doi.org/10.1148/radiol.2020200292
https://doi.org/10.1148/radiol.2020200292
https://doi.org/10.1148/radiol.2020200292
https://doi.org/10.1038/s41422-020-0375-9
https://doi.org/10.1038/s41422-020-0375-9
https://doi.org/10.1038/s41422-020-0375-9
https://doi.org/10.1016/j.ccell.2019.02.001
https://doi.org/10.1016/j.ccell.2019.02.001
https://doi.org/10.1016/j.ccell.2019.02.001
https://doi.org/10.1016/j.ccell.2019.02.001
https://doi.org/10.1007/s00330-022-08863-8
https://doi.org/10.1007/s00330-022-08863-8
https://doi.org/10.1007/s00330-022-08863-8
https://doi.org/10.1007/s00330-022-08863-8
https://doi.org/10.1053/j.semnuclmed.2021.04.005
https://doi.org/10.1053/j.semnuclmed.2021.04.005
https://doi.org/10.1053/j.semnuclmed.2021.04.005
https://doi.org/10.1016/S2589-7500(20)30003-0
https://doi.org/10.1016/S2589-7500(20)30003-0
https://doi.org/10.1016/S2589-7500(20)30003-0
https://doi.org/10.14366/usg.16012
https://doi.org/10.14366/usg.16012
https://doi.org/10.14366/usg.16012
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.2214/AJR.16.17224
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.1016/j.media.2016.07.007
https://doi.org/10.3390/cancers13061249
https://doi.org/10.1016/j.acra.2022.04.004
https://doi.org/10.1016/j.acra.2022.04.004
https://doi.org/10.1016/j.acra.2022.04.004
https://doi.org/10.1016/j.crad.2019.02.006
https://doi.org/10.1016/j.crad.2019.02.006
https://doi.org/10.1016/j.crad.2019.02.006

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

Lee H, Park J and HwangJ Y 2020 Channel attention module with multiscale grid average pooling for breast cancer segmentation in an
ultrasound image IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 1344-53

Lee]Y,LeeK S, Seo BK, Cho KR, Woo O H, Song SE, Kim EK, Lee HY, Kim J S and Cha J 2022 Radiomic machine learning for predicting
prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI Eur.
Radiol. 32 650-60

Lee SE, Sim Y, Kim S and Kim E K 2021a Predictive performance of ultrasonography-based radiomics for axillary lymph node metastasis in
the preoperative evaluation of breast cancer Ultrasonography 40 93-102

Lee Y W, Huang C S, Shih C C and Chang R F 2021b Axillary lymph node metastasis status prediction of early-stage breast cancer using
convolutional neural networks Comput. Biol. Med. 130 104206

Lehman C D, Wellman R D, Buist D S, Kerlikowske K, Tosteson A N and Miglioretti D L2015 Diagnostic accuracy of digital screening
mammography with and without computer-aided detection JAMA Intern. Med. 175 1828-37

LiH et al2016 MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of
MammaPrint, Oncotype DX, and PAM50 gene assays Radiology 281 38291

LiJW,CaoY C, Zhao Z], ShiZ T, Duan X Q, Chang C and Chen J G 2022a Prediction for pathological and immunohistochemical
characteristics of triple-negative invasive breast carcinomas: the performance comparison between quantitative and qualitative
sonographic feature analysis Eur. Radiol. 32 1590—-600

LiJ W, ZhangK, ShiZT, Zhang X, Xie ], Liu] Y and Chang C 2018 Triple-negative invasive breast carcinoma: the association between the
sonographic appearances with clinicopathological feature Sci. Rep. 8 9040

LiL,YuT, SunJ, Jiang S, Liu D, Wang X and Zhang ] 2022b Prediction of the number of metastatic axillary lymph nodes in breast cancer by
radiomic signature based on dynamic contrast-enhanced MRI Acta Radiol. 63 1014-22

LiP, Wang X, Xu C, Liu C, Zheng C, Fulham M J, Feng D, Wang L, Song S and Huang G 2020 18)F-FDG PET/CT radiomic predictors of
pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients Eur. J. Nucl. Med. Mol. Imaging 47
1116-26

LiX, Yang L and Jiao X 2023 Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node
metastasis prediction in breast cancer Acad. Radiol. 30 1281-7

LiZ, Kitajima K, Hirata K, Togo R, Takenaka J, Miyoshi Y, Kudo K, Ogawa T and Haseyama M 2021 Preliminary study of Al-assisted
diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer EJNMMI Res. 11 10

Liu G, Schulte O, Zhu W and Li Q 2019a Machine Learning and Knowledge Discovery in Databases (Springer International Publishing)
pp 414-29 vol. Series

Liu W et al 2021 Preoperative prediction of Ki-67 status in breast cancer with multiparametric MRI using transfer learning Acad. Radiol. 28
e44—e53

LiuY Retal 2016 Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative
breast cancer Breast Cancer Res. 18 33

Liu Z et al 2019b Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant
chemotherapy in breast cancer: a multicenter study Clin. Cancer Res. 25 3538347

Lo Gullo R et al 2020 Improved characterization of sub-centimeter enhancing breast masses on MRI with radiomics and machine learning in
BRCA mutation carriers Eur. Radiol. 30 6721-31

MaM et al 2022 Radiomics features based on automatic segmented MRI images: prognostic biomarkers for triple-negative breast cancer
treated with neoadjuvant chemotherapy Eur. J. Radiol. 146 110095

Maddox T M, Rumsfeld J S and Payne P R O 2019 Questions for artificial intelligence in health care JAMA 321 31-2

Mann R M, Cho N and Moy L 2019 Breast MRI: state of the art Radiology 292 520-36

Marcomini K D, Carneiro A A and Schiabel H 2016 Application of artificial neural network models in segmentation and classification of
nodules in breast ultrasound digital images Int. J. Biomed. Imaging 2016 7987212

Massafra R ef al 2022 Robustness evaluation of a deep learning model on sagittal and axial breast DCE-MRISs to predict pathological complete
response to neoadjuvant chemotherapy J. Pers. Med. 12953

Mendelson E B 2019 Artificial intelligence in breast imaging: potentials and limitations Am. J. Roentgenol. 212 293-9

Militello C, Rundo L, Dimarco M, Orlando A, Woitek R, D’Angelo I, Russo G and Bartolotta T V 2022 3D DCE-MRI radiomic analysis for
malignant lesion prediction in breast cancer patients Acad. Radiol. 29 830-40

Moon WK, Lee Y W, Huang Y S, Lee SH, Bae M S, Yi A, Huang C S and Chang R F 2017 Computer-aided prediction of axillary lymph node
status in breast cancer using tumor surrounding tissue features in ultrasound images Comput. Methods Programs Biomed. 146 143-50

Morgan M B and Mates J L2021 Applications of artificial intelligence in breast imaging Radiol. Clin. North Am. 59 139-48

Nagendran M, Chen Y, Lovejoy C A, Gordon A C, Komorowski M, Harvey H, Topol E ], Ioannidis J P A, Collins G S and Maruthappu M
2020 Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies BMJ
368 m689

Nasser M and Yusof U K 2023 Deep learning based methods for breast cancer diagnosis: a systematic review and future direction Diagnostics
(Basel) 13 161

Ocafia A, Amir E and Pandiella A 2020 HER2 heterogeneity and resistance to anti-HER2 antibody—drug conjugates Breast Cancer Res. 22 15

OuX, WangJ, ZhouR, Zhu S, Pang F, Zhou Y, Tian R and Ma X 2019 Ability of (18)F-FDG PET/CT radiomic features to distinguish breast
carcinoma from breast lymphoma Contrast Media Mol. Imaging 2019 4507694

Pacile S, Lopez ], Chone P, Bertinotti T, Grouin ] M and Fillard P 2020 Improving breast cancer detection accuracy of mammography with
the concurrent use of an artificial intelligence tool Radiol. Artif. Intell. 2 ¢190208

Pesapane F, Codari M and Sardanelli F 2018 Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the
forefront of innovation in medicine Eur. Radiol. Exp. 2 35

Pinker K, Chin J, Melsaether AN, Morris E A and Moy L 2018 Precision medicine and radiogenomics in breast cancer: new approaches
toward diagnosis and treatment Radiology 287 732—47

Pintican R, Duma M, Chiorean A, Fetica B, Badan M, Bura V, Szep M, Feier D and Dudea S 2020 Mucinous versus medullary breast
carcinoma: mammography, ultrasound, and MRI findings Clin. Radiol. 75 483-96

Ponzi E, Thoresen M, Haugdahl Nost T and Mgllersen K 2021 Integrative, multi-omics, analysis of blood samples improves model
predictions: applications to cancer BMC Bioinf. 22 395

Potsch N, Dietzel M, Kapetas P, Clauser P, Pinker K, Ellmann S, Uder M, Helbich T and Baltzer P A T 2021 An A.L classifier derived from 4D
radiomics of dynamic contrast-enhanced breast MRI data: potential to avoid unnecessary breast biopsies Eur. Radiol. 31 586676

Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, Diez M, Viladot M, Arance A and Mufoz M 2015 Clinical implications of the
intrinsic molecular subtypes of breast cancer Breast 24 S26-535

19


https://doi.org/10.1109/TUFFC.2020.2972573
https://doi.org/10.1109/TUFFC.2020.2972573
https://doi.org/10.1109/TUFFC.2020.2972573
https://doi.org/10.1007/s00330-021-08146-8
https://doi.org/10.1007/s00330-021-08146-8
https://doi.org/10.1007/s00330-021-08146-8
https://doi.org/10.14366/usg.20026
https://doi.org/10.14366/usg.20026
https://doi.org/10.14366/usg.20026
https://doi.org/10.1016/j.compbiomed.2020.104206
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1001/jamainternmed.2015.5231
https://doi.org/10.1148/radiol.2016152110
https://doi.org/10.1148/radiol.2016152110
https://doi.org/10.1148/radiol.2016152110
https://doi.org/10.1007/s00330-021-08224-x
https://doi.org/10.1007/s00330-021-08224-x
https://doi.org/10.1007/s00330-021-08224-x
https://doi.org/10.1038/s41598-018-27222-6
https://doi.org/10.1177/02841851211025857
https://doi.org/10.1177/02841851211025857
https://doi.org/10.1177/02841851211025857
https://doi.org/10.1007/s00259-020-04684-3
https://doi.org/10.1007/s00259-020-04684-3
https://doi.org/10.1007/s00259-020-04684-3
https://doi.org/10.1007/s00259-020-04684-3
https://doi.org/10.1016/j.acra.2022.10.015
https://doi.org/10.1016/j.acra.2022.10.015
https://doi.org/10.1016/j.acra.2022.10.015
https://doi.org/10.1186/s13550-021-00751-4
https://doi.org/10.1016/j.acra.2020.02.006
https://doi.org/10.1016/j.acra.2020.02.006
https://doi.org/10.1186/s13058-016-0690-8
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1158/1078-0432.CCR-18-3190
https://doi.org/10.1007/s00330-020-06991-7
https://doi.org/10.1007/s00330-020-06991-7
https://doi.org/10.1007/s00330-020-06991-7
https://doi.org/10.1016/j.ejrad.2021.110095
https://doi.org/10.1001/jama.2018.18932
https://doi.org/10.1001/jama.2018.18932
https://doi.org/10.1001/jama.2018.18932
https://doi.org/10.1148/radiol.2019182947
https://doi.org/10.1148/radiol.2019182947
https://doi.org/10.1148/radiol.2019182947
https://doi.org/10.1155/2016/7987212
https://doi.org/10.3390/jpm12060953
https://doi.org/10.2214/AJR.18.20532
https://doi.org/10.2214/AJR.18.20532
https://doi.org/10.2214/AJR.18.20532
https://doi.org/10.1016/j.acra.2021.08.024
https://doi.org/10.1016/j.acra.2021.08.024
https://doi.org/10.1016/j.acra.2021.08.024
https://doi.org/10.1016/j.cmpb.2017.06.001
https://doi.org/10.1016/j.cmpb.2017.06.001
https://doi.org/10.1016/j.cmpb.2017.06.001
https://doi.org/10.1016/j.rcl.2020.08.007
https://doi.org/10.1016/j.rcl.2020.08.007
https://doi.org/10.1016/j.rcl.2020.08.007
https://doi.org/10.1136/bmj.m689
https://doi.org/10.3390/diagnostics13010161
https://doi.org/10.1186/s13058-020-1252-7
https://doi.org/10.1155/2019/4507694
https://doi.org/10.1148/ryai.2020190208
https://doi.org/10.1186/s41747-018-0061-6
https://doi.org/10.1148/radiol.2018172171
https://doi.org/10.1148/radiol.2018172171
https://doi.org/10.1148/radiol.2018172171
https://doi.org/10.1016/j.crad.2019.12.024
https://doi.org/10.1016/j.crad.2019.12.024
https://doi.org/10.1016/j.crad.2019.12.024
https://doi.org/10.1186/s12859-021-04296-0
https://doi.org/10.1007/s00330-021-07787-z
https://doi.org/10.1007/s00330-021-07787-z
https://doi.org/10.1007/s00330-021-07787-z
https://doi.org/10.1016/j.breast.2015.07.008

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

QiX, ZhangL, ChenY, PiY, ChenY, Lv Qand Yi Z 2019 Automated diagnosis of breast ultrasonography images using deep neural networks
Med. Image Anal. 52 185-98

Robertson S, Azizpour H, Smith K and Hartman ] 2018 Digital image analysis in breast pathology-from image processing techniques to
artificial intelligence Transl. Res. 194 19-35

Rodriguez-Ruiz A, Krupinski E, MordangJ ], Schilling K, Heywang-Koébrunner S H, Sechopoulos I and Mann R M 2019 Detection of breast
cancer with mammography: effect of an artificial intelligence support system Radiology 290 30514

Rodriguez-Ruiz A et al 2019 Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101
radiologists J. Natl. Cancer Institute 111 91622

Romeo V, Accardo G, Perillo T, Basso L, Garbino N, Nicolai E, Maurea S and Salvatore M 2021 Assessment and prediction of response to
neoadjuvant chemotherapy in breast cancer: a comparison of imaging modalities and future perspectives Cancers (Basel) 13 3521

Roulot A, Héquet D, Guinebretiére ] M, Vincent-Salomon A, Lerebours F, Dubot C and Rouzier R 2016 Tumoral heterogeneity of breast
cancer Ann Biol. Clin. (Paris) 74 653—60

Roy S, Whitehead T D, Li S, Ademuyiwa F O, Wahl R L, Dehdashti F and Shoghi K 12022 Co-clinical FDG-PET radiomic signature in
predicting response to neoadjuvant chemotherapy in triple-negative breast cancer Eur. J. Nucl. Med. Mol. Imaging 49 55062

Sachdev] C, Sandoval A C and Jahanzeb M 2019 Update on precision medicine in breast cancer Cancer Treat Res. 178 45-80

Sadaghiani M S, Rowe S P and Sheikhbahaei S 2021 Applications of artificial intelligence in oncologic (18)F-FDG PET/CT imaging: a
systematic review Ann. Transl. Med. 9 823

Sarikaya 12021 Breast cancer and PET imaging Nucl. Med. Rev. Cent. East Eur. 24 16-26

Sasaki M, Tozaki M, Rodriguez-Ruiz A, Yotsumoto D, Ichiki Y, Terawaki A, Oosako S, Sagara Y and Sagara Y 2020 Artificial intelligence for
breast cancer detection in mammography: experience of use of the screenpoint medical transpara system in 310 Japanese women
Breast Cancer 27 642-51

Saslow D et al 2007 American cancer society guidelines for breast screening with MRI as an adjunct to mammography CA Cancer J. Clin. 57
75-89

Satake H, Ishigaki S, Ito R and Naganawa S 2022 Radiomics in breast MRI: current progress toward clinical application in the era of artificial
intelligence Radiol. Med. 127 39-56

Sechopoulos I, Teuwen ] and Mann R 2021 Artificial intelligence for breast cancer detection in mammography and digital breast
tomosynthesis: state of the art Semnin. Cancer Biol. 72 214-25

Shen Y et al 2021a Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams Nat.
Commun. 12 5645

Shen YT, ChenL, Yue W W and Xu H X 2021b Artificial intelligence in ultrasound Eur. J. Radiol. 139 109717

Sheng DL, Shen X G, Shi Z T, Chang C and Li] W 2022 Survival outcome assessment for triple-negative breast cancer: a nomogram analysis
based on integrated clinicopathological, sonographic, and mammographic characteristics Eur. Radiol. 32 6575-87

Sheth D and Giger M L 2020 Artificial intelligence in the interpretation of breast cancer on MRI J. Magn. Reson. Imaging 51 1310-24

ShiZT,LiJ W, Sheng DL, Zhao ZJ, Le ] and Chang C 2021 Predictive value of sonographic features on molecular subtypes of invasive breast
carcinoma Chin J. Ultrasonogr. 30 1064—70

Skaane P et al 2013 Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based
screening program Radiology 267 47-56

Skarping I, Larsson M and Fornvik D 2022 Analysis of mammograms using artificial intelligence to predict response to neoadjuvant
chemotherapy in breast cancer patients: proof of concept Eur. Radiol. 32 3131-41

Song B12021 A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer Breast Cancer
2866471

SongSE, ChoKR, Cho Y, Kim K, Jung S P, Seo B K and Woo O H 2021 Machine learning with multiparametric breast MRI for prediction of
Ki-67 and histologic grade in early-stage luminal breast cancer Eur. Radiol. 32 853—63

SunK, Jiao Z, Zhu H, Chai W, Yan X, Fu C, ChengJ Z, Yan F and Shen D 2021 Radiomics-based machine learning analysis and
characterization of breast lesions with multiparametric diffusion-weighted MR J. Transl. Med. 19 443

Sun P, Feng Y, Chen C, Dekker A, Qian L, Wang Z and Guo ] 2022a An Al model of sonographer’s evaluation+ S-Detect + elastography +
clinical information improves the preoperative identification of benign and malignant breast masses Front. Oncol. 121022441

SunQ, LinX, Zhao Y, LiL, Yan K, Liang D, Sun D and Li Z C 2020 Deep learning vs. radiomics for predicting axillary lymph node metastasis
of breast cancer using ultrasound images: don’t forget the peritumoral region Front. Oncol. 10 53

Sun R, HouX, Li X, Xie Y and Nie S 2022b Transfer learning strategy based on unsupervised learning and ensemble learning for breast cancer
molecular subtype prediction using dynamic contrast-enhanced MRI J. Magn. Reson. Immaging 55 151834

Sutton E J et al 2020 A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant
chemotherapy Breast Cancer Res. 22 57 Breast Cancer Res.

Tang A et al 2018 Canadian association of radiologists white paper on artificial intelligence in radiology Can. Assoc. Radiol. J. 69 120-35

Thakran S, Cohen E, Jahani N, Weinstein S P, Pantalone L, Hylton N, Newitt D, DeMichele A, Davatzikos C and Kontos D 2022 Impact of
deformable registration methods for prediction of recurrence free survival response to neoadjuvant chemotherapy in breast cancer:
Results from the ISPY 1/ACRIN 6657 trial Transl. Oncol. 20 101411

Tokuda Y, Yanagawa M, Minamitani K, Naoi Y, Noguchi S and Tomiyama N 2020 Radiogenomics of magnetic resonance imaging and a
new multi-gene classifier for predicting recurrence prognosis in estrogen receptor-positive breast cancer: a preliminary study
Medicine (Baltimore) 99 19664

Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D and Kuhl C 2019 Radiomic versus convolutional neural networks analysis for
classification of contrast-enhancing lesions at multiparametric breast MRI Radiology 290 2907

Tsuchiya M, Masui T, Terauchi K, Yamada T, Katyayama M, Ichikawa S, Noda Y and Goshima S 2022 MRI-based radiomics analysis for
differentiating phyllodes tumors of the breast from fibroadenomas Eur. Radiol. 32 4090-100

Turashvili G and Brogi E 2017 Tumor heterogeneity in breast cancer Front. Med. (Lausanne) 4 227

Umutlu L eral 2021 Multiparametric integrated (18)F-FDG PET/MRI-based radiomics for breast cancer phenotyping and tumor decoding
Cancers (Basel) 13 2928

Umutlu L ef al 2022 Multiparametric (18)F-FDG PET/MRI-based radiomics for prediction of pathological complete response to
neoadjuvant chemotherapy in breast cancer Cancers (Basel) 14 1727

Urso L, Manco L, Castello A, Evangelista L, Guidi G, Castellani M, Florimonte L, Cittanti C, Turra A and Panareo § 2022 PET-derived
radiomics and artificial intelligence in breast cancer: a systematic review Int. J. Mol. Sci. 23 13409

Vellido A 2020 The importance of interpretability and visualization in machine learning for applications in medicine and health care Neural
Comput. Appl. 32 18069-83

20


https://doi.org/10.1016/j.media.2018.12.006
https://doi.org/10.1016/j.media.2018.12.006
https://doi.org/10.1016/j.media.2018.12.006
https://doi.org/10.1016/j.trsl.2017.10.010
https://doi.org/10.1016/j.trsl.2017.10.010
https://doi.org/10.1016/j.trsl.2017.10.010
https://doi.org/10.1148/radiol.2018181371
https://doi.org/10.1148/radiol.2018181371
https://doi.org/10.1148/radiol.2018181371
https://doi.org/10.1093/jnci/djy222
https://doi.org/10.1093/jnci/djy222
https://doi.org/10.1093/jnci/djy222
https://doi.org/10.3390/cancers13143521
https://doi.org/10.1684/abc.2016.1192
https://doi.org/10.1684/abc.2016.1192
https://doi.org/10.1684/abc.2016.1192
https://doi.org/10.1007/s00259-021-05489-8
https://doi.org/10.1007/s00259-021-05489-8
https://doi.org/10.1007/s00259-021-05489-8
https://doi.org/10.1007/978-3-030-16391-4_2
https://doi.org/10.1007/978-3-030-16391-4_2
https://doi.org/10.1007/978-3-030-16391-4_2
https://doi.org/10.21037/atm-20-6162
https://doi.org/10.5603/NMR.2021.0004
https://doi.org/10.5603/NMR.2021.0004
https://doi.org/10.5603/NMR.2021.0004
https://doi.org/10.1007/s12282-020-01061-8
https://doi.org/10.1007/s12282-020-01061-8
https://doi.org/10.1007/s12282-020-01061-8
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.3322/canjclin.57.2.75
https://doi.org/10.1007/s11547-021-01423-y
https://doi.org/10.1007/s11547-021-01423-y
https://doi.org/10.1007/s11547-021-01423-y
https://doi.org/10.1016/j.semcancer.2020.06.002
https://doi.org/10.1016/j.semcancer.2020.06.002
https://doi.org/10.1016/j.semcancer.2020.06.002
https://doi.org/10.1038/s41467-021-26023-2
https://doi.org/10.1016/j.ejrad.2021.109717
https://doi.org/10.1007/s00330-022-08910-4
https://doi.org/10.1007/s00330-022-08910-4
https://doi.org/10.1007/s00330-022-08910-4
https://doi.org/10.1002/jmri.26878
https://doi.org/10.1002/jmri.26878
https://doi.org/10.1002/jmri.26878
https://doi.org/10.1148/radiol.12121373
https://doi.org/10.1148/radiol.12121373
https://doi.org/10.1148/radiol.12121373
https://doi.org/10.1007/s00330-021-08306-w
https://doi.org/10.1007/s00330-021-08306-w
https://doi.org/10.1007/s00330-021-08306-w
https://doi.org/10.1007/s12282-020-01202-z
https://doi.org/10.1007/s12282-020-01202-z
https://doi.org/10.1007/s12282-020-01202-z
https://doi.org/10.1007/s00330-021-08127-x
https://doi.org/10.1007/s00330-021-08127-x
https://doi.org/10.1007/s00330-021-08127-x
https://doi.org/10.1186/s12967-021-03117-5
https://doi.org/10.3389/fonc.2022.1022441
https://doi.org/10.3389/fonc.2020.00053
https://doi.org/10.1002/jmri.27955
https://doi.org/10.1002/jmri.27955
https://doi.org/10.1002/jmri.27955
https://doi.org/10.1186/s13058-020-01291-w
https://doi.org/10.1016/j.carj.2018.02.002
https://doi.org/10.1016/j.carj.2018.02.002
https://doi.org/10.1016/j.carj.2018.02.002
https://doi.org/10.1016/j.tranon.2022.101411
https://doi.org/10.1097/MD.0000000000019664
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1148/radiol.2018181352
https://doi.org/10.1007/s00330-021-08510-8
https://doi.org/10.1007/s00330-021-08510-8
https://doi.org/10.1007/s00330-021-08510-8
https://doi.org/10.3389/fmed.2017.00227
https://doi.org/10.3390/cancers13122928
https://doi.org/10.3390/cancers14071727
https://doi.org/10.3390/ijms232113409
https://doi.org/10.1007/s00521-019-04051-w
https://doi.org/10.1007/s00521-019-04051-w
https://doi.org/10.1007/s00521-019-04051-w

10P Publishing

Phys. Med. Biol. 68 (2023) 23TR01 J-W Lietal

Verburg E, van Gils C H, van der Velden B H M, Bakker M F, Pijnappel R M, Veldhuis W B and Gilhuijs K G A 2022 Deep learning for
automated triaging of 4581 breast MRI examinations from the DENSE trial Radiology 302 29-36

Vyborny CJ and Giger M L 1994 Computer vision and artificial intelligence in mammography Am. J. Roentgenol. 162 699-708

Wang L et al 2022a An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass
enhancement breast lesions Eur. Radiol. 32 485767

WangZ, Sun H, LiJ, Chen J, MengF, Li H, Han L, Zhou S and Yu T 2022b Preoperative prediction of axillary lymph node metastasis in breast
cancer using CNN based on multiparametric MRI J. Magn. Reson. Imaging 56 700-9

Warren Burhenne L], Wood S A, D’Orsi CJ, Feig S A, Kopans D B, O’Shaughnessy K F, Sickles E A, Tabar L, Vyborny CJ and Castellino R A
2000 Potential contribution of computer-aided detection to the sensitivity of screening mammography Radiology 215 554—62

Watanabe T et al 2017 Ultrasound image classification of ductal carcinoma In situ (DCIS) of the breast: analysis of 705 DCIS lesions
Ultrasound Med. Biol. 43 918-25

Witowski ] et al 2022 Improving breast cancer diagnostics with deep learning for MRI Sci. Transl. Med. 14 eabo4802

WulL, ZhaoY, Lin P, Qin H, Liu Y, Wan D, Li X, He Y and Yang H 2021 Preoperative ultrasound radiomics analysis for expression of
multiple molecular biomarkers in mass type of breast ductal carcinoma in situ BMC Med. Imaging 21 84

Xiao T, Liu L, Li K, Qin W, Yu Sand Li Z 2018 Comparison of transferred deep neural networks in ultrasonic breast masses discrimination
BioMed Res. Int. 2018 4605191

Xiong L, Chen H, Tang X, Chen B, Jiang X, Liu L, Feng Y, Liu L and Li L 2021 Ultrasound-based radiomics analysis for predicting disease-free
survival of invasive breast cancer Front. Oncol. 11 621993

Yala A, Lehman C, Schuster T, Portnoi T and Barzilay R 2019 A deep learning mammography-based model for improved breast cancer risk
prediction Radiology 292 60—6

Yang L eral 2022 PET /CT-based radiomics analysis may help to predict neoadjuvant chemotherapy outcomes in breast cancer Front. Oncol.
12849626

Yap M H et al 2018 Automated breast ultrasound lesions detection using convolutional neural networks IEEE J. Biomed. Health Inform. 22
1218-26

Yin HL, Jiang Y, XuZ, Jia H Hand Lin G W 2022 Combined diagnosis of multiparametric MRI-based deep learning models facilitates
differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions J. Cancer Res. Clin. Oncol. 149
2575-84

Yoon HJ,KimY, ChungJ and Kim B S 2019 Predicting neo-adjuvant chemotherapy response and progression-free survival of locally
advanced breast cancer using textural features of intratumoral heterogeneity on F-18 FDG PET/CT and diffusion-weighted MR
imaging Breast J. 25 373-80

YuF, Hang]J, DengJ, Yang B, WangJ, Ye X and Liu Y 2021a Radiomics features on ultrasound imaging for the prediction of disease-free
survival in triple negative breast cancer: a multi-institutional study Br. J. Radiol. 9420210188

YuFH, Wang] X, Ye X H, DengJ, Hang ] and Yang B 2019 Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary
lymph node metastasis in early-stage invasive breast cancer Eur. J. Radiol. 119 108658

Yu'Y et al 2021b Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions
and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study EBioMedicine 69
103460

YuY et al 2020 Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary
lymph node metastasis and disease-free survival in patients with early-stage breast cancer JAMA Netw. Open 3 ¢2028086

Zardavas D, Irrthum A, Swanton C and Piccart M 2015 Clinical management of breast cancer heterogeneity Nat. Rev. Clin. Oncol. 12 381-94

Zhan C,HuY, Wang X, Liu H, Xia L and Ai T 2022 Prediction of axillary lymph node metastasis in breast cancer using intra-peritumoral
textural transition analysis based on dynamic contrast-enhanced magnetic resonance imaging Acad. Radiol. 29 S107-15

ZhangL, Fan M, Wang S, Xu M and Li L 2022 Radiomic analysis of pharmacokinetic heterogeneity within tumor based on the unsupervised
decomposition of dynamic contrast-enhanced MRI for predicting histological characteristics of breast cancer J. Magn. Reson. Imaging
55163647

Zhang Q, Peng Y, Liu W, BaiJ, ZhengJ, Yang X and Zhou L 2020 Radiomics based on multimodal MRI for the differential diagnosis of
benign and malignant breast lesions J. Magn. Reson. Immaging 52 596—607

Zhang X et al 2021a Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram
in early-stage breast cancer Eur. Radiol. 31 5924-39

ZhangY et al 2021b Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning
between two centers Eur. Radiol. 31 2559—-67

Zhao S et al 2020 Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance
Oncologist 25 €1481-91

Zhao Z,Hou S, Li S, Sheng D, Liu Q, Chang C, Chen J and Li ] 2022 Application of deep learning to reduce the rate of malignancy among BI-
RADS 4A breast lesions based on ultrasonography Ultrasound Med. Biol. 48 226775

Zheng X et al 2020 Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer Nat. Commun. 11 1236

ZhouBY et al2021a Decoding the molecular subtypes of breast cancer seen on multimodal ultrasound images using an assembled
convolutional neural network model: a prospective and multicentre study EBioMedicine 74 103684

Zhou ] et al 2021b Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with
breast cancer Acad. Radiol. 28 1352-60

Zhou L Q et al 2020 Lymph node metastasis prediction from primary breast cancer US images using deep learning Radiology 294 19-28

Zhou W], Zhang Y D, KongW T, Zhang C X and Zhang B 2021¢ Preoperative prediction of axillary lymph node metastasis in patients with
breast cancer based on radiomics of gray-scale ultrasonography Gland Surg. 10 1989-2001

21


https://doi.org/10.1148/radiol.2021203960
https://doi.org/10.1148/radiol.2021203960
https://doi.org/10.1148/radiol.2021203960
https://doi.org/10.2214/ajr.162.3.8109525
https://doi.org/10.2214/ajr.162.3.8109525
https://doi.org/10.2214/ajr.162.3.8109525
https://doi.org/10.1007/s00330-022-08553-5
https://doi.org/10.1007/s00330-022-08553-5
https://doi.org/10.1007/s00330-022-08553-5
https://doi.org/10.1002/jmri.28082
https://doi.org/10.1002/jmri.28082
https://doi.org/10.1002/jmri.28082
https://doi.org/10.1148/radiology.215.2.r00ma15554
https://doi.org/10.1148/radiology.215.2.r00ma15554
https://doi.org/10.1148/radiology.215.2.r00ma15554
https://doi.org/10.1016/j.ultrasmedbio.2017.01.008
https://doi.org/10.1016/j.ultrasmedbio.2017.01.008
https://doi.org/10.1016/j.ultrasmedbio.2017.01.008
https://doi.org/10.1126/scitranslmed.abo4802
https://doi.org/10.1186/s12880-021-00610-7
https://doi.org/10.1155/2018/4605191
https://doi.org/10.3389/fonc.2021.621993
https://doi.org/10.1148/radiol.2019182716
https://doi.org/10.1148/radiol.2019182716
https://doi.org/10.1148/radiol.2019182716
https://doi.org/10.3389/fonc.2022.849626
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1109/JBHI.2017.2731873
https://doi.org/10.1007/s00432-022-04142-7
https://doi.org/10.1007/s00432-022-04142-7
https://doi.org/10.1007/s00432-022-04142-7
https://doi.org/10.1007/s00432-022-04142-7
https://doi.org/10.1111/tbj.13032
https://doi.org/10.1111/tbj.13032
https://doi.org/10.1111/tbj.13032
https://doi.org/10.1259/bjr.20210188
https://doi.org/10.1016/j.ejrad.2019.108658
https://doi.org/10.1016/j.ebiom.2021.103460
https://doi.org/10.1016/j.ebiom.2021.103460
https://doi.org/10.1001/jamanetworkopen.2020.28086
https://doi.org/10.1038/nrclinonc.2015.73
https://doi.org/10.1038/nrclinonc.2015.73
https://doi.org/10.1038/nrclinonc.2015.73
https://doi.org/10.1016/j.acra.2021.02.008
https://doi.org/10.1016/j.acra.2021.02.008
https://doi.org/10.1016/j.acra.2021.02.008
https://doi.org/10.1002/jmri.27993
https://doi.org/10.1002/jmri.27993
https://doi.org/10.1002/jmri.27993
https://doi.org/10.1002/jmri.27098
https://doi.org/10.1002/jmri.27098
https://doi.org/10.1002/jmri.27098
https://doi.org/10.1007/s00330-020-07674-z
https://doi.org/10.1007/s00330-020-07674-z
https://doi.org/10.1007/s00330-020-07674-z
https://doi.org/10.1007/s00330-020-07274-x
https://doi.org/10.1007/s00330-020-07274-x
https://doi.org/10.1007/s00330-020-07274-x
https://doi.org/10.1634/theoncologist.2019-0982
https://doi.org/10.1634/theoncologist.2019-0982
https://doi.org/10.1634/theoncologist.2019-0982
https://doi.org/10.1016/j.ultrasmedbio.2022.06.019
https://doi.org/10.1016/j.ultrasmedbio.2022.06.019
https://doi.org/10.1016/j.ultrasmedbio.2022.06.019
https://doi.org/10.1038/s41467-020-15027-z
https://doi.org/10.1016/j.ebiom.2021.103684
https://doi.org/10.1016/j.acra.2020.05.040
https://doi.org/10.1016/j.acra.2020.05.040
https://doi.org/10.1016/j.acra.2020.05.040
https://doi.org/10.1148/radiol.2019190372
https://doi.org/10.1148/radiol.2019190372
https://doi.org/10.1148/radiol.2019190372
https://doi.org/10.21037/gs-21-315
https://doi.org/10.21037/gs-21-315
https://doi.org/10.21037/gs-21-315

	1. Introduction
	1.1. Outline of review
	1.2. Application of imaging techniques for breast diseases
	1.3. Necessity of introducing AI into breast imaging
	1.3.1. Tumor heterogeneity
	1.3.2. Precision medicine and personalized treatment


	2. Applications of AI in breast imaging
	2.1. Common AI methods in breast imaging
	2.2. Applications of AI in MG
	2.3. Applications of AI in breast US
	2.3.1. Automatic identification and segmentation
	2.3.2. Differential diagnosis
	2.3.3. Correlation with tumor invasive properties
	2.3.4. Prediction of treatment response and recurrence

	2.4. Applications of AI in breast MRI
	2.4.1. Detection and classification
	2.4.2. Prediction

	2.5. Applications of AI in breast PET/CT imaging

	3. Challenges of AI in breast imaging
	3.1. Technical challenges
	3.2. Clinical challenges

	4. Future work
	5. Conclusions
	Acknowledgments
	Data availability statement
	Funding
	Conflict of interest
	References



