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TOPICAL REVIEW

Artificial intelligence in breast imaging: potentials and challenges
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Abstract
Breast cancer, which is themost common type ofmalignant tumor among humans, is a leading cause
of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery,
postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for
individual patients. Such personalized therapies have tremendously reduced the threat of breast
cancer in females. Furthermore, early imaging screening plays an important role in reducing the
treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial
intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this
review, we introduce the necessity of incorporating AI into breast imaging and the applications of AI
inmammography, ultrasonography,magnetic resonance imaging, and positron emission tomogra-
phy/computed tomography based on published articles since 1994.Moreover, the challenges of AI in
breast imaging are discussed.
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DWI Diffusion-Weighted Image

FDA Food andDrugAdministration

FUSCC FudanUniversity Shanghai Cancer Center

HER2 HumanEpidermal Growth Factor 2

HR HormoneReceptor

MG Mammography

ML Machine Learning

MRI Magnetic Resonance Imaging

NAC Neoadjuvant Chemotherapy

pCR Pathological Complete Response

PET/CT Positron EmissionTomographyCombinedwithComputed Tomography

US Ultrasonography

SUVmax MaximumStandardizedUptakeValue

3D Three-Dimensional

TNBC Triple-Negative Breast Cancer

T1WI T1-Weighted Image

T2WI T2-Weighted Image

1. Introduction

Breast cancer, whichwas previously themost common type ofmalignant tumor among females, has become the
top-rankingmalignant tumor in humans overall (Ferlay et al 2021). However, themortality rate of 15.5% is
much lower than the incidence rate of 24.5% among females (Ferlay et al 2021). The promising prognosis is a
result of the efforts of scientists and breast physicians, who haveworked on understanding precise subtypes and
personalized therapy in the past two decades. Specialists have found that breast cancer is a diseasewith the
prospect of precise therapy. Breast cancer can be divided into unique groups using the immunohistochemical
expression profile typically based on estrogen/progesterone receptor statuses, and expression of human
epidermal growth factor 2 (HER2) (Goldhirsch et al 2013). Each subtype exhibits specific biological tumor
characteristics. The significant advancements in surgery, radiotherapy, endocrine therapy, chemotherapy, and
targeted treatment of patients based onmolecular subtypes have laid the foundation for the precise classification
and personalized treatment of breast cancer. Despite this progress in the treatment of breast cancer, tumor
heterogeneity, the diversity within the tumor and/or among different patients (Turashvili and Brogi 2017) is a
non-negligible factor in determining optimal treatment strategies and prognosis of breast cancer (Coates et al
2015, Prat et al 2015,Harbeck andGnant 2017). The luminal subtype is characterized by a high incidence of
long-term recurrence (Gao and Swain 2018), theHER2 subtype is likely to be resistant to targeted therapeutic
medicine (Ocaña et al 2020), and the triple-negative subtype has a poor prognosis withinfive years (Hwang et al
2019). In addition, according to the authors’ experience, tumor heterogeneity is an obstacle to the accurate and
early diagnosis of certain atypical breast tumors (Li et al 2018). Delayed diagnosismay inevitably affect the timely
treatment of breast cancer patients.

Imaging plays an important role in breast cancer screening and diagnosis.Mammography (MG) and
ultrasonography (US) are the preferred techniques for breast cancer screening and diagnosis.Magnetic
resonance imaging (MRI) provides high sensitivity for breast cancer detection and diagnosis. Positron emission
tomography combinedwith computed tomography (PET/CT) is important in themanagement of breast cancer
patients.With the recent advancements in imaging technologies,most breast cancers can be recognizedwith
prompt diagnosis and efficient consecutive therapies. However, asmentioned above, tumor heterogeneity is a
major obstacle to the precise diagnosis of certain atypical or very early breast cancers, such as triple-negative
breast cancer (TNBC) (Li et al 2018), mucinous breast cancers (Ginter et al 2020, Pintican et al 2020), and ductal
carcinoma in situ (Watanabe et al 2017). In these cases, physician experience is of limited value, as human eyes
cannot differentiate the subtle differences in the images.

To assist radiologists, scientists have been trying to introduce the intelligent algorithms that can respond in a
similarmanner as human beings, which is known as artificial intelligence (AI). As a branch of computer science,
AI is a technological process that simulates, extends, and expands human cognitive thinking to complete a task
through extracting and synthesizing abstract information.The application of AI to themedical imaging fieldwas
first proposed in the 1990s (Shen et al 2021b). As breast cancer is themost commonmalignant tumor in females,
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early and precise diagnosis and treatment have a significant potential impact on patients, therebymotivating
innovation in the application of AI techniques (Morgan andMates 2021). AI has been proved to be valuable for
breast cancer screening, detection, differential diagnosis,molecular subtyping, treatment response and
prognosis prediction, etc, regarding to the commonly used breast imaging techniques. Recently, as summarized
by Bahl, there have been about twenty AI applications that are approved by the Food andDrugAdministration
(FDA) forMG, breastUS, and breastMRI (Bahl 2022).

In the literature, there have been a number of review articles about AI applications in breast imagingwritten
frommultiple perspectives (Le et al 2019,Mendelson 2019, Bahl 2020,Hickman et al 2021,Morgan and
Mates 2021, Bitencourt et al 2021). Comparedwith previous reviews, in this article, wewill address the issue of
tumor heterogeneity which is one of themost important justifications for introducing AI in breast imaging. In
addition, the applications of AI in breast PET/CTare summarized in the present article.

1.1.Outline of review
A schematic outline of this review is presented infigure 1. In the Introduction section, the applications of in vivo
patient imaging techniques for breast diseases are highlighted, followed by the introduction of AI into breast
imaging. Based on published articles since 1994, the following sections of the article present the applications of
AI in breast imaging, which include: (1) commonAImethods that are used for breast imaging, (2) applications
of AI inMG, (3) applications of AI in breast US, (4) applications of AI in breastMRI, and (5) applications of AI in
breast PET/CT. Subsequently, the technical and clinical challenges of AI in breast imaging are discussed,
followed by an outline of futurework and conclusions.

Figure 1. Schematic outline of the article.
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1.2. Application of imaging techniques for breast diseases
MGandUS have been recognized as themost common imaging techniques for the detection of breast cancer
(Guo et al 2018a).MG is the primary diagnostic technique that is used in screening programs, particularly in
Western countries.MG can detectmicrocalcifications that are invisible inUS (Jackson 2004). Nevertheless, it
exhibits certain limitations in the case of dense breasts, which are common inAsianwomen and youngwomen.
US is complementary toMG in the detection of breast cancer. InChina, US is usually recommended as an
effective combinationwithMGas the first choice for breast screening and the differential diagnosis of benign
andmalignant breastmasses (CSCO2021 ). As no radiation-related damage occurs, it is suitable for any age and
physiological period of females, particularly for pregnant or lactatingwomen.US also offers advantages in the
detection of potentiallymalignant changes in axillary lymph nodes (Guo et al 2018a).

Among the available imagingmodalities,MRI provides the highest sensitivity for breast cancer detection and
diagnosis (Mann et al 2019). It is currently used as an adjunct toMG screening, especially for high-risk patients.
As stratified byAmericanCancer Society, the risk factors for breast cancersmainly include geneticmutations,
family history, and clinical risk factors such as thoracic radiotherapy, lobular neoplasia, ductal hyperplasia, and
highmammographic density (Saslow et al 2007). Furthermore, it is an indispensable tool for assessing the
preoperative stage, evaluating the treatment response, and diagnosing difficult and complicated cases (Mann
et al 2019).MRI can providemore detailed information through a variety of scanning sequences compared to
other imagingmodalities. The dynamic contrast-enhanced (DCE) image and post-contrast T1-weighted image
(T1WI), which provide themorphological and kinetic features of breast lesions observed after contrastmaterial
administration, form the basis for breastMRI protocols. The T2-weighted image (T2WI) enables the
visualization of cysts, edema, and necrosis owing to their liquid nature, and such information is important for
prognostic assessment. The diffusion-weighted image (DWI) quantifies the randommovement of water
molecules in tissues, which is associatedwith tissuemicrostructure and cell density (Mann et al 2019). However,
owing to its high cost and long image acquisition time,MRI is not as popular asMG andUS imaging.

PET/CT can provide three dimensional (3D)mapof the activity distribution of a radioactive tracer, which in
the case of 18F-FDG can be used to estimate the glucosemetabolism in tissues and standardmetabolic
parameters, including themaximum standardized uptake value (SUVmax), metabolic tumor volume, and total
lesion glycolysis. However, comparedwithUS,MG, andMRI, PET/CT is not suitable for breast cancer
screening because of its high cost and radiation exposure. Itsmain applications include the staging and
evaluation of the treatment response and suspected recurrence ormetastasis (Fowler andCho 2021, Kikano et al
2021, Sarikaya 2021).

In clinical practice,MG,US,MRI and PET-CT are applied selectively and complimentarily to aid in the
screening, diagnosis, treatment responsemonitor and prognosis prediction (figure 2).With the advancement of
imaging technology, the amount of data is increasingwhich is time consuming for radiologists. For example,
with the introduction of digital breast tomosynthesis, a stack of 2D slices of the imaged breast, although the
diagnostic performance is increased, the interpretation time for radiologists almost doubles comparedwithMG
(Skaane et al 2013). The similar issue also arises for automated breast volume scanning (ABVS) (Ibraheem et al
2022) andmulti-parametricMRI imaging comprising∼5 imaging sequences (Mann et al 2019). Therefore,
automatedmethods of interpreting these images are highly demanded to reach a balance between diagnostic
performance and interpretation time.On the other hand, the performance of breast imaging is closely related to
the heterogeneity of breast cancers especially for the prediction of treatment response and prognosis. Due to the
heterogeneity, human interpretationwithout powerful computation is limited to achieve the best performance
for differentiating different biological subtypes with a variety of possible treatments, predicting the response to
therapy and overall survival. These noninvasive observations and predictions which are beyond traditional
detection and diagnosis are important parts in the era of individualized and precisionmedicine. AI has been
introduced in the context of advanced imaging and the demand of powerful computations.

Figure 2.DigitalMG,US,MRI and PET-CT scans of a 42 y oldwomanwith an infiltrating ductal carcinoma in the left breast,
indicatedwith thewhite arrows. (a):MG, (b): US, (c):MRI, (d): PET-CT.
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1.3. Necessity of introducing AI into breast imaging
In 2021, theChinese Society of Clinical Oncology guidelines stressed the important role of AI in the field of
tumor diagnosis and treatment with an increasing application in clinical practice (CSCO2021). AI is gaining
attention in the diagnosis and treatment of breast cancer, the prediction of survival prognosis, and the prediction
of treatment response after neoadjuvant chemotherapy (NAC) owing to its powerful computing and learning
ability (Bahl 2020).

In recent years, AI-assisted imaging diagnosis hasflourishedwith the evolution of big data and
computational frameworks. The role of conventional computer-aided diagnosis (CAD) is expanding beyond
screening and differential diagnosis toward applications in therapy evaluation and risk assessment (Giger 2010,
Mendelson 2019).Moreover, intelligent output can be obtained from automated analysis based on images that
are collected by radiologists to assist in detecting lesion, determining the lesionmalignancy rate, evaluating the
response to therapy, and predicting the prognosis.

AImay reduce human efforts in terms of detecting suspicious nodules ormasses inUS orMG images in the
screening field. At the authors’ institute, anUSAI equipment has been developed for the automatic location of
suspicious areas duringUS scanningwhich is valuable for inexperienced physicians (Hou et al 2022).
Meanwhile, the commercial S-Detect technology has been used clinically to increase the confidence ofUS
physicians in diagnosing breast nodules (Kim et al 2017, Sun et al 2022a).

The role of imaging has expanded from screening and diagnosis to the prediction of treatment efficacy and
prognosis, considering the vast information that is hidden in the images.However, human eyes have a limited
ability to achieve advanced predictions without the aid of AI such as the prediction of response to chemotherapy
and prognosis of breast cancer based on imaging information (Galati et al 2022).

1.3.1. Tumor heterogeneity
It is well known that breast cancer is a type of heterogeneousmalignant tumor comprisingmultiple distinct
subtypes that differ on the clinical, histopathological, and genetic levels (Roulot et al 2016). Tumor heterogeneity
is characterized by inter- and intra-tumor heterogeneity.

Inter-tumor heterogeneity has been described as the variety among different tumors, and it was extensively
characterized in the 2000s owing to the development of high-throughput analyses (Zardavas et al 2015, Roulot
et al 2016). Inter-tumor heterogeneity has implications for guiding the treatment of the four breast cancer
subtypes (Goldhirsch et al 2013). Each subtype has specific biological characteristics and clinical behaviors,
which provide the foundations for the precise treatment of breast cancer with a promising prognosis.

Intra-tumor heterogeneity has been identifiedwithin the different regions of the tumor (spatial
heterogeneity), alongwith tumor progression (temporal heterogeneity). Pathological and
immunohistochemical results that are obtained from a biopsy or a small portion of tumor specimensmay not
represent the overall tumor composition owing to the spatial heterogeneity. Therefore, it is important to
recognize the spatial heterogeneity as itmay be indicative of treatment effectiveness, with evidence that increases
heterogeneity corresponds to a reduced likelihood of pathological complete response (pCR) (Januškevičienė and
Petrikaitė 2019). Furthermore, tumorswithmore prominent heterogeneitymay be resistant to therapy as they
adapt to newmicroenvironmental conditionsmore easily (Issa-Nummer et al 2013, Almendro et al 2014).

In the era of precisionmedicine, it is important to capture the heterogeneity of each specificmolecular
subtype, as this biological variance enables such heterogeneity to be anticipated and adaptive therapeutic
strategies to be sought. The imaging appearance is an integral phenotype of all proteomics and genomics
(Aerts 2016). Therefore, the imaging feature of the breastmass is an important supplement to the local
pathological and immunohistochemical characteristics in the development of precisionmedicine and
personalized treatment. AI is expected to facilitate this integration because of the vast amount of information
hidden in the images that it conveys.

1.3.2. Precisionmedicine and personalized treatment
Evidence-basedmedicine that results from a precise subtype of breast cancer can provide sufficient details for
precisionmedicine in breast cancer. However, inter-and intra-tumor heterogeneity is an obstacle to the efficient
treatment of all breast cancers. Thus, personalized treatment is in high demand to improve the outcome of
breast cancer further (Jiang et al 2021d). Advanced research inmulti-omics analysis and intra-tumor interaction
with themicroenvironment is warranted to enrich the evidence for personalized treatment.

Precision tumormedicine refers to the use of various omics detection technologies, including proteomics,
transcriptomics, genomics, epigenemics, andmetabonomics, to obtain tumor-related biological information
for guiding tumor screening, diagnosis, and treatment (Pinker et al 2018, Sachdev et al 2019).Multigene
mutation detection offers significant value formolecular subtyping, breast cancer risk prediction, and the
selection of precise treatment plans. For example, the FudanUniversity Shanghai Cancer Center (FUSCC)
subtype of TNBChas been established based on proteomics (Zhao et al 2020, Gong et al 2022), transcriptomics

5

Phys.Med. Biol. 68 (2023) 23TR01 J-WLi et al



(Liu et al 2016), genomics (Jiang et al 2019), andmetabolomics (Gong et al 2021). It has been proven that the
combination of AI imaging andmultiple omicsmay achieve an FUSCC subtypemore rapidly and easily (Jiang
et al 2022a).

Precisionmedicine should consider the static omics of individual breast cancers aswell as the dynamic omics
during treatment and follow-up (Pinker et al 2018). Breast imaging offers the advantage of the dynamic
surveillance of breast tumors throughout thewhole process of screening, diagnosis and post-operative follow
up. Therefore, in addition to biological omics, Pinker et al proposed the combination of quantitative radiomics
which can extract valuable quantifiable data fromdigitalmedical imageswithmultiple biological omics to
provide dynamic surveillance for breast cancer (Pinker et al 2018). This approach is known as radiogenomics,
whichmay link the complete imaging appearancewith genetic information. Radiogenomics can quantify lesion
characteristics to stratify benign andmalignant breast tumorsmore effectively, thereby enabling precise
diagnosis. It can also reflect the genetic information of a heterogeneous tumor and guide tailored therapy. After
the therapy, radiogenomics can also incorporate imaging biomarkers with phenomics and genomics to predict
recurrence risk.

2. Applications of AI in breast imaging

2.1. CommonAImethods in breast imaging
Themost frequently concerned AImodels aremachine learning (ML), deep learning (DL) and convolutional
neural networks (CNNs) (Castiglioni et al 2021). The relationships betweenAI,ML,DL, andCNNs are depicted
infigure 3. They are different in terms of the capability, complexity, interpretability, and the types of problems
they’re best suited for.

MLmodels primarily include support vectormachines and random forests. Support vectormachines group
data into two ormore classes through a ‘hyperplane’ that separates the categories as far as possible by analyzing
numerous features (Kohli et al 2017). Random forests employ a collection of decision trees based on a random
subset of features that are extracted from the training data.When a new input appears, themodelmakes a
prediction (e.g. ‘positive’ or ‘negative’) for each tree and the voted result from all trees is considered as the best
solution. Thesemodels are relatively straightforward andworkwell with structured, tabular data. They are less

Figure 3.The relationships betweenAI,ML,DL andCNN. They can be used inCADwith three commonmethods: supervised
learning, unsupervised learning and reinforcement learning.
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complex, easier to understand, and often provide good baselinemodels. However, theymight not perform as
well with extremely complex tasks or very large datasets. They also struggle with unstructured data, such as
images or text.

DL, which is a subset ofML and offers the capability to cluster data andmake predictions, uses neural
networks tomimic the human brain (Tang et al 2018). The neural network consists ofmultiple layers of
connected nodes, each of which receives input fromother nodes withweights that are set randomly. DLmodels,
can handlemuchmore complex tasks and are particularly good atworkingwith unstructured data like images,
text, and audio. They can automatically learn and extract features from raw data, a process known as
representation learning. However, they require large amount of data and computational resources. The
complexity ofDLmodels alsomakes themprone to overfitting if not properly regularized.Meanwhile, DL
models are often referred to as ‘black boxes’ because it can be difficult to understandwhy they’remaking certain
decisions. Some progress has beenmade in improving the interpretability ofDLmodels (like attention
mechanisms, feature visualization, etc), but it’s still a significant challenge compared to traditionalMLmodels.

As a subset of DL and themost common type of neural network, the CNN is suited to identify particular
patterns in images which can occur at different locations because the convolution operation is spatially invariant
(Burt et al 2018, Robertson et al 2018). In a systemic review,Nasser andYusof found that CNNmodel has the
most accurate performancewith themost extensive application for breast cancer diagnosis (Nasser and
Yusof 2023). ACNNconsists of three layers: an input layer, a hidden layer (one ormore hidden convolutional
layers), and an output layer (Pesapane et al 2018). Although the performance of theCNNmay improvewith
deeper architectures, thismay result in network overfitting. An appropriate network design significantly
contributes to thefinal performance (Abdelhafiz et al 2019).

Data are indispensable for training a sophisticatedmodel. AnAImodel can be trained in threemanners:
supervised, unsupervised, and reinforcement learning (figure 3). Supervised learning creates amodel to predict
the outcomes based on labeled data. Unsupervised learning determines the patterns and associations in
unlabeled data to create groups and clusters. Reinforcement learning takes advantage of the rewardmechanism
for training feedback to achieve a desirable or undesirable state.

Figure 4 presents theworkflowof AImodels.Most AImodels in the breast imaging literature use supervised
learning; for example, benign andmalignant breast tumors are differentiatedwith breast images that are labeled
as positive or negative.ML algorithms rely on hand-engineered (or hand-designed) features based on the
knowledge and experience of the clinician (such as the density or shape), whereasDL algorithms learn the
features automatically. Given a sufficiently large training dataset, DL-based AI systemsmay be able to classify
data better thanmethods that use hand-designed features (Chartrand et al 2017).

2.2. Applications of AI inMG
Twomain types of lesions appear onmammograms: calcification clusters and soft tissuefindings (masses,
distortions, and asymmetries). The significant advantage ofMG is its high sensitivity in detecting calcifications,
particularlymicrocalcifications, which are usually invisible in other imagingmodalities such asUS orMRI
(Jackson 2004).

The earliest research onCAD inMGwas conducted in 1967 byWinsberg et alwith themotivation of
liberating radiologists from the large volume of screeningmammograms in asymptomatic women (Vyborny
andGiger 1994). Subsequently, numerous trials have been conducted to developCAD forMG. These trials can

Figure 4.Workflowof AImethods. Outputs of the AImodel arefinally used to provide information regarding the detection, diagnosis,
and therapy response, etc.
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be categorized into computer-aided detection (CADe) and computer-aided diagnosis (CADx) (Sechopoulos et al
2021). CADe is aimed at detecting suspicious lesions inMG,whichmay be calcification clusters and/or soft
tissue lesions. CADx algorithms estimate the pathological nature of a detected lesion as benign ormalignant.
These CADalgorithms have been studied intensively with promising results in clinical practice (Warren
Burhenne et al 2000, Birdwell et al 2001, Freer andUlissey 2001,Destounis et al 2004). However, it was proven
that the expected value of CADwas overestimatedwith the recognition of the significant variety inMG features
in studies with large sample sizes (Fenton et al 2007, Lehman et al 2015). Finally, the application of CAD inMG
has not involved extensive clinical practice (Sechopoulos et al 2021).

Driven by theCNNmodel, AI has revolutionized the image interpretation of digitalMG in recent years
(Geras et al 2019). The applications thereofmainly focused on tumor screening (Kooi et al 2017, Al-Masni et al
2018, Le et al 2019, Rodriguez-Ruiz et al 2019, Kim et al 2020), tumor differentiation (Al-Masni et al 2018,
Rodríguez-Ruiz et al 2019, Sasaki et al 2020), and cancer risk prediction (Arieno et al 2019, Yala et al 2019,
Dembrower et al 2020). Skarping et al usedDL-basedmethod for automatic analysis of digitalMGof primary
breast tumors to predict pCRwith an area under the curve (AUC) of 0.71. Figure 5 illustrates the use ofDL to
predict response toNACbased onMG (Skarping et al 2022). Table 1 summarizes the published studies that have
evaluated the performance of CNNmodels inMG for breast cancer screening and detection.Moreover, several
commercial products, such as Transpara™ (Rodriguez-Ruiz et al 2019, Rodríguez-Ruiz et al 2019) and
MammoScreen™ (Pacilè et al 2020) have been incorporatedwithAI learningmodels. These above two products
have been approved by the FDA.

2.3. Applications of AI in breastUS
AI-assisted systems have improved the performance ofUS in terms of the automatic identification of breast
lesions, differential diagnosis between benign andmalignant breast cancers, correlation betweenUS imaging
features and histopathological characteristics, and prediction ofNAC and tumor recurrence (Akkus et al 2019,

Figure 5.The architecture of the classificationmodel based onMG to predict pCR in breast cancer patients. Reproduced fromfrom
Skarping et al (2022). CCBY 4.0.
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Table 1.CNN framework-based AI studies inMG for screening and detection of breast cancers.

References Dataset CNNmodel Mainfinding Performance

Kooi et al (2017) Self-collected data DeepCNNmodel TheCNNmodel trained on a large data set ofmammographic lesions

outperforms the CAD system. Therewas no significant difference

betweenCNNmodel and certified radiologists.

The area under the curve (AUC) for CNNandCADwas 0.929 and

0.910, respectively; the AUC for CNNand radiologists was 0.852

and 0.911, respectively

Rodríguez-Ruiz et al

(2019)
An enriched dataset with

screening detected cancers

DeepCNNmodel AImay help radiologists to improve the cancer detection atmammo-

graphywithout requiring additional reading time.

TheAUCand sensitivity were higher withAI support thanwith

unaided reading (0.89 versus 0.87 for AUC; 0.86 versus 0.83 for
sensitivity)

Rodriguez-Ruiz et al

(2019)
Multi-center data DeepCNNmodel

Transpara 1.4.0

TheAI systemhas similar performance for detecting breast cancer in

MGcomparedwith an average of 101 radiologists. Thisfindingwas

consistently validated in a large, heterogeneous,multi-center,multi-

vendor, and cancer-enriched cohort.

TheAI systemhad a higher AUC than the average of 101 radiologists

(0.840 versus 0.814). The AI systemhad anAUChigher than 61.4%

of the 101 radiologists

Sasaki et al (2020) Self-collected data DeepCNNmodel The diagnostic performance of AI systemwas statistically lower than

that of human readers

TheAUC, sensitivity and specificity for AIwere all lower than that of

human readers (0.706 versus 0.816 for AUC, 0.85 versus 0.89 for
sensitivity, and 0.67 versus 0.86 for specificity)

Kim et al (2020) Multi-center data CNNmodel ResNet-34 AI is able to detect early-stage breast cancer inMGespecially in dense

breast compositions.Meanwhile, the performance of radiologists was

significantly improvedwith the aid of AI

AI had good performance on all the three datasets: SouthKorea

dataset (AUC0.970), USA dataset (AUC0.953), andUKdataset

(AUC0.938)
The performance of human readers was poorer thanAI standalone

(0.810 versus 0.940 for AUC)
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Gu and Jiang 2022). In this section, we present a comprehensive review of these applications, with selected
references indicated in table 2.

2.3.1. Automatic identification and segmentation
The hand-crafted outlining of breast lesion contours is time consuming and subjective, particularly for those
without distinctmargins. Therefore, the automated identification of lesions is desirable for efficient AI analysis.
Researchers have developed various automatedAI detectionmodels for breast lesions inUS images (Marcomini
et al 2016, Yap et al 2018, Cao et al 2019, Qi et al 2019, Lee et al 2020, Shen et al 2021a, Chen et al 2022b) ,
including 3Dbreast US images (Gu et al 2016).

Marcomini et alfirst developed an identificationmodel for tissue-mimicking phantomswith nodules
similar to breast lesions, and subsequently applied the algorithms to clinical images (Marcomini et al 2016). The
neuralmultilayer perceptron classifier achieved an accuracy of 81% for breast lesion identification in clinical
practice. Themost suitable AImodel for a specific clinical dataset needs to be selected among the vast number of
availablemodels. Cao et al evaluated the performance of four training protocols for object detection (Cao et al
2019). Shen et al developed anAI system to identify breast cancer inUS images using the largest dataset to date,
and the accuracy thereof could reach the level of radiologists (Shen et al 2021a). This demonstrates the potential
of AI in future clinical practice.

2.3.2. Differential diagnosis
The detection of suspicious breast lesions inUS images is the first step forUS physicians. However, themost
important aspect is the accurate diagnosis of the pathological properties; that is, whether the nodule is benign or
malignant.ManyAImodels have been developed to assist US physicians in the differentiation of breast lesions
(Han et al 2017, Xiao et al 2018, Byra et al 2019, Choi et al 2019, Ciritsis et al 2019, Fujioka et al 2019,Hejduk et al
2022). The performance of AImodels varies significantly as a result of the different dataset sources and
algorithms that are adopted.Most studies have affirmed the auxiliary diagnostic value of AImodels forUS
physicians. A commercial US system that incorporated anAImodule was launched and exhibited promising
results, which further confirmed the clinical potential of AI technology (Kim et al 2017,Di Segni et al 2018).

In the authors’ view, the differential diagnosis ofmost breast lesionswith typicalmalignant sonographic
features is not challenging for qualifiedUS physicians.However, AI-assisted differential diagnosis is desirable for
lesionswith atypical US features. The authors’ group previously evaluated the value ofDLmodels in reducing

Table 2. Selected AI studies in breast US regarding to tumor differentiation, biological property evaluation and prognosis prediction.

References Application AImodel Main finding

Shen et al

(2021a)
Breast tumor

identification

DLmodel In a retrospective reader study, the AI achieves a higher AUC than

the average of ten breast radiologists (0.962 versus 0.924). This
indicates the potentials of using AI in breastUS diagnosis

Han et al (2017) Breast tumor

classification

GoogLeNet CNN

model

The networks showed an accuracy of about 0.90, a sensitivity of

0.86 and a specificity of 0.96. The limitation of the study is that

target regions of interest need themanual selection of radiologists

Ciritsis et al

(2019)
Breast tumor

classification

DeepCNNmodel To differentiate BI-RADS 2–3 versus BI-RADS 4–5 in an external

dataset, the CNNmodel had an accuracy of 95.3% compared

with the accuracy of 94.1%onhuman readers

Zhao et al (2022) Breast tumor

classification

DLmodel

(MobileNet)
TheMobileNetmodel had the best diagnostic performance to

identifymalignant tumors amongBI-RADS 4A lesionswith an

AUCof 89.7% and an accuracy of 91.3% in the testing dataset

(Zhou et al
2021a)

Molecular subtyping AssembledCNN

model

TheCNNmodel based onmultiplemodes of grayscale, color

Doppler flow imaging, and shear-wave elastography images has

good performance (AUC0.89–0.96) to predict the four-classifi-
cation breast cancermolecular subtypes

Zhou et al (2020) ALNMprediction DLCNNmodel

(InceptionV3)
The InceptionV3CNNmodel achieved anAUCof 0.89 in the

prediction of thefinal clinical diagnosis of ALNM in the indepen-

dent dataset

Zheng et al

(2020)
ALNMprediction DL radiomicsmodel The combination of clinical parameter andDL radiomicsmodel

yields the best diagnostic performance in predicting ALNMstatus

with andAUCof 0.902 in the test cohort

Jiang et al

(2021a)
Therapy response

evaluation

DL radiomic

nomogram

The developedmodel can predict the pathological complete

response (pCR) status accurately with anAUCof 0.94 in the vali-

dation cohort

Yu et al (2021a) Prognosis prediction Radiomic nomogram The radiomics nomogramperformed better than the clin-

icopathological nomogram (0.796 versus 0.761 forC-index)
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themalignancy rate among breast imaging reporting and data system (BI-RADS) 4A lesions to achievemore
accurate risk stratification (Zhao et al 2022). A further study is being conducted to evaluate the value of AI for
diagnosingmalignant breast tumorswith atypical sonographic features using a large dataset frommultiple
centers.

2.3.3. Correlation with tumor invasive properties
Medical images were previously treated as gross anatomical images of tissues, organs, or lesions, inwhich the
information ofmorphological changes was focused.However, in addition to displaying these conventional
descriptive signs,medical images contain extremely large amounts of digital information that can be deeply
excavated (Aerts et al 2014, Gillies et al 2016). The digital information is correlatedwith themolecular subtypes
(Guo et al 2018b,Wu et al 2021, Zhou et al 2021a, Jiang et al 2021b), and histopathological variables (Cui et al
2021, Li et al 2022a) of breast cancer, as well as axillary lymphnodemetastasis (Sun et al 2020, Zheng et al 2020,
Zhou et al 2020).

Breast cancer is a highly heterogeneous disease with four commonmolecular subtypes. Thus, the variety in
imaging is expected to be a result of the heterogeneity of the biological properties. It has been found that
sonographic radiomics can classify themolecular subtypes of both invasive breast cancer and ductal carcinoma
in situ (Guo et al 2018b,Wu et al 2021, Zhou et al 2021a, Jiang et al 2021b). However, according to our
experience, caution should be exercised in that themolecular subtypes overlapwith one another in terms of the
sonographic features. The classification potential of AI algorithms formolecular subtypes should be rationally
examined (Shi et al 2021).

The axillary lymph node (ALN) status is crucial in determining the tumor stage and subsequent treatment
strategy. The presence and load of ALNmetastasis (ALNM) are dependent on the primary breast tumor.
Therefore, the prediction of ALNMbased on sonographic features using AI algorithms has been highlighted in
various research articles (Yu et al 2019, Guo et al 2020, Zheng et al 2020, Lee et al 2021a, 2021b, Zhou et al 2021c,
Jiang et al 2022b). Although the performance of thesemodels is acceptable, it has been suggested that the
prediction should also consider clinicopathological features to achieve satisfactory performance (Guo et al 2020,
Zheng et al 2020, Lee et al 2021a).Meanwhile, the perineural region (Moon et al 2017, Sun et al 2020) and
elastography (Jiang et al 2022b) are also valuable for predicting the ALNMstatus.

2.3.4. Prediction of treatment response and recurrence
UShas traditionally been themajor screening and diagnostic tool for breast cancer. However, an increasing
number of studies have demonstrated thatUS features, particularly radiomics features, are potential imaging
biomarkers for predicting the treatment response toNAC (Byra et al 2021, Jiang et al 2021a, Gu et al 2022) and
the risk of postoperative recurrence of breast cancer (Xiong et al 2021, Yu et al 2021a, Sheng et al 2022). Although
the studies to date have been promising, robust results that have been verified using a large dataset remain
lacking. Furthermore, it should be acknowledged that imaging information is not beyond clinicopathological
factors, such as themolecular subtype,metastatic load in the axilla, andNAC regimen, which should be
consideredwhen designing similar studies.

2.4. Applications of AI in breastMRI
AI techniques that aid inMRI image analysis can facilitate radiologists in clinical decision-makingwith
enhanced diagnostic efficiency and precision. Such techniques havemainly been applied to lesion detection, risk
assessment, and treatment response prediction (Sheth andGiger 2020, Bitencourt et al , Satake et al 2022).
Selected articles relating toMRI-basedAI studies are summarized in table 3.

2.4.1. Detection and classification
AI based on breastMRI hasmainly been used to aid in classifying breast lesions as benign ormalignant (Zhang
et al 2020, Potsch et al 2021, Sun et al 2021, Jiang et al 2021c, Altabella et al 2022,Daimiel Naranjo et al 2022,
Militello et al 2022).Most of these studies achieved comparable classification efficacy to radiologists using anML
model (DaimielNaranjo et al 2022) or aDLCNNmodel (Truhn et al 2019, Chung et al 2022,Witowski et al
2022). UltrafastMRI, which reduces the image acquisition and interpretation time, has attracted increasing
attention in recent years (Jing et al 2022). TheDLmodel can be used for the automatic identification of normal
scans in ultrafast breast tissue, thereby greatly decreasing theMRI screening time and costs (Ayatollahi et al 2021,
Jing et al 2022). Figure 6 shows the process of usingDL to exclude lesions with ultrafast breastMRI to shorten
acquisition and reading time. AI has also been used to diagnose clinically challenging lesions, such as non-mass-
like lesions, sub-centimeter lesions, and lesions in patients with dense breasts (LoGullo et al 2020, Verburg et al
2022,Wang et al 2022a).
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Another application of AI is the classification of the pathological ormolecular subtypes of breast cancer.
Multiclassmolecular subtype differentiation is a substantiallymore challenging task than diagnosis.Many
studies have explored the potential of radiomics orDLmodels to classify breast cancer subtypes (Zhang et al
2021b, Zhou et al 2021b, Lee et al 2022, Tsuchiya et al 2022, Yin et al 2022, Sun et al 2022b, Lafcı et al 2023). In
addition to themolecular subtype,MRIAI can classify the Ki-67 expression and histological grade, which are

Figure 6. (A) schematic illustration of the ultrafast breastDCE-MRI classification system,which includes threemain stages: breast
region segmentation,maximum intensity projection generation and abnormality prediction. Reproduced from Jing et al (2022). CC
BY 4.0.

Table 3. Selected AI studies in breastMRI regarding to tumor detection, classification and prediction.

References Application AImodel Main finding

Ayatollahi et al

(2021)
Breast tumor detection Amodified 3DRetina-

NetDLmodel

TheDLmodel can efficiently detect benign andmalig-

nant lesions on ultrafast DCE-MRI. Themodel can also

help to detect those less visible hard-to-detectmalignant

breast lesions

Jiang et al

(2021c)
Breast tumor classification Computer-assisted diag-

nostic software (QuantX)
AI software forMRI can improve radiologists’ perfor-

mancewith an average AUCof all readers improved from

0.71 to 0.76 in the task of differentiating benign and

malignant breast lesions

Jiang et al

(2022a)
Breast tumor classification

and prognosis prediction

Radiomicsmodel Radiomics were able to identify TNBC and predict

TNBCmolecular subtypes. Furthermore, radiomics

quantifying the heterogeneity in peritumoral regions can

represent tumormetabolism and immune response pat-

terns, and predict patient outcomes

Zhang et al

(2021b)
Molecular subtyping CNNmodel Deep learning based onMRI can differentiate three kinds

ofmolecular subtypes of breast cancer. The recurrent

neural network has a better performance comparedwith

conventional CNNmodel

Bitencourt et al

(2020)
Prediction for biomarker

and treatment response

ML radiomicsmodel TheMLmodel incorporating both clinical andMRI

radiomics features, can be used to assess the expression

level ofHER2 and can predict the possibility of pCR after

NAC inHER2 overexpressing breast cancer patients

Yu et al (2021b) ALNMprediction ML radiomicsmodel Themultiomics incorporatingMRI radiomics of tumor

and axillary lymph node, clinicopathologic character-

istics, andmolecular subtypes achieved anAUCof 0.91

to predict ALNM in the external validation cohort

Sutton et al

(2020)
Therapy response

evaluation

ML radiomicsmodel The combination ofMRI radiomics andmolecular sub-

type can predict the pCR afterNACwith anAUCof 0.78

in the validation set

Li et al (2016) Recurrence risk prediction Radiomicsmodel BreastMR imaging radiomics have the potential to pre-

dict the risk of breast cancer recurrence derived from

MammaPrint, OncotypeDX, and PAM50 gene assays
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important factors in estimating the biological behavior and treatment sensitivity (Liu et al 2021, Song et al 2021,
Zhang et al 2022, Fan et al 2022b).

2.4.2. Prediction
Similar to the application of AI in breast US,many investigators have evaluatedAI techniques for breastMRI in
predicting the ALNMstatus (Yu et al 2020, Zhang et al 2021a, Yu et al 2021b,Gao et al 2022, Zhan et al 2022, Li
et al 2022b,Wang et al 2022b, Li et al 20223) aswell the response toNAC (Braman et al 2017, Banerjee et al 2018,
Braman et al 2019, Liu et al 2019b, Bitencourt et al 2020, Sutton et al 2020, Choudhery et al 2022,Massafra et al
2022, Caballo et al 2023). A recently published study explored the potential of four-dimensional (4D, 3D+ time)
MLradiomics based on spatiotemporal information frompretreatmentDCE-MRI to identify patients who
achieved pCR followingNAC (Caballo et al 2023). AlthoughAI techniques are unlikely to replace invasive
biopsies, they offer the advantage of providing prognostic information that is derived from the entire tumor,
whereas biopsy sampling only represents a small part of the tumor. Thismay be particularly useful for
monitoring biological changes during treatment.

AI-enhancedMRI has been investigated as a noninvasive predictor of breast cancer prognosis (Eun et al
2021,Ma et al 2022, Thakran et al 2022, Fan et al 2022a, Chen et al 2022c). Fan et al found that the radiogenomic
signature of the texture andmorphological features was positively associatedwith theOncotypeDXRS, and a
predicted RS that was greater than 29.9was related to poor recurrence-free survival (Fan et al 2022a). In certain
studies,MR images have been associatedwith other types of genetic testing, such as the 50-gene PAM50 and
Curebest 95-gene assays, to identify radiogenomics signatures and provide alternatives for patients who did not
undergo gene testing (Li et al 2016, Tokuda et al 2020).Ma et al developed a radiomicsmodel using pre- and
post-NACDCE-MRI features to predict systemic recurrence in TNBCpatients (Ma et al 2022). The radiomics
achieved better predictive performance than the clinicalmodel in predicting the recurrence riskwithin three
years followingNAC,with anAUCof 0.933. Thakran et al concluded that the radiomics features of parametric
responsemaps thatwere derived fromDCE-MRI kineticmaps achieved the best predictive performance for
recurrence risk, with aC-statistic of 0.72 (Thakran et al 2022).

2.5. Applications of AI in breast PET/CT imaging
Breast imaging AImodels based on PET/CThave also been studied in recent years (Romeo et al 2021,
Sadaghiani et al 2021, Urso et al 2022). Applications of PET/CT include tumor staging, the evaluation of the
treatment response, and suspected disease recurrence (Fowler andCho 2021, Kikano et al 2021, Sarikaya 2021).
Table 4 listed some elected AI studies in breast PET-CTor PET-MRI regarding to tumor detection, classification
and prediction.

Krajnc et al established anMLmodel based on PET/CT to aid in the differentiation of benign andmalignant
tumors. Theirmethod achieved anAUCof 0.81 for the differentiation and could identify TNBCwith anAUCof
0.82 (Krajnc et al 2021). The PET andMRI-derived radiomic features were found to be associatedwith the tumor
grade, overall stage, subtypes, prognosis (Huang et al 2018), and hormone receptors (Umutlu et al 2021).
However, Araz et al found that all radiomics parameters fromPET/CT failed to predict the hormone receptors
(Araz et al 2022). PET-derived radiomics has also been applied to the prediction of other raremalignant breast
cancers, such as breast lymphoma (Ou et al 2019).

Asmentioned previously, ALNM is one of themost important clinical factors in determining treatment
strategies and prognostic outcomes. PET/CTprovides high specificity but relatively low sensitivity for ALNM
evaluation. AdvancedAI techniques have been applied to address this issue and promising results have been
achieved (Li et al 2021, Song 2021, Chen et al 2022a). Chen et al used PET/CT radiomics to identify occult
ALNM in clinically node-negative patients (Chen et al 2022a). The developedmodel improved the diagnostic
performance of occult ALNM,with ameanAUCof 0.817 andmean accuracy of 0.812.With the prevalence of
COVID-19mRNAvaccinations in recent years, the correct differentiation betweenmetastatic and reactive ALN
has become a new challenge. Eifer et al found that the radiomics features thatwere extracted fromPET/CT
performed effectively in differentiating between breast-related ALNMandCOVID-19 vaccine-related axillary
lymphadenopathy (Eifer et al 2022).

The application of PET-basedAImodels for further identification of patients whomay benefit fromNACat
the early stage is an area of significant interest owing to the capability to quantifymetabolic activity in breast
tumors (Antunovic et al 2019, Yoon et al 2019, Li et al 2020, Roy et al 2022,Umutlu et al 2022, Yang et al 2022).

3. Challenges of AI in breast imaging

In addition to screening and detection, the ideal roles of AI in breast imaging include aiding radiologists in
reaching themost appropriate diagnosis, assisting clinicians in creating the best treatment plan, and
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incorporating other clinical-pathological-immunohistochemical variables to predict the risk of recurrence or
metastasis. Thus, breast imaging AI is expected to contribute to precisionmedicine and personalized treatment.
However, various technical and clinical challenges exist in the sustainable development of breast imaging AI.

3.1. Technical challenges
First, big data forms the basis of AI in breast imaging.However, clinical breast images are not rich enough at one
center.Multicenter studies are required to address this problem.Moreover, this challengemay be reinforced by
the nonstandard nature of ultrasound images, e.g. deviations in the image collection, equipment, and image
setting. Thismay be alleviated through accumulating enough data from various ultrasound equipment at
different settings and developing sophisticatedAImodels to tolerate those interferences.

Second, the uninterpretability of currentDLmodels that are applied to breast imagingmakes it challenging
to transfer the technique from research to real clinical practice despite of the applications commercial AI
products. Such a challengemay be alleviated by the development of interpretableDLmodels in the future (Liu
et al 2019a, Vellido 2020).

Third, asmost currentDLmodels are supervised, themodel training process relies onwell-defined training
data. Thus, all regions of interest on the breast images should bewell delineated, which requires substantial labor
and is sensitive to subjective errors. The requirement ofmanually delineated labels in breast imagingmay pose a
significant challenge for a long time (Bi et al 2019). This challengemay bemitigated using unsupervisedDL
models which get rid of the delineation of labels (Chen et al 2023).

3.2. Clinical challenges
AlthoughAI is a robust tool for dealingwith complicated tasks, the integration of the computing resources that
are required byAI necessitates human input, especially in the training stage.However, clinicians have limited
time to collectmassive amounts of data, which is whymost relatedAI studies include a limited number of cases
or focus on specificmedical information (Nagendran et al 2020).Most studies evaluated the applications of AI
based on one imagingmodality. The combination ofmultiple imagingmodalities is desired (Romeo et al 2021).
Furthermore, the ethical issues relating to patient privacy and data security in breast imaging AI cannot be
ignored. The protection of data security is critical when sharing data, especially inmulticenter studies (Hickman
et al 2021).

Tumor heterogeneity is amajor obstacle for radiologists to give accuate diagnosis for each single case in the
clinical circumstance as a result of variable imaging apperances, but also provides an opportunity for the
continuous exploration of AI in breast imaging. It is difficult for radiologists to determine the pathological

Table 4. Selected AI studies in breast PET-CTor PET-MRI regarding to tumor detection, classification and prediction.

References Application AImodel Main finding

Krajnc et al

(2021)
Breast tumor detection and

differentiation

MLmodel TheMLmodel yielded good performance for cancer detection

(80% sensitivity, 78% specificity, 80%accuracy, 0.81AUC), and
for the identification of TNBC (85% sensitivity, 78% specificity,

82% accuracy, 0.82 AUC). which is higher than the SUV(max)
model (0.76 AUC in cancer detection and 0.70 AUC in predict-

ing TNBC)
Umutlu et al

(2021)
Molecular subtyping and

tumor decoding

ML radiomics

model

MR andPETdata provided good prediction for hormone recep-

tor status and proliferation rate (estrogen receptor AUC0.87,

progestorone receptor AUC0.88, Ki-67 AUC0.997) aswell as
lymphonodular (AUC0.81) and distantmetastatic spread

(AUC0.99)
Song (2021) ALNMprediction ML radiomics

model

TheML-based 18F-FDGPET/CT radiomicsmodel showed

good performance for the prediction of ALNmetastasis in the

test cohorts with the sensitivity, specificity, and accuracy of

90.9%, 71.4%, and 80%, respectively

Chen et al

(2022a)
Occult ALNMdetection ML radiomics

model

Radiomics features based on the random forestmodel could

predict the occult ALNM in infiltrative ductal carcinoma

patients (meanAUC, 0.817;mean accuracy, 81.2%)
Umutlu et al

(2022)
pCRprediction ML radiomics

model

The combined 18F-FDGPET/MRI radiomics features enables

the prediction of pCR in breast cancer patients, especially in

thosewithHR+/HER2- receptor status (AUC0.94)
Yang (2022) pCRprediction ML radiomics

model

The PET/CT-based radiomics analysismight provide efficient

predictors of pCR in patients with breast cancerwith theAUC

ranging from0.819 to 0.849 in the validation cohort
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nature of certain atypical breast lesions owing to the high heterogeneity of cancer. Thus, AI is desirable for aiding
radiologists in reaching themost appropriate diagnosis for such breast lesions.Moreover, AI is expected to aid in
evaluating the prospects, success, and failure of treatment outcomes based on learning from the successful
treatment of clinical cases (Maddox et al 2019). However, the challenge from tumor heterogeneity also exists for
AI to reach perfect computation results and agreement among different studies. An integratedmodel to
incorporate imaging datawith clinical-pathological-immunohistochemical-genetic information is desired to
overcome the effec of tumor heterogeneity.

The role of AI systems in diagnosis applications has been disputed (Giger 2010). Should AI be used as the
second reader or replace human readers if its standalone performance is comparable or superior to that of
radiologists? Furthermore, when a controversy arises betweenAI and human readers, which diagnostic
conclusion should be thefinal one? These questions need to be answered before AI can be applied extensively in
clinical practice.

Breast imaging is useful for preoperative diagnosis, and its significance in guiding treatment strategies and
prognosis prediction should also be explored.However, it is difficult to integrate breast imaging AIwith clinical
datasets without the support of clinicians. Fortunately, an increasing number of breast clinicians are focusing on
the integration of imaging data and other related information into AImodels to cater to personalized treatment
and precisionmedicine (Jiang et al 2022a).Moreover,multi-omics studies have become a hot topic for
characterizing themolecular biology of tumors, including the genomics, transcriptomics, proteomics, and
metabolomics (Ponzi et al 2021). Current evidence suggests that the clinical transformation ofmost developed
high-performance AI algorithms remains in the initial stages (Nagendran et al 2020). It is expected that all
information of each specific patient will be consolidated to build a large data archive for training robust AI
models at all institutions in the near future. Personalized treatment and prognosis prediction for subsequent
breast cancer patients can hopefully be realized using suchmodels.

4. Futurework

Breast imaging AI is not expected to exceed radiologists for lesionswith typical benign ormalignant imaging
features in the diagnosis of breast cancer; however, it can offer significant advantages for lesions that are difficult
for radiologists to differentiate. Therefore, further studies to evaluate the performance of AI in the diagnosis of
atypical breast lesions are warranted. Furthermore, the combination ofmultiple imagingmodalitiesmay
provide beneficial reference resources for clinical decisions.

AI has also undergone rapid development inmedicalfields other thanmedical imaging in recent years.
Imaging data, pathological sections, and gene sequencing of patients have become important prerequisites for
the accurate diagnosis and treatment of tumors.However,most AImodels that have been proposed by
researchers to date are based on a single imaging system and lackmodel training in combinationwith
information fromother imagingmethods as well as information from electronicmedical records. Therefore, the
integration of this informationwithAImodels is of great importance for the development of individualized
treatment strategies. To this end, AI is expected to be incorporated into clinical practice and to become routinely
used by clinical workers.

5. Conclusions

In this article, we have justified the necessity of introducing AI techniques into breast imaging, reviewed the
applications of AI in breast imagingmodalities, and presented technical and clinical challenges in this area. The
key conclusions can be summarized as follows: (1)Breast imaging AI is clinically necessary and practically
feasible in the era of precisionmedicine and personalized treatment. (2)The expectation should be for AI to aid
radiologists in dealingwith difficult cases, rather than to replace radiologists, in the diagnosis of breast cancer. (3)
The future integration ofmultiple imagingmodalities as well as radiomics with clinical data andmulti-omics is
warranted.
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