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We propose an estimator for the population mean θ0 ¼EðYÞ under the semi-

supervised learning setting with the Missing at Random (MAR) assumption. This set-

ting assumes that the probability of observing Y, denoted by π ∗
M , depends on the total

sample size M and satisfies π ∗
M ¼ oð1Þ. To efficiently estimate θ0, we introduce an

adaptive estimator based on inverse probability weighting and cross-fitting. Theoreti-

cal analysis reveals that our proposed estimator is consistent and efficient, with a

convergence rate of
ffiffiffiffiffiffiffiffiffiffi
Mπ ∗

M

p
, slower than the typical

ffiffiffiffiffi
M

p
rate, due to the diminishing

proportion of labelled data as the sample size M increases in the semi-supervised set-

ting. We also prove the consistency of inverse probability weighting (IPW)–

Nadaraya–Watson density function estimators. Extensive simulations and an applica-

tion to the Los Angeles homeless data validate the effectiveness of our approach.

K E YWORD S

dimension reduction, inverse probability weighting, mean estimation, missing at random, semi-
supervised learning

1 | INTRODUCTION

Semi-supervised learning (SSL) has gained significant attention in the fields of statistics and machine learning, as it addresses the challenge when

there are limited labelled data and the abundance of unlabelled data. SSL aims to leverage both labelled and unlabelled data to improve model per-

formance (Chapelle et al., 2009). Early SSL research focused on classification problems (Ando & Zhang, 2005; Wang & Shen, 2007; Wang et al.,

2008), while recent works have extended SSL to regression tasks (Belkin et al., 2006; Johnson & Zhang, 2008). Despite progress, challenges

remain existent in providing theoretical guarantees and effectively incorporating domain knowledge. A comprehensive overview of early SSL work

can be referred to Zhu and Goldberg (2009).
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SSL has been experiencing an explosive growth in recent years. Gronsbell and Cai (2017) considered the efficient SS evaluation of model pre-

dictive performance using generalised linear models. The construction of the best linear predictor in SS settings was studied by Azriel et al.

(2022). Cai et al. (2022) proposed a SSL approach that combines transfer learning and surrogate-assisted techniques to achieve triple robustness.

Song et al. (2023) proposed an estimator based on the projection method to study a class of general M-estimators in the SS setting. Tu et al.

(2023) proposed a distributed SS sparse statistical inference method, which utilises additional unlabelled data to estimate the inverse of the Hes-

sian matrix, thereby reducing local bias and improving overall accuracy. Wu et al. (2024) proposed an optimal subsampling method in the SS

setting.

The fundamental difference between SSL and traditional missing data lies in the fact that the former allows the probability of observing Y to

approach 0. Let X�ℝp be a p-dimensional covariate, Y �ℝ be the outcome variable, D� f0,1g be a binary indicator variable, which takes the value

of 1 if Y is observed and 0 if Y is missing. Let πMðxÞ¼PðD¼1jX¼ xÞ be the probability that Y is observed given X¼ x, commonly known as the

Propensity Score (PS), and π ∗
M ¼EfπMðXÞg. In traditional missing data problems, we require that πMð�Þ is bounded away from 0 and independent

of M, which is the well-known “positive overlap” condition. Semi-supervised Learning and Missing at Random (SSL-MAR) assumption allows πMð�Þ
to depend on both the covariates X and the total sample size M, while Semi-supervised Learning and Missing Completely at Random (SSL-MCAR)

assumption holds when the probability of Y being observed is independent of the covariates (i.e. πMðXÞ¼ π ∗
M ). By introducing sample size M into

the PS, we allow πMðXÞ, π ∗
M !0 uniformly as M!∞.

In this paper, our interests focus on statistical inference for the population mean θ0 ¼EðYÞ. Under the positive overlap assumption, Hu et al.

((2010), (2012), (2014)) and Huang and Chan (2017) introduced different estimators for the θ0. Under the SSL-MCAR assumption, Zhang

et al. (2019) proposed mean estimators based on least squares, in the ideal SS setting (infinite unlabelled samples) and the ordinary SS setting

(finite unlabelled samples), respectively. They proved that when there is a correlation between X and Y, the proposed estimators outperform the

simple sample mean and provided an upper bound for the squared loss. At the same time, they introduced additional covariates under the non-

parametric regression model and constructed a sequence of estimators, proving that it can asymptotically achieve the optimal risk. Although their

work allows the dimension p¼ o
ffiffiffi
n

p� �
to diverge, where n is the sample size of labelled data, it is still a strong condition in high-dimensional set-

tings. Zhang and Bradic (2022) proposed a K-fold cross-fitted doubly robust estimator which allows for model misspecification and existence of

nuisance parameters by using methods such as penalised estimation and random forests. It is worth noting that, although it may be difficult to rec-

ognise at the first glance, some other problems can also be reinterpreted as the estimation of population means, such as the variance of Y or the

covariance between Y and X, kernel estimation (Cannings & Fan, 2022). Cai and Guo (2020) studied the semi-supervised inference of explained

variance in high-dimensional linear regression, which can also be considered as the estimation of population means. Another example is the Aver-

age Treatment Effect (ATE). Cheng et al. (2021) proposed an efficient and robust SS estimator for estimating the ATE. However, the above work

has focused on the SSL-MCAR assumption; limited attention has been paid to the SSL-MAR assumption. To the best of our knowledge, Kallus

and Mao (2020) and Zhang et al. (2023) are most closely works related to our research. We believe that our work serves as a valuable contribution

to this continuously growing and expanding field.

To effectively estimate the population mean θ0 ¼EðYÞ, we propose an adaptive estimator based on inverse probability weighting (IPW) and

cross-fitting. Specifically, we first introduce a missingness probability model πMðXÞ given the sample size M to characterise the relationship

between the covariates X and the missingness indicator D, adapting to the SSL-MAR assumption. Meanwhile, to handle high-dimensional

covariates, we employ a single index model (SIM) to transform the covariates X into a one-dimensional index X0β, which reduces the dimensional-

ity while retaining the information from the original covariates. Based on this, we construct an IPW estimator by using kernel estimation and

cross-fitting.

To summarise, we make the following important contributions to the existing literature. We discuss the problem of mean estimation under

the assumptions of SSL-MAR and diverging covariate dimensionality. The SSL-MAR assumption requires that the probability of observing Y is 0 in

the ideal semi-supervised setting (i.e. when the total sample size M¼∞) and greater than 0 in the finite-sample case (i.e. M<∞). To address this,

the PS πMðXÞ and the observation probability π ∗
M ¼EfπMðXÞg are introduced, both of which are related to M. It is required that supx � XπMðxÞ and

π ∗
M converge to 0 as M!∞. An estimator combining inverse probability weighting and Nadaraya–Watson (IPW-NW) is proposed, and it is proven

that the convergence rate of the target parameter is
ffiffiffiffiffiffiffiffiffiffiffi
Mπ ∗

M

p
instead of

ffiffiffiffiffi
M

p
. Furthermore, we also obtain a series of nuisance parameter estimates

with degenerate convergence rates.

The remainder of the paper is organised as follows. In Section 2, we formulate the SS setting and introduce the proposed estimators via a

semiparametric imputation. Theoretical properties based on influence function expansions are contained in Section 3. We implement numerical

studies including extensive simulation studies and a real data example in Sections 4 and 5, respectively. The paper concludes with brief discus-

sions in Section 6. All useful lemmas, technical proofs and additional numerical results are referred to the supporting information.
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2 | METHODOLOGY

2.1 | Notation

Throughout this paper, we adopt the following notation. Denote Y �ℝ as the outcome and X�ℝp be the covariate vector with dimension p,

where p can be fixed or diverging. Let D be an indicator variable, where D¼1 if Y is observed and D¼0 if Y is missing. Define the complete

dataset as Z¼fZi ¼ðDi ,DiYi ,X
0
iÞ0 , i¼1,…,Mg. The observed dataset can then be partitioned as follows: (i) L¼fðDi ,DiYi ,X

0
iÞ0 :Di ¼1, i¼1,…,Mg of

n IID observations and (ii) U ¼ Di,DiYi,X
0
i

� �0
,Di ¼0, i¼1,…,M

n o
of N IID observations, where L contains the completely observed data and U con-

tains the data with Yi missing. Denote the cardinality of a set A as jAj. We require jUj� jLj in the SS setting. The propensity score πMðXÞ is

defined as the probability of observing Y given X and sample size M (i.e. πMðXÞ :¼PðD¼1jXÞ), and its expectation is denoted by π ∗
M ¼EfπMðXÞg.

Additionally, we define π ∗ ∗�1
M ¼Efπ�1

M ðXÞg, where πMðXÞ, π ∗
M and π ∗ ∗

M depend on the sample size M. As M approaches infinity, πMðXÞ, π ∗
M and

π ∗ ∗
M approach zero, meaning that the probability of observing Y given X becomes increasingly small as the sample size becomes larger. For any

v� ℝp ,kvkr denotes the Lr vector norm of v for any r ≥0, vi denotes the ith coordinate of v and v½i:j� represents the elements of vector v from the

ith element to the jth element, 81≤ i, j≤ pþ1. For a matrix A�ℝp�p,kAkr :¼ supv≠ 0kAvkr=kvkr . For sequences aM and cM, we write aM ¼OðcMÞ if
aM=cM ≤C1 for some constant C1, aM ¼ oðcMÞ if aM=cM !0, and aM � cM if C1 ≤ aM=cM ≤C2. The values of constants Cis, which are independent of

M and p, vary from one line to another.

Remark 2.1. By allowing πMðXÞ, π ∗
M and π ∗ ∗

M to depend on the sample size M, we relax the “positive overlap” condition. The ratio-

nale is that while labelled data are negligible in the population distribution PðD¼1Þ¼0, it is crucial for finite-sample estimation. To

address this, we introduce a modified data-generating process with M-dependent labelling probabilities, inducing a finite-population

distribution PM that converges to the target P. It is important to note that PM is still a population distribution, not an empirical distri-

bution. It is used to generate the M observations in the finite-sample setting. This setting flexibly describes the SSL-MAR

assumption.

Remark 2.2. The distribution of D is different under the finite-population distribution PM and the target distribution P due to the

introduction of sample size-dependent labelling probabilities. This ensures sufficient labelled data for finite-sample estimation. How-

ever, the distribution of Y is invariant under both PM and P, despite potential variations in the labelling process across sample sizes.

This invariance is crucial for our method, as it enables the estimation of population characteristics of Y using the finite-sample data.

Maintaining consistency is essential for SSL, where the goal is to leverage a large amount of unlabelled data alongside limited

labelled data to improve the estimation of population parameters.

2.2 | Estimation via semiparametric inverse propensity weighting

To estimate θ0 ¼EðYÞ, the most straightforward is the sample average Y¼ n�1Pn
i¼1Yi. However, under the traditional MAR assumption, Y is often

an inconsistent estimate, since the target parameter for Y is EðYjD¼1Þ rather than EðYÞ unless the MCAR assumption holds. On the other hand,

a considerable amount of informative unlabelled data remains underutilised under the single imputation scheme. We propose an alternative SS

estimator for θ0 by the semiparametric method. This strategy involves two main steps: dimension reduction and semiparametric calibration. In the

dimension reduction step, we aim to reduce the dimensionality of the data by extracting relevant features or components. Instead of EðYjXÞ, we

target to estimate EðYjSÞ. A semiparametric estimator of θ0 is usually ‘motivated’ by a working model as illustrated below. For any β�ℝp,

θ0 ¼EðYÞ¼EfEðYjX0βÞg :¼EfEðYjSÞg¼EfgðSÞg¼EfgðX0βÞg, ð2:1Þ

where S¼X0β and gðSÞ¼ðYjSÞ is an unknown link model and reduces the dimension of the regressor X from p to 1. Together with MAR assump-

tion, we assume that the nuisance condition mean function EðYjXÞ¼EðYjX,D¼1Þ¼ gðX0βÞ follows a SIM. We use the kernel smoothing method

to estimate gð�Þ. Assume that Kð�Þ :ℝ!ℝ is a symmetric (in each dimension) probability density function with finite second-order moments in ℝ.

Let ~KðuÞ¼Qp
d¼1KðudÞ, KhðuÞ¼ h�pQp

d¼1Kðud=hÞ, where h¼ hM ¼ oð1Þ is the bandwidth. We introduce a cross-fitted estimator of gð�Þ: 1. For a
fixed K ≥2, we create a random partition I kf gKk¼1 of the index set I :¼f1,…,Mg; 2. For each k ≤K, we use the training set Z�kðiÞ :¼ Zi : i� I ∖ Ikf g
to obtain the estimator bg

k,bw � ;� ,Z�kðiÞ
� �

, as shown in (2.2);

ĝk,ŵðs; β̂k ,Z�kðiÞÞ¼
P

j � Z�kðiÞ
Dj

π̂wMðXjÞYjKh X0
j β̂k�x0β̂k

� �
P

j � Z�kðiÞ
Dj

π̂wMðXjÞKh X0
j β̂k�x0β̂k

� � , ð2:2Þ
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where β̂k is the estimate of β on the training set Z�kðiÞ. 3. For each i¼1,…,M, if i� Ik , then we set bg
k,bwðSiÞ :¼bgk,bwðSi; β̂k ,Z�kðiÞÞ. We assume that

maxkkβ̂k�βk1 ≤ bM holds with high probability (w.h.p), bM ¼ oð1Þ. π̂wMðXÞ is a working estimated PS model and π̂wMðXÞ!
p
πwMðXÞ, πwMðXÞ can be the

same as πMðXÞ or different.
We focus on estimator (2.3),

θ̂
sp,w ¼ 1

K

XK
k¼1

1
jZkðiÞj

X
i � ZkðiÞ

ĝk,ŵðSiÞ: ð2:3Þ

Remark 2.3. Ichimura (1993) and Mammen et al. (2016) proposed different estimators for β when p is fixed. Alquier and Biau (2013)

and Eftekhari and Banerjee (2021) studied kernel smoothing estimation with high-dimensional covariates. Specifically, we can obtain

an unbiased estimate of β by restricting the analysis on the observed samples L�kðiÞ ¼ fZj �Z�kðiÞ,Dj ¼1g since ðYjXÞ� ðYjX,D¼1Þ
(Chakrabortty et al., 2019). We can use L1-penalised regression with canonical link functions under additional assumptions, such as

the elliptical symmetry of the covariate distribution given D¼1(Li & Duan, 1989). If we assume that the marginal covariate distribu-

tion is elliptically symmetric, then β can be estimated by performing IPW L1-penalised regression on the complete sample Z�kðiÞ,

with weights constructed as D=πMðXÞ or D=π̂wMðXÞ.

Remark 2.4. We assume that πMðXÞ¼ expitðlogðπ ∗
MÞþ γ0ΩðXÞÞ, where expitð�Þ is a expit link function, expitðuÞ¼ ð1þ expð�uÞÞ�1,

ΩðXÞ :¼f1,ΩðXÞg¼f1,Ω1ðXÞ,…,ΩLðXÞg, ΩlðXÞ :¼ Xl
½1� ,…,Xl

½p�
� �0

ðl¼1,…,LÞ, and L is a positive integer. Using similar techniques as in

Zhang et al. (2023), we have π ∗
M � π ∗ ∗

M . We also use it as our working model and denote it with the symbol “w” to represent the

working model. πwMðXÞ can be the same as πMðXÞ or different (i.e. we allow for model misspecification). When p is fixed,

the unknown parameters γ̂w can be estimated by minimising

LMðγ; π̂wMÞ :¼�M�1
XM
i¼1

DiΩðXiÞ0γ� log 1þ π̂wM exp ΩðXiÞ0γ
� �� �	 


, ð2:4Þ

where π̂wM ¼ n=M. When the dimension p diverges, we add an L1 penalty term to the objective function (2.4) and obtain γ̂ by

minimising the loss function.

Lλ
Mðγ; π̂wMÞ :¼�M�1

XM
i¼1

DiΩðXiÞ0γ� log 1þ π̂wM exp ΩðXiÞ0γ
� �� �	 
þλMkγk1, ð2:5Þ

where λM >0. Note that, although our notation may not explicitly indicate it, π̂wMðXjÞ is estimated using data from Z�kðiÞ excluding

the observation Zj. To maintain notation consistency, denote ξ̂
w ¼ γ̂w þ logðπ̂wMÞe1, ξw ¼ γw þ logðπwMÞe1, where e1 ¼ð1,…,0Þ0ðpLþ1Þ�1. It

holds that Pðmaxkkξ̂w � ξwk1 > rMÞ≤ pM, where rM,pM ¼ oð1Þ, rM ≥0 and pM � ½0,1�.

3 | THEORETICAL PROPERTIES

In this section, we establish the asymptotic properties of θ̂
sp,w

. Let fðs;βÞ be the density function of S¼ x0β, with support S,
f̂k,wðs; β̂kÞ¼ 1

jZ�kðiÞ j
P

j � Z�kðiÞ
Dj

πwMðXjÞKhðX0
j β̂k�x0β̂kÞ, f̂k,ŵðs; β̂kÞ¼ 1

jZ�kðiÞ j
P

j � Z�kðiÞ
Dj

π̂wMðXjÞKhðX0
j β̂k�x0β̂kÞ, fwðs;βÞ :¼wðsÞfðs;βÞ, where wðsÞ¼EfπMðXÞ=πwMðXÞjS¼ sg.

Denote wyðsÞ¼EfπMðXÞ=πwMðXÞYjS¼ sg, ηð1Þβ ðsÞ :¼EðXjX0β¼ sÞfðs;βÞ. We assume the following conditions.

Assumption 1. Kð�Þ satisfies ÐKðuÞdu¼1,
Ð
uKðuÞdu¼0,

Ð
u2jKðuÞjdu<∞, kKð�Þk∞ ≤MK , whereMK is a constant. KðuÞ!0 as u!∞.

Assumption 2. Kð�Þ has a bounded and integrable derivative _Kð�Þ (i.e. k _Kð�Þk∞ ≤M _K and
Ð
ℝj _KðuÞjdu≤C _K , where M _K ,C _K ≥0 are con-

stants). _Kð�Þ satisfies a local Lipschitz property: There exists a constant L>0 such that for all u,v �ℝ, if ju�vj≤ L, then

j _KðuÞ� _KðvÞj≤φðuÞju�vj, where φð�Þ :ℝ!ℝþ is a bounded and integrable function satisfying kφð�Þk∞ ≤Mφ and
Ð
φðuÞdu≤Cφ, where

Mφ ,Cφ ≥0 are constants.

Assumption 3. There exists a constant δf >0 such that fðs;βÞ≥ δf . fðs;βÞ is bounded, with corresponding first- and second-order

derivatives also bounded. There exist constants C1, C2, δg and σY ≥0 such that 0 ≤ v2ðxÞ<∞. kgð�Þk∞ ≤ δg , kYkψ2
≤ σY . The first-order

derivatives of ηð1Þβ ðsÞ with respect to each component of β satisfy max1≤ j≤ pk _ηð1Þβ½j� ð�Þk∞ ≤Cη,1,1, j¼1,…,p.
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Assumption 4. X and ΩðXÞ are bounded, that is, kXk∞ ≤MX and kΩðXÞk∞ ≤MX,L, where MX,MX,L ≥0 are some constants.

Assumption 5. Pðmaxkkβ̂k�βk1 > bMÞ≤ qM, where bM,qM ¼ oð1Þ, bM ≥0, qM � ½0,1�.

Assumption 6. There exist constants Cw,1,Cw,2 > 0, such that Cw,1 < infx � XπMðxÞ=πwMðxÞ≤ supx � XπMðxÞ=πwMðxÞ<Cw,2 holds.

Assumption 7. Mπ ∗
Mh

4 !0, Mπ ∗
Mh!∞.

Assumptions 1 and 2 are standard conditions for kernel estimation. Similar assumptions are also required in Bravo et al. (2020). Most kernel

functions, such as the Gaussian kernel and triangular kernel, satisfy these conditions. Assumptions 3 and 4 are typical conditions that ensure prop-

erties such as estimation consistency, convergence rate, and asymptotic normality. Analogous assumptions can be found in Newey and McFadden

(1994); Hansen (2008); Chakrabortty et al. (2019). Assumption 5 does not impose any specific constraints on the estimation or properties of β̂k ,

allowing for many popular methods. Assumption 6 requires that the ratio between the true PS model and the working PS model is bounded within

a constant range for all x�X . Assumption 7 is the undersmoothing condition, which is a standard requirement for achieving consistency in non-

parametric estimation, as discussed in Hu et al. (2012) and Lin et al. (2018). Given these conditions, we have the following lemma.

Lemma 3.1. Suppose Assumptions 1–6 hold. Define

ϵM,1ðtÞ �D1
tffiffiffiffiffiffiffiffiffiffiffiffiffi

Mπ ∗
Mh

p þD2
t2

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p
Mπ ∗

Mh
þD3h

2,

ϵM,2ðtÞ �D4 bMþb2M
h2

 !
þD5

bMtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mπ ∗

Mh
3

q 1þbM
h

� �
þbM

ffiffiffiffiffiffiffiffiffiffi
logp

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mπ ∗

Mh
3

q
8><>:

9>=>;
þD6

bMt2
ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p

Mπ ∗
Mh

2
1þbM

h

� �
þbM logp

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p

Mπ ∗
Mh

2

( )
,

ϵM,3ðtÞ �D7rM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þ logp
Mπ ∗

Mh

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p ðt2þ logpÞ
Mπ ∗

Mh
þ1

 !

þD8rMbM
1

h2
þ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mπ ∗
Mh

3
q þ t2

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p

Mπ ∗
Mh

2

0B@
1CA

þD9rMb
2
M

1

h3
þ tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mπ ∗
Mh

5
q þ t2

ffiffiffiffiffiffiffiffiffiffiffiffi
logM

p

Mπ ∗
Mh

3

0B@
1CA,

and ϵMðtÞ¼ ϵM,1ðtÞþϵM,2ðtÞþϵM,3ðtÞ. Then, for any t≥0, with at least probability 1�18expð�t2Þ�3pM�5qM,

jf̂k,ŵðs; β̂kÞ�wðsÞfðs;βÞj≤ ϵMðtÞ: ð3:6Þ

This lemma provides an error bound of f̂k,ŵðs; β̂kÞ and also ensures that f̂k,ŵðs; β̂kÞ≥ δf=2. Now let us analyse the error bound in (3.6). For

jf̂k,wðs; β̂kÞ�wðsÞfðs;βÞj,

f̂k,wðs; β̂kÞ�wðsÞfðs;βÞ



 


≤ jf̂k,wðs; β̂kÞ� f̂k,wðs;βÞjþ jf̂k,wðs;βÞ�Eff̂k,wðs;βÞgj
þjEff̂k,wðs;βÞg�wðsÞfðs;βÞj :¼ jR̂M,wðsÞjþ j~SM,wðsÞjþ jSM,wðsÞj:

These three terms, jR̂M,wðsÞj, j~SM,wðsÞj and jSM,wðsÞj, together contribute to the total error bound ϵM,1ðtÞþϵM,2ðtÞ of jf̂k,wðs; β̂kÞ�wðsÞfðs;βÞj. Firstly,
jR̂M,wðsÞj represents the bias in the kernel estimation caused by using the estimated β̂k instead of the true β, and its contribution to the error

bound is represented by ϵM,2ðtÞ. Secondly, j~SM,wðsÞj accounts for the variability introduced by using a finite sample to estimate Eff̂k,wðs;βÞg. The
terms D1t=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mπ ∗

Mh
p þD2t

2 ffiffiffiffiffiffiffiffiffiffiffi
logM

p
=Mπ ∗

Mh in ϵM,1ðtÞ represent the error bound contribution from this term. Thirdly, jSM,wðsÞj captures the difference

between Eff̂k,wðs;βÞg and fðs;βÞ. The term D3h
2 in ϵM,1ðtÞ represents the error bound contributed by this term, which is a bias introduced by the

kernel smoothing method itself. Lastly, ϵM,3ðtÞ represents the contribution of jf̂k,ŵðs; β̂kÞ� f̂k,wðs; β̂kÞj to the total error bound.
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Lemma 3.2. Suppose Assumptions 1–7, bM
ffiffiffiffiffiffiffiffiffi
logp

p� �
=h¼ oð1Þ, rM

ffiffiffiffiffiffiffiffiffi
logp

p� �
=h¼ oð1Þ and logMlogp¼OðMπ ∗

MhÞ hold. Then when

Mπ ∗
M !∞, we have

θ̂
sp,w�θ0 ¼ 1

M

XM
i¼1

DifYi�gðSiÞg
πwMðXiÞwðSiÞ þ 1

M

XM
i¼1

wyðSiÞ
wðSiÞ �θ0

þ1fmðXÞ≠ gðSÞgOpðbMþ rMÞþOp dMþðbMþ rMÞ
ffiffiffiffiffiffiffiffiffiffiffi
logp
Mπ ∗

M

s( )
,

ð3:7Þ

where dM ¼ðM2π ∗
MhÞ

�1=2
.

Lemma 3.2 shows the influence function of the estimator θ̂
sp;w

, which measures the sensitivity of the estimator to small perturbations. The

first term in the influence function is proportional to Y�mðXÞ, with weights being the inverse of the propensity score

πwMðXÞwðSÞ¼ πwMðXÞEfπMðXÞ=πwMðXÞjSg. Observations with lower propensity scores are assigned higher weights to compensate for their reduced

representation in the sample. If only one model is correctly specified, consistency holds. Moreover, when the conditional mean function is cor-

rectly specified, the estimation errors brought by β̂k and ξ̂
w
do not affect the asymptotic normality of θ̂

sp,w
, highlighting the robustness of the pro-

posed method. It is worth emphasising that in this lemma, we require logMlogp¼OðMπ ∗
MhÞ, which means that the product of the smoothing

bandwidth and the effective sample size of labelled samples (Mπ ∗
Mh) should not be smaller than the order of logMlogp. The asymptotic normality

of the proposed estimator can be obtained by applying the Lindeberg-Feller central limit theorem and the Slutsky's theorem. Denote

ΨðZÞ¼ DfY�gðSÞg
πwMðXÞwðSÞ

þgðSÞ�θ0, VM ¼EfΨ2ðZÞg. Then we have the following theorem.

Theorem 3.1. Suppose Assumptions 1–7, bM
ffiffiffiffiffiffiffiffiffi
logp

p� �
=h¼ oð1Þ, rM

ffiffiffiffiffiffiffiffiffi
logp

p� �
=h¼ oð1Þ, logMlogp¼OðMπ ∗

MhÞ and mðXÞ¼ gðSÞ hold. If
for any ϵ>0, π ∗

ME Ψ2ðZÞ1 jΨðZÞj> ϵ ffiffiffiffiffiffiffiffiffiffiffiffiffi
M=π ∗

M

p� �	 
!0 as M!∞. Then as Mπ ∗
M !∞,

Mπ ∗
M

� �1=2
θ̂
sp,w �θ0

� �
¼Opð1Þ,M1=2V�1=2

M,S θ̂
sp,w �θ0

� �
!d Nð0,1Þ: ð3:8Þ

Theorem 3.1 establishes the asymptotic normality of θ̂
sp,w

, which relies on the correct specification of gðSÞ. As M!∞, the tail condition

π ∗
ME Ψ2ðZÞ1 jΨðZÞj> ϵ ffiffiffiffiffiffiffiffiffiffiffiffiffi

M=π ∗
M

p� �	 
!0 characterises the behaviour of extreme or rare events associated with the function ΨðZÞ. These conditions

are crucial for establishing the asymptotic normality of the estimator θ̂
sp,w

. Under these conditions, Theorem 3.1 shows that the convergence rate

of θ̂
sp,w

is not
ffiffiffiffiffi
M

p
, but

ffiffiffiffiffiffiffiffiffiffiffi
Mπ ∗

M

p
. Similar degenerate convergence rates can be found in the limited overlap literature (Hong et al., 2020; Khan &

Tamer, 2010; Rothe, 2017). In classical missing data studies, under the positivity overlap assumption, Crump et al. (2009) directly discarded obser-

vations with extremely small or large propensity scores, achieving a convergence rate of
ffiffiffiffiffi
M

p
. However, in the semi-supervised setting, the num-

ber of unlabelled data far exceeds the number of labelled data, and labelled data can easily have extreme propensity scores. We cannot directly

discard these observations since our goal is to fully utilise the valuable information contained in labelled data.

4 | SIMULATION STUDIES

In this section, we compare the performance of the proposed estimator with the supervised benchmark estimator Y that relies on fully observed

labelled data in terms of bias, standard deviation (SD), standard error (SE), mean squared error (MSE) and efficiency based on MSE and SE. All sim-

ulations are repeated 1000 times. We use the plug-in method to obtain the SD and coverage probability (CP) of the 95% Confidence Interval (CI).

We use the Gaussian kernel function with bandwidth set as hM ¼ σ̂jL�kðiÞj�1=3, where σ̂ is the standard deviation of fX0
i β̂kgXi � L�kðiÞ

and K¼5. The

covariates are generated from fXigMi¼1 	IIDNp�1ð0,ΣÞ, where Σ¼ Ip�1, M¼1000,2000,5000. The dimension p¼10,100, and when p¼100, the spar-

sity s¼10. Let X
!¼ð1,X0Þ0 and set π ∗

M ¼0:1. We consider the following data settings:

(K1) πMðXÞ¼ π ∗
M ;

(K2) πMðXÞ¼ expðlogðπ ∗
MÞþX

!0
γ0Þ=f1þ expðlogðπ ∗

MÞþX
!0
γ0Þg.

The parameter γ0 ¼ð�0:262,0:4,0:4,0:4,�0:4,�0:4,0:2,0:2, �0:2,�0:2,�0:2,01�ðp�sÞÞ0. Here, γ0,1 ¼�0:262 is set to ensure that

EfπMðXÞg¼ π ∗
M .(Y1) Yi ¼X

!0
iβ0þ εi;

(Y2) Yi ¼X
!0
iβ0þðX!

0
iβ0Þ

2

þεi;

(Y3) Yi ¼X
!0
iβ0þ expðX!

0
iβ0Þþεi.

The parameter β0 ¼ð0:5,0:11�s,01�ðp�sÞÞ0, ϵi 	IIDNð0,0:12Þ. For (Y1), (Y2) and (Y3), the values of θ0 are 0.5, 0.85, 2.23, respectively. For the

above 2�3 data generation processes, we consider the following nine estimators:
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(E1) Y: The estimator obtained using only labelled data, Y¼Pn
i¼1Yi=n, which is the benchmark estimator.

(E2) Y IPW: Y IPW ¼ PM
i¼1ωiYi

� �
=
PM

i¼1ωi

� �
, where ωi ¼Di=πMðXiÞ.

(E3) Ycc: Ycc ¼
PM

i¼1Yi=M: The ideal estimator assuming all data are labelled, which is an ideal estimator that can only be obtained in numerical

simulations.

(E4) The estimators θ̂
sp,T
L , θ̂

sp,T
IPW, θ̂

sp,MAR
L , θ̂

sp,MAR
IPW , θ̂

sp,MCAR
L and θ̂

sp,MCAR
IPW are obtained by estimating the nuisance parameters of θ̂

sp;w
under differ-

ent working models, where the superscripts ‘T’, ‘MAR’ and ‘MCAR’ represent using the true PS model, (K2) and (K1) as the working model,

respectively, and the subscripts ‘L’ and ‘IPW’ denote estimating β̂k using least squares (p¼10) or Lasso (p¼100) with labelled data, or using

IPW least squares (p¼10) or IPW Lasso (p¼100) with all data, respectively.

TABLE 1 The results of simulation (Y2) on 1000 simulation runs under p¼10,M¼1000,2000,5000.

Bias SE SD CP Eff(M) Eff(S) Bias SE SD CP Eff(M) Eff(S)

MCAR(K1) MAR(K2)

M¼1000

Y 0.001 0.065 0.065 0.941 - - 0.031 0.067 0.066 0.941 - -

Y IPW 0.001 0.065 0.065 0.941 0.000 0.000 0.000 0.095 0.088 0.920 �0.638 �0.408

Ycc �0.000 0.020 0.021 0.946 0.902 0.687 �0.000 0.020 0.021 0.946 0.923 0.696

θ̂
sp,T
L

�0.004 0.024 0.025 0.949 0.857 0.627 �0.003 0.027 0.020 0.951 0.865 0.598

θ̂
sp,T
IPW

�0.004 0.024 0.025 0.949 0.857 0.627 �0.001 0.028 0.020 0.949 0.852 0.578

θ̂
sp,MAR
L

�0.004 0.024 0.026 0.960 0.862 0.634 �0.003 0.027 0.020 0.963 0.868 0.602

θ̂
sp,MAR
IPW

�0.004 0.024 0.026 0.961 0.862 0.633 �0.001 0.028 0.020 0.958 0.856 0.582

θ̂
sp,MCAR
L

�0.004 0.024 0.025 0.956 0.856 0.627 �0.002 0.028 0.032 0.911 0.850 0.575

θ̂
sp,MCAR
IPW

�0.004 0.024 0.025 0.955 0.856 0.627 �0.002 0.028 0.025 0.911 0.850 0.575

M¼2000

Y 0.001 0.048 0.046 0.944 - - 0.035 0.049 0.047 0.889 - -

Y IPW 0.001 0.048 0.046 0.944 0.000 0.000 0.002 0.068 0.065 0.939 �0.259 �0.382

Ycc �0.000 0.014 0.015 0.951 0.910 0.700 �0.000 0.014 0.015 0.948 0.944 0.708

θ̂
sp,T
L

�0.002 0.016 0.017 0.956 0.886 0.666 �0.002 0.018 0.019 0.954 0.912 0.636

θ̂
sp,T
IPW

�0.002 0.017 0.017 0.956 0.886 0.666 �0.001 0.019 0.020 0.956 0.905 0.620

θ̂
sp,MAR
L

�0.002 0.017 0.017 0.957 0.888 0.670 �0.002 0.018 0.020 0.960 0.913 0.638

θ̂
sp,MAR
IPW

�0.002 0.016 0.017 0.957 0.888 0.669 �0.001 0.019 0.020 0.957 0.907 0.625

θ̂
sp,MCAR
L

�0.002 0.017 0.017 0.953 0.886 0.666 �0.002 0.019 0.017 0.914 0.897 0.605

θ̂
sp,MCAR
IPW

�0.002 0.017 0.017 0.953 0.886 0.666 �0.002 0.019 0.017 0.914 0.897 0.605

M¼5000

Y �0.001 0.030 0.029 0.940 - - 0.032 0.031 0.030 0.792 - -

Y IPW �0.001 0.030 0.029 0.940 0.000 0.000 0.001 0.045 0.042 0.927 �0.001 �0.451

Ycc �0.000 0.010 0.009 0.946 0.896 0.677 �0.000 0.010 0.009 0.944 0.955 0.692

θ̂
sp,T
L

�0.001 0.011 0.010 0.938 0.869 0.642 �0.001 0.012 0.012 0.953 0.933 0.627

θ̂
sp,T
IPW

�0.001 0.011 0.010 0.938 0.869 0.642 �0.001 0.012 0.012 0.953 0.932 0.622

θ̂
sp,MAR
L

�0.001 0.011 0.010 0.939 0.870 0.643 �0.001 0.012 0.012 0.952 0.933 0.628

θ̂
sp,MAR
IPW

�0.001 0.011 0.010 0.939 0.870 0.643 �0.001 0.012 0.012 0.951 0.932 0.624

θ̂
sp,MCAR
L

�0.001 0.011 0.010 0.938 0.869 0.641 �0.001 0.010 0.011 0.893 0.922 0.596

θ̂
sp,MCAR
IPW

�0.001 0.011 0.010 0.938 0.869 0.641 �0.001 0.010 0.011 0.893 0.922 0.596
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Tables 1 and 2 present the performance of those nine estimators under different settings. In these tables, SD and CP represent the variance

and 95% confidence interval estimates obtained through the plug-in method. Eff(M) and Eff(SE) refer to the efficiency estimates calculated based

on MSE and SE, respectively. Additional simulation results using the conditional mean functions Y1 and Y3 are provided in the supporting

information.

Consistent with our predictions, Y is biased when the missingness type is MAR. When the missingness type is MCAR, Y IPW remains unbiased,

but its efficiency does not improve as the sample size M increases. It is worth noting that when the data are MAR, Y IPW is actually less efficient

than Y, although this situation gradually improves as M increases. As expected, Ycc performs better than all other estimators in terms of Bias, SE

and efficiency. Estimators θ̂
sp,T
L , θ̂

sp,T
IPW, θ̂

sp,MAR
L , θ̂

sp,MAR
IPW , θ̂

sp,MCAR
L and θ̂

sp,MCAR
IPW exhibit similar behaviour—they are all consistent estimators and have

higher estimation efficiency than Y. In fact, their estimation efficiency can even be comparable to that of Ycc. As M increases, both Eff(M) and

Eff(SD) increase.

TABLE 2 The results of simulation (Y2) on 1000 simulation runs under p¼100,M¼1000,2000,5000.

Bias Bias SD SE(P) CP Eff(M) Eff(S) Bias SD SE(P) CP Eff(M) Eff(S)

MCAR(K1) MAR(K2)

M¼1000

Y �0.001 0.065 0.065 0.938 � - 0.029 0.066 0.066 0.926 - -

Y IPW �0.001 0.065 0.065 0.938 0.000 0.000 0.000 0.094 0.089 0.942 �0.676 �0.417

Ycc 0.000 0.021 0.021 0.939 0.895 0.676 0.000 0.021 0.021 0.941 0.915 0.681

θ̂
sp,T
L

�0.005 0.027 0.028 0.950 0.820 0.584 �0.001 0.031 0.035 0.948 0.815 0.530

θ̂
sp,T
IPW

�0.005 0.027 0.028 0.951 0.819 0.582 0.003 0.034 0.037 0.938 0.776 0.484

θ̂
sp,MAR
L

�0.005 0.027 0.028 0.946 0.820 0.583 �0.001 0.032 0.026 0.891 0.811 0.524

θ̂
sp,MAR
IPW

�0.005 0.027 0.028 0.947 0.819 0.583 0.001 0.033 0.027 0.878 0.790 0.498

θ̂
sp,MCAR
L

�0.005 0.027 0.028 0.950 0.818 0.582 0.001 0.033 0.028 0.903 0.791 0.500

θ̂
sp,MCAR
IPW

�0.005 0.027 0.028 0.949 0.820 0.584 �0.001 0.033 0.028 0.907 0.793 0.502

M¼2000

Y �0.001 0.046 0.046 0.955 - - 0.032 0.046 0.047 0.911 - -

Y IPW �0.001 0.046 0.046 0.955 0.000 0.000 0.000 0.067 0.065 0.941 �0.453 �0.471

Ycc 0.000 0.015 0.015 0.952 0.898 0.680 0.000 0.015 0.015 0.950 0.930 0.676

θ̂
sp,T
L

�0.004 0.017 0.018 0.947 0.857 0.629 �0.002 0.019 0.021 0.962 0.877 0.574

θ̂
sp,T
IPW

�0.004 0.017 0.018 0.947 0.856 0.628 0.001 0.021 0.022 0.953 0.860 0.543

θ̂
sp,MAR
L

�0.004 0.017 0.018 0.948 0.856 0.629 �0.002 0.020 0.017 0.907 0.874 0.569

θ̂
sp,MAR
IPW

�0.004 0.017 0.018 0.950 0.856 0.629 �0.001 0.020 0.018 0.905 0.865 0.552

θ̂
sp,MCAR
L

�0.004 0.017 0.018 0.943 0.855 0.628 �0.001 0.021 0.018 0.904 0.856 0.538

θ̂
sp,MCAR
IPW

�0.004 0.017 0.018 0.948 0.856 0.628 �0.001 0.021 0.018 0.901 0.855 0.537

M¼5000

Y �0.000 0.031 0.029 0.926 - - 0.034 0.030 0.030 0.795 - -

Y IPW �0.000 0.031 0.029 0.926 0.000 0.000 �0.001 0.043 0.042 0.943 0.102 �0.428

Ycc 0.000 0.009 0.009 0.943 0.906 0.694 0.000 0.009 0.009 0.945 0.957 0.686

θ̂
sp,T
L

�0.002 0.010 0.010 0.949 0.881 0.659 �0.001 0.012 0.012 0.953 0.932 0.611

θ̂
sp,T
IPW

�0.002 0.010 0.010 0.949 0.881 0.659 �0.001 0.012 0.012 0.954 0.930 0.602

θ̂
sp,MAR
L

�0.002 0.010 0.010 0.952 0.881 0.659 �0.001 0.012 0.011 0.934 0.933 0.613

θ̂
sp,MAR
IPW

�0.002 0.010 0.010 0.952 0.881 0.659 �0.001 0.012 0.011 0.931 0.930 0.603

θ̂
sp,MCAR
L

�0.002 0.010 0.010 0.953 0.881 0.659 �0.001 0.013 0.011 0.879 0.919 0.574

θ̂
sp,MCAR
IPW

�0.002 0.010 0.011 0.952 0.881 0.659 �0.001 0.013 0.011 0.883 0.919 0.574
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Taking Tables 1 and 2 as examples, assume that the data are MCAR or MAR, as long as the conditional mean function is correctly specified,

whether the missingness mechanism is correct or not does not affect the estimation efficiency. However, it does affect the consistency of the

plug-in variance estimation. Assuming MCAR, using the working PS model K1 or K2 can maintain accurate plug-in variance estimation. But if we

persist with K1 when data are truly MAR (model misspecification), the plug-in estimate underestimates the true variance—a pattern seen for both

p¼10 and p¼100 with varying M. Compared with low dimension case, a larger M is needed for well-performing plug-in variance estimation due

to high dimensionality. With increasing sample size, we can get a more accurate estimate. We need to analyse the method for variance estimation

in detail when the sample sizes is small. We leave the theoretical properties and numerical performance in small samples in future work.

5 | REAL DATA APPLICATION

The Los Angeles Homeless Services Authority (LAHSA) is tasked with conducting research and overseeing homeless services throughout Los

Angeles County. To inform strategies and policies aimed at addressing homelessness, LAHSA regularly carries out homeless counts and studies to

assess the size and characteristics of Los Angeles' homeless population. However, estimating the number of homeless individuals in a metropoli-

tan area presents significant challenges. One major obstacle is that standard US Census designs involve demographers visiting individuals based

on their place of residence, which fails to account for most homeless people (Rossi, 1991). Although visiting shelters and service centers provides

some data, many homeless individuals are not included in these counts due to factors such as anonymity, nonutilisation of services or other rea-

sons. These challenges in accurately estimating the homeless population arise from its hidden, transient, and hard-to-reach nature.

LAHSA employed stratified spatial sampling of census tracts to study the homeless population in Los Angeles County by dividing the area into

strata and selecting representative samples from each stratum. First, LAHSA visited n1 ¼244 ‘hot tracts’ believed to have large homeless

populations—areas where homelessness is likely more prevalent or concentrated. Second, they randomly selected and visited n2 ¼265 additional

tracts from the remaining county tracts, N¼1545 tracts went unvisited.

The predictor vector X includes seven census-derived predictors: Perc.Industrial, Perc.Residential, Perc.Vacant, Perc.Commercial, Perc.

OwnerOcc, Perc.Minority and Median Household Income (Kriegler & Berk, 2010; Zhang et al., 2019). These predictors provide tract information

on industrial, residential, vacant, commercial percentages, owner-occupied properties, minority populations and median income. The response Y is

the homeless count per tract. We aim to estimate the average number of homeless individuals per tract using seven estimators: The first estimator

Y solely relies on the estimates obtained from labelled data, with n1 ¼244 and n2 ¼265. The second and third estimators θ̂
MCAR
SSLS , θ̂

MAR
SSLS are based

on the methodology proposed by Zhang et al. (2019). However, there is a difference between them since Zhang et al. (2019) assumes that Y is

F IGURE 1 Estimates and 95% confidence intervals for the average number of homeless individuals per tract.
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missing completely at random. θ̂
MCAR
SSLS utilises only n2 ¼265 labelled data to estimate nuisance parameter, while θ̂

MAR
SSLS incorporates n¼ n1þn2 ¼

509 labelled data in the estimation process; variance is estimated following the methodology suggested by Zhang et al. (2019). Besides these, we

consider four estimators denoted as θ̂
sp;MAR
L , θ̂

sp;MCAR
IPW , θ̂

sp;MCAR
L and θ̂

sp;MCAR
IPW . The specific calculation methods for these estimations can be found

in the numerical simulation section. We obtain the nuisance parameter estimates using the labelled data with size n¼ n1þn2 ¼509.

Figure 1 presents our estimated values for the homeless population in Los Angeles County, along with their corresponding 95% confidence

intervals. As expected, Y , which is based solely on the labelled data, yields the highest estimate. This is likely due to the fact that the labelled data

consist of individuals who have been identified as homeless through shelters and service centers, potentially overrepresenting the more visible

and accessible homeless population. On the other hand, θ̂
MCAR
SSLS produces the lowest estimates, possibly because it assumes that the missingness

of labels is completely random, which may not adequately capture the complex nature of homelessness. The values of remaining five estimators

are relatively close to each other, suggesting that they may be capturing similar aspects of the homeless population. However, θ̂
sp;MAR
L stands out

with the narrowest confidence interval, indicating that it provides a more precise estimate compared to the others. This increased precision could

be attributed to the estimator's ability to leverage both labelled and unlabelled data while accounting for the MAR mechanism.

6 | CONCLUSION

We introduce the propensity score model πMðxÞ to adapt to the SSL-MAR assumption, where missingness of labels depends on both the

covariates X and sample size M. We employ an IPW-NW type estimator to estimate the target parameter θ0 ¼EðYÞ. To the best of our knowl-

edge, under the positive overlap assumption in traditional missing data problems, there has been extensive research exploring the performance of

IPW-NW type estimators. However, when the positive overlap assumption is violated, its performance has not yet been explored. Moreover, we

allow the covariate dimension p to diverge, by introducing a SIM for dimension reduction. We establish the consistency of the IPW-NW type den-

sity function estimator in high-dimensional settings. Our proposed method can be easily extended to problems such as M-estimation with fixed-

dimensional target parameters. However, when the dimension of the target parameter is diverging, challenges still exist; we need to consider

developing more general methods. Furthermore, under the SSL setting, the empirical risk minimisation problem based on U-statistics is also an

interesting research direction.
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