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Abstract 
Inverse probability weighting (IPW) is widely used in many areas when data are subject to 
unrepresentativeness, missingness, or selection bias. An inevitable challenge with the use of IPW is that 
the IPW estimator can be remarkably unstable if some probabilities are very close to zero. To overcome 
this problem, at least three remedies have been developed in the literature: stabilizing, thresholding, and 
trimming. However, the final estimators are still IPW-type estimators, and inevitably inherit certain 
weaknesses of the naive IPW estimator: they may still be unstable or biased. We propose a biased-sample 
empirical likelihood weighting (ELW) method to serve the same general purpose as IPW, while completely 
overcoming the instability of IPW-type estimators by circumventing the use of inverse probabilities. The 
ELW weights are always well defined and easy to implement. We show theoretically that the ELW 
estimator is asymptotically normal and more efficient than the IPW estimator and its stabilized version for 
missing data problems. Our simulation results and a real data analysis indicate that the ELW estimator is 
shift-equivariant, nearly unbiased, and usually outperforms the IPW-type estimators in terms of mean 
square error.
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1 Introduction
Inverse probability weighting (IPW) has long been accepted as the standard estimation procedure 
under unequal probability samplings with and without replacement ever since the work of Hansen 
and Hurwitz (1943) and Horvitz and Thompson (1952). IPW always produces an unbiased or 
asymptotically unbiased estimator with an elegant expression, regardless of the complexity of 
the underlying sampling plan, and this method therefore enjoys great popularity. As well as survey 
sampling, it has been widely used in many other areas, including missing data problems (Kim & 
Shao 2021; Robins et al. 1994; Tan 2010; Wooldridge 2007), treatment effect estimation or pro-
gram evaluation (Cattaneo 2010; Hirano et al. 2003; Imbens & Wooldridge 2009; Rosenbaum 
2002; Rosenbaum & Rubin 1983; Tan 2020; Young et al. 2019; Zhao 2019), personalized medi-
cine (Jiang et al. 2017; Zhang et al. 2012), and survival data analysis (Bang & Tsiatis 2000; Dong 
et al. 2020; Y. Ma & Yin 2011; Robins 1993; Robins & Rotnitzky 1992), where IPW is renamed 
inverse probability of censoring weighting. In recent years, accompanied by optimal subsampling, 
the IPW method has also proved to be an effective approach to validate statistical inferences for big 
data (H. Wang et al., 2018, 2019; Yu et al. 2022).

Through weighting the observations by the reciprocal of a certain probability of inclusion in the 
sample, the IPW estimator is able to account for unrepresentativeness, missingness, or selection 
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bias caused by nonrandom lack of information or nonrandom selection of observations. However, 
the IPW estimator can be highly unstable if there are extremely small probabilities, which can re-
sult in biased estimation or poor finite-sample performance of the accompanying 
asymptotic-normality-based inference (Busso et al. 2014; Cao et al. 2009; Han et al. 2019; 
Imbens & Wooldridge 2009; Kang & Schafer 2007; Robins et al. 2007). As pointed out by 
Robins et al. (2007) with regard to double-robust estimators (which are IPW-type estimators) 
in missing data problems, ‘Whenever the “inverse probability” weights are highly variable, …, 
a small subset of the sample will have extremely large weights relative to the remainder of the sam-
ple. In this setting, no estimator of the marginal mean μ = E(Y) can be guaranteed to perform well’. 
In casual inference with observational studies, this is the well-known limited- or nonoverlap prob-
lem in covariate distributions in different treatment groups (Crump et al. 2009; Khan & Tamer 
2010; Yang & Ding 2018). The IPW estimator becomes inflated disproportionately or even breaks 
down in survival analysis when the number of patients at risk in the tails of the survival curves of 
censoring times is too small (Dong et al. 2020; Robins & Finkelstein 2000). To guarantee that the 
IPW estimator possesses consistency, asymptotic normality, and satisfactory finite-sample per-
formance, it is usual to impose an unnatural lower boundedness assumption on the probabilities 
(Mccaffrey et al. 2013; Rosenbaum & Rubin 1983; Sun & Tchetgen Tchetgen 2018), although 
tiny probabilities are frequently encountered in practice, especially when the propensity scores 
are estimated from data (X. Ma & Wang 2020; Yang & Ding 2018).

To overcome this notorious problem, at least three remedies have been proposed in the litera-
ture: stabilizing, thresholding, and trimming. The stabilizing method (Hájek 1971) rescales the 
IPW estimator so that the weights sum to 1 (Kang & Schafer 2007). Although straightforward, 
it can often sharply reduce the instability of the IPW estimator. The thresholding method, pro-
posed by Zong et al. (2019) in the context of survey sampling, replaces those probabilities that 
are less than a given threshold by that threshold while keeping others unchanged. The parameter 
of interest is then estimated by IPW with the modified probabilities. Zong et al. (2019) proposed 
an easy-to-use threshold determining procedure and showed that, in general, the resulting IPW es-
timator works better than the naive IPW estimator. This method can reduce the negative effect of 
highly heterogeneous inclusion probabilities, and hence leads to improved estimation efficiency, 
although at the cost of an estimation bias. The trimming method excludes those observations 
with probabilities less than a given threshold or, equivalently, sets their weights to zero (Crump 
et al. 2009). X. Ma and Wang (2020) systematically investigated the large-sample behaviour of 
the IPW estimator after trimming and found it to be sensitive to the choice of trimming threshold 
and subject to a non-negligible bias. They proposed a bias-corrected and trimmed IPW estimator, 
which depends on an adaptively trimming threshold and a bandwidth. Inappropriate choices of 
the trimmed threshold and the bandwidth may affect the performance of their estimator. More 
importantly, the bias correction technique depends on the target quantity to be weighted, which 
makes their method inapplicable to weighted optimization problems, such as optimal treatment 
regime estimation (Zhang et al. 2012).

The final point estimators of the stabilizing, trimming, and thresholding methods are all based 
on IPW, although they adopt different strategies to reduce the detrimental effect of extremely small 
probabilities. These IPW-type estimators inevitably inherit certain weaknesses of the naive IPW 
estimator: they are either still unstable or biased. Also, the accompanying intervals, regardless 
of whether they are asymptotic-normality-based or resampling-based, often exhibit much under-
coverage. See our simulation results in Section 3.

In this paper, we propose a biased-sample empirical likelihood weighting (ELW) estimation 
method to serve the same general purpose as IPW in handling incomplete or biased data while 
overcoming its instability. We systematically investigate its finite- and large-sample properties 
in the context of missing data problems, although it is generally applicable. The proposed ELW 
estimation method has several advantages over the IPW-type methods and the usual empirical like-
lihood (EL) (Owen 1988, 1990, 2001). 

(a) The ELW method circumvents the use of inverse probabilities and therefore never suffers 
from extremely small or even zero selection probabilities. It takes the maximum EL estimates 
of the probability masses of a multinomial distribution as weights, which always range from 
0 to 1. This is the most significant advantage of the ELW method over IPW and its variants.
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(b) The ELW weights are always well defined. By contrast, the usual EL weights suffer from the 
well-known convex hull constraint or the empty-set problem: they are undefined if the origin 
lies outside the convex hull of certain transformed data points (Chen et al. 2008; Liu & Chen 
2010; Tsao 2004).

(c) Like the stabilized IPW (SIPW) estimator, the ELW weights always sum to 1, which gives the 
ELW estimator the nice property of shift-equivariance. Unfortunately, the naive IPW estima-
tor, the trimmed IPW estimator of Zong et al. (2019), and the IPW estimator of X. Ma and 
Wang (2020) are all sensitive to a location shift in the response or the parameter of interest.

(d) The ELW weights are very convenient to calculate. Their calculation involves only solving a 
univariate rational equation, which can be done efficiently by the commonly used bisection 
algorithm. In contrast to the IPW estimator of X. Ma and Wang (2020), the ELW estimator is 
free of any tuning parameter and is hence more computationally efficient. The ELW weights 
depend only on the propensity scores and the full data size, and therefore the ELW method is 
directly applicable to survey sampling and weighted optimization problems.

(e) As we shall show the ELW estimator is theoretically more efficient than the IPW estimator 
for missing data problems. This is a bonus of ELW, since the construction of the ELW 
weights makes use of side information. Our simulation results indicate that the ELW estima-
tor often has smaller mean square errors and the accompanying interval has better coverage 
accuracy in most cases.

A crucial requirement of ELW is knowledge of the size of the finite population of interest or a 
larger independent and identically distributed sample that includes the observed data as a sub-
sample. This is also required by the original IPW method and some of its variants, and is available 
in most situations. For example, in missing data problems, the size of the overall dataset is clearly 
known, and in survey sampling, the size of the finite population from which the sample was drawn 
is usually known a priori, since we need to construct a sampling frame before sampling. This mild 
requirement implies that the ELW method has many potential applications beyond missing data 
problems, sample surveys and casual inference.

The remainder of this article is organized as follows. In Section 2, we introduce the ELW method 
by estimating the parameter defined through just-identified estimating equations when data are 
subject to missingness. A simulation study and a real-life data analysis are conducted in 
Sections 3 and 4 to demonstrate the usefulness and advantage of the ELW method. Section 5 con-
cludes with some discussion. All technical proofs, an extension of the ELW method to unequal 
probability samplings, large-sample properties of the ELW method under over-identified estimat-
ing equations, and additional simulation results can be found in the Supplementary material. The 
R codes for reproducing all the computational results are available in online Supplementary 
material.

2 Empirical likelihood weighting
We introduce the ELW method by solving missing data problems. Special cases of missing data 
problems include treatment effect estimation in observation studies under the potential outcome 
framework of Rubin (1974), as well as program evaluation in economics and other social sciences. 
Let Z = (Y, X), with Y being a response variable that is subject to missingness and X an 
always-observed covariate. Denote by D a nonmissingness indicator, with D = 1 if Y is observed 
and 0 otherwise. For ease of exposition, for the time being, we assume that the conditional non-
missingness probability or the propensity score π(Z) = P(D = 1 |Z) is completely known and al-
ways positive, although our method allows π(Z) to take zero values. The case with unknown 
propensity score is considered in Section 2.4. Suppose that the parameter of interest θ is an 
r-dimensional vector defined as the solution to E{g(Z, θ)} = 0, where g(Z, θ) is an s-dimensional 
compatible estimating function. We consider only the just-identified case (i.e., s = r); the over- 
identified case (i.e., s > r) is discussed in the Supplementary material.

Denote the data by {(Di, DiZi), i = 1, 2, . . . , N}, with Zi = (Yi, Xi) or simply 
{zi, i = 1, 2, . . . , n}, where zi = (yi, xi) and n =

􏽐N
j=1 Dj; the covariates Xi with Di = 0 do not 

come into play in most of this paper. The data {zi, i = 1, 2, . . . , n} are in fact a biased sample of 
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the underlying population if all π(zi) are not equal. The IPW estimator of θ is the solution to

1
N

􏽘N

i=1

Di

π(Zi)
g(Zi, θ) =

1
N

􏽘n

i=1

g(zi, θ)
π(zi)

= 0. (1) 

If g(Z, θ) can be expressed as f (Z) − θ, then the IPW estimator is actually the Hájek estimator, or 
SIPW estimator

θ̂SIPW =
􏽐N

i=1 Dif (Zi)/π(Zi)
􏽐N

j=1 Dj/π(Zj)
=
􏽐n

i=1 f (zi)/π(zi)
􏽐n

j=1 1/π(zj)
. (2) 

Hereafter, we also denote the solution to (1) by θ̂SIPW in general. The original version of IPW es-
timator is

θ̂IPW =
1
N

􏽘N

i=1

Di
f (Zi)
π(Zi)

=
1
N

􏽘n

i=1

f (zi)
π(zi)

. (3) 

The expression (3) for the IPW estimator indicates that it becomes extremely unstable when some 
of the π(Zi) with Di = 1 are close to zero, and that the terms with Di = 0 actually contribute noth-
ing to it. Since the size N is known, the zero-value Di together with the other single-value Di con-
tain information about E(D) = E{E(D |Z)} = E{π(Z)}. The IPW estimator and its variants ignore 
such side information, and are not able to utilize it as well, and they consequently have potential 
losses of efficiency. As a popular and flexible nonparametric technique, EL (Owen 1988, 1990, 
2001) can conveniently and efficiently make use of side information to achieve improvements in 
efficiency. This motivates us to develop the ELW estimation method to serve the same purpose 
as the IPW estimator, while overcoming its instability and improving its estimation efficiency.

2.1 ELW estimator
Let the distribution function of Z be F(z) = pr(Z ≤ z), where the inequality holds element-wise for 
vector-valued Z. To estimate θ, the solution to 

�
g(z, θ) dF(z) = 0, it suffices to estimate F(z). We 

consider the problem of estimating F by discarding those Zi with Di = 0, although these quantities 
may be partially accessible. The likelihood based on the remaining data is

L̃ = (1 − α)N−n ·
􏽙N

i=1

{π(Zi) dF(Zi)}
Di , (4) 

where α = pr(D = 1) = E{π(Z)} is the marginal nonmissingness probability.
We use EL to handle the distribution F(z). The basic idea of EL is to model F(z) by a discrete 

distribution or a multinomial distribution assigning probability mass pi to a datum Zi, i.e., 
F(z) =

􏽐N
i=1 piI(Zi ≤ z), where the inequalities hold element-wise. Replacing dF(Zi) with pi and 

taking logarithms of (4), we have the biased-sample empirical log-likelihood

ℓ̃ =
􏽘N

i=1

[Di log (pi) + Di log {π(Zi)} + (1 − Di) log (1 − α)] (5) 

as the observed data {Zi : Di = 1} is a biased sample of {Zi : 1 ≤ i ≤ N}. Those pi that are feasible 
satisfy

pi ≥ 0,
􏽘N

i=1

pi = 1,
􏽘N

i=1

pi{π(Zi) − α} = 0. (6) 
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We emphasize that although those Zi with Di = 0 appear in ℓ̃ and 
􏽐N

i=1 pi{π(Zi) − α} = 0, they have 
no likelihood contribution or any influence on the resulting EL method.

The proposed EL estimator of F(z), or equivalently of the pi, is obtained by maximizing the em-
pirical log-likelihood (5) subject to (6). For fixed α, the maximum of the log-EL in (5) subject to (6) 
is attained at

pi =
1
n

Di

1 + λ(α){π(Zi) − α}
, (7) 

where λ(α) satisfies

1
n

􏽘N

i=1

Di

1 + λ(α){π(Zi) − α}
{π(Zi) − α} = 0. (8) 

Putting (7) into (5) gives the profile log-EL of α (up to a constant that is independent of α)

ℓ(α) =
􏽘N

i=1

{ − Di log [1 + λ(α){π(Zi) − α}] + (1 − Di) log (1 − α)}.

This immediately gives α̂ = arg max ℓ(α), the EL estimator of α. Accordingly, the EL estimators of 
pi and F(z) are

p̂i =
1
n

Di

1 + λ(α̂){π(Zi) − α̂}
(9) 

and F̂(z) =
􏽐N

i=1 p̂iI(Zi ≤ z). Finally, the EL estimator or the ELW estimator θ̂ELW of θ is the solu-
tion to

􏽚

g(z, θ) dF̂(z) =
􏽘N

i=1

p̂ig(Zi, θ) = 0. (10) 

Obviously, both F̂(z) and θ̂ are well-defined statistics because p̂i = Dip̂i.
When calculating the proposed EL estimator of F(z), or equivalently of the pi, we may maximize 

the empirical log-likelihood (5) with respect to pi’s, α and θ subject to both (6) and 􏽐N
i=1 pig(Zi, θ) = 0. Because the dimension of g is equal to that of θ, the resulting p̂i and θ̂ELW 

are exactly the same.
Compared with the usual EL, a remarkable feature of the likelihood in (4) is to include α, which 

has many advantages. First, including α, the likelihood in (4) can automatically incorporate the 
auxiliary information carried by N. Otherwise, we have to construct new estimating equations 
to make use of this information. Second, after including α in the full likelihood, it is reasonable 
to construct the constraint 

􏽐N
i=1 pi{π(Zi) − α} = 0. The existence of this equation guarantees that 

the resulting estimator is consistent or can correct selection bias; otherwise the resulting estimator 
is inconsistent. In the next subsection, we show that including α, the resulting EL weights p̂i’s are 
always well defined, and that the ELW method can be quickly calculated by commonly used 
softwares.

2.2 Practical implementation
The key to calculating the proposed EL estimators, including the EL estimator F̂ of F and the ELW 
estimator ̂θELW, is to calculate α̂ by maximizing ℓ(α). This necessitates a double iterative algorithm 
because ℓ(α) involves an implicit function λ(α), and thus it seems to be rather a difficult task. We 
find a more convenient solution, in which we need only solve a univariate equation.
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Mathematically, α̂ = arg max ℓ(α) is a solution to

0 =
􏽘N

i=1

Diλ
1 + λ{π(Zi) − α}

−
1 − Di

1 − α

􏼔 􏼕

. (11) 

Combining (8) and (11) gives

λ =
N − n

n(1 − α)
. (12) 

Putting this expression into (8) leads to an equivalent equation for α

􏽘N

i=1

Di(π(Zi) − α)
n/N + (1 − n/N)π(Zi) − α

= 0. (13) 

As (13) has multiple roots, it is necessary to identify the interval containing the desired root. 
Denote the observed Zi by z1, . . . , zn and define ξi = n/N + (1 − n/N)π(zi) for i = 1, 2, . . . , n. 
Equation (13) is further equivalent to K(α) = 0, where K(α) =

􏽐n
i=1 {π(zi) − α}/(ξi − α). Because 

α ∈ (0, 1), ξi ≥ n/N, and n/N is a consistent estimator of α, the desired root of K(α) = 0 should 
lie between 0 and min ξi. Actually, there must exist one and only one solution to K(α) = 0 between 
0 and min ξi. Because ξi ≥ π(zi), it follows that K{ min π(zi)} ≥ 0, limα↑min ξi K(α) = −∞, and that 
K(α) is strictly decreasing between 0 and min ξi. By the intermediate value theorem, there must ex-
ist one and only one solution, denoted by α̂, in [ min π(zi), min ξi) such that K(α̂) = 0. It is worth 
noting that if all the π(zi) are equal and equal to α0, then α̂ = α0 and the resulting p̂i are all equal 
to 1/n, and the ELW estimator reduces to the solution to (1/n)

􏽐n
i=1 g(zi, θ) = 0. Otherwise, all 

π(zi) (i = 1, 2, . . . , n) are not equal to each other, and α̂, p̂i, and θ̂ELW are all nondegenerate.
The proposed ELW estimation procedure can be implemented by Algorithm 1. The first and 

third steps involve only closed-form calculations, the second step can be efficiently achieved by 
a bi-section search algorithm, and the last step has the same calculation burden as those of the 
IPW-type methods. These imply that the ELW procedure is easy to implement.

Algorithm 1: ELW estimation procedure

Input: The missing dataset {(Di, Dig(Zi), π(Zi)) : i = 1, 2, . . . , N}.

Output: The ELW estimate, θ̂ELW, of θ = E{g(Z)}.

Step 1. Calculate n =
􏽐N

i=1 Di, ζ l = min {π(Zi) : Di = 1, i = 1, 2, . . . , N} and ζu = n/N + (1 − n/N)ζ l.

Step 2. Calculate α̂ by solving (13) in the interval [ζ l, ζu), and calculate λ(α̂) = (N − n)/{n(1 − α̂)}.

Step 3. Calculate p̂i = Din−1[1 + λ(α̂){π(Zi) − α̂}]−1 for i = 1, 2, . . . , N.

Step 4. Obtain θ̂ELW by solving the equation 
􏽐N

i=1 p̂iDig(Zi, θ) = 0 or minimizing ‖
􏽐N

i=1 p̂iDig(Zi, θ)‖2  

with respect to θ.

2.3 Finite- and large-sample properties
The nonzero EL weights are (1 − α̂)/{N(ξi − α̂)} for 1 ≤ i ≤ n. We use the maximum weight ratio 
κ = ( max1≤i≤n ξi − α̂)/( min1≤i≤n ξi − α̂) among the nonzero EL weights to quantify the dispersion 
between the EL weights. The following lemma establishes an upper bound on κ.

Lemma 2.1. Suppose π(zi) (1 ≤ i ≤ n) take m ≥ 2 distinct values π(1) < · · · < π(m) (m ≥ 2). 
If there exists ε ∈ (0, 1) such that π(m) − π(1) > ε and n1/n < 1 − ε, then 
κ ≤ n/ε3.

Lemma 2.1 indicates that the ELW method works even if the smallest π(zi) is as small as zero. 
However, the maximum weight ratio of the IPW estimator has no such a guarantee, and the IPW 
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estimator becomes extremely unstable when some of the π(zi) are close to zero. In particular, it fails 
to work when min1≤i≤n π(zi) is exactly zero. Our ELW estimator successfully and completely over-
comes this issue, which is its most significant advantage over the traditional IPW estimator in 
finite-sample performance.

Next, we show that asymptotically our ELW estimator is unbiased and more efficient than the 
IPW estimator. This is a bonus of using ELW, and also a significant advantage that it has over the 
conventional IPW in large-sample performance. We make the following assumptions on the func-
tion g(Z, θ).

Condition 1 (i) θ0 is the unique solution to E{g(Z, θ)} = 0. (ii) The parameter space is a 
compact set Θ ⊂ Rr, g(Z, θ) is a continuous function of θ for every Z, and 
there exists a function g̅(Z) such that E{g̅(Z)} < ∞ and supθ∈Θ 
‖g(Z, θ)‖ ≤ g̅(Z). (iii) g(Z, θ) has a continuous partial derivative g1(Z, θ) = 
∂g(Z, θ)/∂θ⊤ in a neighbourhood of θ0 for each Z. There exists a positive 
function g̅1(Z) such that E{g̅1(Z)} < ∞ and ‖g1(Z, θ)‖F ≤ g̅1(Z) for all Z 
and for β in the neighbourhood, where ‖ · ‖F is the Frobenius norm. (iv) 
The r × r matrix K = E{g1(Z, θ0)} is nonsingular.

We denote A⊗2 = AA⊤ for a vector or matrix A, and define Bgg = E{g⊗2(Z, θ0)/π(Z)}, 
B11 = E{1/π(Z)}, and Bg1 = E{g(Z, θ0)/π(Z)}. When g(Z, θ) = f (Z) − θ, we define Bff = 
E{f ⊗2(Z)/π(Z)} and Bf1 = E{f (Z)/π(Z)}.

Theorem 2.1. Let α0 ∈ (0, 1) be the truth of α. Suppose that Condition 1 is satisfied, 
Var{π(Z)|D = 1} > 0 and that B11 and Bgg are both finite. Also suppose 
that the conditional inclusion probabilities π(Zi) are known. As N goes 
to infinity, 

(a)
���
N
√

(θ̂ELW − θ0)−→
d

N(0, ΣELW), where ΣELW = K−1{Bgg − B⊗2
g1 /(B11 − 1)}(K−1)⊤;

(b)
���
N
√

(θ̂SIPW − θ0)−→
d

N(0, ΣSIPW), where ΣSIPW = K−1Bgg(K−1)⊤;
(c) The ELW estimator ̂θELW is more efficient than the SIPW estimator ̂θSIPW, i.e., ΣELW ≤ ΣSIPW, 

where the equality holds only if π(Z) is degenerate.

(d) If g(Z, θ) = f (Z) − θ, then 
���
N
√

(θ̂IPW − θ0)−→
d

N(0, ΣIPW) with ΣIPW = Bff − θ⊗2
0 and 

ΣELW = (Bff − θ⊗2
0 ) − (B f1 − θ0)⊗2/(B11 − 1); the ELW estimator θ̂ELW is also more efficient 

than the IPW estimator θ̂IPW.

In Theorem 2.1, we treat the marginal nonmissingness probability α as a fixed and unknown 
parameter, which needs to be estimated. The assumption Var{π(Z) |D = 1} > 0 guarantees that 
with probability tending to 1, the observed propensity scores are not all equal to each other, 
and so the ELW estimator is nondegenerate. Theorem 2.1 indicates that the ELW estimator is 
more efficient than the SIPW estimator. A likelihood explanation for this result is as follows. 
Let z1, . . . , zn be the Zi’s with Di = 1. As the foundation of our ELW method, the full likelihood 
L̃ in equation (4) is proportional to Lm × Lc, where Lm = N − nαn(1 − α)N−n is a marginal likeli-
hood, and Lc =

􏽑n
i=1 {π(zi) dF(zi)/α} is a conditional likelihood. When π(zi)’s are known, the 

nonparametric maximum conditional likelihood estimator of F is F̃(z) = {
􏽐n

i=1 I(zi ≤ z)/
π(zi)}/{

􏽐n
j=1 1/π(zj)}, therefore θ̂SIPW is the maximum conditional likelihood estimator of θ. The 

ELW estimator θ̂ELW is the maximum full likelihood estimator of θ. With the additional Lm, our 
ELW method automatically makes use of the auxiliary information carried by N, and hence is 
more efficient than the SIPW estimator.

A reasonable estimator of ΣELW is required in the construction of Wald-type confidence intervals 
for θ. Inspired by the fact that p̂i ≈ Di/{Nπ(Zi)}, we propose to estimate ΣELW with the ELW meth-
od by

􏽢ΣELW = K̂−1{B̂gg − B̂⊗2
g1 /(B̂11 − 1)}(K̂−1)⊤, (14) 
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where K̂ =
􏽐N

i=1 p̂ig1(Zi, θ̂ELW), B̂11 = N
􏽐N

i=1 (p̂i)
2, B̂g1 = N

􏽐N
i=1 g(Zi, θ̂ELW)(p̂i)

2, and B̂gg= 
N
􏽐N

i=1 {g(Zi, θ̂ELW)}⊗2(p̂i)
2. It is worth stressing that the ELW-based variance estimator is again 

insensitive to small probabilities, since it circumvents the use of inverse probabilities.

2.4 Estimated propensity score
In many situations, such as missing data problems and causal inference, the propensity score is un-
known and needs be estimated from the observed data. The ELW and IPW estimators have differ-
ent large-sample behaviours if we take the variability of the estimated propensity score into 
account. Suppose that π(·) is parametrically modelled by π(Z, β).

Condition 2 (i) There exists β0 such that π(Z, β0) = π(Z) for all Z, and the function π(Z, β) 
is continuously differentiable in β in a neighbourhood of β0. Let 
π1(Z, β) = ∂π(Z, β)/∂β⊤. (ii) There exist a positive constant ε and positive 
functions π̅(Z) and π̅1(Z) such that π̅(Z) ≤ infβ : ‖β−β0‖≤ε π(Z, β), 
supβ : ‖β−β0‖≤ε ‖π1(Z, β)‖ ≤ π̅1(Z), E{π(Z)/(π̅(Z))2} < ∞, E{π(Z)g̅(Z)/π̅(Z)} < 
∞, and E{π(Z)g̅(Z)π̅1(Z)/{π̅(Z)}2} < ∞, where g̅ is given in Condition 1.

Condition 2(i) holds when the nonmissingness indicator D follows Logistic and Probit models, 
which are commonly used in the literature. Condition 2(ii) together with the other conditions 
guarantees the consistency of α̂ and hence the consistency of the ELW estimator. Under 
Condition 2(i), π(Z, β0) = π(Z) and therefore B11 = E{1/π(Z, β0)}, Bg1 = E{g(Z)/π(Z, β0)}, and 
Bgg = E[{g(Z)}⊗2/π(Z, β0)]. We define B1π̇ = E{π1(Z, β0)/π(Z)} and Bgπ̇ = E{g(Z, θ0) 
π1(Z, β0)/π(Z)}. In the case of g(Z, θ) = f (Z) − θ, define Bf π̇ = E{f (Z)π1(Z, β0)/π(Z)}.

Theorem 2.2. Assume Conditions 1 and 2 and that β̂ satisfies β̂ − β0= 
N−1􏽐N

i=1 h(Di, Zi) + op(N−1/2), where the influence function h(D, Z) 
has zero mean. Suppose that the truth α0 of α satisfies 0 < α0 < 1 and 
Var{π(Z, β0)|D = 1} > 0. As N goes to infinity, 

(a)
���
N
√

(θ̂ELW − θ0)−→
d

N(0, ΣELW,e), where ΣELW,e = K−1Ω(K−1)⊤ with

Ω = Var
Dg(Z, θ0)
π(Z, β0)

+
Bg1

B11 − 1
1 −

D
π(Z, β0)

􏼒 􏼓

+
Bg1B1π̇

B11 − 1
− Bgπ̇

􏼒 􏼓

h(D, Z)
􏼚 􏼛

; 

(b)
���
N
√

(θ̂SIPW − θ0)−→
d

N(0, ΣSIPW,e), where

ΣSIPW,e = K−1Var
Dg(Z, θ0)
π(Z, β0)

− Bgπ̇h(D, Z)
􏼚 􏼛

(K−1)⊤; 

(c) In the case of g(Z, θ) = f (Z) − θ, 
���
N
√

(θ̂IPW − θ0)−→
d

N(0, ΣIPW,e), where

ΣIPW,e = Var
Df (Z)

π(Z, β0)
− Bf π̇h(D, Z)

􏼚 􏼛

.

When the propensity score is known, Theorem 2.1 establishes the asymptotic normalities of the 
ELW, IPW, and SIPW estimators. We find that ΣELW ≤ ΣSIPW and ΣELW ≤ ΣIPW, indicating that the 
ELW estimator is asymptotically more efficient than the IPW and SIPW estimators. According to 
Theorem 2.2, the ELW, IPW, and SIPW estimators still follow asymptotic normal distributions 
when the propensity score involves a finite-dimensional unknown parameter. However, in gen-
eral, the inequality ΣELW,e ≤ ΣSIPW,e or ΣELW,e ≤ ΣIPW,e does not hold any longer. This implies 
that the efficiency gain of the ELW estimator over the IPW and SIPW estimators is no longer 
guaranteed.
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If the response Y is missing at random (Rubin 1976) and the covariate X is observed, then 
π(Z, β) depends on Z = (Y, X) through only X. We may estimate β by its maximum likelihood es-
timator β̂, i.e., the maximizer of 

􏽐N
i=1 [Di log π(Zi, β) + (1 − Di)π{1 − π(Zi, β)}]. In this case,

h(D, Z) =
D − π(Z, β0)

π(Z, β0){1 − π(Z, β0)}
(B̃π̇π̇)−1π1(Z, β0), 

where B̃π̇π̇ = E[{π1(Z, β0)}⊗2/{π(Z, β0)(1 − π(Z, β0))}]. The asymptotic variance of the ELW esti-
mator is

ΣELW,e = K−1 Bgg −
B⊗2

g1

B11 − 1
−

Bg1B1π̇

B11 − 1
− Bgπ̇

􏼒 􏼓

(B̃π̇π̇)−1 Bg1B1π̇

B11 − 1
− Bgπ̇

􏼒 􏼓⊤
􏼨 􏼩

(K−1)⊤.

Again, an ELW estimator can be constructed for ΣELW,e. If π(Z, β) is mis-specified, the desirable 
properties of the ELW, IPW, and SIPW estimators in Theorem 2.2 disappear. A nonparametric 
or semiparametric model may be used for π(X) to alleviate the risk of model mis-specification. 
If Y is missing not at random, namely π(Z, β) depends on Y, the estimation of β becomes much 
more challenging as β may not be identifiable. Under additional assumptions such as the existence 
of an instrument (S. Wang et al. 2014), various estimation methods for β and θ have been devel-
oped based on data that are missing not at random. For a more comprehensive discussion on this 
issue, see Kim and Shao (2021).

2.5 Resampling-based interval estimation
Based on Theorems 2.1 and 2.2, we can construct Wald-type confidence intervals for θ once a con-
sistent estimator for the asymptotic variance is available. The asymptotic normality of the ELW, 
IPW, and SIPW estimators requires that both B11 = E[{π(Z)}−1] and Bgg are finite and well defined. 
If this is violated, the Wald-type confidence intervals may not have the promised coverage prob-
ability. This dilemma can be overcome by resampling. We propose to construct confidence inter-
vals for θ by the resampling method in Algorithm 2.

Algorithm 2: Wald confidence region based on resampling and ELW

Input: The missing dataset {(Di, DiZi, π(Zi)) : i = 1, 2, . . . , N}. Calculate the ELW estimator θ̂ELW and the 
proposed variance estimator 􏽢ΣELW, and define TN =

���
N
√

(􏽢ΣELW)−1/2(θ̂ELW − θ0).

Output: Wald confidence region for θ based on resampling and ELW

Step 1. Draw M ≪ N (e.g., M =
���
N
√

) observations, say (D∗i , D∗i Z∗i , π(Z∗i )) (1 ≤ i ≤ M), from the original sample 
by simple random sampling without replacement.

Step 2. Calculate the counterparts of θ̂ELW and 􏽢ΣELW based on the subsample, denoted by θ̂∗ELW and 􏽢Σ∗ELW. 
Construct T∗M =

���
M
√

(􏽢Σ∗ELW)−1/2(θ̂∗ELW −θ̂ELW).

Step 3. Repeat Steps 1 and 2 B = 1000 times and denote the resulting test statistics by {T∗M,i : i = 1, 2, . . . , B}. Let 
t∗i = ‖T∗M,i − T̅

∗
‖, where T̅

∗ = (1/B)
􏽐B

i=1 T∗M,i. Denote the (1 − a) empirical quantile of the t∗i by q∗1−a. Then a 
(1 − a)-level confidence region for θ can be constructed as {θ : ‖

���
N
√

(􏽢ΣELW)−1/2(θ̂ELW − θ) − T̅
∗
‖ ≤ q∗1−a}.

In the case of the estimated propensity score 􏽢π(Zi), we replace π(Zi) and 􏽢ΣELW by 􏽢π(Zi) and 
􏽢ΣELW,e, respectively. The ELW variance estimator 􏽢ΣELW converges in probability to ΣELW, which 
is assumed to be positive definite. This, together with Theorems 2.1 and 2.2, implies that TN con-
verges in distribution to the standard normal, an obviously continuous distribution. By Corollary 
2.1 of Politis and Romano (1994), the empirical distribution of T∗M is a uniformly consistent esti-
mator of the distribution of TN, which is formally summarized in Theorem 2.3. This validates the 
interval estimator produced by Algorithm 2.

Theorem 2.3. Assume the conditions in Theorem 2.1 (for a known propensity score) or 
those in Theorem 2.2 (for an estimated propensity score) are satisfied. As 
N→∞, if M→∞ and M/N→ 0, then supt≥0 |P(TN ≤ t) − P∗(T∗M ≤ 
t)| = op(1), where P∗ is the conditional probability given the original sample.
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3 Simulation study
We consider the parameter θ corresponding to g(Z, θ) = Y − θ with Z = (Y, X), and conduct sim-
ulations to investigate the finite-sample performance of the proposed ELW estimator and the ac-
companying asymptotic-normality-based interval estimator. For comparison, we also take into 
account the IPW estimator, the SIPW estimator, and some popular variants of the IPW estimator 

(a) The modified IPW estimator of Zong et al. (2019) (ZZZ for short): θ̂ZZZ = 
N−1􏽐N

i=1 DiYi/π̃i, where π̃i = max {π(K), π(Xi)}, K is the maximum i such that 
π(i) ≤ 1/(i + 1), and {π(1), . . . , π(N)} are the propensity scores in increasing order.

(b) The trimmed IPW estimator of Crump et al. (2009) (CHIM for short):

θ̂CHIM =
􏽘N

i=1

DiYi

π(Xi)
· I{α ≤ π(Xi) ≤ 1 − α}

􏼬
􏽘N

i=1

I{α ≤ π(Xi) ≤ 1 − α}, 

where α is obtained by minimizing a variance term and I(·) is the indicator function.
(c) The IPW estimator of X. Ma and Wang (2020) with s = 1 and s = 2, denoted by MW1 and 

MW2, respectively. Following X. Ma and Wang (2020), we set the tuning parameters bN 

and hN in MW1 and MW2 to the respective solutions of bs
NN−1􏽐N

i=1 I{π(Xi) ≤ 
bN} = 1/(2N) and h5

N

􏽐N
i=1 I{π(Xi) ≤ hN} = 1. For details, see the discussion below 

Theorem 3 of X. Ma and Wang (2020) and Section III of their Supplementary material.

We simulate data from Example 1. All numbers reported in this simulation study are calculated 
based on M = 5000 simulated random samples.

Example 1 Instead of generating X, we generate the propensity score π(X) from P(π(X) ≤ 
u) = uγ−1 (0 ≤ u ≤ 1) with γ = 1.5 or 2.5. Given π(X), we generate Y from Y = 
μ{π(X)} + c · (η − 4)/

��
8
√

, where c = 1 or 0.1, and η ∼ χ2
4, and the missingness 

status D of Y follows the Bernoulli distribution with success probability π(X). 
Four choices of μ(t) are considered: μ(t) = cos (2πt) (Model 1), μ(t) = 1 − t 
(Model 2), μ(t) = cos (2πt) + 5 (Model 3), and μ(t) = 6 − t (Model 4). The 
full data size is N = 2000, and the parameter of interest is θ = E(Y).

This example is a modified version of Example 1 in Section III of the Supplementary material of 
X. Ma and Wang (2020), who considered the cases with γ = 1.5, c = 1, and N = 2000 for Models 1 
and 2. The parameter γ (γ > 1) controls the tail behaviour of 1/π(X). When γ > 2, the tail is light 
and E{1/π(X)} = (γ − 1)/(γ − 2) is finite. In this case, if g is bounded, then the conditions in 
Theorem 2.1 are generally fulfilled, and the asymptotic normalities of the ELW, IPW, and SIPW 
estimators are guaranteed. However, in the case of 1 < γ ≤ 2, the tail is heavy and 
E{1/π(X)} = ∞, which violates the conditions of Theorem 2.1: the ELW, IPW, and SIPW estima-
tors no longer follow asymptotically normal distributions. The constant c controls the influence of 
the random error on the response variable; a smaller c leads to a smaller noise. Models 3 and 4 are 
simply Models 1 and 2 with a mean shift.

Point estimation. As a measure of the finite-sample performance of a generic estimator θ̃, we de-
fine its scaled root mean square error (RMSE) as RMSE(θ̃) =

���
N
√

× {(1/M)
􏽐M

j=1 (θ̃j − θ)2}1/2, 
where θ̃j is the estimate θ̃ based on the jth simulated random sample. Table 1 presents a compari-
son of the RMSEs of the seven estimators. Figure 1 displays the boxplots of the estimators under 
comparison (minus the true parameter value) when data were generated from Example 1 with γ = 
1.5 and c = 1 and 0.1. For clearer presentation, we ignore the boxplots of the IPW estimator, be-
cause it fluctuates too dramatically.

In terms of RMSE, ELW outperforms IPW, SIPW, ZZZ, and CHIM in almost all scenarios. The 
only exception is the scenario with γ = 2.5, c = 1 for Model 1, where the RMSE (1.17) of ELW is 
slightly greater than the minimum RMSE (1.14) of IPW, SIPW, ZZZ, and CHIM. The boxplots 
also indicate that ELW is always nearly unbiased in all scenarios. ELW also outperforms MW1 
and MW2 in most cases. The only exceptions are the scenarios with γ = 2.5 for Model 1 and those 
with γ = 1.5, c = 1 for Models 1 and 2. In the least favourable scenario (γ = 1.5, c = 1, Model 2), 
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the RMSE of ELW is greater than those of MW1 and MW2 by at most 
(5.13 − 3.78)/3.78 ≈ 35.7%. By contrast, the RMSEs of MW1 and MW2 can be more than 12 
times that of ELW; see the scenario with γ = 1.5 and c = 0.1 for Model 4. Although MW1 and 
MW2 often have smaller RMSEs than ELW for Model 1, the boxplots in Figure 1 indicate that 
they tend to have either nonignorable biases or larger variances.

Models 3 and 4 are simply Models 1 and 2 with a mean shift. When we change Models 1 and 2 
to Models 3 and 4, respectively, and keep the remaining settings unchanged, the boxplots demon-
strate that ELW clearly performs the best: it not only is nearly unbiased, but also has the smallest 
variance. Meanwhile, ELW, CHIM, and SIPW have nearly unchanged RMSEs. This makes sense, 
because their weights all sum to 1. Unfortunately, IPW, ZZZ, MW1, and MW2 are all very sen-
sitive to a mean shift in the data generating process, since their weights do not sum to 1.

When c decreases from 1 to 0.1, the influence of random error become negligible and we expect 
all methods to exhibit better performance. Indeed, all methods have decreasing RMSEs, except for 
IPW. ELW has the largest rates of decline in RMSE: these rates are at least 69% and 42% when 
γ = 1.5 and 2.5, respectively. However, the RMSEs of ZZZ, MW1, and MW2 have nearly no re-
duction for Models 3 and 4. ELW performs in the most stable manner, whereas the other methods 
have either extremely large fluctuations or remarkable biases.

When γ increases from 1.5 to 2.5, ELW clearly outperforms the competitors in all scenarios ex-
cept those for Model 1. All methods exhibit similar performance for Models 1 and 2. However for 
Models 3 and 4, IPW, ZZZ, MW1, and MW2 have much larger fluctuations, compared with their 
performance for both Models 1 and 2. This indicates that they are sensitive to a mean shift, which 
is undesirable.

Roughly speaking, among the seven estimators under comparison, the ELW estimator is the 
most reliable in almost all scenarios. Both the RMSE results and the boxplots indicate that 
MW1 and MW2 can exhibit very different performances. In other words, the performance of 
the method of X. Ma and Wang (2020) can be affected by the choice of underlying tuning param-
eters. We have also conducted simulations for N = 50 and 500, γ = 1.3 and 1.9, and we even con-
sidered the case with estimated propensity scores. See Section 8 of the Supplementary material for 

Table 1. Simulated RMSEs of the estimators under comparison when data are generated from Example 1 and 
N = 2000

γ c Model IPW SIPW ZZZ CHIM MW1 MW2 ELW

1.5 1.0 1 24.72 8.05 6.05 8.00 4.96 4.35 5.51

1.5 1.0 2 17.89 6.17 5.95 6.17 4.84 3.78 5.13

1.5 1.0 3 69.08 7.49 27.27 7.49 18.29 9.59 5.21

1.5 1.0 4 110.80 6.49 27.11 6.49 18.31 9.83 5.21

1.5 0.1 1 14.76 4.89 4.48 4.87 3.00 2.52 1.60

1.5 0.1 2 26.23 2.16 4.44 2.15 2.88 1.36 0.71

1.5 0.1 3 68.12 4.74 27.04 4.73 17.81 8.94 1.61

1.5 0.1 4 140.05 2.21 26.86 2.19 18.02 9.03 0.74

2.5 1.0 1 2.11 2.11 1.97 2.11 1.93 1.87 2.02

2.5 1.0 2 2.06 1.81 1.90 1.81 1.89 1.82 1.72

2.5 1.0 3 7.64 2.15 6.77 2.15 6.33 5.32 2.05

2.5 1.0 4 8.14 1.85 7.31 1.85 6.87 6.01 1.70

2.5 0.1 1 1.49 1.33 1.14 1.33 1.07 0.98 1.17

2.5 0.1 2 1.22 0.69 1.01 0.69 0.93 0.77 0.42

2.5 0.1 3 7.63 1.31 6.60 1.31 6.21 5.14 1.18

2.5 0.1 4 8.26 0.68 7.13 0.68 6.80 5.85 0.42

Note. Smallest RMSEs are highlighted in bold.
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the RMSE results, the corresponding boxplots and additional results. The general findings are 
similar.

Interval estimation. Two confidence intervals for θ can be constructed based on the ELW esti-
mator ̂θELW. One is the Wald confidence interval (ELW-an for short) based on the asymptotic nor-
mality of ̂θELW, where the asymptotic variance is estimated using the ELW method. The other is the 
resampling-based interval estimator (ELW-re) given in Section 2.5. Similar intervals (SIPW-an and 
SIPW-re) can be constructed when the SIPW estimator takes the place of the ELW estimator in the 
estimations of both θ and the asymptotic variances. We compare these four confidence intervals 
with those of X. Ma and Wang (2020) based on their resampling method and the MW1 and 
MW2 point estimators, which are denoted by MW1-re and MW2-re, respectively. We exclude 
the IPW-based confidence intervals because the IPW point estimator is dramatically unstable.

We generate random data of size N = 2000 from Example 1, and calculate the coverage prob-
abilities and average lengths of the eight confidence intervals at the 95% confidence level. The re-
sults are displayed in Figure 2. MW2-re has the most accurate coverage accuracy, followed by 
ELW-re when γ = 1.5 and c = 1.0 for Models 1 and 2. When Models 1 and 2 are replaced by 
Models 3 and 4, the coverage probabilities of ELW-re remain nearly unchanged; however, those 
for MW1-re and MW2-re decrease sharply by more than 5% and 10%, respectively. When c de-
creases from 1.0 to 0.1, the coverage accuracy of ELW-re becomes better or is still acceptable, al-
though both MW1-re and MW2-re perform much more poorly. With different tuning parameters, 
MW1-re and MW2-re often have quite different coverage probabilities and average lengths, which 
again shows that the performance of the method of X. Ma and Wang (2020) can be greatly af-
fected by different choices of tuning parameters. SIPW-re has very close coverage probabilities 
to ELW-re in most cases, whereas its average lengths are generally much greater than those of 
the latter.

As expected, all asymptotic-normality-based Wald intervals exhibit remarkable undercoverage 
when γ = 1.5, because the asymptotic normalities are generally violated. In the meantime, all 
resampling-based intervals have improved performance. When γ increases to 2.5, all intervals except 
MW1-re and MW2-re have very desirable coverage accuracy, and the asymptotic-normality-based 
intervals have close or even better coverage probabilities compared with the resampling-based 
intervals.

In summary, the ELW point estimator has the most reliable overall performance, is 
shift-equivariant, and is nearly unbiased in all cases. The proposed resampling-based ELW interval 
estimator often has desirable coverage accuracy and short lengths in missing data problems, 
whether the proportion of extremely small propensity scores is small or large.

Figure 1. Boxplots of the SIPW, ZZZ, CHIM, MW1, MW2, and ELW estimators (minus the true parameter values) 
when data were generated from Example 1 with N = 2000, γ = 1.5, and c = 1, 0.1. For each case of c and each 
method, the four boxplots from left to right and in red, green, blue, and purple correspond to models 1–4, 
respectively.
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4 Real data analysis
LaLonde (1986) estimated the impact of the National Supported Work Demonstration, a labour 
training programme, on postintervention income levels, using data from a randomized evaluation 
of the programme. To further demonstrate the superiority of the proposed ELW method, we ana-
lyse the LLvsPSID data from the R package cem, which is the Lalonde set of treated units vs. panel 
study of income dynamics (PSID) control individuals. The data consist of 2,787 observations (297 
from treated units and 2,490 from control units) on 12 variables: treated (treatment indicator), age 
(age), education (years of education), black (race, indicator variable), married (marital status, in-
dicator variable), nodegree (indicator variable of not possessing a degree), re74 (real earnings in 
1974), re75 (real earnings in 1975), re78 (real earnings in 1978), hispanic (ethnic, indicator vari-
able), u74 (unemployment in 1974, indicator variable), and u75 (unemployment in 1975, indica-
tor variable). The variable re78 is the posttreatment outcome.

Let Y = re78/10, 000 be the response, let D = treated, and let Y(d) denote the response of an 
individual whose treatment status is D = d. We shall not address the original treatment effect es-
timation problem. Instead, we take the data as missing data and wish to estimate the average earn-
ings of the treated in 1978. In other words, the parameter of interest is θ = E{Y(1)}. We first 
estimate the propensity scores by fitting a linear logistic regression model of the treatment 

Figure 2. Simulated coverage probabilities (%) of the interval estimators under comparison (SIPW-an, SIPW-re, 
MW1-re, MW2-re, ELW-an, and ELW-re) when data were generated from Example 1 with full data size N = 2000 
and different choices of γ and c. The number above each bar is model number. The length of the segment above 
each bar equals five times the average length of the corresponding interval estimator.
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indicator D on the remaining eight variables (excluding D, Y, and re78). With the fitted propensity 
scores, the IPW, SIPW, MW1, MW2, and ELW point estimates are 0.65, 0.92, 0.72, 0.70, and 
1.11, respectively, and the corresponding resampling-based interval estimates at the 95% level 
are [ − 12.68, 8.00], [ − 4.16, 3.15], [ − 3.04, 1.26], [ − 0.27, 1.04], and [ − 8.86, 6.27], respect-
ively. If we replace all Y by Y + 5, the point estimates become 4.16, 5.92, 5.81, 5.56, and 6.11 
with interval estimates being [ − 27.31, 22.76], [0.90, 8.16], [0.92, 7.16], [5.05, 6.22], and 
[ − 3.87, 11.44], respectively. As expected, the SIPW and ELW point estimates are 
shift-equivariant, but the IPW estimator and the MW estimators are not.

Figure 3 displays the fitted propensity scores of both the treated and control groups. A clump of 
near-zero propensity scores in the treated group implies that the standard IPW estimator is dramatic-
ally unstable. The excessive number of near-zero propensity scores in both groups indicates that the 
distribution of the inverse propensity score has a very heavy right tail similar to that in the simulation 
scenario with γ = 1.5 in Example 1. According to our simulation experience in the case of γ = 1.5, the 
ELW point estimator is always unbiased or nearly unbiased, and its performance is the most stable in 
most cases. By contrast, the other estimators SIPW, MW1, and MW2 may have either much larger 
RMSEs or large biases. The ELW-re interval has the most desirable and much better coverage accuracy 
than the other intervals. These observations makes it reasonable to believe that the ELW point and 
interval estimates, 1.11 and [ − 8.86, 6.27], are the most preferable for the estimation of θ = E{Y(1)}.

We have extended the ELW method to unequal probability samplings with and without replace-
ments in Section 5 of the Supplementary material. Poisson, pivotal, and PPS samplings are three 
popular unequal probability samplings. Here, we regard the observations in the LLvsPSID data 
with nonzero re75 as a finite population, and conduct Poisson, pivotal, and PPS samplings with 
inclusion probabilities proportional to re75. We take the parameter of interest to be the mean 
of Y = re78/10, 000 + a, with a = 0 or 2. Table 2 presents the simulated RMSE results based 
on 5,000 simulation repetitions with a sample size (in pivotal and PPS samplings) or ideal sample 
size (in Poisson sampling) of 200. The ELW estimator has the smallest RMSEs under Poisson sam-
pling, regardless of whether a = 0 or 2, and under pivotal and PPS samplings when a = 2. It also 
uniformly outperforms SIPW under all three samplings. When a = 0, its performance can be infer-
ior to those of IPW and ZZZ, which, however, are highly sensitive to a location shift in Y. The 
ELW estimator again has the best overall performance under unequal probability sampling.

5 Discussion
The focus of this paper is the development of a better weighting method than IPW. We have de-
veloped the ELW method for parameter estimation under just-identified estimating equations, 

Figure 3. Histograms of the variable Y and the fitted propensity score in the treated and control groups, based on 
the LLvsPSID data.
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and shown that the ELW method is always well defined, easy to calculate and more stable than 
IPW. The foundation of the ELW method is the biased-sample EL. If calculation convenience or 
burden is not an issue, we can use the biased-sample likelihood ratio function to conduct interval 
estimation and hypothesis testing. When calculating the biased-sample likelihood ratio function, 
we need to fix the parameter value, which makes the corresponding maximum likelihood has a 
high probability of having no definition. If the likelihood ratio function has no definition, the 
ELW approach fails to work. This numerical issue is inherited from the standard EL (Chen 
et al. 2008). In the case of over-identified estimating equations (Qin & Lawless 1994), the nonde-
finition problem becomes even more serious and the calculation burden becomes even heavier be-
cause the objective function involves a vector-valued implicit function and its maximization 
generally requires double optimizations.

We extend the ELW method to unequal probability samplings with and without replacement in 
Section 5 of the Supplementary material. The ELW estimator is still asymptotically normal in un-
equal probability samplings, and is more efficient than both the IPW and SIPW estimators when 
the sampling is without replacement. When the sampling is with replacement, the ELW estimator 
is still more efficient than the SIPW estimator. Although we cannot tell which of the ELW and IPW 
estimators wins in this situation, our simulation results indicate that the ELW estimator usually 
has smaller mean square errors than the IPW and SIPW estimators.

We systematically investigate the large-sample properties of the ELW estimator and the ELW 
likelihood ratio statistic under over-identified estimating equations for missing data problems 
and unequal probability samplings. See Section 9 of the Supplementary material. The ELW like-
lihood ratio statistic has a limiting central chi-square distribution for missing data problems 
with known propensity score and unequal probability sampling with replacement. Otherwise, 
its limiting distribution is usually a weighted chi-square distribution.
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Table 2. Simulated RMSEs of the IPW, SIPW, ZZZ, and ELW estimators when data were generated from the 
LLvsPSID dataset with n = 200 with Y replaced by Y + a

IPW ZZZ IPW ZZZ SIPW ELW

a = 0 a = 2

Poisson sampling 9.35 8.44 19.27 16.33 8.41 6.14

Pivotal sampling 5.07 3.91 12.17 7.63 7.15 4.66

PPS sampling 5.46 4.13 13.86 8.19 8.70 5.51
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