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ABSTRACT
Owing to its appealing distribution-free feature, conformal inference has become a popular tool for con-
structing prediction intervals with a desired coverage rate. In scenarios involving covariate shift, where
the shift function needs to be estimated from data, many existing methods resort to data-splitting tech-
niques. However, these approaches often lead to wider intervals and less reliable coverage rates, especially
when dealing with finite sample sizes. To address these challenges, we propose methods based on a
pivotal quantity derived under a parametric working model and employ a resampling-based framework
to approximate its distribution. The resampling-based approach can produce prediction intervals with a
desired coverage rate without splitting the data and can be easily applied to causal inference settings
where a shift in the covariate distribution can occur between treatment and control arms. Additionally,
the proposed approaches enjoy a double robustness property and are adaptable to different prediction
tasks. Our extensive numerical experiments demonstrate that, compared to existing methods, the proposed
novel approaches can produce substantially shorter conformal prediction intervals with lower variability
in the interval lengths while maintaining promising coverage rates and advantages in versatile usage.
Supplementary materials for this article are available online, including a standardized description of the
materials available for reproducing the work.
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1. Introduction

Conformal inference, also referred to as conformal predic-
tion, has drawn much attention due to its ability to quantify
prediction uncertainty, an often overlooked aspect in tradi-
tional machine learning methods. Introduced and formalized
by Vovk, Gammerman, and Shafer (2005), conformal inference
offers finite-sample coverage guarantees for predictions without
employing distributional assumptions. This allows pre-trained
machine learning models, such as random forest (Breiman 2001)
and gradient boosting (Friedman 2001), to be integrated into
the framework. Notable works in this area include Lei et al.
(2018), Tibshirani et al. (2019), Romano, Patterson, and Candès
(2019), Lei and Candès (2021), Chernozhukov, Wüthrich, and
Zhu (2021), Barber et al. (2021a), and Barber et al. (2021b),
among others. More recent works on conformal inference in
various applications can be found in Fannjiang et al. (2022),
Park et al. (2022), Qiu, Dobriban, and Tchetgen Tchetgen
(2023), Yang, Kuchibhotla, and Tchetgen Tchetgen (2024), Yin
et al. (2024), Candès, Lei, and Ren (2023), and Jin and Can-
dès (2023). Interested readers can find comprehensive tutori-
als in Shafer and Vovk (2008) and Angelopoulos and Bates
(2022).

Suppose the training data D1 = {(X1, Y1), . . . , (Xn, Yn)} are
iid copies of a random vector (X, Y). The goal of conformal
inference is to predict the value of a future outcome Yn+1

CONTACT Yukun Liu ykliu@sfs.ecnu.edu.cn KLATASDS-MOE and School of Statistics, East China Normal University, 3663 North Zhongshan Road, Shanghai
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corresponding to a covariate vector Xn+1 with a coverage rate of
1 − a. Specifically, the goal is to determine the upper and lower
limits of a prediction interval, denoted by L(Xn+1) and R(Xn+1),
so that Pr{L(Xn+1) ≤ Yn+1 ≤ R(Xn+1)} = 1 − a, where Xn+1
is a random draw from X. Note that the coverage probability is
marginalized over both Xn+1 and Yn+1. This is in contrast to
prediction in regression settings, where L(Xn+1) and R(Xn+1)
are chosen to satisfy Pr{L(Xn+1) ≤ Yn+1 ≤ R(Xn+1) | Xn+1 =
x} = 1 − a, and the probability is evaluated by conditioning on
Xn+1. In this case, a correct regression model for the conditional
distribution of Y given X is required to guarantee the conditional
coverage rate. In contrast, conformal inference leverages order
statistics and their stochastic properties, eliminating the need for
distributional assumptions.

Conformal prediction requires exchangeability of data
points, under which the ranks of random variables are uni-
form over all possible permutations. However, shifts in dis-
tribution can break this exchangeability and compromise the
finite-sample coverage rate of prediction intervals. This article
focuses on the covariate shift problem, where the marginal
distribution of X can vary, but the conditional distribution of
Y given X remains constant across datasets. This problem arises
in causal inference in observational studies, where randomiza-
tion of treatments or interventions is challenging or infeasi-
ble. As a result, the composition of subjects receiving the new

© 2024 American Statistical Association
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treatment can significantly differ from those who received the
control treatment, leading to a shift in the marginal covariate
distribution.

This article presents three conformal prediction intervals
that can accommodate shifts in the covariate distribution. The
proposed methods rely on an asymptotically pivotal statistic
based on the cumulative distribution function (CDF) rather
than commonly used residual-based nonconformity scores. The
first method (see Section 2.2) is an unsplit version of conditional
conformal inference under weighted exchangeability (Tibshi-
rani et al. 2019), where it replaces the nonconformity score
with the CDF in the conditional probability calculation. The
other two methods are both resampling-based approaches. The
second method (Section 2.3) employs exponential tilting of the
empirical CDF in training data to estimate the CDF in testing
data. We then approximate the distribution of the pivotal statistic
by simulating training and testing data from the two estimated
CDFs, which allows us to determine lower and upper quan-
tiles for future outcome predictions given covariates. The third
method, similar to the second, is tailored for causal inference in
observational studies and incorporates control arm information
to improve estimation of the joint CDF of covariates and poten-
tial outcomes under treatment in both arms. The resampling-
based methods offer great flexibility and can be easily adapted
to a variety of prediction tasks. Importantly, all three methods
possess the double robustness properties, ensuring their validity
when either the outcome regression model or the propensity
score model (or weight function in the covariate-shift model)
is correctly specified.

2. Conformal Prediction Methods

2.1. A Brief Review of Existing Methods

Conformal inference typically begins with a nonconformity
score that measures how well an observation conforms to the
rest of the data. A commonly used nonconformity score is the
absolute residual obtained from a fitted model μ̂(x) for E(Y |
X = x). The idea is to test the null hypothesis that Yn+1 = y
and construct a valid p-value based on the empirical quantiles of
the nonconformity scores. A prediction interval is then formed
from the collection of y values not rejected by the hypothesis test.

Three main approaches have been adopted for construct-
ing prediction intervals. The full conformal prediction (Vovk,
Gammerman, and Shafer 2005; Shafer and Vovk 2008) leverages
the exchangeability of (X1, Y1), . . ., (Xn+1, Yn+1) under the
null hypothesis to ensure that absolute residuals Ry,i = |Yi −
μ̂y(Xi)|, i = 1, . . . , n, and Ry,n+1 = |y − μ̂y(Xn+1)| share the
same distribution. Here the fitted model μ̂y(x) is obtained using
an augmented dataset (X1, Y1), . . . , (Xn, Yn) and (Xn+1, Yn+1)
with Yn+1 = y to avoid overfitting. A prediction interval is
obtained based on the rank of the absolute residual for Yn+1
under the null hypothesis. Clearly, full conformal prediction is
computationally intensive as it requires repeating the regression
algorithm many times. In practice, a grid search is usually per-
formed on a set of pre-specified values to reduce computational
burden.

The second approach, known as split conformal prediction
(Papadopoulos et al. 2002; Lei et al. 2018), involves dividing the

training data into two disjoint subsets: a training subsetD1 and a
calibration subset D2. A regression model μ̂(·) is trained on D1,
and quantiles of the absolute residuals are evaluated and ranked
usingD2. Specifically, assuming an equal split, let d be the �n(1−
a)/2�th smallest value among Ri = |Yi − μ̂(Xi)|, where i ∈ D2.
Then, a split conformal prediction interval is given by {y ∈ R :
|y − μ̂(Xn+1)| ≤ d}.

The data-splitting strategy, while avoiding grid search, com-
promises prediction efficiency because smaller calibration and
training folds can lead to highly variable nonconformity scores
and poor model fit. To address this issue, cross-conformal pre-
diction methods have been developed (Vovk 2015). The algo-
rithms divide the training data into K disjoint subsets, using
one subset as calibration set and the remaining subsets for train-
ing the model. Thus, the evaluation of nonconformity scores
exploits the full training dataset, akin to K-fold cross-validation.
The special case K = n corresponds to the Jackknife prediction
interval (Lei et al. 2018). Denote by μ̂−i(·) a fitted model using
the first n observations but with the ith observation removed. Let
d be the �n(1 − a)�th smallest values among the leave-one-out
nonconformity scores Ri = |Yi − μ̂−i(Xi)|, i = 1, . . . , n. Then
a jackknife prediction interval can be given by {y ∈ R : |y −
μ̂(Xn+1)| ≤ d}, where μ̂(·) is derived from the first n observa-
tions. Barber et al. (2021b) showed that the Jackknife procedure
is asymptotically valid with a stable estimator. Furthermore, they
introduced a Jackknife+ procedure that provides finite-sample
coverage guarantees without relying on assumptions that could
be invalid in practical applications. Finally, Kim, Xu, and Barber
(2020) introduced the jackknife+-after-bootstrap algorithm by
leveraging ensemble learning and bootstrap methods.

2.2. Conditional Prediction Under Covariate Shift

We consider the setting where the training data share a joint
density function f0(x, y) and the new data point (Xn+1, Yn+1)
is independently drawn from another joint density function
f1(x, y) with f1(x, y) = w(x)f0(x, y). Here w(x) is a known,
nonnegative weight function. It can be verified that the condi-
tional distribution of Yn+1 given Xn+1 is the same as that of
Y1 given X1, but their marginal covariate distributions differ.
Moreover, the special case w(x) ≡ 1 implies exchangeability
between training and testing data. For ease of discussion, we
assume that Y is continuous to avoid ties in the conditional
probability calculation.

It is easy to see that {(X1, Y1), . . . , (Xn+1, Yn+1)} are weighted
exchangeable in the sense of Tibshirani et al. (2019) with weights
wi = w(Xi) = 1, i = 1, . . . , n, and wn+1 = w(Xn+1).
Hence, the weighted conformal inference can be carried out by
comparing the value of a weighted nonconformity score at a test
point to the weighted empirical CDF of nonconformity scores.
Interestingly, the weighted empirical CDF can be viewed as the
result of applying the conditioning technique to eliminate the
nuisance function f0(x, y). To see this, let � denote the event
that the collection of realized values in the training and testing
data are {(X1, Y1), . . . , (Xn+1, Yn+1)} without knowing which
one belongs to the testing data. Then, for any nonconformity
score S(x, y), the CDF of S(Xn+1, Yn+1) conditional on � is

Pr{S(Xn+1, Yn+1) ≤ c | �}
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=
∑n+1

i=1 w(Xi)I{S(Xi, Yi) ≤ c}∑n+1
j=1 w(Xj)

, ∀c ∈ R, (1)

and is thus free of the nuisance function f (x, y). Intuitively, a
conformal prediction set with a target coverage rate of 1 − a
can be given by {y : Ln ≤ S(Xn+1, y) ≤ Rn}, where Ln and Rn
are the (a/2)th and (1 − a/2)th quantiles of the CDF defined in
(1). The data-splitting method is often used to guarantee finite-
sample coverage, with a training fold used to train a model and
a calibration fold used to determine quantiles. In practice, the
weight function w(x) is usually unknown and must be estimated
from pooled covariate data. When consistently estimated, Lei
and Candès (2021) pointed out that the coverage guarantee of
the prediction interval is only valid asymptotically. Candès, Lei,
and Ren (2023) further provided a general theory to derive
nonasymptotic bounds for the coverage, subsequently establish-
ing double robustness results for weighted conformal inference.

In this section, we present a new approach for constructing
prediction intervals under covariate shift. Our proposed algo-
rithm has two key features. First, it does not require data split-
ting. Second, instead of using a residual-based nonconformity
score, we advocate using the conditional CDF of Y given X
as a replacement in conformal inference. This strategy allows
us to construct asymptotically pivotal statistics based on CDF.
Specifically, we fit a parametric model F(y | x; θ) and set
S(x, y) = F(y | x; θ̂) with θ̂ being a consistent estimator based
on the training data. We further parameterize w(x) as w(x; β)

and obtain a consistent estimator β̂ using the pooled covariate
data. Although S(Xn+1, Yn+1) involves the unknown Yn+1, we
can set it to either 0 or 1 (lower and upper bounds of a CDF)
without significantly affecting the evaluation of (1) as long as
n is sufficiently large. Our numerical studies show that setting
S(Xn+1, Yn+1) to either 0 or 1 produces satisfactory coverage,
with S(Xn+1, Yn+1) = 0 often resulting in shorter prediction
intervals than S(Xn+1, Yn+1) = 1.

Next, we show in Theorem 1 that the proposed method pos-
sesses a double robustness property: it provides asymptotically
guaranteed marginal coverage when either the working model
F(y | x; θ) or the model for the weight function w(x; β) is
correctly specified. A detailed proof can be found in Section 1 of
the supplemental materials. Here, we provide a heuristic argu-
ment. When F(y | x; θ) is correctly specified, the distribution
of Ui = F(Yi | Xi; θ̂), i = 1, . . . , n + 1, can be reasonably
approximated by the uniform distribution U on [0, 1]. We set Ln
and Rn to be the (a/2)th and (1 − a/2)th weighted quantiles of
Ui, i = 1, . . . , n. Note that the last term w(Xn+1) = w(Xn+1; β̂)

can be ignored in the evaluation of (1) without affecting the
large-sample result, and thus, approximately,∑n

i=1 w(Xi; β̂)I(Ui ≤ Ln)∑n
j=1 w(Xj; β̂)

= a
2

and

∑n
i=1 w(Xi; β̂)I(Ui ≤ Rn)∑n

j=1 w(Xj; β̂)
= 1 − a

2
.

It can be shown that the weighted empirical distribution of Ui’s
converges to Pr{F(Y | X; θ∗) ≤ t} uniformly in t ∈ [a0, 1 − a0]
for any a0 ∈ (0, a/2), where θ∗ is the limit of θ̂ in probability.
As F(Y | X; θ∗) is continuous, Ln and Rn must converge to some

limits, denote by L and R, respectively. Combining the result that
n∑

i=1
w(Xi; β̂)I(Ui ≤ Ln)/

n∑
j=1

w(Xj; β̂)

→ Pr{F(Y | X; θ∗) ≤ L} = a/2

and with the fact that F(Y | X; θ∗) follows the standard uniform
distribution conditional on X, we have L = a/2. Similarly, we
can show that R = 1 − a/2. Therefore,

Pr{Ln ≤ F(Yn+1 | Xn+1; θ̂) ≤ Rn}
→ Pr(a/2 ≤ U ≤ 1 − a/2) = 1 − a.

On the other hand, when the working model F(y | x; θ) is mis-
specified but the weight function w(x; β) is correctly specified,
the conditional CDF in (1) is valid when w(x) is replaced by
w(x; β) and β is the truth. As a result, it holds approximately
when w(x) is replaced by w(x; β) and a consistent estimate β̂ is
used. Thus, the proposed conformal prediction interval always
has an approximately correct coverage, even when the working
model F(y | x; θ) is misspecified.

Denote by P0 the probability measure induced by F0(x, y) and
define P0g(X, Y) = ∫

g(x, y)dF0(x, y) for any deterministic or
random function g. Denote byX ,Y , and � the parameter spaces
of X, Y and θ , respectively. We impose the following two sets
of regularity conditions on the working models F(y | x; θ) and
w(x; β).

(A) (i) � is a compact set in a Euclidean space; (ii) F(y | x; θ) is
continuous in θ and has a probability density function f (y |
x; θ) (with respect to the Lebesgue or counting measure) that
is continuous in θ for each (x, y) ∈ X ×Y ; (iii) There exists a
positive function K(x, y) such that supθ∈� | log f (y | x; θ)| ≤
K(x, y) for each (x, y) ∈ X × Y and P0{K(X, Y)} < ∞.

(W1) (i) w(x; β) is continuous at β for each x; (ii) The range B
of β is a compact set in a Euclidean space; (iii) there exists
K1(X) such that P0K1(X) < ∞ and supβ∈B{w(x; β)}2 ≤
K1(x) for each x ∈ X

Condition (A) ensures that the function class {log f (y | x; θ) :
θ ∈ �} is Glivenko–Cantelli (GC); see Example 19.8 of van der
Vaart (1998). Condition (W1) implies that the function class
{w(x; β) : β ∈ B} is a GC class with a square integrable envelope
and n−1 ∑n

i=1{w(Xi; β̂)}k = P0{w(X; β̂)}k + op(1) for k = 1, 2.
These results play a crucial role in the proof of Theorem 1, as
elaborated in Section 1 of the supplementary materials.

Theorem 1. Assume that Conditions (A) and (W1) hold. The
proposed conformal prediction set has an asymptotically correct
coverage, that is, limn→∞ Pr{Ln < S(Xn+1, Yn+1) ≤ Rn} ≥ 1 −
a, when one of the following two sets of conditions holds: (a) the
working model F(y | x; θ) is correctly specified with θ̂ being a
consistent estimator for the unique true parameter value θ∗; (b)
the weight function w(x; β) is correctly specified with β̂ being a
consistent estimator for the unique true parameter value β∗.

2.3. Resampling-Based Prediction Under Covariate Shift

In the previous section, we assumed that the weight function
w(x) was either given or can be consistently estimated, with-
out discussing the details of how to estimate it or whether
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the asymptotic properties can be affected by weight function
parameter estimation. In this section, we propose a resampling-
based procedure for conformal inference that incorporates the
estimation of the weight function and does not require data
splitting. Specifically, we assume that the joint density functions
of the training and testing data, that is, f0(x, y) and f1(x, y), follow
an exponential tilt model

f1(x, y)
f0(x, y)

= exp{α + β�@@φ(x)}, (2)

where φ : R
p → R

q is a pre-specified q-dimensional vec-
tor function, β is a q-dimensional parameter, and α satisfies∫∫

f0(x, y) exp{α + β�φ(x)}dxdy = 1 to ensure that f1(x, y) is
a proper density function. The proposed model is equivalent to
setting w(x) = exp{α + β�φ(x)} in the covariate shift model
considered in the previous section. For ease of exposition, we
set φ(x) = x with the understanding that the results established
in this section can be easily extended to a more general φ. Under
(2), the training and testing data share the same conditional
distribution function of the outcome given covariates, denoted
by F(y | x), while the marginal distribution of the covariate is
allowed to differ.

As mentioned before, one can construct asymptotically piv-
otal statistics based on CDF. To see this, suppose the distribution
of Y given X = x is known up to a finite-dimensional parameter
θ . If θ were known, U(θ) = F(Y | X; θ) follows a uniform
distribution on [0, 1]. Then, for a ∈ (0, 1), a 100(1 − a)%
prediction interval for Yn+1 is given by {y : a/2 ≤ F(y |
Xn+1; θ) ≤ 1 − a/2}. In practice, θ is unknown and needs
to be estimated using the training data. Let θ̂ be an estimator
for θ . When F(y | x; θ) is correctly specified, then U (̂θ) is
approximately uniformly distributed on [0, 1] when n is large.
As pointed out in Cox (1975), however, the uniform distribution
may not approximate the distribution of U (̂θ) well with a small
n. To see this, let G(u) be the CDF of U (̂θ) so that

G(u) = Pr{U (̂θ) ≤ u}
= Pr{F(Y | X; θ̂) ≤ u}
= Pr{Y ≤ F−1(u | X; θ̂)},

where the plug-in estimator θ̂ is treated as a random variable.
Define F̃(y | x) = G{F(y | x; θ̂)} and its corresponding density
function f̃p(y | x) = g{F(y | x; θ̂)}f (y | x; θ̂) = g{U (̂θ)}f (y |
x; θ̂). When U is exactly pivotal, that is, the distribution of U is
independent of θ , Harris (1989) showed that f̃p(y | x) dominates
the plug-in density f (y | x; θ̂) in terms of average Kullback–
Leibler distance. When n is in the range of 10–50, simulation
results reported in Lawless and Fredette (2005) indicated that
the prediction intervals derived from F̃(y | x) have better
coverage than those derived from the plug-in function F(y |
x; θ̂) that ignores the randomness in θ̂ . On the other hand, if n is
moderate/large, these two methods give almost identical results.
Recently, Tian et al. (2022) proposed a calibration-bootstrap
procedure by repeatedly sampling from F(y | x; θ̂) to calibrate
the plug-in prediction intervals. However, their method is valid
only under the exchangeability assumption between training
and testing data.

Let (X1, Y1), . . . , (Xn, Yn) be the training data and
(Xn+1, Yn+1), . . . , (XN , YN) be the testing data, where outcome

values Yi, i = n + 1, . . . , N, in the testing data are not available.
Define F0(x, y) and F1(x, y) the cumulative distribution
functions corresponding to f0(x, y) and f1(x, y), respectively.
Denote by pi the jump size of F0(x, y) at (Xi, Yi), i = 1, . . . , N.
In the ideal situation where the outcomes in the testing data
were available, the log-likelihood function based on the pooled
data {(Xi, Yi) : i = 1, . . . , N} is

n∑
i=1

log pi +
N∑

i=n+1

(
α + β�Xi + log pi

)
,

where pi’s satisfy the constraints pi ≥ 0,
∑N

i=1 pi = 1, and∑N
i=1 pi exp(α+β�Xi) = 1 to ensure that f0(x, y) and f1(x, y) =

f0(x, y) exp(α+β�x) are proper density functions. Profiling out
pi subject to these constraints yields (see, e.g., Qin 2017, sec.
11.1)

pi = 1
n

× 1
1 + exp(α + β�Xi) · (N − n)/n

, i = 1, . . . , N,

and the log profile likelihood, up to a constant,

�̃(α, β) = −
N∑

i=1
log

{
1 + exp(α + β�Xi) · (N − n)/n

}

+
N∑

i=n+1

(
α + β�Xi

)
. (3)

We denote the maximizer of �̃(α, β) by (̂α, β̂), and denote

p̂i = 1
n

× 1

1 + exp(̂α + β̂
�Xi) · (N − n)/n

, i = 1, . . . , N.

Note that the profile likelihood (3) does not require any knowl-
edge of the outcomes, thus, the parameters (α, β) in the
covariate-shift model (2) can be estimated by (̂α, β̂) without
knowing Yi’s. Moreover, if the values of Yn+1, . . . , YN were avail-
able, one could estimate F0 and F1 by F̃0(x, y) = ∑N

i=1 p̂iI(Xi ≤
x, Yi ≤ y) and F̃1(x, y) = ∑N

i=1 p̂i exp(̂α+ β̂
�Xi)I(Xi ≤ x, Yi ≤

y), respectively, where ≤ is applied componentwise for a vector.
To address the challenge that Yi’s in the testing data are not

available for evaluating F̃1(x, y), we propose to use the covariate-
shift model (2) to construct a consistent estimator. By leveraging
the fact that F1(x, y) = ∫∫

u≤x,v≤y exp(α + β�u)dF0(du, dv)
under model (2), we can estimate F1(x, y) as∫∫

u≤x,v≤y
exp(α + β�x)d̂F0(du, dv)

= n−1
n∑

i=1
exp(α + β�Xi)I(Xi ≤ x, Yi ≤ y),

where F̂0(x, y) = n−1 ∑n
i=1 I(Xi ≤ x, Yi ≤ y)

is the empirical CDF. To ensure the resulting estimator
yields a proper distribution function, we consider normal-
ized weights exp(α + β�Xi)/

∑n
k=1 exp(α + β�Xk) =

exp(β�Xi)/
∑n

k=1 exp(β�Xk) and obtain

F̂1(x, y) =
∑n

i=1 exp(β̂
�Xi)I(Xi ≤ x, Yi ≤ y)∑n

j=1 exp(β̂
�Xj)
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Algorithm 1: Resampling-based conformal prediction set in the presence of covariate shift
Data: {(Xi, Yi) : 1, . . . , n} and {Xj : j = n + 1, . . . , N}
Input: B: number of bootstrap samples; 1 − a: the target coverage rate; a parametric working model F(y | x; θ); a

covariate-shift model (2)
Output: Prediction sets for Yj, j = n + 1, . . . , N

1 Prepare
• Obtain (̂α, β̂) by maximizing (3) under the model (2) based on {Xi : i = 1, . . . , N}
• Obtain the MLE θ̂ under the model F(y | x; θ) based on {(Xi, Yi) : i = 1, . . . , n}
• Obtain the empirical CDF F̂0(x, y) = n−1 ∑n

i=1 I(Xi ≤ x, Yi ≤ y) and F̂1(x, y) defined in (4) under the model (2)

for b = 1 : B do

• Sample {(Xb
i , Yb

i ) : i = 1, . . . , n} from F̂0(x, y) and {(Xb
j , Yb

j ) : j = n + 1, . . . , N} from F̂1(x, y)

• Obtain the MLE θ̂
b under the model F(y | x; θ) based on {(Xb

i , Yb
i ) : i = 1, . . . , n}

• Calculate Ub
j = F(Yb

j | Xb
j ; θ̂b

), j = n + 1, . . . , N

For j = n + 1, . . . , N, obtain Lnj and Rnj, the Ba/2�th and �B(1 − a/2)�th smallest values of {Ub
j : b = 1, . . . , B},

respectively
Result: A conformal prediction set for Yj with a coverage rate of 1 − a is given by {y : Lnj ≤ F(y | Xj; θ̂) ≤ Rnj}

=
∫∫

u≤x,v≤y exp(β̂
�u)d̂F0(u, v)∫∫

exp(β̂
�s)d̂F0(s, t)

. (4)

When the covariate-shift model (2) is correctly specified, the
resulting semiparametric estimator for F1(x, y) is uniformly
consistent and asymptotically normal, as summarized in The-
orem 2. Throughout the article, we make the assumption that
n/N = ρ + o(n−1/2) for a constant ρ ∈ (0, 1).

Theorem 2. Assume that the range X × Y of (X, Y) is compact
and that the covariate-shift model (2) is correctly specified,
whose true parameter values are denoted by (α0, β0). Suppose
that supβ∈N (β0,δ0) P0 exp(β�X) < ∞ for some δ0 > 0, where
N (β0, δ) = {β :| β − β0 |≤ δ}, and that the matrix A1 =
P0[(1, X�)�(1, X�)ρ exp(α0 + X�β0)/{ρ + (1 − ρ) exp(α0 +
X�β0)}] is positive definite. Then, as n → ∞, the following
results hold: (a)

√
N{(̂α, β̂)� − (α0, β0)

�} d−→ N(0, 
), where

 = A−1

1 − ρ−1e1e�
1 and e1 = (1, 0, . . . , 0)� is a (p + 1)-

dimensional vector. (b) F̂1(x, y) converges uniformly to F1(x, y)
in probability, that is, sup(x,y) |̂F1(x, y) − F1(x, y)| = op(1). (c)
The stochastic process {√n{̂F1(x, y)−F1(x, y)} : (x, y) ∈ X×Y}
converges weakly to a mean zero Gaussian process.

Let F(y | x; θ) be a working model for the conditional CDF
F(y | x), and denote by θ̂ the maximum likelihood estimator
(MLE) for θ obtained using the training data. Define F−1(t |
x; θ) = inf{y ∈ R : F(y | x; θ) ≥ t}. Our resampling-
based conformal prediction sets for Yj, j = n + 1, . . . , N, can
be constructed using Algorithm 1.

The proposed algorithm enjoys a double robustness property:
the prediction sets have an asymptotically correct coverage rate if
either the working regression model F(y | x; θ) or the covariate-
shift model (2) is correctly specified. To see this, Theorem 2
implies that F̂1(x, y) is a consistent estimator for F0(x, y) when
the covariate-shift model is correctly specified. As a result, the

resampled data {(Xb
j , Yb

j ) : j = n + 1, . . . , N} approximately
follows the same distribution as {(Xj, Yj) : j = n + 1, . . . , N} in
the testing data. Thus, Ub

j = F(Yb
j | Xb

j ; θ̂b
) and Uj = F(Yj |

Xj; θ̂) approximately share the same distribution, regardless of
whether the working model F(y | x; θ) is correctly specified.
Therefore, the prediction sets given by Algorithm 1 have an
approximately correct coverage rate.

On the other hand, when the working model F(y | x; θ)

is correctly specified, it is easy to see that both θ̂ and θ̂
b are

consistent estimates of the true parameter value θ0. Denote
by (α∗, β∗) the maximizer of �∗(α, β) = P0[(1 − ρ)(α +
β�X) − log{1 + exp(α + β�X) × (1 − ρ)/ρ}], and define
F∗

1 (x, y) = P0{exp(β�∗ X)I(X ≤ x, Y ≤ y)}/P0{exp(β�∗ X)}.
Under the misspecified covariate-shift model, β̂ converges
in probability to β∗ and that F̂1(x, y) converges in prob-
ability to F∗

1 (x, y) with joint density function f ∗
1 (x, y) =

exp(β�∗ x)f0(x, y)/P0{exp(β�∗ X)} and marginal density function
g∗

1 (x) = exp(β�∗ x)
∫

f0(x, y)dy/P0{exp(β�∗ X)}. Thus, the con-
ditional density function is f ∗

1 (y | x) = f ∗
1 (x, y)/g∗

1 (x) =
f0(y | x) = f (y | x). Intuitively, the conditional distribution
function of Yb

j given Xb
j is approximately F(y | xb

j ), and hence

F(Yb
j | Xb

j ; θ̂b
) has an approximately uniform distribution on

[0, 1]. As a result, for a fixed j, {Ub
j = F(Yb

j | Xb
j ; θ̂b

) : b =
1, . . . , B} are approximately iid and approximately follow the
uniform distribution. Moreover, the distribution of F(Yj | Xj; θ̂)

is also approximately uniform on [0, 1] when the working model
is correctly specified. Therefore, we can prove that the proposed
prediction set has an approximately correct coverage rate even
when the covariate-shift model is misspecified. Theorem 3 sum-
marizes the asymptotic results and the desired doubly robustness
property.

Theorem 3. Assume that Conditions (A) and (W1) hold. The
prediction sets given by Algorithm 1 have an asymptotically
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Algorithm 2: Resampling-based conformal prediction set in the presence of general covariate shift
Data: {(Xi, Yi) : 1, . . . , n} and {Xj : j = n + 1, . . . , N}
Input: B: number of bootstrap samples; 1 − a: the target coverage rate; a parametric working model F(y | x; θ); an

estimation procedure A for w(x)

Output: Prediction sets for Yj, j = n + 1, . . . , N
1 Prepare

• Obtain ŵ(x) using the estimation procedure A based on {Xi : i = 1, . . . , N}
• Obtain the MLE θ̂ under the model F(y | x; θ) based on {(Xi, Yi) : i = 1, . . . , n}
• Obtain the empirical CDF F̂0(x, y) = n−1 ∑n

i=1 I(Xi ≤ x, Yi ≤ y) and F̂1(x, y) defined in (5)

for b = 1 : B do

• Sample {(Xb
i , Yb

i ) : i = 1, . . . , n} from F̂0(x, y) and {(Xb
j , Yb

j ) : j = n + 1, . . . , N} from F̂1(x, y)

• Obtain the MLE θ̂
b under the model F(y | x; θ) based on {(Xb

i , Yb
i ) : i = 1, . . . , n}

• Calculate Ub
j = F(Yb

j | Xb
j ; θ̂b

), j = n + 1, . . . , N

For j = n + 1, . . . , N, obtain Lnj and Rnj, the Ba/2�th and �B(1 − a/2)�th smallest values of {Ub
j : b = 1, . . . , B},

respectively
Result: A conformal prediction set for Yj with coverage rate 1 − a is given by {y : F−1(Lnj | Xj; θ̂) ≤ y ≤ F−1(Rnj | Xj; θ̂)}

correct coverage rate either when the working model F(y | x; θ)

for the conditional CDF is correctly specified with θ∗ being the
unique true value of θ , or when the weight function w(x; β) =
exp(α + β�x) is correctly specified with (α∗, β∗) being the
unique true value of (α, β).

To avoid misspecification of the covariate-shift model (2), one
can employ modern machine learning methods such as artificial
neural networks, random forests, and kernel methods to obtain
a consistent estimate of the covariate-shift function w(x). Given
any estimator, say ŵ(x), of w(x), we estimate F1(x, y) by

F̂1(x, y) =
∑n

i=1 ŵ(Xi)I(Xi ≤ x, Yi ≤ y)∑n
j=1 ŵ(Xj)

=
∫∫

u≤x,v≤y ŵ(u)d̂F0(u, v)∫∫
ŵ(s)d̂F0(s, t)

. (5)

We impose the following conditions on ŵ(x).

(W2) (i) P0‖ŵ(·) − w(·)‖2 = op(1). (ii) W is a GC class of
functions such that ŵ(·) ∈ W . (iii) There exists a function
K2(x) such that w̃(x) ≤ K2(x), x ∈ X for all w̃(·) ∈ W and
P0K2(X) < ∞.

Theorem 4. Assume that Conditions (A) and (W2) hold. The
prediction sets given by Algorithm 2 always have an asymptoti-
cally correct coverage rate, irrespective of the correctness of the
outcome regression model F(y | x; θ).

The proposed algorithm is highly flexible and applicable to
a wide range of problems. For illustration, consider the task of
predicting the maximum of the next k outcome values in the
testing data, denoted by Z = max{Yn+1, . . . , Yn+k}. One can
leverage the fact that

Pr(Z ≤ t | Xn+1, . . . , Xn+k) =
k∏

j=1
F(t | Xn+j),

and replace the nonconformity score F(Yn+j | Xn+j; θ̂) in
Algorithms 1 and 2 with

∏k
j=1 F(Z | Xn+j; θ̂) to construct a

conformal prediction set for Z. This demonstrates the flexibility
and generalizability of the proposed procedure, which can be
easily adapted to different prediction tasks by modifying the
target variable and its corresponding probability distribution
function. Additionally, the corresponding conformal prediction
set for Z has a desirable double robustness property, similar to
the proposed intervals for individual outcomes. This property is
formally stated in the following corollary.

Corollary 1. (1) The proposed prediction set for Z maintains an
asymptotically correct coverage rate under Conditions (A) and
(W1), if either F(y | x; θ) is correctly specified with θ∗ being the
unique true value of θ or model (2) is correctly specified with
(α∗, β∗) being the unique true value of (α, β). (2) If we do not
assume model (2) and take F̂1(x, y) to be (5) instead of (4) in
the proposed algorithm for the maximum of several responses,
the resulting prediction set always has an asymptotically correct
coverage rate under Conditions (A) and (W2), irrespective of the
correctness of the outcome regression model F(y | x; θ).

3. Causal Inference With Conformal Prediction

In this section, we explore the application of conformal pre-
diction to causal inference in observational studies. It is worth
noting that the training and testing data in Section 2 are samples
of fixed sizes, while sample sizes in the treatment and control
groups are usually random in observational studies. As a result,
there is a subtle difference in establishing the large sample
properties of the estimated CDFs. Additionally, the empirical
CDF estimated in Section 2.3 was based only on data from the
training data, thus, can be inefficient. In this section, we consider
a more efficient estimator that uses data from both the control
and treatment groups, and investigate whether improving the
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efficiency of the CDF estimator can enhance the performance
of the conformal prediction sets.

We adopt the potential outcome framework to describe data
from observational studies. Let Y(1) and Y(0) denote the poten-
tial outcomes had an individual received active and control
treatment, respectively. The treatment indicator D takes the
value of 1 if the individual received active treatment and D = 0
otherwise. Consequently, we observe Y = DY(1)+ (1−D)Y(0)

instead of completely observing both Y(0) and Y(1) at the same
time. Note that conventional causal inference focuses on the
marginal difference between treatment and control. In this work,
we focus on predicting the unobserved potential outcome Y(d)

for individuals who received treatment 1 − d, d = 0, 1.
Denote by X a p-dimensional vector of covariates that may

be correlated with the treatment received and the potential
outcomes. Suppose {(Yi(0), Yi(1), Xi, Di) : i = 1, . . . , N} are
N iid copies of (Y(0), Y(1), X, D). Without loss of generality,
we assume that the first n = ∑N

i=1 Di individuals received an
active treatment (the treatment arm) and the remaining N − n
individuals received standard care (the control arm). For ease
of exposition, we focus on the prediction of the unobserved
potential outcome Y(1), in the control arm based on data from
the treatment group {(Yi(1), Xi, Di = 1) : i = 1, . . . , n} and
the covariate data {(Xi, Di = 0) : i = n + 1, . . . , N} from the
control group. A similar procedure can be used to predict Y(0)

in the treatment arm.
We adopt the standard assumptions from the causal inference

literature:

(B) (i) (Stable Unit Treatment Value) The potential outcomes
for any individual do not vary with the treatments assigned
to other individuals. (ii) (Unconfoundedness) The treatment
indicator D is conditionally independent of the potential
outcomes {Y(0), Y(1)} given X. (iii) (Overlap) 0 < Pr(D =
1 | X) < 1 for all X.

Assuming unconfoundedness, the propensity score is given by
Pr(D = 1 | Y(0), Y(1), X) = Pr(D = 1 | X) := π(X) and a
logistic model is commonly imposed for D given X:

π(x) = π(x; α, β) := exp(α + x�β)

1 + exp(α + x�β)
, (6)

where (α, β) are unknown regression parameters that can be
estimated by the MLE:

(̂α, β̂) = argmax
(α,β)

N∑
i=1

[
Di log{π(Xi; α, β)}

+(1 − Di) log{1 − π(Xi; α, β)}
]

. (7)

As discussed in the previous section, a crucial step in the
resampling-based conformal prediction procedure is to estimate
the joint CDF in the training data, which is F1(x, y) = Pr(X ≤
x, Y ≤ y | D = 1) = Pr(X ≤ x, Y(1) ≤ y | D = 1) in the setting
considered here. However, as pointed out in Qin (2017) (p. 211,
Remark 3), the empirical CDF F̂1(x, y) = n−1 ∑n

i=1 I(Xi ≤
x, Yi(1) ≤ y), though a consistent estimator of F1, may be
inefficient under the unconfoundedness assumption because it
fails to leverage information in the control group covariate data
{Xn+1, . . . , XN}. By employing the empirical likelihood method

(Owen 1990), one can construct an improved estimator by incor-
porating such information. We will examine the impact of this
improved estimator on prediction intervals.

We first note that the empirical CDF F1(x, y) can be viewed as
a maximum empirical likelihood estimator. Specifically, denot-
ing pi as the jump size of F1(x, y) at (Xi, Yi(1)), the empiri-
cal CDF maximizes the nonparametric likelihood

∏n
i=1 pi con-

structed based on treatment group data with respect to the
constraints pi ≥ 0 and

∑n
i=1 pi = 1. Interestingly, under the

unconfoundedness assumption, additional constraints can be
incorporated to leverage information from the control group
and improve efficiency (Qin, Liu, and Li 2023). Specifically,
define the joint CDF F(x, y) = Pr(X ≤ x, Y(1) ≤ y) and define
� = Pr(D = 1). Then the unconfoundedness assumption
implies dF1(x, y) = {π(x)/�}dF(x, y), leading to∫∫

h(x)dF1(x, y) = 1
�

∫∫
h(x)π(x)dF(x, y) (8)

for any h(x) such that the above integral is bounded. A natural
choice of h is h(x; α̂, β̂ , θ̂) = exp(−α̂ − x�β̂)μ(x; θ̂), where
μ(x; θ) is a given working model for the conditional meanE(Y |
X = x, D = 1) and θ̂ is the MLE of θ obtained using the
treatment group data. We can approximate the left-hand side of
(8) by n−1 ∑n

i=1 h(Xi)pi and the right-hand side by the empirical
average (n/N)−1×N−1 ∑N

i=1 h(Xi)π(Xi; α̂, β̂) over all available
covariate data. To obtain the constrained MLE for F1(x, y), we
maximize the log empirical likelihood � = ∑n

i=1 log(pi) subject
to constraints pi ≥ 0,

∑n
i=1 pi = 1, and

∑n
i=1 piψ(Xi; α̂, β̂) = 0,

where ψ(Xi; α̂, β̂) = h(Xi) − n−1 ∑N
j=1 h(Xj)π(Xj; α̂, β̂) and h

can be vector-valued. The resulting estimator is (see, e.g., Qin
2017, chap. 19)

F̂1(x, y) =
n∑

i=1
p̂iI(Xi ≤ x, Yi(1) ≤ y), (9)

where p̂i = n−1{1 + λ̂
�
ψ(Xi; α̂, β̂)}−1 and λ̂ satisfies∑n

i=1 ψ(Xi)/{1 + λ̂
�
ψ(Xi; α̂, β̂)} = 0. It is worth noting that

the empirical likelihood framework allows for the incorporation
of multiple working models simultaneously.

We next consider the estimation of F0(x, y) = Pr(X ≤
x, Y(1) ≤ y | D = 0). The logistic regression model (6) for
the propensity score implies

dF0(x, y) = 1 − π(x)

1 − �
dF(x, y)

= 1 − π(x)

1 − �
× �

π(x)
dF1(x, y)

= exp(−x�β)dF1(x, y)∫∫
exp(−s�β)dF1(s, t)

,

which motivates the following estimator for F0(x, y):

F̂0(x, y) =
∑n

i=1 p̂i exp(−X�
i β̂)I(Xi ≤ x, Yi(1) ≤ y)∑n

j=1 p̂j exp(−X�
j β̂)

. (10)

The asymptotic properties of F̂1 and F̂0 are summarized in the
following theorem.
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Algorithm 3: Resampling-based conformal prediction set for causal inference
Data: {(Yi(1), Xi, Di = 1) : 1, . . . , n} and {(Xj, Dj = 0) : j = n + 1, . . . , N}
Input: B: number of bootstrap samples; 1 − a: the target coverage rate; a parametric working model F(y | x; θ); a propensity

score model in (6)
Output: Prediction sets for Yj(1), j = n + 1, . . . , N

1 Prepare
• Obtain (̂α, β̂) defined in (7) based on {(Xi, Di) : i = 1, . . . , N}
• Obtain the MLE θ̂ under the model F(y | x; θ) based on {(Xi, Yi) : i = 1, . . . , n}
• Obtain F̂1(x, y) and F̂0(x, y) defined in (9) and (10), respectively

for b = 1 : B do

• Sample {(Xb
i , Yb

i ) : i = 1, . . . , n} from F̂1(x, y) and {(Xb
j , Yb

j ) : j = n + 1, . . . , N} from F̂0(x, y)

• Obtain the MLE θ̂
b under the model F(y | x; θ) based on {(Xb

i , Yb
i ) : i = 1, . . . , n}

• Calculate Ub
j = F(Yb

j | Xb
j ; θ̂b

), j = n + 1, . . . , N

For j = n + 1, . . . , N, obtain Lnj and Rnj, the Ba/2�th and �B(1 − a/2)�th smallest values of {Ub
j : b = 1, . . . , B},

respectively
Result: A conformal prediction set for Yj(1), of which Dj = 0, with a coverage rate of 1 − a is given by

{y : Lnj ≤ F(y | Xj; θ̂) ≤ Rnj}.

Theorem 5. Assume that Condition (B) holds, the propensity
score model (6) is correctly specified with the true parameter
values (α0, β0) and that � = Pr(D = 1) > 0. Moreover,
suppose that P0{‖h(X)‖2 + ‖X‖2} < ∞ and that P0{π(X)(1 −
π(X))(1, X�)(1, X�)�} is positive definite, where π(X) =
π(X; α0, β0). Then, as N → ∞, the following results hold: (1)
sup(x,y) |̂Fk(x, y)−Fk(x, y)| = op(1), k = 0, 1. (2) The stochastic
process {√n(̂Fk(x, y)−Fk(x, y)) : (x, y) ∈ R

p+1} to a mean zero
Gaussian process.

Theorem 5 implies that the proposed empirical likelihood
estimators for both F0(x, y) and F1(x, y) are uniformly consistent
and asymptotically normal with a root-n convergence rate, pro-
vided that the propensity score model (6) is correctly specified.
To construct conformal prediction sets, we impose a parametric
working model F(y | x; θ) for the common CDF Pr(Y(1) ≤ y |
X = x, D = 0) = Pr(Y(1) ≤ y | X = x, D = 1) = Pr(Y(1) ≤
y | X = x). Our resampling-based approach for conformal
prediction of the potential outcome Y(1) in the control group
is described in Algorithm 3. We also show in Theorem 6 that the
proposed prediction sets have the desirable double robustness
property.

Theorem 6. The prediction sets given by Algorithm 3 main-
tain an asymptotically correct coverage rate when one of the
following two sets of conditions is satisfied: (a) The outcome
regression model F(y | x; θ) is correctly specified with θ∗
being the unique true value of θ and Conditions (A) hold
with P1{K2(X, Y)} < ∞ in place of P0{K(X, Y)} < ∞. (b)
The propensity score model (6) is correctly specified, and the
matrix E{π(X; α∗∗, β∗∗)(1 − π(X; α∗∗, β∗∗))(1, X�)�(1, X�)}
is positive definite with (α∗∗, β∗∗) being the unique true value
of (α, β).

As expected, incorporating additional covariate information
from another treatment arm improves estimation of F1(x, y).

However, our simulation studies show that Algorithm 3 does not
exhibit significant improvement in finite-sample setting com-
pared to Algorithm 1 in terms of the length of prediction inter-
vals. This is similar to the fact that, in the context of estimating
a mean, a large increase in sample size can significantly reduce
the length of the confidence interval for the mean, but a larger
sample size usually does not result in a substantial reduction
in the length of a prediction interval. The presence of subject-
to-subject variation for a future observation means that the
reduction in prediction interval length due to increased sample
size is typically not substantial.

Thus far, we have discussed the prediction of the
potential outcome Y(1) in the control group based on
data from the treatment group, using the relationship
dF0(x, y) = exp(−x�β)dF1(x, y)/

∫∫
exp(−s�β)dF1(s, t).

Prediction of Y(0) in the treatment group can be obtained
in a similar way. Additionally, when predicting Y(1) in
the general population, we can rely on the relationship
dF(x, y) = π(x)−1dF1(x, y)/

∫∫
π(s)−1dF1(s, t). Hence,

in Algorithm 3 we bootstrap from F̂(x, y) and F̂1(x, y),
where F̂(x, y) = ∑n

i=1 p̂iπ̂(Xi)−1I(Xi ≤ x, Yi(1) ≤
y)/

∑n
j=1 p̂jπ̂(Xj)−1.

4. Numerical Experiments

In this section, we compare the performance of the proposed and
existing conformal inference methods using both simulated and
semi-simulated data.

4.1. Performance Evaluation Using Simulated Data

For comparison, we evaluate the performance of the following
approaches: (a) MARG, the marginal quantiles of Y ; (b) LC,
the weighted split-CQR algorithm described in Lei and Candès
(2021); (c) COND1, an unsplit conditional approach described
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Table 1. Simulated average coverage rate (AC), average length (AL) of prediction intervals and its standard deviation (SD) for an exchangeable outcome at the 95% target
level when data are generated from Scenario 1 with prediction estimand Y(1) | D = 0.

N Method AC(%) AL(SD) AC(%) AL(SD)

(I) both correctly specified (II) OR correctly specified

1000 MARG 90.99 71.25 (19.24) 90.99 71.25 (19.24)
LC 93.81 99.82 (121.65) 93.81 99.82 (121.65)
COND1 94.72 12.42 (2.66) 94.36 11.80 (2.46)
COND2 94.64 11.63 (2.37) 94.33 11.57 (2.36)
BOOT1 94.03 11.94 (2.41) 94.10 11.97 (2.39)
BOOT2 94.02 11.92 (2.40) 93.88 11.85 (2.39)

2000 MARG 91.30 71.75 (13.90) 91.30 71.75 (13.90)
LC 92.07 53.59 (14.31) 92.07 53.59 (14.31)
COND1 94.94 12.22 (2.27) 94.62 11.78 (2.08)
COND2 94.91 11.77 (2.12) 94.61 11.68 (2.06)
BOOT1 94.44 11.90 (2.10) 94.42 11.86 (2.03)
BOOT2 94.44 11.89 (2.08) 94.22 11.76 (2.04)

(III) PS correctly specified (IV) both misspecified

1000 MARG 90.99 71.25 (19.24) 90.99 71.25 (19.24)
LC 93.81 99.82 (121.65) 93.81 99.82 (121.65)
COND1 93.91 32.81 (10.73) 93.91 22.62 (4.10)
COND2 95.49 20.01 (4.04) 95.14 19.35 (3.59)
BOOT1 93.74 20.69 (3.98) 93.90 19.95 (3.52)
BOOT2 93.76 20.80 (3.99) 93.71 19.91 (3.58)

2000 MARG 91.30 71.75 (13.90) 91.30 71.75 (13.90)
LC 92.07 53.59 (14.31) 92.07 53.59 (14.31)
COND1 94.46 27.08 (6.83) 94.44 20.50 (2.93)
COND2 95.60 19.99 (3.22) 95.19 19.32 (2.83)
BOOT1 94.21 20.30 (3.21) 94.29 19.59 (2.78)
BOOT2 94.23 20.35 (3.13) 94.01 19.42 (2.80)

in Section 2.2 with S(Xn+1, Yn+1) = 1; (d) COND2, similar
to COND1 but with S(Xn+1, Yn+1) = 0; (e) BOOT1, a resam-
pling method based on exponential tilted empirical distribution
described in Section 2.3; and (f) BOOT2, a resampling approach
incorporating auxiliary information described in Section 3.

For the propensity score (PS) model in our proposed meth-
ods, we use logistic regression models as the working models in
the first scenario, and we explore the use of machine learning
methods in the second scenario. For the outcome regression
(OR), we consider the correctly specified Gamma model with
shape parameter θ2 and scale parameter θ−1

2 exp(θ�
1 X̃) and a

misspecified log-normal model with mean θ�
1 X̃ and variance θ2,

where X̃ = (1, X�)�. For the BOOT2 method, we set h(X) =
ŵ(X)̂θ

�
1 X̃, where ŵ is estimated using logistic regressions or

machine learning methods and θ̂1 is the MLE under the imposed
OR model. As for the LC method, we use quantile random
forest (qRF) (Athey, Tibshirani, and Wager 2019) to estimate
conditional quantiles and gradient boosting machine (Friedman
2001) to estimate propensity scores, as recommended in Lei and
Candès (2021). In each simulation, we generate N = 1000 and
2000 data points to construct prediction intervals, evaluate their
performance on M = 5000 extra data points, and use B = 2000
bootstrap samples for resampling-based methods. We repeat the
process 5000 times and report summary statistics of average
coverage rate (AC) and average length (AL) of the prediction
intervals at the 95% level for performance evaluation.

We consider two scenarios: one with right-skewed data (Sce-
nario 1) and the other with approximately symmetric additive
errors (Scenario 2). In Scenario 1, the covariate vector X =
(X1, X2, X3, X4, X5)

� is generated from a multivariate normal
distribution with mean 0 with a pairwise correlation coeffi-
cient of 0.3. The potential outcome Y(1) is generated from a

Gamma distribution with shape parameter 2 and scale parame-
ter exp(b�X̃)/2 with b = (0, −1, 1, 1, −1, −1)�. The treatment
indicator D is generated from a Bernoulli distribution with a
success probability {1 + exp(−c�X̃ − γ X1X2)}−1, where c =
(−1, 0.5, 1, 0.5, −0.5, −1)� and γ = 1. Four cases of working
models are considered: (I) both OR and PS models are correctly
specified; (II) only OR model is correct; (III) only PS model is
correct; and (IV) both OR and PS models are misspecified.

Table 1 compares the performance of various conformal
inference methods in predicting Y(1) in the control arm. Note
that results of MARG and LC are the same across different cases
as they do not rely on working models. In all cases, the proposed
methods, COND1, COND2, BOOT1, and BOOT2, outperform
MARG and LC in achieving coverage rates (AC) close to the
target rate. Furthermore, the proposed methods exhibit con-
siderably shorter average interval lengths (AL). Among these,
COND2 emerges as the most effective approach, striking the
balance between adhering to the target coverage rate and main-
taining a short average length of the prediction interval. Increas-
ing the sample size does not lead to significant improvements in
AC and AL but reduces the variability of the prediction interval
length. Interestingly, as the sample size increases, coverage rates
for LC decline within each case. This observation corresponds
with a notable reduction in interval length for larger sample
sizes, a phenomenon not observed with our proposed meth-
ods. Furthermore, when both working PS and OR models are
accurate (Case I), interval lengths are considerably shorter than
in Case (IV), where both models are misspecified. To evalu-
ate the robustness of our proposed methods against PS model
misspecification, we compare Case (I) and Case (II), observing
similar AC and AL. In contrast, when comparing Case (I) with
Case (III), AL nearly doubles when the OR working model is
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misspecified. Similar observations arise when comparing Case
(IV) to Case (II) and Case (III). In summary, for this data gener-
ation model, the misspecification of the OR working model has a
more substantial impact on interval length than the PS working
model. The performance of predicting Y(1) in the entire study
population, summarized in Table S1 of the supplementary mate-
rials, exhibits patterns similar to those in Table 1.

Our proposed method has a notable advantage over the
LC method in its ability to handle various prediction tasks.
For illustration, we consider predicting the maximum of future
responses, say, maxn+1≤j≤n+5 Yj(1), and compare the perfor-
mance of our prediction intervals BOOT1 and BOOT2 with the
MARG method. The simulation results in Table S3 of the sup-
plementary materials, where a misspecified working OR model
and a correctly specified working PS model are used, show
that our resampling-based methods significantly outperform the
marginal approach by producing shorter prediction intervals
while maintaining a coverage rate very close to the target level.

In Scenario 2, we consider approximately symmetric
outcome distributions with a high-dimensional covariate
X = (X1, . . . , X100)� and use data-adaptive weight
w(x) in the construction of prediction intervals.
Following Lei and Candès (2021), we generate Y(1) =
4
[
1 + exp{−12(X1 − 0.5)}]−1 [

1 + exp{−12(X2 − 0.5)}]−1 +
ε, where each component of X is generated from the uniform
distribution U(0, 1) with Corr(Xj, Xj′) = 0.5, for j �= j′.
The error term ε follows one of four distributions: N(0, 1),
N(0, − log X1), the t-distribution with 5 degrees of freedom
(t5), and the skew-normal distribution with the location, the
scale and the shape parameters being −1, 2, and 3, respectively
(SN(−1, 2, 3)). The treatment indicator D is simulated from a
Bernoulli distribution with success probability {1 + B24(X1)}/4,
where B24(·) is the CDF of the Beta distribution with parameters
(2, 4). Here we only compare MARG, LC, COND2, and BOOT1
methods, as the performance of COND1 and BOOT2 are
generally inferior to that of COND2 and BOOT1. For the
proposed methods, a working OR model with Gaussian error
is always assumed and the nonconformity score is based on the
Gaussian CDF. For all the methods under comparison, either
penalty methods such as LASSO (Tibshirani 1996) and SCAD
(Fan and Li 2001) are applied to the OR model with misspecified
linear covariate effects, or machine learning methods such as
quantile random forest (qRF) and regression forest (RF) (Athey,
Tibshirani, and Wager 2019) are, respectively, adopted to
estimate the conditional quantiles and conditional means. All
the PSs are estimated using the gradient boosting machine
(GBM) (Friedman 2001) in this scenario.

Table 2 demonstrates that all methods, except for the pro-
posed conditional approach using RF for the conditional mean
in the OR model, perform reasonably well in terms of predic-
tion accuracy and achieve satisfactory average coverage rates
when the error distribution does not depart significantly from
a symmetric distribution. Our proposed conditional approach
COND2 generally has shorter average lengths and is slightly
undercovered compared to the LC method. Similar observations
can be made from the additional simulation results with low-
dimensional covariates presented in the supplementary materi-
als. It is worth pointing out that BOOT1 (RF+GBM) has the best
performance among all the methods considered under Scenario

2. This result highlights the merit of the proposed bootstrap
approach, which mimics the underlying data generation process
by resampling, rather than data splitting, where the sampling
weight is estimated using the GBM with statistical guarantees.

4.2. Performance Evaluation Using Semi-Simulated Data

In this section, we evaluate the performance of different con-
formal inference methods on semi-simulated data from three
real-life studies. The first example involves outcome data with
approximately symmetric distribution while the other two are
related to right-skewed positive data that naturally occur in
physical and social science. We start by considering the National
Study of Learning Mindsets (NSLM), which is a large random-
ized controlled trial of an online growth mindset program for
school children (Yeager et al. 2019). Our main objective is to
predict the potential outcome on treatment Y(1) in the gen-
eral population. To simulate an observational study, we added
heteroscedastic normal errors to nonlinear covariate effects to
generate the potential outcome Y(1). More information about
the data generation process can be found in section 4.4 of Lei and
Candès (2021), which we omit here. We focus on the proposed
conditional approach COND2 and the plain bootstrap approach
BOOT1, both of which have demonstrated better performance
in previous simulation studies. We explore different combina-
tions of working models, including a parametric linear model
(LM) Y = θ�

1 X + ε with ε ∼ N(0, θ2) and the qRF for the
outcomes, and the logistic regression (LR) and gradient boosting
machine (GBM) for propensity scores. Similar to previous find-
ings, the results summarized in Table 3 suggest that all methods
perform comparably when the distribution of the error terms is
roughly symmetric and without heavy-tailed behavior.

The next example examines the performance of conformal
inference methods in the presence of covariate shift using the
airfoil dataset available from the UCI Machine Learning Repos-
itory (Dua, Dheeru, and Graff, Casey 2019). The dataset includes
1503 measurements of scaled sound pressure level, along with
five covariates: (log) frequency, angle of attack, chord length,
free-stream velocity, and suction side (log) displacement thick-
ness. It is worth pointing out that the outcome variable in the
published dataset is in the log scale after applying the spectral
scaling laws (Brooks, Pope, and Marcolini 1989). We randomly
split the data in half, with one portion used for training and
the other for testing. To simulate covariate shift, we follow
Tibshirani et al. (2019) by artificially sampling 25% of the testing
data with selection probability inversely proportional to the
frequency. More details about the data generation process are
available in section 2.3 of their paper. We compare a diverse set
of prediction techniques, including modern machine learning
approaches and conformal inference methods, that are widely
applicable and easy to implement in practice. Specifically, we add
OLSp, the classic least-squares prediction interval, and TBCR,
the weighted split conformal prediction method proposed by
Tibshirani et al. (2019), to the list of methods, in addition to
MARG, LC, COND2, and BOOT1. We consider various com-
binations of outcome regression and covariate-shift models for
the proposed and existing conformal prediction methods. We
use LM and qRF as working outcome regression models. For
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Table 2. Simulated average coverage rate (AC), average length (AL) of prediction intervals and its standard deviation (SD) for an exchangeable outcome at the 95% target
level when data are generated from Scenario 2 with prediction estimand Y(1) | D = 0.

N Method AC(%) AL(SD) AC(%) AL(SD)

N(0, 1) N(0, − log X1)

1000 MARG 94.47 6.56 (0.22) 93.38 6.03 (0.23)
LC (LASSO+GBM) 95.42 5.04 (0.53) 94.94 5.39 (0.99)
LC (SCAD+GBM) 95.39 5.04 (0.53) 94.82 5.43 (1.00)
LC (qRF+GBM) 95.51 6.14 (0.52) 95.20 5.98 (0.63)
COND2 (LASSO+GBM) 94.41 4.76 (0.25) 93.92 4.97 (0.42)
COND2 (SCAD+GBM) 94.72 4.85 (0.26) 94.20 5.12 (0.43)
COND2 (RF+GBM) 92.97 4.32 (0.22) 92.63 4.37 (0.35)
BOOT1 (LASSO+GBM) 97.16 5.44 (0.25) 95.67 5.54 (0.37)
BOOT1 (SCAD+GBM) 96.69 5.32 (0.26) 95.26 5.47 (0.37)
BOOT1 (RF+GBM) 95.72 4.85 (0.20) 94.64 4.78 (0.30)

2000 MARG 94.77 6.60 (0.16) 93.60 6.05 (0.16)
LC (LASSO+GBM) 95.20 4.89 (0.36) 94.71 5.19 (0.64)
LC (SCAD+GBM) 95.13 4.90 (0.36) 94.81 5.29 (0.66)
LC (qRF+GBM) 95.31 5.90 (0.35) 95.01 5.71 (0.35)
COND2 (LASSO+GBM) 94.66 4.75 (0.17) 94.17 4.99 (0.29)
COND2 (SCAD+GBM) 94.78 4.80 (0.17) 94.31 5.10 (0.29)
COND2 (RF+GBM) 92.94 4.04 (0.14) 92.81 4.21 (0.24)
BOOT1 (LASSO+GBM) 95.98 5.05 (0.16) 94.87 5.25 (0.26)
BOOT1 (SCAD+GBM) 95.77 5.03 (0.16) 94.71 5.24 (0.26)
BOOT1 (RF+GBM) 95.83 4.57 (0.13) 94.71 4.66 (0.23)

t5 SN(−1, 2, 3)

1000 MARG 94.51 7.27 (0.33) 94.41 7.35 (0.30)
LC (LASSO+GBM) 95.38 6.24 (0.94) 95.41 6.18 (0.74)
LC (SCAD+GBM) 95.44 6.25 (0.98) 95.26 6.16 (0.81)
LC (qRF+GBM) 95.39 7.11 (0.92) 95.52 6.99 (0.54)
COND2 (LASSO+GBM) 94.64 5.82 (0.43) 94.45 5.78 (0.33)
COND2 (SCAD+GBM) 94.91 5.92 (0.43) 94.82 5.87 (0.32)
COND2 (RF+GBM) 93.66 5.44 (0.39) 92.81 5.34 (0.28)
BOOT1 (LASSO+GBM) 96.61 6.57 (0.39) 97.19 6.64 (0.33)
BOOT1 (SCAD+GBM) 96.36 6.46 (0.42) 96.80 6.49 (0.34)
BOOT1 (RF+GBM) 95.39 5.98 (0.35) 95.81 6.02 (0.27)

2000 MARG 94.77 7.31 (0.24) 94.65 7.39 (0.21)
LC (LASSO+GBM) 95.17 5.96 (0.58) 95.17 5.95 (0.48)
LC (SCAD+GBM) 95.18 5.98 (0.58) 95.13 5.97 (0.51)
LC (qRF+GBM) 95.22 6.77 (0.57) 95.25 6.75 (0.38)
COND2 (LASSO+GBM) 94.80 5.78 (0.28) 94.67 5.78 (0.22)
COND2 (SCAD+GBM) 94.92 5.84 (0.28) 94.85 5.84 (0.22)
COND2 (RF+GBM) 93.55 5.13 (0.26) 92.68 5.07 (0.19)
BOOT1 (LASSO+GBM) 95.69 6.11 (0.26) 96.00 6.16 (0.21)
BOOT1 (SCAD+GBM) 95.59 6.09 (0.26) 95.89 6.13 (0.21)
BOOT1 (RF+GBM) 95.42 5.72 (0.25) 95.83 5.75 (0.18)

Table 3. Simulated average coverage rate (AC), average length (AL) of prediction
intervals and its standard deviation (SD) for the NSLM data.

Method AC(%) AL(SD)

MARG 94.20 2.10 (0.13)
LC (LM+LR) 95.65 2.06 (0.28)
LC (qRF+GBM) 95.55 2.24 (0.28)
COND2 (LM+LR) 94.38 1.89 (0.13)
COND2 (LM+GBM) 94.40 1.89 (0.13)
BOOT1 (LM+LR) 94.70 1.91 (0.11)
BOOT1 (LM+GBM) 94.68 1.91 (0.11)

the working covariate-shift models, we use the LR and GBM
as weighted models and consider an unweighted (UW) model
as well, following the simulation setting in Tibshirani et al.
(2019). The left panel of Table 4 summarizes the performance
of various conformal inference procedures. It is worth noting
that the average interval length (AL) summary measure is not
always available for the TBCR algorithm as their algorithm
may fail to produce valid quantiles. Thus, in addition to AL,
we also report the median interval length (ML) to provide a

more comprehensive evaluation. As expected, OLSp and its split
counterpart, TBCR (LM+UW), have poor performance and suf-
fer from severe under-coverage due to their failure to account for
covariate shift. In contrast, all other methods exhibit comparable
performance. Specifically, COND2 achieves the target cover-
age rates for both combinations (i.e., LM+LR and LM+GBM),
while BOOT1 results in the shortest prediction interval length.
However, it is worth noting that BOOT1 falls slightly short of
achieving the exact 95% target level by about 0.2%.

Finally, we consider the well-known Boston Housing Prices
dataset (Harrison and Rubinfeld 1978), which is available from
the R package MASS and provides information on housing and
demographic factors in Boston suburbs. In this dataset, the
outcome variable is the median value of owner-occupied homes
in a Boston suburb or town. We randomly split the data into
training and testing sets, with 75% used for training and 25%
for testing, so that there is no covariate shift between the two
sets. Following equation (A.1) in Harrison and Rubinfeld (1978),
we adopt a linear model for the log-transformed outcomes, in
addition to the qRF, as working OR models. We use LR and
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Table 4. Simulated average coverage rate (AC), average length (AL), median length (ML) of prediction intervals and their standard deviation (SD) for the airfoil data and
the Boston housing prices data (price in thousands).

Method AC(%) ML(SD) AL(SD) AC(%) ML(SD) AL(SD)

airfoil data Boston housing prices data

MARG 94.59 26.03 (0.49) 26.03 (0.49) 96.30 41.57 (0.62) 41.57 (0.62)
OLSp 89.51 19.85 (0.44) 19.86 (0.44) 94.29 15.27 (0.76) 16.58 (0.78)
TBCR (LM+UW) 89.35 20.01 (1.37) 20.01 (1.37) 95.37 18.47 (2.97) 19.96 (3.17)
TBCR (LM+LR) 95.67 27.28 (4.20) – 95.53 18.85 (4.22) –
TBCR (LM+GBM) 95.95 27.80 (4.66) – 97.14 23.34 (5.37) –
LC (LM+LR) 95.93 29.23 (6.57) 30.14 (5.18) 95.84 17.78 (3.47) 19.02 (3.47)
LC (LM+GBM) 96.20 29.66 (6.71) 30.52 (5.15) 97.72 26.58 (10.25) 27.36 (8.49)
LC (qRF+GBM) 96.42 25.16 (2.88) 24.90 (2.57) 98.36 29.63 (3.40) 29.61 (3.10)
COND2 (LM+LR) 95.34 26.41 (2.33) 26.86 (2.01) 94.77 16.44 (1.55) 17.81 (1.67)
COND2 (LM+GBM) 95.37 26.58 (2.42) 27.07 (1.99) 95.39 17.45 (2.02) 19.12 (2.12)
BOOT1 (LM+LR) 94.82 24.73 (1.66) 24.75 (1.64) 94.84 16.66 (1.42) 18.05 (1.52)
BOOT1 (LM+GBM) 94.82 24.78 (1.79) 24.80 (1.77) 94.60 16.56 (2.04) 17.94 (2.19)

GBM for the working covariate-shift models. Noting that no
transformation is applied to the outcomes when applying the
qRF as a working OR model in this example. All the predic-
tion methods mentioned in the previous example (i.e., MARG,
OLSp, TBCR, LC, COND2, and BOOT1) are considered here
for comparison. The right panel of Table 4 shows that the OLSp
method performs comparably to the unweighted TBCR method.
Data splitting helps achieve the exact target coverage rate, but
it also leads to longer interval lengths and worsened predic-
tion stability, as indicated by the standard deviation. Simple
parametric working models demonstrate better performance
in this simulation study. In contrast, methods based on qRF
and/or GBM tend to produce longer prediction intervals with
coverage rates much higher than the target 95% level. The
proposed unsplit conditional approach and resampling method
also demonstrate satisfactory performance. Among all the meth-
ods considered, including the split methods, LC (LM+LR) and
COND2 (LM+GBM) are the top-performing methods, achiev-
ing the target coverage rate while maintaining the shortest aver-
age interval length.

Supplementary Materials

The online supplement contains proofs of Theorems 1–6, the proposed
conformal prediction algorithms for the maximum of several responses
in the presence of covariate shift, details of a proposed jackknife and an
alternative resampling-based conformal prediction method in the absence
of covariate shift, and additional simulation results.
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