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SUMMARY

Capture-recapture experiments are widely used to collect data needed for estimating the abun-
dance of a closed population. To account for heterogeneity in the capture probabilities, Huggins
(1989) and Alho (1990) proposed a semiparametric model in which the capture probabilities
are modelled parametrically and the distribution of individual characteristics is left unspecified.
A conditional likelihood method was then proposed to obtain point estimates and Wald-type con-
fidence intervals for the abundance. Empirical studies show that the small-sample distribution of
the maximum conditional likelihood estimator is strongly skewed to the right, which may pro-
duce Wald-type confidence intervals with lower limits that are less than the number of captured
individuals or even are negative. In this paper, we propose a full empirical likelihood approach
based on Huggins andAlho’s model. We show that the null distribution of the empirical likelihood
ratio for the abundance is asymptotically chi-squared with one degree of freedom, and that the
maximum empirical likelihood estimator achieves semiparametric efficiency. Simulation studies
show that the empirical likelihood-based method is superior to the conditional likelihood-based
method: its confidence interval has much better coverage, and the maximum empirical likelihood
estimator has a smaller mean square error. We analyse three datasets to illustrate the advantages
of our empirical likelihood approach.

Some key words: Abundance estimation; Capture-recapture experiment; Dual system estimation; Empirical likelihood.

1. INTRODUCTION

In fields such as biology, ecology, demography, epidemiology and reliability, it is important
to know the abundance of a species, the size of a closed population, or the number of defects
in a system (Borchers et al., 2002, 2015). Mark-recapture or capture-recapture experiments are
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widely used for this purpose. In these experiments, individuals from the population of interest are
captured, marked, and then released.At a later time, after the captured individuals have mixed with
the others, another sample is taken. In general, taking more than two capture samples is common
in biology and ecology, whereas taking just two is common in demography, epidemiology and
reliability.

Mark-recapture or capture-recapture experiments are extensively used when it is not practi-
cable to count all the individuals in the population. The method was originally developed for the
estimation of animal abundance, but it has increasingly been applied to the estimation of popu-
lation parameters for demographic events. For example, the U.S. Census Bureau uses the dual
system estimation method, a slightly modified version of the capture-recapture method (Seber,
1982), to estimate the U.S. population (Hogan, 2000). This method produces valid population
estimates under certain assumptions. In epidemiological studies, the capture-recapture method
is used to estimate the completeness of disease registers. For example, Boden & Ozonoff (2008)
used the capture-recapture method to estimate the level of reporting for the two most com-
mon U.S. sources of information about nonfatal injuries and illnesses: workers compensation
data and the annual Survey of Occupational Injuries and Illnesses conducted by the Bureau of
Labor Statistics. Tilling et al. (2001) applied the capture-recapture method with covariate adjust-
ment to estimate the incidence of stroke in south London. In the past decade the method has
also become widespread in noninvasive genetic sampling; see Lukacs & Burnham (2005) for
a detailed review. It has been used in the context of software inspection (Barnard et al., 2003)
to estimate the number of defects in an inspected artefact. This estimate can be used to decide
whether the artefact requires reinspection to improve the phase containment of defects, which
involves detecting faults in the current software phase rather than allowing them to escape into
subsequent phases.

In this paper, we consider statistical inference for the abundance of a species based on capture-
recapture data. We take k samples from a closed population. Let N be the abundance, and
let X1, . . . , XN be the individuals’ characteristics, which are independent and identically dis-
tributed and have cumulative distribution function F(x) and probability density function f (x).
Let D = (D1, . . . , Dk)

T be the capture history of an individual, where Dj = 1 if the individual is
captured on the jth occasion and Dj = 0 otherwise. There is observable population heterogeneity:
individuals in different classes have different capture probabilities. To account for this, we adopt
the semiparametric model proposed by Huggins (1989) and Alho (1990), in which the probability
of capture on occasion j, gj(x) = pr(Dj = 1 | X = x), is modelled parametrically and the distri-
bution F(x) is left unspecified. Moreover, the Dj are assumed to be independent conditionally on
X = x. Suppose that n different individuals are observed and their characteristics are x1, . . . , xn.
Let di = (di1, . . . , dik)

T be the capture history of the ith observation and let di+ = ∑k
j=1 dij be the

number of captures on the ith observation. Clearly, di+ > 0 for the n observed individuals. We
wish to make inference on the abundance N under the semiparametric model of Huggins (1989)
and Alho (1990).

Fully parametric methods for estimating N , where the form of F(x) is assumed to be known,
have been extensively discussed. Borchers et al. (1998) developed a likelihood framework. Few-
ster & Jupp (2009) derived the asymptotic properties of the maximum likelihood estimator of
N based on the full likelihood and those of the conditional maximum likelihood estimator of N
based on the conditional distribution of x1, . . . , xn given n. Semiparametric methods, where F(·)
is modelled as a functional parameter, are also available. Huggins (1989) and Alho (1990) pro-
posed an estimator for N based on the conditional likelihood

∏n
i=1 pr(D = di | di+ > 0, X = xi)

under the logistic regression model for gj(x). Their ideas have been borrowed and extended by
many other researchers; see, for example, Borchers et al. (1998) and the references therein. More
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detailed developments of the parametric and semiparametric approaches can be found in Borchers
et al. (2002), Marques & Buckland (2004) and Fewster & Jupp (2009), among others.

Most parametric and semiparametric asymptotic results concern asymptotic normality of the
abundance estimator or log abundance estimator; these results are used to construct Wald-type
confidence intervals for the abundance. However, even in the simplest case, the small-sample
distribution of the maximum conditional likelihood abundance estimator is strongly skewed to
the right (Evans et al., 1994). Moreover, in a numerical study Evans & Bonett (1994) found that
the lower limit of the Wald-type confidence interval may be less than the number of individuals
captured, or even negative. Similar observations have been made in our simulation studies and
real-data analysis; see § 3 and 4. These undesirable properties motivate our work.

In this paper, we explore interval estimation for N based on the maximum full likelihood ratio
under the semiparametric model of Huggins (1989) and Alho (1990). We propose to use the
empirical likelihood, first introduced by Owen (1988, 1990) to mimic the parametric likelihood,
since it has many nice properties. Empirical likelihood confidence regions are Bartlett-correctable
(DiCiccio et al., 1991), range-preserving, and transformation-respecting (Hall & La Scala, 1990);
they do not require estimation of the scale or skewness. Since the two seminal papers by Owen
(1988, 1990), empirical likelihood has been applied to biomedical studies, survey sampling and
economic research; see Owen (2001) and Newey & Smith (2004).

Although empirical likelihood has been used widely, as far as we know it has never been
applied to abundance estimation under Huggins and Alho’s semiparametric model. In our set-up,
the semiparametric full likelihood contains three terms; see § 2·1. The first term involves the
binomial likelihood for N , the second term is the conditional likelihood, and the third term is the
marginal empirical likelihood of the covariate information. Hence, the conditional likelihood is
only one component of the full likelihood. We plan to use the full likelihood, which combines
all three terms, to construct confidence intervals for the abundance N based on the empirical
likelihood ratio.

Developing the asymptotic properties of the empirical likelihood ratio for the abundance is
very challenging. Standard methods and results from maximum empirical likelihood theory are
not directly applicable because the support of n depends on the parameter N , which violates
the regularity conditions. Furthermore, we have to deal with the binomial coefficient for the
abundance parameter estimation in addition to selection-biased sampling. In Huggins and Alho’s
semiparametric set-up, we are able to show that the empirical likelihood ratio for the abundance
N has an asymptotic chi-squared distribution with one degree of freedom. Simulations indicate
that the empirical likelihood confidence interval for N has much better coverage than Wald-
type confidence intervals based on the maximum conditional likelihood abundance estimator.
Furthermore, we have found that the maximum empirical likelihood estimator of N has a smaller
mean square error than the maximum conditional likelihood estimator of N . For convenience of
presentation, all proofs are given in the Supplementary Material.

2. EMPIRICAL LIKELIHOOD INFERENCE

2·1. Model set-up and empirical likelihood

Following Huggins (1989) and Alho (1990), we model the probability of capture on occasion
j ( j = 1, . . . , k) by the logistic regression model gj(x) = g(x, βj), where

g(x, βj) = exp{βT
j q(x)}

1 + exp{βT
j q(x)} , (1)
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with q(x) being a prespecified b-variate function whose first component is 1. For example, when
x is a scalar, we may choose q(x) to be (1, x)T or (1, x, x2)T. Model (1) is an Mth model (Otis
et al., 1978; Seber, 1982; Borchers et al., 2002) because the capture probability varies not only
from individual to individual but also from capture occasion to capture occasion.

Let βT = (βT
1 , . . . , βT

k ) and define φ(x, β) = ∏k
j=1{1 − g(x, βj)}, which is the probability

that an ideal observation X is not observed on any of the k occasions given X = x. Then
α = ∫

φ(x, β) dF(x) is the probability that an ideal observation is not observed on any of the k
occasions. To ensure the identifiability of (N , β, α), the conditions that k � 2 and the components
of q(x) are linearly independent are assumed throughout the paper.

We now develop the full likelihood of (N , β, α, F), which is the product of three components:
the likelihood from n, the likelihood from d1, . . . , dn conditional on x1, . . . , xn and given that the
n individuals have been captured at least once, and the likelihood from x1, . . . , xn given that the
n individuals have been captured at least once.

First, note that n ∼ Bi(N , 1 − α). Therefore its contribution to the likelihood is(
N

n

)
(1 − α)nαN−n = �(N + 1)

�(n + 1)�(N − n + 1)
(1 − α)nαN−n, (2)

where �(·) is the gamma function. Second, given that the ith individual has been captured at least
once and has covariate xi, the conditional probability of observing the capture history of the ith
individual is

pr(D = di | di+ > 0, X = xi) = pr(D = di, di+ > 0 | X = xi)

pr(di+ > 0 | X = xi)

= pr(D = di | X = xi)

pr(di+ > 0 | X = xi)

=
∏k

j=1{1 − g(xi, βj)}1−dij {g(xi, βj)}dij

1 − φ(xi, β)
.

Hence the likelihood, known as the conditional likelihood (Alho, 1990; Huggins, 1989), from
d1, . . . , dn conditional on x1, . . . , xn and given that the n individuals have been captured at least
once is

Lc(β) =
n∏

i=1

∏k
j=1{1 − g(xi, βj)}1−dij {g(xi, βj)}dij

1 − φ(xi, β)
. (3)

Third, given that the ith individual has been captured at least once, the conditional probability of
observing xi is

pr(X = xi | di+ > 0) = pr(di+ > 0 | X = xi) pr(X = xi)

pr(di+ > 0)
= {1 − φ(xi, β)} dF(xi)

1 − α
.

Therefore, the likelihood from x1, . . . , xn given that the n individuals have been captured at least
once is

n∏
i=1

{1 − φ(xi, β)} dF(xi)

1 − α
. (4)



Maximum empirical likelihood estimation for abundance 531

Upon combining (2)–(4), the full likelihood function of (N , β, α, F) is

�(N + 1)

�(n + 1)�(N − n + 1)
αN−n ×

n∏
i=1

⎡
⎣dF(xi)

k∏
j=1

{1 − g(xi, βj)}1−dij {g(xi, βj)}dij

⎤
⎦. (5)

As pointed out by Fewster & Jupp (2009), although N is necessarily a positive integer, the
likelihood function (5) makes sense for any positive N , and there is negligible error in treating
N as continuous for the asymptotics reported in this paper. Hence we will treat N as continuous.

Let pi = dF(xi). The empirical loglikelihood (Owen, 2001), up to a constant not dependent
on the unknown parameters, is

log
{

�(N + 1)

�(N − n + 1)

}
+ (N − n) log α +

n∑
i=1

log pi

+
n∑

i=1

k∑
j=1

[
dij log g(xi, βj) + (1 − dij) log{1 − g(xi, βj)}

]
,

where the feasible pi (i = 1, . . . , n) satisfy

pi � 0,
n∑

i=1

pi = 1,
n∑

i=1

pi{φ(xi, β) − α} = 0.

The above formulation ignores ties in x1, . . . , xn. If ties occur, we should interpret pi as dF(xi)/mi,
where mi is the number of times that xi appears in x1, . . . , xn. As discussed in Owen (2001, § 2.3),
the resulting probability weights (6) and profile empirical loglikelihood (7) do not change.

Given (β, α), in general the empirical loglikelihood achieves its maximum when

pi = 1

n

1

1 + λ{φ(xi, β) − α} , (6)

where λ satisfies

n∑
i=1

φ(xi, β) − α

1 + λ{φ(xi, β) − α} = 0.

When we profile out the pi, the profile empirical loglikelihood of (N , β, α) is

�(N , β, α) = log
{

�(N + 1)

�(N − n + 1)

}
+ (N − n) log α −

n∑
i=1

log
[
1 + λ{φ(xi, β) − α}]

+
n∑

i=1

k∑
j=1

[
dij log g(xi, βj) + (1 − dij) log{1 − g(xi, βj)}

]
. (7)

The maximum empirical likelihood estimators of (N , β, α) are

(N̂ , β̂, α̂) = arg max
N ,β,α

�(N , β, α). (8)
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The empirical likelihood ratio functions of (N , β, α) and N are

R(N , β, α) = 2

{
sup

N ,β,α
�(N , β, α) − �(N , β, α)

}
= 2{�(N̂ , β̂, α̂) − �(N , β, α)}, (9)

R′(N ) = 2

{
sup

N ,β,α
�(N , β, α) − sup

β,α
�(N , β, α)

}
= 2{�(N̂ , β̂, α̂) − �(N , β̂N , α̂N )}, (10)

where (β̂N , α̂N ) = arg maxβ,α �(N , β, α) given N .

2·2. Asymptotic properties: general case

In this section, we establish the limiting behaviour of the maximum empirical likelihood
estimators and the empirical likelihood ratios when no constraints are imposed on the βj.

We begin by defining some notation. Let N0, β0 = (βT
10, . . . , βT

k0)
T and α0 be the true values of

N , β and α, respectively. Write G1(x) = {g(x, β10), . . . , g(x, βk0)}T, G2(x) = diag{G1(x)} and
φ∗ = E[{1 − φ(X , β0)}−1]. We use ⊗ to denote the Kronecker product operator. The following
matrix W is closely related to the asymptotic variance matrix of the maximum empirical likelihood
estimators:

W =
⎛
⎝ −V11 0 −V13

0 −V22 + V24V −1
44 V42 −V23 + V24V −1

44 V43

−V31 −V32 + V34V −1
44 V42 −V33 + V34V −1

44 V43

⎞
⎠, (11)

where

V11 = 1 − α−1
0 , V13 = α−1

0 ,

V22 = E

[{
φ(X , β0)

1 − φ(X , β0)
G1(X )GT

1(X ) + G2
2(X ) − G2(X )

}
⊗ {q(X )q(X )T}

]
,

V23 = V T
32 = E

{
φ(X , β0)

1 − φ(X , β0)
G1(X ) ⊗ q(X )

}
, V24 = V T

42 = (1 − α0)
2V23,

V33 = φ∗ − α−1
0 , V34 = V43 = (1 − α0)

2φ∗, V44 = (1 − α0)
4φ∗ − (1 − α0)

3.

We refer to the Supplementary Material for more discussion on Vij.

THEOREM 1. Assume that the support of X is compact, the capture probability function gj(x) is
g(x, βj)as defined in (1), and the vector-valued function q(x) is b-variate with linearly independent
components. Let (N0, β0, α0) be the true value of (N , β, α) with α0 ∈ (0, 1). If W defined in (11)
is nonsingular, then as N0 → ∞:

(i) N0
1/2{log(N̂/N0), β̂T − βT

0 , α̂ − α0}T → N (0, W −1) in distribution;
(ii) R(N0, β0, α0) → χ2

bk+2 in distribution and R′(N0) → χ2
1 in distribution, where k is the

number of capture occasions.

Based on the limiting chi-squared distribution of the empirical likelihood ratio in Theorem 1, we
may construct a confidence interval for N at level 1 − a as

I1 = {
N : R′(N ) � χ2

1,1−a

}
,
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where χ2
1,1−a is the (1 − a)th quantile of the χ2

1 distribution. Theorem 1 guarantees that I1 has
asymptotically correct coverage probability.

While empirical likelihood estimation in this setting is new, maximum conditional likelihood
estimation has been investigated in the literature (Huggins, 1989;Alho, 1990). Denote by �c(β) =
log Lc(β) the conditional loglikelihood given the observed data, where Lc(β) defined in (3) is
the conditional likelihood. The maximum conditional likelihood estimator of N is defined as

Ñ =
n∑

i=1

1

1 − φ(xi, β̃)
,

where β̃ = arg maxβ �c(β).

THEOREM 2. Under the assumptions in Theorem 1, as N0 → ∞:

(i) N̂ − Ñ = Op(1);

(ii) (N̂ − N0)/N 1/2
0 , (Ñ − N0)/N 1/2

0 , N 1/2
0 log(N̂/N0) and N 1/2

0 log(Ñ/N0) all converge in
distribution to N (0, σ 2), where σ 2 = φ∗ − 1 − V32V −1

22 V23.

Theorem 2 is analogous to Theorems 1 and 2 in Fewster & Jupp (2009); see their equations (A10)
and (A17). It shows a close relationship between the maximum empirical likelihood estimator N̂
and the maximum conditional likelihood estimator Ñ under Huggins and Alho’s semiparametric
model. Fewster & Jupp (2009) presented similar results under fully parametric models. In the
Supplementary Material, we further show that the maximum empirical likelihood estimator N̂
is semiparametric efficient in the sense that its asymptotic variance σ 2 is the supremum of the
asymptotic variances of the maximum parametric likelihood estimator of N under all parametric
submodels.

Fewster & Jupp (2013) proposed three types of confidence intervals for N : the likelihood
ratio, score and Wald intervals under fully parametric models. The empirical likelihood ratio-
based interval I1 for N has been discussed above. Based on the profile empirical loglikelihood,
we can construct a score test-based confidence interval for N . However, the profile empirical
loglikelihood for N does not have a closed form. We do not currently have a simple way to imple-
ment the score test-based confidence interval for N based on the profile empirical loglikelihood,
so we do not consider it in our numerical study. A Wald-type confidence interval based on N̂
is not needed since it requires an additional variance estimate compared with I1. For the con-
ditional maximum likelihood method, the conditional loglikelihood under Huggins and Alho’s
semiparametric model does not involve N ; hence it cannot be directly used to construct likelihood
ratio-based or score test-based confidence intervals. Wald-type confidence intervals based on Ñ
are the only option in this case.

Wald-type interval estimators of N need a consistent estimator of σ 2. Based on the form of σ 2

in Theorem 2, an estimator of σ 2 is

σ̂ 2 = φ̂∗ − 1 − V̂32V̂ −1
22 V̂23, (12)

where φ̂∗ = Ñ−1 ∑n
i=1{1 − φ(xi, β̃)}−2 and

V̂23 = V̂ T
32 = Ñ−1

n∑
i=1

φ(xi, β̃)

{1 − φ(xi, β̃)}2
G1(xi, β̃) ⊗ q(xi),
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V̂22 = −Ñ−1
n∑

i=1

[{
di − G1(xi, β̃)

1 − φ(xi, β̃)

} {
di − G1(xi, β̃)

1 − φ(xi, β̃)

}T ]
⊗ {q(xi)q(xi)

T}.

In the Supplementary Material, we show that σ̂ 2 is a root-N0-consistent estimator of σ 2. Note
that φ̂∗, V̂23 and V̂22 are used to construct the Wald-type interval estimators of N based on Ñ , but
not for the proposed I1. Hence, we use (β̃, Ñ ) rather than (β̂, N̂ ) in φ̂∗, V̂23 and V̂22.

Because of the asymptotic normality in Theorem 2 and the consistency of σ̂ 2, both (Ñ − N0)/

(Ñ 1/2σ̂ ) and Ñ 1/2 log(Ñ/N0)/σ̂ are asymptotically pivotal, which leads to two Wald-type
confidence intervals for N based on the conditional likelihood:

I2 = [Ñ − z1−a/2Ñ 1/2σ̂ , Ñ + z1−a/2Ñ 1/2σ̂ ],
I3 = [

exp{log(Ñ ) − z1−a/2Ñ−1/2σ̂ }, exp{log(Ñ ) + z1−a/2Ñ−1/2σ̂ }],
where z1−a/2 is the (1 − a/2)th quantile of the standard normal distribution.

An alternative confidence interval for N uses the transformation log(Ñ − n), which was
attributed to Burnham by Chao (1987). Using the results in Theorem 2, we can show that

C(N0; Ñ ) = log(Ñ − n) − log(N0 − n)

[log{1 + Ñ σ̂ 2/(Ñ − n)2}]1/2
(13)

is asymptotically distributed as N (0, 1). Hence, the third Wald-type confidence interval for N
based on the conditional likelihood is I4 = {N : |C(N ; Ñ )| � z1−a/2}. An advantage of I4 is
that its lower limit is guaranteed to be greater than the number of captured individuals n. In § 3
we will use simulation to compare the performance of I1, . . . , I4.

2·3. Asymptotic properties: special case where the βj are all equal

When the βj are all equal, φ(x, β) reduces to φs(x, βs) = {1 − g(x, βs)}k , where βs denotes
the common value of the βj. This model is called the Mh model; see, for example, Borchers et al.
(2002) and Stoklosa et al. (2011). In this situation, the profile empirical loglikelihood �s(N , βs, α)

can be directly obtained from the profile empirical loglikelihood in (7):

�s(N , βs, α) = log
{

�(N + 1)

�(N − n + 1)

}
+ (N − n) log α −

n∑
i=1

log
[
1 + λ{φs(xi, βs) − α}]

+
n∑

i=1

[
di+ log g(xi, βs) + (k − di+) log{1 − g(xi, βs)}

]
,

where λ is the solution to

n∑
i=1

φs(xi, βs) − α

1 + λ{φs(xi, βs) − α} = 0. (14)

With the profile empirical loglikelihood �s(N , βs, α), we define the maximum empirical likeli-
hood estimators (N̂s, β̂s, α̂s) of (N , βs, α), the empirical likelihood ratio Rs(N , βs, α) for (N , βs, α)

and the empirical likelihood ratio R′
s(N ) for N similarly to the definitions of (N̂ , β̂, α̂), R(N , β, α)
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and R′(N ) in (8), (9) and (10). To present the asymptotics, we define a new W matrix, namely
Ws, which is W in (11) with φ∗, V23, V24 and V22 replaced by φs∗ = E[{1 − φs(X , βs0)}−1],

V23s = E

{
φs(X , βs0)

1 − φs(X , βs0)
kg(X , βs0)q(X )

}
, V24s = (1 − α0)

2V23s

and

V22s = E

[{
φs(X , βs0)

1 − φs(X , βs0)
k2g2(X , β0) + kg2(X , β0) − kg(X , β0)

}
q(X )q(X )T

]
.

Here (N0, βs0, α0) is the true value of (N , βs, α).

COROLLARY 1. Assume that the support of X is compact and the capture probability function
is gj(x) = g(x, βs) with q(x) as in Theorem 1. Let (N0, βs0, α0) be the true value of (N , βs, α). If
Ws defined above is nonsingular, then as N0 → ∞:

(i) N0
1/2{log(N̂s/N0), β̂T

s − βT
s0, α̂s − α0}T → N (0, W −1

s ) in distribution;
(ii) Rs(N0, βs0, α0) → χ2

b+2 in distribution and R′
s(N0) → χ2

1 in distribution.

Given the observations, the conditional loglikelihood is

�cs(βs) =
n∑

i=1

[
di+ log g(xi, βs) + (k − di+) log{1 − g(xi, βs)}

] −
n∑

i=1

log{1 − φs(xi, βs)}.

Similarly to Huggins (1989) and Alho (1990), we define the maximum conditional likelihood
estimator of N as

Ñs =
n∑

i=1

1

1 − φs(xi, β̃s)
,

where β̃s = arg maxβs �cs(βs). The following corollary is equivalent to Theorem 2 when the βj
are all equal.

COROLLARY 2. Under the assumptions in Corollary 1, as N0 → ∞:

(i) N̂s − Ñs = Op(1);

(ii) (N̂s − N0)/N 1/2
0 , (Ñs − N0)/N 1/2

0 , N0
1/2 log(N̂s/N0) and N0

1/2 log(Ñs/N0) all converge in
distribution to N (0, σ 2

s ), where σ 2
s = φs∗ − 1 − V32sV

−1
22sV23s.

Similarly to σ̂ 2 in (12), a consistent estimator of σ 2
s can be constructed as

σ̂ 2
s = φ̂s∗ − 1 − V̂32sV̂

−1
22s V̂ T

32s, (15)

where φ̂s∗ = Ñ−1
s

∑n
i=1{1 − φs(xi, β̃s)}−2 and

V̂23s = V̂ T
32s = Ñ−1

s

n∑
i=1

φs(xi, β̃s)

{1 − φs(xi, β̃s)}2
kg(xi, β̃s)q(xi),

V̂22s = −Ñ−1
s

n∑
i=1

{
di+ − kg(xi, β̃s)

1 − φs(xi, β̃s)

}2

q(xi)q(xi)
T.
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It can be shown that σ̂ 2
s is a root-N0-consistent estimator of σ 2

s .
The results in Corollaries 1 and 2 suggest four confidence intervals for N , which are similar

to I1, . . . , I4:

I1s = {N : R′
s(N ) � χ2

1,1−a},
I2s = [

Ñs − z1−a/2Ñ 1/2
s σ̂s, Ñs + z̃1−a/2N 1/2

s σ̂s
]
,

I3s = [
exp{log(Ñs) − z1−a/2Ñ−1/2

s σ̂s}, exp{log(Ñs) + z1−a/2Ñ−1/2
s σ̂s}

]
,

I4s = {N : |Cs(N ; Ñs)| � z1−a/2},

where Cs(N ; Ñs) is C(N ; Ñs) in (13) with σ̂ 2 replaced by σ̂ 2
s .

3. SIMULATION STUDY

In this section we investigate three aspects of the finite-sample performance of the proposed
empirical likelihood inference method. We study whether the χ2

1 distribution provides a good
approximation to the finite-sample distribution of the empirical likelihood ratio statistic for N
and whether normal distributions provide good approximations to the finite-sample distributions
of the maximum conditional likelihood estimator of N . We compare the maximum empirical
likelihood estimator and the maximum conditional likelihood estimator of N . We compare four
confidence intervals for N , based on the empirical likelihood ratio calibrated by the limiting χ2

1
distribution, I1 or I1s, and the three Wald-type confidence intervals I2, I3, I4 or I2s, I3s, I4s
based on the maximum conditional likelihood estimator of N . We calculate two mean square
errors to evaluate the goodness of a generic estimator N̆ of N ,

MSE1(N̆ ) = (N̆ − N0)
2/N0, MSE2(N̆ ) = N0{log(N̆/N0)}2.

We perform simulations for both the general case and the special case where the βj are all equal.
The numerical procedure for implementing the empirical likelihood-based methods is discussed
in the Supplementary Material.

For all our simulations, the number of repetitions is 2000. We fix the population size at N0 =
200 or 400 in both cases. Results for N0 = 100 and 150 are presented in the Supplementary
Material. For the interval estimation of N , we present only the two-sided coverage probability
at the nominal level 95%. The one-tailed coverage probabilities of the signed square root of the
empirical likelihood ratio-based confidence interval and the three Wald-type confidence intervals
are presented in the Supplementary Material.

We first consider the general case. We set the number of capture occasions to k = 2 or 3 and
generate data from the following two scenarios.

Scenario 1. The covariate X is univariate and follows the standard normal distribution. The
capture probability function on the jth occasion is g(x, βj) in (1) with the true q(x) being q01(x) =
(1, x)T. When k = 3, we set the true value of β to β0 = (0, −3, −1, −2, −2, 1)T, and the first four
components of β0 are taken as the true value of β for k = 2.

Scenario 2. The covariate X = (X1, X2)
T is bivariate, where X1 follows the standard

normal distribution and X2 follows the Bernoulli distribution with success probability 0·5,
and the capture probability function on the jth occasion is g(x, βj) with the true q(x)
being q02(x) = (1, x1, x2)

T. We choose a binary X2 to mimic a discrete characteristic,
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Table 1. Averages n̄ of sample sizes, two types of mean square errors of N̂ and Ñ , and coverage
probabilities (%) of I1, . . . , I4 at nominal level 95% under Scenarios 1 and 2

MSE1 MSE2 Level: 95%
Scenario N0 k n̄ N̂ Ñ N̂ Ñ I1 I2 I3 I4

1 200 2 115 275 331 37 42 92·7 86·2 88·8 90·9
200 3 136 13 17 8 9 93·2 91·5 92·8 94·2
400 2 229 151 171 32 35 92·1 87·7 89·1 91·3
400 3 271 8 9 7 7 93·2 92·1 93·2 94·2

2 200 2 111 277 329 40 44 92·7 86·7 89·4 91·9
200 3 134 9 11 6 7 94·8 93·5 94·4 95·5
400 2 222 155 179 37 40 93·0 89·9 91·6 92·7
400 3 268 6 7 5 6 95·7 94·2 94·8 95·8

such as the sex, of an individual. When k = 3, we set the true value of β to β0 =
(0·1, −2·5, −0·15, −1·5, −1·5, −0·2, −0·5, −0·8, −0·1)T, and the first six components of this
vector are taken as the true value of β for k = 2.

Under Scenario 1, the probability of overall capture is 1 − α0 = 0·573 when k = 2 and 0·676
when k = 3. Under Scenario 2, these probabilities are 0·556 and 0·670 when k = 2 and 3,
respectively. Recall that α0 represents the overall probability of noncapture rather than capture.
To implement our method and the conditional likelihood method, we set q(x) in g(x, βj) to q01(x)
for Scenario 1 and q02(x) for Scenario 2. Table 1 gives the averages n̄ of the sample sizes, the
MSE1 and MSE2 values for both the proposed maximum empirical likelihood estimator N̂ and
the maximum conditional likelihood estimator Ñ , and the simulated coverage probabilities of
I1, . . . , I4 for the abundance N at the nominal level 95% under Scenarios 1 and 2.

As expected, n̄ is very close to N0(1 − α0) in every case. The proposed maximum empirical
likelihood estimator N̂ has smaller mean square errors than the maximum conditional likelihood
estimator Ñ . As N0 increases from 200 to 400 or as k varies from 2 to 3, both N̂ and Ñ become
more accurate. In terms of the coverage precision, the empirical likelihood ratio-based confidence
interval I1 has a clear advantage over the Wald-type confidence intervals I2 and I3, and it has a
moderate advantage over I4 in Scenario 1 with N0 = 200 and k = 2. The gains of I1 in coverage
probability range from 2% to 6%. We have similar findings for Scenario 2 with N0 = 200 and
k = 2. As N0 varies from 200 to 400 or as k varies from 2 to 3, I1 has quite stable coverage
probabilities, while the coverage probabilities of I2, I3 and I4 increase. In terms of coverage
accuracy, I2 is uniformly worse than I3, and I4 is uniformly better than I3. This indicates that
the log transformation on Ñ increases the coverage probabilities of the Wald-type confidence
intervals so that they become close to the nominal levels, while the log transformation on Ñ − n
brings the coverage probabilities of the Wald-type confidence intervals closer to the nominal
level.

In the Supplementary Material we present additional simulation results under Scenarios 1
and 2. We summarize our findings as follows. First, the results indicate that the distribution of
the empirical likelihood ratio is quite close to χ2

1 , and the distributions of (Ñ − N0)/(Ñ 1/2σ̂ )

and Ñ 1/2 log(Ñ/N0)/σ̂ are not close to normal. The results also show that the distribution of
C(N0; Ñ ) is quite close to normal. These observations may explain why the empirical likelihood
ratio-based confidence intervals I1 always have more accurate coverage probabilities than the
Wald-type confidence intervals I2 and I3, but have only a slight advantage over I4. Second,
we observe that I1 has slightly longer length than I2 and I3 but much better coverage accuracy.
Further, I1 in general has shorter length than I4 but better or comparable coverage accuracy.
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Table 2. Averages n̄ of sample sizes, two types of mean square errors of N̂ and Ñ , and coverage
probabilities (%) of I1s, . . . , I4s at nominal level 95% under Scenarios 3 and 4

MSE1 MSE2 Level: 95%
Scenario N0 k n̄ N̂s Ñs N̂s Ñs I1s I2s I3s I4s

3 200 2 96 989 1506 73 100 93·7 84·0 87·0 87·3
200 8 146 53 69 10 13 91·4 84·8 86·6 91·7
400 2 192 1364 1829 120 149 92·6 84·4 87·4 87·5
400 8 293 10 14 7 9 92·8 86·8 88·7 93·4

4 200 2 122 304 369 34 40 92·6 86·7 89·6 90·9
200 8 161 3 4 2 3 90·3 86·6 87·8 92·3
400 2 243 88 109 29 34 93·3 89·6 91·0 92·4
400 8 321 3 4 3 3 90·8 88·4 89·1 91·5

Although I4 is easy to implement, the theoretical results for I4 remain open even in the no-
covariate case of Chao (1987). Finally, the two abundance estimators Ñ and N̂ are indeed quite
close, although Ñ is slightly larger than N̂ in general.

We next study the special case where all the βj are equal. The population size is still N0 = 200
or 400, and the number of capture occasions is k = 2 or 8. We chose k = 8 because it is
comparable to the number of occasions, 5, 14 and 17, in the three real datasets analysed in § 4.
We generated data from another two scenarios.

Scenario 3. The covariate X is the same as in Scenario 1, and the capture probability function
is g(x, βs) with the true q(x) function being q03(x) = (1, x, x2)T and βs0 = (−1, 2, 0·2)T.

Scenario 4. The covariate X = (X1, X2)
T is the same as in Scenario 2. The capture prob-

ability function is g(x, βs) with the true q function being q04(x) = (1, x1, x2)
T and βs0 =

(0·1, −2·5, −0·15)T.

Under Scenario 3, the probabilities of overall capture are 1 − α0 = 0·493 and 0·762 when
k = 2 and 8. Under Scenario 4, the probabilities of overall capture are 0·616 and 0·803 when
k = 2 and 8. When implementing our method and the conditional likelihood method, we set q(x)
to q03(x) and q04(x) in Scenarios 3 and 4, respectively. The simulation results are summarized in
Table 2.

Again n̄ is close to N0(1 − α0) in every case. The maximum empirical likelihood estimator
is still uniformly more accurate than the maximum conditional likelihood estimator in terms of
MSE1 and MSE2. As k increases from 2 to 8, both point estimators become noticeably more
accurate. In terms of coverage precision, the empirical likelihood ratio-based confidence interval
I1s is much better than I4s in Scenarios 3 and 4 with k = 2 and N0 = 200 and in Scenario 3
with k = 2 and N0 = 400, although they are comparable in the other settings. The gain in
coverage probability of I1s compared to I4s can be as large as 6% in Scenario 3 with N0 = 200
and k = 2. Both I1s and I4s are uniformly more accurate than I2s and I3s. In general, the
transformation log(Ñ − n) indeed improves the coverage of the Wald-type confidence intervals.
The empirical likelihood ratio-based confidence intervals I1s have reduced coverage probabilities
as k increases. A possible interpretation is that for fixed N0, the approximation of the limiting
χ2

1 distribution to the finite-sample distribution of the empirical likelihood ratio worsens as k
increases. Nevertheless, the empirical likelihood ratio-based confidence intervals still perform
better than I2s and I3s and comparably to I4s as k increases.

In the Supplementary Material, we report the results of more simulations for small N0 and
large N0. Further discussion of our observations can also be found in the Supplementary Material.
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Moreover, we propose a bootstrap procedure to improve the performance of the empirical
likelihood ratio-based confidence interval; the details are given in the Supplementary Material.

4. REAL-DATA ANALYSIS

We illustrate the application of the proposed empirical likelihood method by analysing three
real datasets: possum data (Heinze et al., 2004; Huggins & Hwang, 2007), mouse data (Stoklosa
et al., 2011), and bird data (Hwang & Huang, 2003; Huggins & Hwang, 2010). The possum
data, concerning captures of the mountain pygmy possum, were collected at Mount Hotham in
the snowfields of Victoria, Australia, over five consecutive nights in November 2003. The body
mass, in grams, of each captured animal was measured. For this dataset, n = 43 possums were
captured at least once over k = 5 occasions. The mouse dataset records captures of the harvest
mouse conducted at Wulin Recreation Area in Shei-Pa National Park, Taiwan, in the summer of
2008, over k = 14 occasions. Each captured individual was weighed and then released. In total,
n = 142 mice were captured at least once. The bird data contain the captures and wing lengths of
the bird species Prinia flaviventris; the data were collected at the Mai Po Bird Sanctuary of Hong
Kong in 1993 over 17 weekly capture occasions. For this dataset, n = 164 birds were captured at
least once over k = 17 occasions. All three datasets are available in the supplementary material
of Stoklosa et al. (2011).

In the data analysis, we use X to denote the body mass for the possum and mouse data and the
wing length for the bird data. We use the Mh model for all three datasets, as suggested by Stoklosa
et al. (2011); that is, for each dataset, we assume that all the βj are equal to a common value βs.
We choose q(x) = (1, x, x2)T as used by Stoklosa et al. (2011). Table 3 gives the point estimates
N̂s and Ñs and the 95% confidence intervals I1s, . . . , I4s. For all three datasets, N̂s and Ñs are
quite close to each other, and this is in accordance with the results of our simulation studies. The
confidence intervals are, however, quite different. For all three datasets, the empirical likelihood
ratio-based interval I1s has reliable performance and produces reasonable results. In contrast, the
two Wald-type intervals I2s and I3s are unstable and may produce unsatisfactory results. For the
mouse data, I2s and I3s are comparable to I1s. However, for the possum data the lower limits,
33 and 38, of I2s and I3s are below the number of observations, n = 43. This is also the case for
the bird data, where the lower limit of I2s is 92 and n = 164. The confidence interval I4s, which
is also preferable to I2s and I3s, seems close to I1s.

Table 3 also gives the maximum empirical likelihood estimates (β̂s, α̂s), the maximum con-
ditional likelihood estimate β̃s, and λ̂s, which is the solution to (14) with (β̂s, α̂s) in place of
(βs, α). We observe that λ̂s ≈ −1/(1 − α̂s) for all three datasets, which is quite reasonable since
we showed in our theoretical analysis that α̂s = α0 + op(1) and λ̂s = −1/(1 − α0) + op(1)

for some α0 ∈ (0, 1). The estimates β̂s and β̃s are also close to each other for all three datasets,
as are the corresponding estimated capture probability functions. Figure 1 shows the estimated
capture probability functions based on β̂s. It also displays histograms of the covariates and the
usual kernel density estimates, which are defined as

f̂u(x) =
n∑

i=1

(nh)−1K{(xi − x)h−1},

where h is a bandwidth and K(x) is a kernel function, usually chosen to be the standard normal
density function. We choose the bandwidth h by rule of thumb: h = 1·06 σ̂xn−1/5 where σ̂ 2

x is
the sample variance of the covariates xi.
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Table 3. Analysis results for the three real datasets
Dataset Point estimate 95% confidence interval Estimates of βs and σ 2

s

Possum N̂s = 55 I1s = [45, 127] β̂s = (−41·51, 2·14, −0·03)

n = 43 Ñs = 59 I2s = [33, 84] β̃s = (−45·36, 2·34, −0·03)

I3s = [38, 91] σ̂ 2
s = 2·95

I4s = [47, 109] α̂s = 0·23, λ̂s = −1·24

Mouse N̂s = 175 I1s = [159, 200] β̂s = (−4·19, 0·29, −0·001)

n = 142 Ñs = 176 I2s = [158, 195] β̃s = (−4·25, 0·30, −0·002)

I3s = [159, 197] σ̂ 2
s = 0·53

I4s = [162, 201] α̂s = 0·19, λ̂s = −1·22

Bird N̂s = 657 I1s = [394, 2360] β̂s = (−357·81, 15·12, −0·16)

n = 164 Ñs = 675 I2s = [92, 1257] β̃s = (−368·44, 15·57, −0·17)

I3s = [284, 1600] σ̂ 2
s = 131·00

I4s = [341, 1636] α̂s = 0·75, λ̂s = −4·01

n, sample size; (N̂s, β̂s, α̂s), the maximum empirical likelihood estimate of (N , βs, α); λ̂s, the solution to (14) with
(β̂s, α̂s) in place of (βs, α); (Ñs, β̃s), the maximum conditional likelihood estimate of (N , βs); I1s, the empirical
likelihood ratio-based confidence interval for N ; I2s, I3s and I4s, Wald-type confidence intervals for N .
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Fig. 1. Capture probability functions and kernel density estimates for the covariates of the three real datasets: panels
(a)–(c) show the estimated capture probability functions of the possum, mouse and bird data, respectively; panels
(d)–(f) plot the histogram, the usual kernel density estimates f̂u(x) (dotted), and the weighted estimates f̂w(x) (solid)

of the possum body weights, mouse body weights, and bird wing lengths.
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Since the observed covariates from F(x) are subject to selection bias, the naive kernel density
estimator f̂u(x) is a biased estimator of f (x). Hence, neither the histogram nor f̂u(x) reflects
the underlying true distribution of X . The selection bias can be corrected by the proposed
empirical likelihood method. Given the maximum empirical likelihood estimators β̂s and α̂,
we obtain the maximum empirical likelihood estimators of the covariate distribution F(x) as
F̂(x) = ∑n

i=1 p̂siI (xi � x), where the maximum empirical likelihood estimators of the probability
weights are

p̂si = 1

n

1

1 + λ̂s{φs(xi, β̂s) − α̂s}
,

with λ̂s being the solution to

n∑
i=1

φs(xi, β̂s) − α̂s

1 + λ{φs(xi, β̂s) − α̂s}
= 0.

Using these probability weights, we construct a weighted kernel estimator of the covariate density
function,

f̂w(x) =
n∑

i=1

p̂siK{(xi − x)h−1}h−1,

where the bandwidth h = 1·06 σ̂xn−1/5 is the same as in f̂u(x).

PROPOSITION 1. Assume that the conditions of Corollary 1 hold and that K(x) is a bounded,
symmetric and continuous density function. Further, assume f (x) > 0 for the given x. As N0 goes
to infinity, if h = o(1) and N0h2 → ∞, then

f̂w(x) = f (x) + op(1), f̂u(x) = (1 − α0)
−1{1 − φs(x, β0)}f (x) + op(1).

Proposition 1 indicates that as estimators of f (x), the weighted kernel density estimator f̂w(x)
is consistent while the usual kernel density estimator f̂u(x) is inconsistent unless g(x, βs) is inde-
pendent of the covariate x. The weighted kernel density estimates are also plotted in Fig. 1. The
bias correction can be observed in the figure. Compared with the usual kernel density estimate,
the weighted estimate places more probability at x where the capture probability is small and
less probability at x where the capture probability is large. This agrees with our intuition: obser-
vations with higher capture probabilities are more easily observed than those with lower capture
probabilities. Our empirical likelihood method succeeds in correcting this bias.

When comparing the estimated covariate density function with the empirical one in the second
row of Fig. 1, we observe that they are close to each other for the possum and mouse datasets
but not for the bird dataset. A possible reason is that a majority of the animals were caught in the
first two datasets, i.e., n = 43 out of N̂ = 55 for the possums and n = 142 out of N̂ = 175 for
the mice. In contrast, the bird data have n = 164 versus N̂ = 657, i.e., only a small proportion
of the birds were captured.
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