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Summary. Inverse probability weighting (IPW) is widely used in many areas when data
are subject to unrepresentativeness, missingness, or selection bias. An inevitable challenge
with the use of IPW is that the IPW estimator can be remarkably unstable if some probabil-
ities are very close to zero. To overcome this problem, at least three remedies have been
developed in the literature: stabilizing, thresholding, and trimming. However the final esti-
mators are still IPW type estimators, and inevitably inherit certain weaknesses of the naive
IPW estimator: they may still be unstable or biased. We propose a biased-sample empirical
likelihood weighting (ELW) method to serve the same general purpose as IPW, while com-
pletely overcoming the instability of IPW-type estimators by circumventing the use of inverse
probabilities. The ELW weights are always well defined and easy to implement. We show
theoretically that the ELW estimator is asymptotically normal and more efficient than the IPW
estimator and its stabilized version for missing data problems. Our simulation results and a
real data analysis indicate that the ELW estimator is shift-equivariant, nearly unbiased, and
usually outperforms the IPW-type estimators in terms of mean square error.

Keywords: causal inference, empirical likelihood, inverse probability weighting, miss-
ing data

1. Introduction

Inverse probability weighting (IPW) has long been accepted as the standard estimation
procedure under unequal probability samplings with and without replacement ever since
the work of Hansen and Hurwitz (1943) and Horvitz and Thompson (1952). IPW always
produces an unbiased or asymptotically unbiased estimator with an elegant expression,
regardless of the complexity of the underlying sampling plan, and this method therefore
enjoys great popularity. As well as survey sampling, it has been widely used in many other
areas, including missing data problems (Robins et al., 1994; Wooldridge, 2007; Tan, 2010;
Kim and Shao, 2021), treatment effect estimation or program evaluation (Rosenbaum
and Rubin, 1983; Rosenbaum, 2002; Imbens and Wooldridge, 2009; Hirano et al., 2003;
Cattaneo, 2010; Young et al., 2019; Zhao, 2019; Tan, 2020), personalized medicine (Zhang
et al., 2012; Jiang et al., 2017), and survival data analysis (Robins and Rotnitzky, 1992;
Robins, 1993; Bang and Tsiatis, 2000; Ma and Yin, 2011; Dong et al., 2020), where IPW
is renamed inverse probability of censoring weighting. In recent years, accompanied by
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optimal subsampling, the IPW method has also proved to be an effective approach to
validate statistical inferences for big data (Wang et al., 2018, 2019; Yu et al., 2022).

Through weighting the observations by the reciprocal of a certain probability of in-
clusion in the sample, the IPW estimator is able to account for unrepresentativeness,
missingness or selection bias caused by non-random lack of information or non-random
selection of observations. However, the IPW estimator can be highly unstable if there
are extremely small probabilities, which can result in biased estimation or poor finite-
sample performance of the accompanying asymptotic-normality-based inference (Busso et
al., 2014; Kang and Schafer, 2007; Robins et al., 2007; Imbens and Wooldridge, 2009;
Cao et al., 2009; Han et al., 2019). As pointed out by Robins et al. (2007) with regard
to double-robust estimators (which are IPW-type estimators) in missing data problems,
‘Whenever the “inverse probability” weights are highly variable, . . . , a small subset of
the sample will have extremely large weights relative to the remainder of the sample. In
this setting, no estimator of the marginal mean µ = E(Y ) can be guaranteed to perform
well.’ In casual inference with observational studies, this is the well-known limited- or
non-overlap problem in covariate distributions in different treatment groups (Crump et
al., 2009; Khan and Tamer, 2010; Yang and Ding, 2018). The IPW estimator becomes
inflated disproportionately or even breaks down in survival analysis when the number of
patients at risk in the tails of the survival curves of censoring times is too small (Robins
and Finkelstein, 2000; Dong et al., 2020). To guarantee that the IPW estimator possesses
consistency, asymptotic normality, and satisfactory finite-sample performance, it is usual
to impose an unnatural lower boundedness assumption on the probabilities (Rosenbaum
and Rubin, 1983; Mccaffrey et al., 2013; Sun and Tchetgen Tchetgen, 2018), although tiny
probabilities are frequently encountered in practice, especially when the propensity scores
are estimated from data (Yang and Ding, 2018; Ma and Wang, 2020).

To overcome this notorious problem, at least three remedies have been proposed in the
literature: stabilizing, thresholding, and trimming. The stabilizing method (Hájek, 1971)
rescales the IPW estimator so that the weights sum to 1 (Kang and Schafer, 2007). Al-
though straightforward, it can often sharply reduce the instability of the IPW estimator.
The thresholding method, proposed by Zong et al. (2019) in the context of survey sam-
pling, replaces those probabilities that are less than a given threshold by that threshold
while keeping others unchanged. The parameter of interest is then estimated by IPW with
the modified probabilities. Zong et al. (2019) proposed an easy-to-use threshold determin-
ing procedure and showed that, in general, the resulting IPW estimator works better than
the naive IPW estimator. This method can reduce the negative effect of highly heteroge-
neous inclusion probabilities, and hence leads to improved estimation efficiency, although
at the cost of an estimation bias. The trimming method excludes those observations with
probabilities less than a given threshold or, equivalently, sets their weights to zero (Crump
et al., 2009). Ma and Wang (2020) systematically investigated the large-sample behaviour
of the IPW estimator after trimming and found it to be sensitive to the choice of trim-
ming threshold and subject to a non-negligible bias. They proposed a bias-corrected and
trimmed IPW estimator, which depends on an adaptively trimming threshold and a band-
width. Inappropriate choices of the trimmed threshold and the bandwidth may affect the
performance of their estimator. More importantly, the bias correction technique depends
on the target quantity to be weighted, which makes their method inapplicable to weighted
optimization problems, such as optimal treatment regime estimation (Zhang et al., 2012).

The final point estimators of the stabilizing, trimming, and thresholding methods are
all based on IPW, although they adopt different strategies to reduce the detrimental effect
of extremely small probabilities. These IPW-type estimators inevitably inherit certain
weaknesses of the naive IPW estimator: they are either still unstable or biased. Also,
the accompanying intervals, regardless of whether they are asymptotic-normality-based or
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resampling-based, often exhibit much undercoverage. See our simulation results in Section
3.

In this paper, we propose a biased-sample empirical likelihood weighting (ELW) es-
timation method to serve the same general purpose as IPW in handling incomplete or
biased data while overcoming its instability. We systematically investigate its finite- and
large-sample properties in the context of missing data problems, although it is general-
ly applicable. The proposed ELW estimation method has several advantages over the
IPW-type methods and the usual empirical likelihood (EL) (Owen, 1988, 1990, 2001).

(a) The ELW method circumvents the use of inverse probabilities and therefore never
suffers from extremely small or even zero selection probabilities. It takes the maxi-
mum EL estimates of the probability masses of a multinomial distribution as weights,
which always range from 0 to 1. This is the most significant advantage of the ELW
method over IPW and its variants.

(b) The ELW weights are always well defined. By contrast, the usual EL weights suffer
from the well-known convex hull constraint or the empty-set problem: they are un-
defined if the origin lies outside the convex hull of certain transformed data points
(Tsao, 2004; Chen et al., 2008; Liu and Chen, 2010).

(c) Like the stabilized IPW estimator, the ELW weights always sum to 1, which gives
the ELW estimator the nice property of shift-equivariance. Unfortunately, the naive
IPW estimator, the trimmed IPW estimator of Zong et al. (2019), and the IPW
estimator of Ma and Wang (2020) are all sensitive to a location shift in the response
or the parameter of interest.

(d) The ELW weights are very convenient to calculate. Their calculation involves only
solving a univariate rational equation, which can be done efficiently by the commonly
used bisection algorithm. In contrast to the IPW estimator of Ma and Wang (2020),
the ELW estimator is free of any tuning parameter and is hence more computationally
efficient. The ELW weights depend only on the propensity scores and the full data
size, and therefore the ELW method is directly applicable to survey sampling and
weighted optimization problems.

(e) As we shall show, the ELW estimator is theoretically more efficient than the IPW
estimator for missing data problems. This is a bonus of ELW, since the construction
of the ELW weights makes use of side information. Our simulation results indicate
that the ELW estimator often has smaller mean square errors and the accompanying
interval has better coverage accuracy in most cases.

A crucial requirement of ELW is knowledge of the size of the finite population of interest
or a larger independent and identically distributed sample that includes the observed data
as a subsample. This is also required by the original IPW method and some of its variants,
and is available in most situations. For example, in missing data problems, the size of the
overall dataset is clearly known, and in survey sampling, the size of the finite population
from which the sample was drawn is usually known a priori, since we need to construct
a sampling frame before sampling. This mild requirement implies that the ELW method
has many potential applications beyond missing data problems, sample surveys and casual
inference.

The remainder of this article is organized as follows. In Section 2, we introduce the
ELW method by estimating the parameter defined through just-identified estimating e-
quations when data are subject to missingness. A simulation study and a real-life data
analysis are conducted in Sections 3 and 4 to demonstrate the usefulness and advantage
of the ELW method. Section 5 concludes with some discussion. All technical proofs, an
extension of the ELW method to unequal probability samplings, large-sample properties
of the ELW method under over-identified estimating equations, and additional simulation
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results can be found in the Supplementary Material. The R codes for reproducing all the
computational results are available in online supplementary material.

2. Empirical likelihood weighting

We introduce the ELW method by solving missing data problems. Special cases of missing
data problems include treatment effect estimation in observation studies under the po-
tential outcome framework of Rubin (1974), as well as program evaluation in economics
and other social sciences. Let Z = (Y,X), with Y being a response variable that is sub-
ject to missingness and X an always-observed covariate. Denote by D a non-missingness
indicator, with D = 1 if Y is observed and 0 otherwise. For ease of exposition, for the
time being, we assume that the conditional non-missingness probability or the propensity
score π(Z) = P (D = 1|Z) is completely known and always positive, although our method
allows π(Z) to take zero values. The case with unknown propensity score is considered in
Section 2.4. Suppose that the parameter of interest θ is an r-dimensional vector defined
as the solution to E{g(Z, θ)} = 0, where g(Z, θ) is an s-dimensional compatible estimating
function. We consider only the just-identified case (i.e. s = r); the over-identified case
(i.e. s > r) is discussed in the supplementary material.

Denote the data by {(Di, DiZi), i = 1, 2, . . . , N}, with Zi = (Yi, Xi) or simply {zi, i =

1, 2, . . . , n}, where zi = (yi, xi) and n =
∑N

j=1Dj ; the covariates Xi with Di = 0 do not

come into play in most of this paper. The data {zi, i = 1, 2, . . . , n} is in fact a biased
sample of the underlying population if all π(zi) are not equal. The IPW estimator of θ is
the solution to

1

N

N∑
i=1

Di

π(Zi)
g(Zi, θ) =

1

N

n∑
i=1

g(zi, θ)

π(zi)
= 0. (1)

If g(Z, θ) can be expressed as f(Z) − θ, then the IPW estimator is actually the Hájek
estimator, or stabilized IPW (SIPW) estimator

θ̂SIPW =

∑N
i=1Dif(Zi)/π(Zi)∑N

j=1Dj/π(Zj)
=

∑n
i=1 f(zi)/π(zi)∑n
j=1 1/π(zj)

. (2)

Hereafter we also denote the solution to (1) by θ̂SIPW in general. The original version of
IPW estimator is

θ̂IPW =
1

N

N∑
i=1

Di
f(Zi)

π(Zi)
=

1

N

n∑
i=1

f(zi)

π(zi)
. (3)

The expression (3) for the IPW estimator indicates that it becomes extremely unstable
when some of the π(Zi) with Di = 1 are close to zero, and that the terms with Di = 0
actually contribute nothing to it. Since the size N is known, the zero-value Di together
with the other single-value Di contain information about E(D) = E{E(D|Z)} = E{π(Z)}.
The IPW estimator and its variants ignore such side information, and are not able to
utilize it as well, and they consequently have potential losses of efficiency. As a popular
and flexible non-parametric technique, EL (Owen, 1988, 1990, 2001) can conveniently
and efficiently make use of side information to achieve improvements in efficiency. This
motivates us to develop the ELW estimation method to serve the same purpose as the
IPW estimator, while overcoming its instability and improving its estimation efficiency.

2.1. ELW estimator
Let the distribution function of Z be F (z) = pr(Z ≤ z), where the inequality holds
element-wise for vector-valued Z. To estimate θ, the solution to

∫
g(z, θ)dF (z) = 0, it
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suffices to estimate F (z). We consider the problem of estimating F by discarding those Zi
with Di = 0, although these quantities may be partially accessible. The likelihood based
on the remaining data is

L̃ = (1− α)N−n ·
N∏
i=1

{π(Zi)dF (Zi)}Di , (4)

where α = pr(D = 1) = E{π(Z)} is the marginal non-missingness probability.
We use EL to handle the distribution F (z). The basic idea of EL is to model F (z) by a

discrete distribution or a multinomial distribution assigning probability mass pi to a datum
Zi, i.e., F (z) =

∑N
i=1 piI(Zi ≤ z), where the inequalities hold element-wise. Replacing

dF (Zi) with pi and taking logarithms of (4), we have the biased-sample empirical log-
likelihood

˜̀=

N∑
i=1

[Di log(pi) +Di log{π(Zi)}+ (1−Di) log(1− α)] (5)

as the observed data {Zi : Di = 1} is a biased sample of {Zi : 1 ≤ i ≤ N}. Those pi that
are feasible satisfy

pi ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi{π(Zi)− α} = 0. (6)

We emphasize that although those Zi with Di = 0 appear in ˜̀and
∑N

i=1 pi{π(Zi)−α} = 0,
they have no likelihood contribution or any influence on the resulting EL method.

The proposed EL estimator of F (z), or equivalently of the pi, is obtained by maximizing
the empirical log-likelihood (5) subject to (6). For fixed α, the maximum of the log-EL in
(5) subject to (6) is attained at

pi =
1

n

Di

1 + λ(α){π(Zi)− α}
, (7)

where λ(α) satisfies

1

n

N∑
i=1

Di

1 + λ(α){π(Zi)− α}
{π(Zi)− α} = 0. (8)

Putting (7) into (5) gives the profile log-EL of α (up to a constant that is independent of
α)

`(α) =

N∑
i=1

{−Di log[1 + λ(α){π(Zi)− α}] + (1−Di) log(1− α)}.

This immediately gives α̂ = arg max `(α), the EL estimator of α. Accordingly, the EL
estimators of pi and F (z) are

p̂i =
1

n

Di

1 + λ(α̂){π(Zi)− α̂}
(9)

and F̂ (z) =
∑N

i=1 p̂iI(Zi ≤ z). Finally, the EL estimator or the ELW estimator θ̂ELW of θ
is the solution to ∫

g(z, θ)dF̂ (z) =

N∑
i=1

p̂ig(Zi, θ) = 0. (10)
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Obviously, both F̂ (z) and θ̂ are well-defined statistics because p̂i = Dip̂i.
When calculating the proposed EL estimator of F (z), or equivalently of the pi, we may

maximize the empirical log-likelihood (5) with respect to pi’s, α and θ subject to both (6)

and
∑N

i=1 pig(Zi, θ) = 0. Because the dimension of g is equal to that of θ, the resulting p̂i
and θ̂ELW are exactly the same.

Compared with the usual EL, a remarkable feature of the likelihood in (4) is to include
α, which has many advantages. First, including α, the likelihood in (4) can automatically
incorporate the auxiliary information carried by N . Otherwise we have to construct new
estimating equations to make use of this information. Second, after including α in the full
likelihood, it is reasonable to construct the constraint

∑N
i=1 pi{π(Zi)− α} = 0. The exis-

tence of this equation guarantees that the resulting estimator is consistent or can correct
selection bias; otherwise the resulting estimator is inconsistent. In the next subsection, we
show that including α, the resulting EL weights p̂i’s are always well defined, and that the
ELW method can be quickly calculated by commonly-used softwares.

2.2. Practical implementation
The key to calculating the proposed EL estimators, including the EL estimator F̂ of F
and the ELW estimator θ̂ELW, is to calculate α̂ by maximizing `(α). This necessitates
a double iterative algorithm because `(α) involves an implicit function λ(α), and thus it
seems to be rather a difficult task. We find a more convenient solution, in which we need
only solve a univariate equation.

Mathematically, α̂ = arg max `(α) is a solution to

0 =

N∑
i=1

[
Diλ

1 + λ{π(Zi)− α}
− 1−Di

1− α

]
. (11)

Combining (8) and (11) gives

λ =
N − n
n(1− α)

. (12)

Putting this expression into (8) leads to an equivalent equation for α:

N∑
i=1

Di(π(Zi)− α)

n/N + (1− n/N)π(Zi)− α
= 0. (13)

As (13) has multiple roots, it is necessary to identify the interval containing the desired
root. Denote the observed Zi by z1, . . . , zn and define ξi = n/N + (1− n/N)π(zi) for i =
1, 2, . . . , n. Equation (13) is further equivalent to K(α) = 0, where K(α) =

∑n
i=1{π(zi)−

α}/(ξi − α). Because α ∈ (0, 1), ξi ≥ n/N , and n/N is a consistent estimator of α, the
desired root of K(α) = 0 should lie between 0 and min ξi. Actually, there must exist one
and only one solution to K(α) = 0 between 0 and min ξi. Because ξi ≥ π(zi), it follows
that K{minπ(zi)} ≥ 0, limα↑min ξi K(α) = −∞, and that K(α) is strictly decreasing
between 0 and min ξi. By the intermediate value theorem, there must exist one and only
one solution, denoted by α̂, in [minπ(zi),min ξi) such that K(α̂) = 0. It is worth noting
that if all the π(zi) are equal and equal to α0, then α̂ = α0 and the resulting p̂i are all
equal to 1/n, and the ELW estimator reduces to the solution to (1/n)

∑n
i=1 g(zi, θ) = 0.

Otherwise, all π(zi) (i = 1, 2, . . . , n) are not equal to each other, and α̂, p̂i, and θ̂ELW are
all non-degenerate.

The proposed ELW estimation procedure can be implemented by Algorithm 1. The
first and third steps involve only closed-form calculations, the second step can be efficiently
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achieved by a bi-section search algorithm, and the last step has the same calculation
burden as those of the IPW-type methods. These imply that the ELW procedure is easy
to implement.

Algorithm 1: ELW estimation procedure

Input: The missing dataset {(Di, DiZi, π(Zi)) : i = 1, 2, . . . , N}.
Output: The ELW estimate, θ̂ELW, of θ.

Step 1. Calculate n =
∑N

i=1Di, ζl = min{π(Zi) : Di = 1, i = 1, 2, . . . , N} and
ζu = n/N + (1− n/N)ζl.
Step 2. Calculate α̂ by solving (13) in the interval [ζl, ζu), and calculate
λ(α̂) = (N − n)/{n(1− α̂)}.
Step 3. Calculate p̂i = Din

−1[1 + λ(α̂){π(Zi)− α̂}]−1 for i = 1, 2, . . . , N .

Step 4. Obtain θ̂ELW by solving the equation
∑N

i=1 p̂iDig(Zi, θ) = 0 or minimizing

‖
∑N

i=1 p̂iDig(Zi, θ)‖2 with respect to θ.

2.3. Finite- and large-sample properties
The non-zero EL weights are (1 − α̂)/{N(ξi − α̂)} for 1 ≤ i ≤ n. We use the maximum
weight ratio κ = (max1≤i≤n ξi − α̂)/(min1≤i≤n ξi − α̂) among the non-zero EL weights
to quantify the dispersion between the EL weights. The following lemma establishes an
upper bound on κ.

Lemma 2.1. Suppose π(zi) (1 ≤ i ≤ n) take m ≥ 2 distinct values π(1) < . . . < π(m)

(m ≥ 2). If there exists ε ∈ (0, 1) such that π(m) − π(1) > ε and n/N < 1 − ε, then

κ ≤ N/ε3.

Lemma 2.1 indicates that the ELW method works even if the smallest π(zi) is as
small as zero. However, the maximum weight ratio of the IPW estimator has no such a
guarantee, and the IPW estimator becomes extremely unstable when some of the π(zi) are
close to zero. In particular, it fails to work when min1≤i≤n π(zi) is exactly zero. Our ELW
estimator successfully and completely overcomes this issue, which is its most significant
advantage over the traditional IPW estimator in finite-sample performance.

Next, we show that asymptotically our ELW estimator is unbiased and more efficient
than the IPW estimator. This is a bonus of using ELW, and also a significant advantage
that it has over the conventional IPW in large-sample performance. We make the following
assumptions on the function g(Z, θ).

Condition 1. (i) θ0 is the unique solution to E{g(Z, θ)} = 0. (ii) The parameter space
is a compact set Θ ⊂ Rr, g(Z, θ) is a continuous function of θ for every Z, and there exists
a function ḡ(Z) such that E{ḡ(Z)} <∞ and supθ∈Θ ‖g(Z, θ)‖ ≤ ḡ(Z). (iii) g(Z, θ) has a
continuous partial derivative g1(Z, θ) = ∂g(Z, θ)/∂θ> in a neighborhood of θ0 for each Z.
There exists a positive function ḡ1(Z) such that E{ḡ1(Z)} < ∞ and ‖g1(Z, θ)‖F ≤ ḡ1(Z)
for all Z and for β in the neighborhood, where ‖ · ‖F is the Frobenius norm. (iv)The r× r
matrix K = E{g1(Z, θ0)} is nonsingular.

We denote A⊗2 = AA> for a vector or matrix A, and define Bgg = E{g⊗2(Z, θ0)/π(Z)},
B11 = E{1/π(Z)}, and Bg1 = E{g(Z, θ0)/π(Z)}. When g(Z, θ) = f(Z) − θ, we define
Bff = E{f⊗2(Z)/π(Z)} and Bf1 = E{f(Z)/π(Z)}.

Theorem 2.1. Let α0 ∈ (0, 1) be the truth of α. Suppose that Condition 1 is satisfied,
Var{π(Z)|D = 1} > 0 and that B11 and Bgg are both finite. Also suppose that the
conditional inclusion probabilities π(Zi) are known. As N goes to infinity,
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(a)
√
N(θ̂ELW − θ0)

d−→ N(0,ΣELW), where ΣELW = K−1{Bgg −B⊗2
g1 /(B11 − 1)}(K−1)>;

(b)
√
N(θ̂SIPW − θ0)

d−→ N(0,ΣSIPW), where ΣSIPW = K−1Bgg(K
−1)>;

(c) The ELW estimator θ̂ELW is more efficient than the SIPW estimator θ̂SIPW, i.e.
ΣELW ≤ ΣSIPW, where the equality holds only if π(Z) is degenerate.

(d) If g(Z, θ) = f(Z) − θ, then
√
N(θ̂IPW − θ0)

d−→ N(0,ΣIPW) with ΣIPW = Bff − θ⊗2
0

and ΣELW = (Bff − θ⊗2
0 )− (Bf1 − θ0)⊗2/(B11 − 1); the ELW estimator θ̂ELW is also

more efficient than the IPW estimator θ̂IPW.

In Theorem 2.1, we treat the marginal non-missingness probability α as a fixed and
unknown parameter, which needs to be estimated. The assumption Var{π(Z)|D = 1} > 0
guarantees that with probability tending to 1, the observed propensity scores are not all
equal to each other, and so the ELW estimator is non-degenerate. Theorem 2.1 indicates
that the ELW estimator is more efficient than the SIPW estimator. A likelihood explana-
tion for this result is as follows. Let z1, . . . , zn be the Zi’s with Di = 1. As the foundation
of our ELW method, the full likelihood L̃ in equation (4) is proportional to Lm × Lc,

where Lm =
(
N
n

)
αn(1−α)N−n is a marginal likelihood, and Lc =

∏n
i=1{π(zi)dF (zi)/α} is

a conditional likelihood. When π(zi)’s are known, the nonparametric maximum condition-
al likelihood estimator of F is F̃ (z) = {

∑n
i=1 I(zi ≤ z)/π(zi)}/{

∑n
j=1 1/π(zj)}, therefore

θ̂SIPW is the maximum conditional likelihood estimator of θ. The ELW estimator θ̂ELW is
the maximum full likelihood estimator of θ. With the additional Lm, our ELW method
automatically makes use of the auxiliary information carried by N , and hence is more
efficient than the SIPW estimator.

A reasonable estimator of ΣELW is required in the construction of Wald-type confidence
intervals for θ. Inspired by the fact that p̂i ≈ Di/{Nπ(Zi)}, we propose to estimate ΣELW

with the ELW method by

Σ̂ELW = K̂−1{B̂gg − B̂⊗2
g1 /(B̂11 − 1)}(K̂−1)>, (14)

where K̂ =
∑N

i=1 p̂ig1(Zi, θ̂ELW), B̂11 = N
∑N

i=1(p̂i)
2, B̂g1 = N

∑N
i=1 g(Zi, θ̂ELW)(p̂i)

2, and

B̂gg = N
∑N

i=1{g(Zi, θ̂ELW)}⊗2(p̂i)
2. It is worth stressing that the ELW-based variance

estimator is again insensitive to small probabilities, since it circumvents the use of inverse
probabilities.

2.4. Estimated propensity score
In many situations, such as missing data problems and causal inference, the propensity
score is unknown and needs be estimated from the observed data. The ELW and IPW
estimators have different large-sample behaviours if we take the variability of the estimated
propensity score into account. Suppose that π(·) is parametrically modelled by π(Z, β).

Condition 2. (i) There exists β0 such that π(Z, β0) = π(Z) for all Z, and the func-
tion π(Z, β) is continuously differentiable in β in a neighborhood of β0. Let π1(Z, β) =
∂π(Z, β)/∂β>. (ii) There exist a positive constant ε and positive functions π̄(Z) and π̄1(Z)
such that π̄(Z) ≤ infβ:‖β−β0‖≤ε π(Z, β), supβ:‖β−β0‖≤ε ‖π1(Z, β)‖ ≤ π̄1(Z), E{π(Z)/(π̄(Z))2} <
∞, E {π(Z)ḡ(Z)/π̄(Z)} <∞, and E

{
π(Z)ḡ(Z)π̄1(Z)/{π̄(Z)}2

}
<∞, where ḡ is given in

Condition 1.

Condition 2(i) holds when the non-missingness indicator D follows Logistic and Probit
models, which are commonly used in the literature. Condition 2(ii) together with the
other conditions guarantees the consistency of α̂ and hence the consistency of the ELW es-
timator. Under Condition 2(i), π(Z, β0) = π(Z) and therefore B11 = E{1/π(Z, β0)}, Bg1 =
E{g(Z)/π(Z, β0)}, and Bgg = E[{g(Z)}⊗2/π(Z, β0)]. We define B1π̇ = E{π1(Z, β0)/π(Z)}
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and Bgπ̇ = E{g(Z, θ0)π1(Z, β0)/π(Z)}. In the case of g(Z, θ) = f(Z) − θ, define Bfπ̇ =
E{f(Z)π1(Z, β0)/π(Z)}.

Theorem 2.2. Assume Conditions 1 and 2 and that β̂ satisfies β̂−β0 = N−1
∑N

i=1 h(Di, Zi)+

op(N
−1/2), where the influence function h(D,Z) has zero mean. Suppose that the truth α0

of α satisfies 0 < α0 < 1 and Var{π(Z, β0)|D = 1} > 0. As N goes to infinity,

(a)
√
N(θ̂ELW − θ0)

d−→ N(0,ΣELW,e), where ΣELW,e = K−1Ω(K−1)> with

Ω = Var

{
Dg(Z, θ0)

π(Z, β0)
+

Bg1
B11 − 1

(
1− D

π(Z, β0)

)
+

(
Bg1B1π̇

B11 − 1
−Bgπ̇

)
h(D,Z)

}
;

(b)
√
N(θ̂SIPW − θ0)

d−→ N(0,ΣSIPW,e), where

ΣSIPW,e = K−1Var

{
Dg(Z, θ0)

π(Z, β0)
−Bgπ̇h(D,Z)

}
(K−1)>;

(c) In the case of g(Z, θ) = f(Z)− θ,
√
N(θ̂IPW − θ0)

d−→ N(0,ΣIPW,e), where

ΣIPW,e = Var

{
Df(Z)

π(Z, β0)
−Bfπ̇h(D,Z)

}
.

When the propensity score is known, Theorem 2.1 establishes the asymptotic nor-
malities of the ELW, IPW and SIPW estimators. We find that ΣELW ≤ ΣSIPW and
ΣELW ≤ ΣIPW, indicating that the ELW estimator is asymptotically more efficient than the
IPW and SIPW estimators. According to Theorem 2.2, the ELW, IPW and SIPW estima-
tors still follow asymptotic normal distributions when the propensity score involves a finite-
dimensional unknown parameter. However, in general, the inequality ΣELW,e ≤ ΣSIPW,e

or ΣELW,e ≤ ΣIPW,e does not hold any longer. This implies that the efficiency gain of the
ELW estimator over the IPW and SIPW estimators is no longer guaranteed.

If the response Y is missing at random (Rubin, 1976) and the covariate X is observed,
then π(Z, β) depends on Z = (Y,X) through only X. We may estimate β by its maximum

likelihood estimator β̂, i.e. the maximizer of
∑N

i=1[Di log π(Zi, β)+(1−Di)π{1−π(Zi, β)}].
In this case,

h(D,Z) =
D − π(Z, β0)

π(Z, β0){1− π(Z, β0)}
(B̃π̇π̇)−1π1(Z, β0),

where B̃π̇π̇ = E[{π1(Z, β0)}⊗2/{π(Z, β0)(1 − π(Z, β0))}]. The asymptotic variance of the
ELW estimator is

ΣELW,e = K−1

{
Bgg −

B⊗2
g1

B11 − 1
−
(
Bg1B1π̇

B11 − 1
−Bgπ̇

)
(B̃π̇π̇)−1

(
Bg1B1π̇

B11 − 1
−Bgπ̇

)>
}

(K−1)>.

Again, an ELW estimator can be constructed for ΣELW,e. If π(Z, β) is mis-specified, the
desirable properties of the ELW, IPW and SIPW estimators in Theorem 2.2 disappear.
A nonparametric or semiparametric model may be used for π(X) to alleviate the risk of
model mis-specification. If Y is missing not at random, namely π(Z, β) depends on Y ,
the estimation of β becomes much more challenging as β may not be identifiable. Under
additional assumptions such as the existence of an instrument (Wang et al., 2014), various
estimation methods for β and θ have been developed based on data that are missing not
at random. For a more comprehensive discussion on this issue, see Kim and Shao (2021).
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2.5. Resampling-based interval estimation
Based on Theorems 2.1 and 2.2, we can construct Wald-type confidence intervals for θ once
a consistent estimator for the asymptotic variance is available. The asymptotic normality
of the ELW, IPW, and SIPW estimators requires that both B11 = E[{π(Z)}−1] and Bgg
are finite and well defined. If this is violated, the Wald-type confidence intervals may not
have the promised coverage probability. This dilemma can be overcome by resampling.
We propose to construct confidence intervals for θ by the resampling method in Algorithm
2.

Algorithm 2: Wald confidence region based on resampling and ELW

Input: The missing dataset {(Di, DiZi, π(Zi)) : i = 1, 2, . . . , N}. Calculate the ELW

estimator θ̂ELW and the proposed variance estimator Σ̂ELW, and define
TN =

√
N(Σ̂ELW)−1/2(θ̂ELW − θ0).

Output: Wald confidence region for θ based on resampling and ELW
Step 1. Draw M � N (e.g. M =

√
N) observations, say (D∗i , D

∗
iZ
∗
i , π(Z∗i ))

(1 ≤ i ≤M), from the original sample by simple random sampling without
replacement.
Step 2. Calculate the counterparts of θ̂ELW and Σ̂ELW based on the subsample,
denoted by θ̂∗ELW and Σ̂∗ELW . Construct T ∗M =

√
M(Σ̂∗ELW)−1/2(θ̂∗ELW − θ̂ELW).

Step 3. Repeat Steps 1 and 2 B = 1000 times and denote the resulting test statistics
by {T ∗M,i : i = 1, 2, . . . , B}. Let t∗i = ‖T ∗M,i − T̄ ∗‖, where T̄ ∗ = (1/B)

∑B
i=1 T

∗
M,i. Denote

the (1− a) empirical quantile of the t∗i by q∗1−a. Then a (1− a)-level confidence region

for θ can be constructed as {θ : ‖
√
N(Σ̂ELW)−1/2(θ̂ELW − θ)− T̄ ∗‖ ≤ q∗1−a}.

In the case of the estimated propensity score π̂(Zi), we replace π(Zi) and Σ̂ELW by π̂(Zi)

and Σ̂ELW,e, respectively. The ELW variance estimator Σ̂ELW converges in probability to
ΣELW, which is assumed to be positive definite. This, together with Theorems 2.1 and 2.2,
implies that TN converges in distribution to the standard normal, an obviously continuous
distribution. By Corollary 2.1 of Politis and Romano (1994), the empirical distribution
of T ∗M is a uniformly consistent estimator of the distribution of TN , which is formally
summarized in Theorem 2.3. This validates the interval estimator produced by Algorithm
2.

Theorem 2.3. Assume the conditions in Theorem 2.1 (for a known propensity score)
or those in Theorem 2.2 (for an estimated propensity score) are satisfied. As N → ∞, if
M → ∞ and M/N → 0, then supt≥0 |P (TN ≤ t)− P ∗(T ∗M ≤ t)| = op(1), where P ∗ is the
conditional probability given the original sample.

3. Simulation study

We consider the parameter θ corresponding to g(Z, θ) = Y − θ with Z = (Y,X), and
conduct simulations to investigate the finite-sample performance of the proposed ELW es-
timator and the accompanying asymptotic-normality-based interval estimator. For com-
parison, we also take into account the IPW estimator, the SIPW estimator, and some
popular variants of the IPW estimator:

(a) The modified IPW estimator of Zong et al. (2019) (ZZZ for short): θ̂ZZZ = N−1
∑N

i=1DiYi/π̃i,
where π̃i = max{π(K), π(Xi)}, K is the maximum i such that π(i) ≤ 1/(i + 1), and
{π(1), . . . , π(N)} are the propensity scores in increasing order.
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(b) The trimmed IPW estimator of Crump et al. (2009) (CHIM for short):

θ̂CHIM =

N∑
i=1

DiYi
π(Xi)

· I{α ≤ π(Xi) ≤ 1− α}

/
N∑
i=1

I{α ≤ π(Xi) ≤ 1− α},

where α is obtained by minimizing a variance term and I(·) is the indicator function.
(c) The IPW estimator of Ma and Wang (2020) with s = 1 and s = 2, denoted by MW1

and MW2, respectively. Following Ma and Wang (2020), we set the tuning parameters

bN and hN in MW1 and MW2 to the respective solutions of bsNN
−1
∑N

i=1 I{π(Xi) ≤
bN} = 1/(2N) and h5

N

∑N
i=1 I{π(Xi) ≤ hN} = 1. For details, see the discussion below

Theorem 3 of Ma and Wang (2020) and Section III of their supplementary material.

We simulate data from Example 1. All numbers reported in this simulation study are
calculated based on M = 5000 simulated random samples.

Example 1. Instead of generating X, we generate the propensity score π(X) from
P (π(X) ≤ u) = uγ−1 (0 ≤ u ≤ 1) with γ = 1.5 or 2.5. Given π(X), we generate Y
from Y = µ{π(X)} + c · (η − 4)/

√
8, where c = 1 or 0.1, and η ∼ χ2

4, and the miss-
ingness status D of Y follows the Bernoulli distribution with success probability π(X).
Four choices of µ(t) are considered: µ(t) = cos(2πt) (Model 1), µ(t) = 1 − t (Model 2),
µ(t) = cos(2πt) + 5 (Model 3), and µ(t) = 6− t (Model 4). The full data size is N = 2000
and the parameter of interest is θ = E(Y ).

This example is a modified version of Example 1 in Section III of the supplementary
material of Ma and Wang (2020), who considered the cases with γ = 1.5, c = 1, and
N = 2000 for Models 1 and 2. The parameter γ (γ > 1) controls the tail behaviour
of 1/π(X). When γ > 2, the tail is light and E{1/π(X)} = (γ − 1)/(γ − 2) is finite.
In this case, if g is bounded, then the conditions in Theorem 2.1 are generally fulfilled,
and the asymptotic normalities of the ELW, IPW, and SIPW estimators are guaranteed.
However, in the case of 1 < γ ≤ 2, the tail is heavy and E{1/π(X)} = ∞, which violates
the conditions of Theorem 2.1: the ELW, IPW, and SIPW estimators no longer follow
asymptotically normal distributions. The constant c controls the influence of the random
error on the response variable; a smaller c leads to a smaller noise. Models 3 and 4 are
simply Models 1 and 2 with a mean shift.

Point estimation As a measure of the finite-sample performance of a generic esti-
mator θ̃, we define its scaled root mean square error (RMSE) as RMSE(θ̃) =

√
N ×

{(1/M)
∑M

j=1(θ̃j − θ)2}1/2, where θ̃j is the estimate θ̃ based on the jth simulated random
sample. Table 1 presents a comparison of the RMSEs of the seven estimators. Figure
1 displays the boxplots of the estimators under comparison (minus the true parameter
value) when data were generated from Example 1 with γ = 1.5 and c = 1 and 0.1. For
clearer presentation, we ignore the boxplots of the IPW estimator, because it fluctuates
too dramatically.

In terms of RMSE, ELW outperforms IPW, SIPW, ZZZ, and CHIM in almost all
scenarios. The only exception is the scenario with γ = 2.5, c = 1 for Model 1, where the
RMSE (1.17) of ELW is slightly greater than the minimum RMSE (1.14) of IPW, SIPW,
ZZZ, and CHIM. The boxplots also indicate that ELW is always nearly unbiased in all
scenarios. ELW also outperforms MW1 and MW2 in most cases. The only exceptions are
the scenarios with γ = 2.5 for Model 1 and those with γ = 1.5, c = 1 for Models 1 and 2.
In the least favourable scenario (γ = 1.5, c = 1, Model 2), the RMSE of ELW is greater
than those of MW1 and MW2 by at most (5.13 − 3.78)/3.78 ≈ 35.7%. By contrast, the
RMSEs of MW1 and MW2 can be more than 12 times that of ELW; see the scenario with
γ = 1.5 and c = 0.1 for Model 4. Although MW1 and MW2 often have smaller RMSEs
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than ELW for Model 1, the boxplots in Figure 1 indicates that they tend to have either
non-ignorable biases or larger variances.

Models 3 and 4 are simply Models 1 and 2 with a mean shift. When we change Models
1 and 2 to Models 3 and 4, respectively, and keep the remaining settings unchanged, the
boxplots demonstrate that ELW clearly performs the best: it not only is nearly unbiased,
but also has the smallest variance. Meanwhile, ELW, CHIM, and SIPW have nearly
unchanged RMSEs. This makes sense, because their weights all sum to 1. Unfortunately,
IPW, ZZZ, MW1, and MW2 are all very sensitive to a mean shift in the data generating
process, since their weights do not sum to 1.

When c decreases from 1 to 0.1, the influence of random error become negligible and
we expect all methods to exhibit better performance. Indeed, all methods have decreasing
RMSEs, except for IPW. ELW has the largest rates of decline in RMSE: these rates are
at least 69% and 42% when γ = 1.5 and 2.5, respectively. However, the RMSEs of ZZZ,
MW1, and MW2 have nearly no reduction for Models 3 and 4. ELW performs in the
most stable manner, whereas the other methods have either extremely large fluctuations
or remarkable biases.

When γ increases from 1.5 to 2.5, ELW clearly outperforms the competitors in all
scenarios except those for Model 1. All methods exhibit similar performance for Models
1 and 2. However for Models 3 and 4, IPW, ZZZ, MW1, and MW2 have much larger
fluctuations, compared with their performance for both Models 1 and 2. This indicates
that they are sensitive to a mean shift, which is undesirable.

Roughly speaking, among the seven estimators under comparison, the ELW estimator
is the most reliable in almost all scenarios. Both the RMSE results and the boxplots
indicate that MW1 and MW2 can exhibit very different performances. In other words,
the performance of the method of Ma and Wang (2020) can be affected by the choice of
underlying tuning parameters. We have also conducted simulations for N = 50 and 500,
γ = 1.3 and 1.9, and we even considered the case with estimated propensity scores. See
Section 8 of the supplementary material for the RMSE results, the corresponding boxplots
and additional results. The general findings are similar.

Interval estimation Two confidence intervals for θ can be constructed based on the
ELW estimator θ̂ELW. One is the Wald confidence interval (ELW-an for short) based

on the asymptotic normality of θ̂ELW, where the asymptotic variance is estimated using
the ELW method. The other is the resampling-based interval estimator (ELW-re) given
in Section 2.5. Similar intervals (SIPW-an and SIPW-re) can be constructed when the
SIPW estimator takes the place of the ELW estimator in the estimations of both θ and the
asymptotic variances. We compare these four confidence intervals with those of Ma and
Wang (2020) based on their resampling method and the MW1 and MW2 point estimators,
which are denoted by MW1-re and MW2-re, respectively. We exclude the IPW-based
confidence intervals because the IPW point estimator is dramatically unstable.

We generate random data of size N = 2000 from Example 1, and calculate the coverage
probabilities and average lengths of the eight confidence intervals at the 95% confidence
level. The results are displayed in Figure 2. MW2-re has the most accurate coverage
accuracy, followed by ELW-re when γ = 1.5 and c = 1.0 for Models 1 and 2. When
Models 1 and 2 are replaced by Models 3 and 4, the coverage probabilities of ELW-re
remain nearly unchanged; however, those for MW1-re and MW2-re decrease sharply by
more than 5% and 10%, respectively. When c decreases from 1.0 to 0.1, the coverage
accuracy of ELW-re becomes better or is still acceptable, although both MW1-re and
MW2-re perform much more poorly. With different tuning parameters, MW1-re and
MW2-re often have quite different coverage probabilities and average lengths, which again
shows that the performance of the method of Ma and Wang (2020) can be greatly affected
by different choices of tuning parameters. SIPW-re has very close coverage probabilities to
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ELW-re in most cases, whereas its average lengths are generally much greater than those
of the latter.

As expected, all asymptotic-normality-based Wald intervals exhibit remarkable under-
coverage when γ = 1.5, because the asymptotic normalities are generally violated. In the
meantime, all resampling-based intervals have improved performance. When γ increases to
2.5, all intervals except MW1-re and MW2-re have very desirable coverage accuracy, and
the asymptotic-normality-based intervals have close or even better coverage probabilities
compared with the resampling-based intervals.

In summary, the ELW point estimator has the most reliable overall performance, is
shift-equivariant, and is nearly unbiased in all cases. The proposed resampling-based
ELW interval estimator often has desirable coverage accuracy and short lengths in missing
data problems, whether the proportion of extremely small propensity scores is small or
large.

4. Real data analysis

LaLonde (1986) estimated the impact of the National Supported Work Demonstration, a
labour training programme, on post-intervention income levels, using data from a random-
ized evaluation of the programme. To further demonstrate the superiority of the proposed
ELW method, we analyse the LLvsPSID data from the R package cem, which is the Lalonde
set of treated units versus PSID (Panel Study of Income Dynamics) control individuals.
The data consist of 2787 observations (297 from treated units and 2490 from control units)
on 12 variables: treated (treatment indicator), age (age), education (years of education),
black (race, indicator variable), married (marital status, indicator variable), nodegree (indi-
cator variable of not possessing a degree), re74 (real earnings in 1974), re75 (real earnings
in 1975), re78 (real earnings in 1978), hispanic (ethnic, indicator variable), u74 (unem-
ployment in 1974, indicator variable), and u75 (unemployment in 1975, indicator variable).
The variable re78 is the post-treatment outcome.

Let Y =re78/10 000 be the response, let D = treated, and let Y (d) denote the response
of an individual whose treatment status is D = d. We shall not address the original
treatment effect estimation problem. Instead, we take the data as missing data and wish
to estimate the average earnings of the treated in 1978. In other words, the parameter
of interest is θ = E{Y (1)}. We first estimate the propensity scores by fitting a linear
logistic regression model of the treatment indicator D on the remaining eight variables
(excluding D, Y , and re78). With the fitted propensity scores, the IPW, SIPW, MW1,
MW2, and ELW point estimates are 0.65, 0.92, 0.72, 0.70, and 1.11, respectively, and
the corresponding resampling-based interval estimates at the 95% level are [−12.68, 8.00],
[−4.16, 3.15], [−3.04, 1.26], [−0.27, 1.04], and [−8.86, 6.27], respectively. If we replace all Y
by Y +5, the point estimates become 4.16, 5.92, 5.81, 5.56, and 6.11 with interval estimates
being [−27.31, 22.76], [0.90, 8.16], [0.92, 7.16], [5.05, 6.22], and [−3.87, 11.44], respectively.
As expected, the SIPW and ELW point estimates are shift-equivariant, but the IPW
estimator and the MW estimators are not.

Figure 3 displays the fitted propensity scores of both the treated and control groups. A
clump of near-zero propensity scores in the treated group implies that the standard IPW
estimator is dramatically unstable. The excessive number of near-zero propensity scores
in both groups indicates that the distribution of the inverse propensity score has a very
heavy right tail similar to that in the simulation scenario with γ = 1.5 in Example 1.
According to our simulation experience in the case of γ = 1.5, the ELW point estimator is
always unbiased or nearly unbiased, and its performance is the most stable in most cases.
By contrast, the other estimators SIPW, MW1, and MW2 may have either much larger
RMSEs or large biases. The ELW-re interval has the most desirable and much better
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coverage accuracy than the other intervals. These observations makes it reasonable to
believe that the ELW point and interval estimates, 1.11 and [−8.86, 6.27], are the most
preferable for the estimation of θ = E{Y (1)}.

We have extended the ELW method to unequal probability samplings with and without
replacements in Section 5 of the supplementary material. Poisson, pivotal, and PPS sam-
plings are three popular unequal probability samplings. Here we regard the observations in
the LLvsPSID data with non-zero re75 as a finite population, and conduct Poisson, pivotal,
and PPS samplings with inclusion probabilities proportional to re75. We take the param-
eter of interest to be the mean of Y = re78/10 000 + a, with a = 0 or 2. Table 2 presents
the simulated RMSE results based on 5000 simulation repetitions with a sample size (in
pivotal and PPS samplings) or ideal sample size (in Poisson sampling) of 200. The ELW
estimator has the smallest RMSEs under Poisson sampling, regardless of whether a = 0
or 2, and under pivotal and PPS samplings when a = 2. It also uniformly outperforms
SIPW under all three samplings. When a = 0, its performance can be inferior to those
of IPW and ZZZ, which, however, are highly sensitive to a location shift in Y . The ELW
estimator again has the best overall performance under unequal probability sampling.

5. Discussion

The focus of this paper is the development of a better weighting method than IPW. We
have developed the ELW method for parameter estimation under just-identified estimating
equations, and shown that the ELW method is always well defined, easy to calculate and
more stable than IPW. The foundation of the ELW method is the biased-sample EL. If
calculation convenience or burden is not an issue, we can use the biased-sample likelihood
ratio function to conduct interval estimation and hypothesis testing. When calculating the
biased-sample likelihood ratio function, we need to fix the parameter value, which makes
the corresponding maximum likelihood has a high probability of having no definition. If
the likelihood ratio function has no definition, the ELW approach fails to work. This
numerical issue is inherited from the standard EL (Chen et al., 2008). In the case of
over-identified estimating equations (Qin and Lawless, 1994), the non-definition problem
becomes even more serious and the calculation burden becomes even heavier because the
objective function involves a vector-valued implicit function and its maximization generally
requires double optimizations.

We extend the ELW method to unequal probability samplings with and without re-
placement in Section 5 of the supplementary material. The ELW estimator is still asymp-
totically normal in unequal probability samplings, and is more efficient than both the IPW
and SIPW estimators when the sampling is without replacement. When the sampling is
with replacement, the ELW estimator is still more efficient than the SIPW estimator. Al-
though we cannot tell which of the ELW and IPW estimators wins in this situation, our
simulation results indicate that the ELW estimator usually has smaller mean square errors
than the IPW and SIPW estimators.

We systematically investigate the large-sample properties of the ELW estimator and
the ELW likelihood ratio statistic under over-identified estimating equations for missing
data problems and unequal probability samplings. See Section 9 of the supplementary
material. The ELW likelihood ratio statistic has a limiting central chisquare distribution
for missing data problems with known propensity score and unequal probability sampling
with replacement. Otherwise, its limiting distribution is usually a weighted chisquare
distribution.
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Table 1. Simulated RMSEs of the estimators under comparison when data are generated from Example
1 and N = 2000. Smallest RMSEs are highlighted in bold.

γ c Model IPW SIPW ZZZ CHIM MW1 MW2 ELW
1.5 1.0 1 24.72 8.05 6.05 8.00 4.96 4.35 5.51
1.5 1.0 2 17.89 6.17 5.95 6.17 4.84 3.78 5.13
1.5 1.0 3 69.08 7.49 27.27 7.49 18.29 9.59 5.21
1.5 1.0 4 110.80 6.49 27.11 6.49 18.31 9.83 5.21
1.5 0.1 1 14.76 4.89 4.48 4.87 3.00 2.52 1.60
1.5 0.1 2 26.23 2.16 4.44 2.15 2.88 1.36 0.71
1.5 0.1 3 68.12 4.74 27.04 4.73 17.81 8.94 1.61
1.5 0.1 4 140.05 2.21 26.86 2.19 18.02 9.03 0.74
2.5 1.0 1 2.11 2.11 1.97 2.11 1.93 1.87 2.02
2.5 1.0 2 2.06 1.81 1.90 1.81 1.89 1.82 1.72
2.5 1.0 3 7.64 2.15 6.77 2.15 6.33 5.32 2.05
2.5 1.0 4 8.14 1.85 7.31 1.85 6.87 6.01 1.70
2.5 0.1 1 1.49 1.33 1.14 1.33 1.07 0.98 1.17
2.5 0.1 2 1.22 0.69 1.01 0.69 0.93 0.77 0.42
2.5 0.1 3 7.63 1.31 6.60 1.31 6.21 5.14 1.18
2.5 0.1 4 8.26 0.68 7.13 0.68 6.80 5.85 0.42

Table 2. Simulated RMSEs of the IPW, SIPW, ZZZ and ELW estimators when data were generated
from the LLvsPSID dataset with n = 200 with Y replaced by Y + a.

IPW ZZZ IPW ZZZ SIPW ELW
a = 0 a = 2

Poisson sampling 9.35 8.44 19.27 16.33 8.41 6.14
Pivotal sampling 5.07 3.91 12.17 7.63 7.15 4.66
PPS sampling 5.46 4.13 13.86 8.19 8.70 5.51

Zhao, Q. (2019) Covariate balancing propensity score by tailored loss functions. Annals
of Statistics, 47(2), 965–993.

Zong, X., Zhu, R. and Zou, G. (2019) Improved Horvitz–Thompson estimator in survey
sampling. Survey Methodology, 45(1), 165–184.
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Fig. 1. Boxplots of the SIPW, ZZZ, CHIM, MW1, MW2, and ELW estimators (minus the true
parameter values) when data were generated from Example 1 with N = 2000, γ = 1.5, and c = 1,
0.1. For each case of c and each method, the four boxplots from left to right and in red, green,
blue and purple correspond to models 1-4, respectively.
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Fig. 2. Simulated coverage probabilities (%) of the interval estimators under comparison (SIPW-
an, SIPW-re, MW1-re, MW2-re, ELW-an and ELW-re) when data were generated from Example
1 with full data size N = 2000 and different choices of γ and c. The number above each bar is
model number. The length of the segment above each bar equals five times the average length of
the corresponding interval estimator.
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Fig. 3. Histograms of the variable Y and the fitted propensity score in the treated and control
groups, based on the LLvsPSID data.
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