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Abstract
Missing data are frequently encountered in various disciplines and can be divided
into three categories: missing completely at random (MCAR),missing at random
(MAR), andmissing not at random (MNAR). Valid statistical approaches tomiss-
ing data depend crucially on correct identification of the underlyingmissingness
mechanism. Although the problem of testing whether this mechanism is MCAR
or MAR has been extensively studied, there has been very little research on test-
ing MAR versus MNAR. A critical challenge that is faced when dealing with this
problem is the issue of model identification under MNAR. In this paper, under
a logistic model for the missing probability, we develop two score tests for the
problem of whether themissingnessmechanism isMAR orMNARunder a para-
metric model and a semiparametric location model on the regression function.
The implementation of the score tests circumvents the identification issue as it
requires only parameter estimation under the null MAR assumption. Our simu-
lations and analysis of human immunodeficiency virus data show that the score
tests have well-controlled type I errors and desirable powers.
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1 INTRODUCTION

Missing data are frequently encountered in economic,
medical, and social science disciplines. Valid statistical
inferences for missing data depend crucially on correct
identification of the underlying missingness mechanism,
which was divided by Rubin (1976) into three categories.
The missingness is called missing at random (MAR) or
ignorable if it does not depend on the missing values
themselves conditioning on the observed data, and it
is called missing not at random (MNAR) or nonignor-
able otherwise. A degenerate case of MAR is missing
completely at random (MCAR), where the missingness
does not depend on either the observed or the missing
data.

Methods for handling MAR data and MNAR data are
generally different. For MAR data, both the propensity
score and outcome regression models are nonparametri-
cally identifiable, and it is therefore always tractable to con-
duct valid inferences (Little and Rubin, 2019; Tsiatis, 2006;
Kim and Shao, 2013). Things becomemuchmore challeng-
ing when data areMNAR, as the underlyingmodel is often
not identifiable based on the observed data. A popular tool
to overcome the identifiability issue is an “instrumental
variable” (Wang et al., 2014) or “ancillary variable” (Miao
and Tchetgen Tchetgen, 2016), which does not affect the
missingness but may affect the conditional distribution of
the response variable. However, an instrumental variable
may not be readily available or may not be straightforward
to find in practice, which complicates the identifiability
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and inferences of the existing statistical approaches. See
Tang and Ju (2018) and Wang and Kim (2021) for more
comprehensive reviews of statistical inferences for nonig-
norable missing-data problems.
These discussions arguably reveal that methods for han-

dling MAR data and MNAR data are totally different: The
former are relatively easy whereas the latter are much
more difficult. The research in this paper is motivated by
the analysis of an human immunodeficiency virus (HIV)
data, where the response variable subject to missingness
was assumed to be MAR by Hammer et al. (1996) and Han
et al. (2019) but to be MNAR by Liu et al. (2021) and Zhang
et al. (2020). As correctly specifying the underlying miss-
ingness mechanism is crucial to the subsequent develop-
ment of valid inferencemethods, this raises the hypothesis
testing problem of whether the missingness mechanism is
MAR or MNAR.
A relative simple counterpart of this hypothesis testing

problem is whether the missingness mechanism is MCAR
or MAR. Many tests for MCAR have been provided in
recent decades, since the MCAR category is at the center
of interest of many behavioral and social scientists con-
fronted with missing data (Simon and Simonoff, 1986). Lit-
tle (1988) constructed a test by comparing the means of
recorded values of each variable between groups of differ-
ent missingness patterns. Chen and Little (1999) extended
Little’s test to longitudinal data by comparing the means
of the general estimating equations across different miss-
ingness patterns with zero, with any departure from zero
then indicating rejection of the MCAR hypothesis. More
extensions of Little’s idea to comparisons of themeans, the
covariance matrices, and/or the distributions across differ-
ent missingness patterns have also been investigated (see,
eg, Jamshidian and Jalal, 2010; Kim and Bentler, 2002; Li
and Yu, 2015). Recently, Zhang et al. (2019) proposed a non-
parametric approach for testing MCAR based on empir-
ical likelihood (Owen, 1988, 1990, 2001). Their approach
also provides a unified procedure for estimation after the
MCAR hypothesis has been rejected.
In contrast to MCAR, testing for MAR has not received

much attention so far. The first contribution in this direc-
tion was the nonparametric test proposed by Breunig
(2019), whichwas based on an integrated squared distance.
Under a generalized linear regression model, Duan et al.
(2020) proposed to test MAR by a quadratic form of the dif-
ference of the estimators of the regression coefficient under
theMARandMNARassumptions, respectively. To the best
of our knowledge, these are the only two formal tests for
MAR. They both require the existence of an instrumen-
tal variable to guarantee identifiability, because their test
statistics depend on consistent estimates under MNAR.
However, as mentioned previously, the identification of an
instrumental variable is usually not straightforward, and,

even worse, it may not exist. Also, consistent parameter
estimation itself under MNAR is rather challenging.
In this paper, we propose two score tests for MAR under

a linear logistic model when a completely parametric
model and a semiparametric location model, are imposed
on the outcome regression model, respectively. Compared
with the tests proposed by Breunig (2019) and Duan et al.
(2020), the new tests have at least three advantages. The
first remarkable advantage is that no identification con-
dition is required under MNAR because the implementa-
tions of the new tests require only parameter estimation
under MAR. This implies even if there is no instrument
variable, the new tests are still applicable. However, with-
out an instrumental variable, the tests of Breunig (2019)
and Duan et al. (2020) may fail to work. The second advan-
tage is that the new tests involve much easier calculations,
because the underlying unknown parameters need only be
estimated under MAR. As we have pointed out, identifia-
bility is not an issue for MAR data and parameter estima-
tion has been well studied. Third, our simulation results
indicate that the two new tests are often more powerful
than or at least comparable to that proposed by Duan et al.
(2020).
The rest of this paper is organized as follows. Section 2

presents the model set-up, the proposed two score tests,
and establishes the limiting distributions of the new tests
under MAR. Their generalizations and optimalities are
also discussed. In Section 3, we report a simulation study
to investigate the finite-sample performance of the score
tests. In Section 4, we apply the proposed score tests to
analyze a HIV data. Section 5 concludes with a discussion.
For clarity, all technical details are provided in the support-
ing information.

2 SCORE TEST

Let 𝑌 denote an outcome that is subject to missingness
and let 𝐗 be a fully observed covariate vector whose first
component is 1. We denote by 𝐷 the missingness indicator
of the outcome, with 𝐷 = 1 if 𝑌 is observed and 0 other-
wise. We wish to test whether the missingness mechanism
is MAR or MNAR, namely,𝐻0 ∶ pr(𝐷 = 1|𝑌,𝐗) = pr(𝐷 =

1|𝐗). Molenberghs et al. (2008) pointed out that every
missingness not at randommodel has amissingness at ran-
dom counterpart with equal fit. This implies that theMAR
assumption is not testable against a general MNAR alter-
native unless some model assumptions are imposed. We
assume that the nonmissingness probability or the propen-
sity score follows a linear logistic model

pr(𝐷 = 1|𝐗 = 𝐱,𝑌 = 𝑦) = 𝜋(𝐱⊤𝜷 + 𝛾𝑦) (1)
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with 𝜋(𝑡) = 𝑒𝑡∕(1 + 𝑒𝑡). Under model (1), the testing prob-
lem of interest is equivalent to 𝐻0 ∶ 𝛾 = 0, because the
missingness mechanism is MAR if 𝛾 = 0 and MNAR oth-
erwise.
Suppose that {(𝑑𝑖, 𝑑𝑖𝑦𝑖, 𝐱𝑖), 𝑖 = 1, 2, … , 𝑛} are 𝑛 inde-

pendent and identically distributed observations from
(𝐷, 𝐷𝑌,𝐗). Let𝑓(𝑦|𝐱) denote the conditional density func-
tion of 𝑌 given 𝐗 = 𝐱. The loglikelihood based on the
observed data is

𝓁(𝛾, 𝜷, 𝑓) =

𝑛∑
𝑖=1

[
𝑑𝑖{log 𝜋(𝐱

⊤

𝑖
𝜷 + 𝛾𝑦𝑖) + log 𝑓(𝑦𝑖|𝐱𝑖)}

+ (1 − 𝑑𝑖) log∫ {1 − 𝜋(𝐱⊤
𝑖
𝜷 + 𝛾𝑦)}𝑓(𝑦|𝐱𝑖)𝑑𝑦].

The likelihood ratio test is the most natural and prefer-
able for testing 𝛾 = 0. Unfortunately, Miao et al. (2016)
showed that parameter identifiability is not guaranteed
even when a parametric model is postulated for 𝑓(𝑦|𝐱).
Without parameter identifiability, consistent parameter
estimation is not feasible, and therefore nor is the like-
lihood ratio test, under general parametric assumptions
because these require consistent parameter estimation
under the null and alternative hypotheses. The Wald test
has the same problem.
The score test was introduced by Rao (1948) as an alter-

native to the likelihood ratio test and Wald test. The most
significant advantage of the score statistic is that it depends
only on estimates of parameters under𝐻0; in other words,
it automatically circumvents the notorious identifiability
issue under MNAR. This motivates us to consider testing
𝛾 = 0 by a score test. Let ∇𝛾 denote the partial differential
operator with respect to 𝛾. The score function with respect
to 𝛾 at 𝛾 = 0 is

∇𝛾𝓁(𝛾, 𝜷, 𝑓)|𝛾=0 = 𝑛∑
𝑖=1

[
𝑑𝑖{1 − 𝜋(𝐱⊤

𝑖
𝜷)}𝑦𝑖

− (1 − 𝑑𝑖)𝜋(𝐱
⊤

𝑖
𝜷)𝜇(𝐱𝑖)

]
,

which depends on the unknown parameters 𝜷 and 𝜇(𝐱) =
∫ 𝑦𝑓(𝑦|𝐱)𝑑𝑦.
The score test statistic is constructed by replacing 𝜷 and

𝜇(⋅) with their estimators under the null hypothesis 𝐻0 ∶

𝛾 = 0. The likelihood function under𝐻0 becomes

𝓁0(𝜷, 𝑓) =

𝑛∑
𝑖=1

[
𝑑𝑖 log 𝜋(𝐱

⊤

𝑖
𝜷) + 𝑑𝑖 log 𝑓(𝑦𝑖|𝐱𝑖)

+ (1 − 𝑑𝑖) log{1 − 𝜋(𝐱⊤
𝑖
𝜷)}

]
.

In this situation, a natural estimator for 𝜷 is the maximum
likelihood estimator 𝜷 = argmax𝜷 𝓁1(𝜷), where 𝓁1(𝜷) =∑𝑛

𝑖=1[𝑑𝑖 log 𝜋(𝐱
⊤

𝑖
𝜷) + (1 − 𝑑𝑖) log{1 − 𝜋(𝐱⊤

𝑖
𝜷)}] is the like-

lihood function of 𝜷 under the null hypothesis. Estima-
tion of 𝜇(⋅) depends on model assumptions on 𝑓(𝑦|𝐱) =
pr(𝑌 = 𝑦|𝐗 = 𝐱) or 𝑓(𝑦|𝐱, 𝐷 = 1) = pr(𝑌 = 𝑦|𝐗 = 𝐱,𝐷 =

1) as they are the same under MAR, although the latter
is checkable with available data but the former is not. To
finish the construction of the score test, we consider pos-
tulating either a fully parametric or semiparametric model
on 𝑓(𝑦|𝐱, 𝐷 = 1).

2.1 Score test under a parametric model
on 𝒇(𝒚|𝐱,𝑫 = 𝟏)

Under a fully parametric model 𝑓(𝑦|𝐱, 𝝃 ) on 𝑓(𝑦|𝐱, 𝐷 =

1), we estimate 𝝃 by 𝝃 = argmax𝝃 𝓁2(𝝃 ), where 𝓁2(𝝃 ) =
𝑑𝑖 log 𝑓(𝑦𝑖|𝐱𝑖, 𝝃 ) is the likelihood function of 𝝃 under 𝐻0.
Because 𝑓(𝑦|𝐱) = 𝑓(𝑦|𝐱, 𝐷 = 1) = 𝑓(𝑦|𝐱, 𝝃 ) under 𝐻0 or
equivalently when the missingness mechanism is MAR,
the score test statistic is then

𝑆1(𝜷, 𝝃 ) =

𝑛∑
𝑖=1

[
𝑑𝑖{1 − 𝜋(𝐱⊤

𝑖
𝜷)}𝑦𝑖

− (1 − 𝑑𝑖)𝜋(𝐱
⊤

𝑖
𝜷)∫ 𝑦𝑓(𝑦|𝐱𝑖, 𝝃 )𝑑𝑦] .

To calculate the 𝑝-value of a score test statistic, we need to
determine the sampling distribution of 𝑆1(𝜷, 𝝃 ) under 𝐻0.
The exact form of this sampling distribution is in general
intractable. A more practical solution is to approximate it
by its null limiting distribution under𝐻0 or MAR.
Let 𝜷0 and 𝝃0 be the true values of 𝜷 and 𝝃 , respectively.

Our theoretical results on 𝑆1(𝜷, 𝝃 ) are built on the follow-
ing regularity conditions on 𝐗 and 𝑓(𝑦|𝐱, 𝝃 ):
Condition (C1) 𝔼‖𝐗‖2 < ∞ and 𝐀 = 𝔼[𝜋(𝐗⊤𝜷0){1 −

𝜋(𝐗⊤𝜷0)}𝐗𝐗
⊤] is of full rank.

Condition (C2) (i) The parameter space Ω of 𝝃 is inde-
pendent of (𝑦, 𝐱) and compact. (ii) The true value 𝝃0 of
𝝃 is an interior point of Ω. (iii) 𝝃 is identifiable, that is,
𝔼{∫ |𝑓(𝑦|𝐗, 𝝃 ) − 𝑓(𝑦|𝐗, 𝝃 ′)|𝑑𝑦} > 0 for any different ele-
ments 𝝃 and 𝝃 ′ in Ω. (iv) 𝔼{sup𝝃∈Ω | log 𝑓(𝑌|𝐗, 𝝃 )|} < ∞.
(v) 𝑓(𝑦|𝐱, 𝝃 ) is continuous in 𝝃 for almost all (𝑦, 𝐱).
Condition (C3) (i) 𝑓(𝑦|𝑥, 𝝃 ) is twice differentiable

with respect to 𝝃 for almost all (𝑦, 𝐱), and ∇𝝃𝝃⊤𝑓(𝑦|𝐱, 𝝃 ) is
continuous at 𝝃0. (ii)𝐁 = 𝔼[𝜋(𝐗⊤𝜷0){∇𝝃 log 𝑓(𝑌|𝐗, 𝝃0)}⊗2]
is positive definite. (iii) There exist a 𝛿 > 0

and positive functions 𝑀1(𝐱) and 𝑀2(𝑦, 𝐱) such
that 𝔼{𝑀1(𝐗)} < ∞ and 𝔼{𝑀2(𝑌,𝐗)} < ∞, and‖𝐱‖ ∫ |𝑡|{𝑓(𝑡|𝐱, 𝝃 ) + ‖∇𝝃𝑓(𝑡|𝐱, 𝝃 )‖}𝑑𝑡 ≤ 𝑀1(𝐱) and
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‖∇𝝃𝝃⊤ log 𝑓(𝑦|𝐱, 𝝃 )‖ ≤ 𝑀2(𝑦, 𝐱) for all 𝝃 satisfying‖𝝃 − 𝝃0‖ ≤ 𝛿.
Under Condition (C1), the limit function of 𝓁1(𝜷)∕𝑛 is

well defined. Conditions (i) and (ii) in Condition (C2) are
trivial. Condition (iii) guarantees that 𝝃0 is a unique max-
imizer of the likelihood 𝓁2(𝝃 ). Condition (iv) provides an
envelope for {log 𝑓(𝑦|𝐱, 𝝃 ) ∶ 𝝃 ∈ Ω}. These conditions plus
the continuity condition of Condition (C2)(v) are sufficient
for the consistency of 𝝃 . Under Condition (C3), the loglike-
lihood 𝓁2(𝝃 ) can be approximated by a quadratic form of 𝝃 .
The asymptotic normality of 𝝃 follows immediately. Condi-
tion (C3) also guarantees that the matrices defined in The-
orem 1 are well defined.

Theorem 1. Assume Conditions (C1)–(C3) and that

𝐻0 ∶ 𝛾 = 0 is true. As 𝑛 goes to infinity, 𝑛−1∕2𝑆1(𝜷, 𝝃 )
𝑑
⟶

 (0, 𝜎21), where 𝜎21 = 𝐴2 + 𝐵2 − 𝐀⊤
1𝐀

−1𝐀1 − 𝐁⊤
1𝐁

−1𝐁1,
and

𝐀1 = 𝔼[𝜋(𝐗⊤𝜷0){1 − 𝜋(𝐗⊤𝜷0)}𝐗𝑌],

𝐴2 = 𝔼{𝜋(𝐗⊤𝜷0){1 − 𝜋(𝐗⊤𝜷0)}
2𝑌2},

𝐵2 = 𝔼[{1 − 𝜋(𝐗⊤𝜷0)}{𝜋(𝐗
⊤𝜷0)}

2{∫ 𝑦𝑓(𝑦|𝐗, 𝝃0)𝑑𝑦}2],
𝐁1 = 𝔼

[
{1 − 𝜋(𝐗⊤𝜷0)}𝜋(𝐗

⊤𝜷0)∫ 𝑦∇𝝃𝑓(𝑦|𝐗, 𝝃0)𝑑𝑦].
An estimator for the asymptotic variance 𝜎21

is 𝜎21 = 𝐴2 + 𝐵2 − 𝐀̂⊤
1𝐀̂

−1𝐀̂1 − 𝐁̂⊤
1𝐁̂

−1𝐁̂1, where
𝐀̂, 𝐀̂1, 𝐴2, 𝐁̂, 𝐁̂1, and 𝐵2 are all moment estimates
with 𝜷0 and 𝝃0 replaced by their maximum likeli-
hood estimates. For example, the moment estimate
𝐀̂ = (1∕𝑛)

∑𝑛

𝑖=1 𝜋(𝐱
⊤

𝑖
𝜷){1 − 𝜋(𝐱⊤

𝑖
𝜷)}𝐱𝑖𝐱

⊤

𝑖
. The consistency

of 𝜎21 follows from the consistency of (𝜷, 𝝃 ) and the conti-
nuity of 𝜋(𝐱⊤𝜷) and of 𝑓(𝑦|𝐱, 𝝃 ). Formally, the proposed
score test rejects 𝐻0 if |𝑆1(𝜷, 𝝃 )|∕(√𝑛𝜎1) is too large, and
its 𝑝-value is approximately 2 − 2Φ{|𝑆1(𝜷, 𝝃 )|∕(√𝑛𝜎1)},
where Φ(⋅) is the standard normal distribution function.

2.2 Score test under a semiparametric
location model on 𝒇(𝒚|𝐱,𝑫 = 𝟏)

The score function depends on 𝑓(𝑦|𝐱, 𝐷 = 1) under MAR
through the conditional mean 𝜇(𝐱) = ∫ 𝑦𝑓(𝑦|𝐱, 𝐷 = 1)𝑑𝑦.
Instead of imposing a fully parametric conditional den-
sity model, it is sufficient to assume a parametric model
𝜇(𝐱, 𝜽) for 𝜇(𝐱), where 𝜽 is an unknown parameter. This
model assumption is equivalent to a location model on
the completely observed data {(𝐱𝑖, 𝑦𝑖) ∶ 𝑑𝑖 = 1}, namely,
𝑦𝑖 = 𝜇(𝐱𝑖, 𝜽) + 𝜀𝑖 , where 𝜀𝑖 satisfies 𝔼(𝜀𝑖|𝐗𝑖 = 𝐱𝑖, 𝐷𝑖 = 1) =

0. We estimate 𝜽 by the least square estimator

𝜽 = argmin
𝜽

𝑛∑
𝑖=1

𝑑𝑖{𝑦𝑖 − 𝜇(𝐱𝑖, 𝜽)}
2.

Given the estimators 𝜷 and 𝜇(𝐱, 𝜽) of 𝜷 and 𝜇(𝐱), the score
test statistic under the location model on 𝑓(𝑦|𝐱) is
𝑆2(𝜷, 𝜽) =

𝑛∑
𝑖=1

[
𝑑𝑖{1 − 𝜋(𝐱⊤

𝑖
𝜷)}𝑦𝑖 − (1 − 𝑑𝑖)𝜋(𝐱

⊤

𝑖
𝜷)𝜇(𝐱𝑖, 𝜽)

]
.

Let 𝜽0 be the true value of 𝜽. To establish the limiting distri-
bution of 𝑆2(𝜷, 𝜽), we impose the following regularity con-
ditions on 𝜇(𝐱, 𝜽):
Condition (D1) (i) 𝔼(𝑌|𝐗) = 𝜇(𝐗, 𝜽0) holds for all 𝐗.

(ii) The parameter space 𝚯 of 𝜽 is compact, and 𝜽0 is an
interior in 𝚯. (iii) 𝜽0 is the unique minimizer of Ł*(𝜽) =
𝔼[𝜋(𝐗⊤𝜷0){𝑌 − 𝜇(𝐗, 𝜽)}2].
Condition (D2) (i) 𝜇(𝐱, 𝜽) is twice differentiable

with respect to 𝜽. (ii) There exists 𝑀3(𝐱, 𝑦) such
that 𝔼{𝑀3(𝐗, 𝑌)} < ∞ and 𝑦2 + {𝜇(𝐱, 𝜽)}2 ≤ 𝑀3(𝐱, 𝑦)

holds for all 𝜽. (iii) There exists 𝑀4(𝐱, 𝑦) such
that {|𝑦| + |𝜇(𝐱, 𝜃)|}‖∇𝜽𝜽⊤𝜇(𝐱, 𝜽)‖ + ‖∇𝜽𝜇(𝐱, 𝜽)‖2 ≤
𝑀4(𝐱, 𝑦) holds for all 𝜽 and 𝔼{𝑀4(𝐗, 𝑌)} < ∞. (iv)
𝐶1 = 𝔼[{∇𝜽𝜇(𝐗, 𝜽0)}

⊗2𝜋(𝐗⊤𝜷0)] is positive definite
and 𝐶2 = 𝔼[{𝑌 − 𝜇(𝐗, 𝜽0)}

2{∇𝜽𝜇(𝐗, 𝜽0)}
⊗2𝜋(𝐗⊤𝜷0)] is

well defined.
Conditions (D1) and (D2) are the analogues of Condi-

tions (C2) and (C3) on the conditionalmeanmodel𝜇(𝐗, 𝜽).

Theorem 2. Assume Conditions (C1), (D1), and
(D2) and that 𝐻0 ∶ 𝛾 = 0 is true. As 𝑛 goes to

infinity, 𝑛−1∕2𝑆2(𝜷, 𝜽)
𝑑
⟶  (0, 𝜎22), where 𝜎22 =

𝐴2 + 𝐵4 − 𝐀⊤
1𝐀

−1𝐀1 + 𝐁⊤
3𝐂

−1
1 𝐂2𝐂

−1
1 𝐁3 − 2𝐁⊤

3𝐂
−1
1 𝐂3

and

𝐁3 = 𝔼[{1 − 𝜋(𝐗⊤𝜷0)}𝜋(𝐗
⊤𝜷0)∇𝜽𝜇(𝐗, 𝜽0)],

𝐵4 = 𝔼[{1 − 𝜋(𝐗⊤𝜷0)}{𝜋(𝐗
⊤𝜷0)}

2{𝜇(𝐗, 𝜽0)}
2],

𝐂1 = 𝔼[{∇𝜽𝜇(𝐗, 𝜽0)}
⊗2𝜋(𝐗⊤𝜷0)],

𝐂2 = 𝔼[{𝑌 − 𝜇(𝐗, 𝜽0)}
2{∇𝜽𝜇(𝐗, 𝜽0)}

⊗2𝜋(𝐗⊤𝜷0)],

𝐂3 = 𝔼[{1 − 𝜋(𝐗⊤𝜷0)}𝜋(𝐗
⊤𝜷0){𝑌 − 𝜇(𝐗, 𝜽0)}

2∇𝜃𝜇(𝐗, 𝜽0)].

A consistent estimator for the asymptotic variance 𝜎22 is

𝜎22 = 𝐴2 + 𝐵4 − 𝐀̂⊤
1𝐀̂

−1𝐀̂1 + 𝐁̂⊤
3𝐂̂

−1
1 𝐂̂2𝐂̂

−1
1 𝐁̂3 − 2𝐁̂⊤

3𝐂̂
−1
1 𝐂̂3,

where 𝐀̂, 𝐀̂1, 𝐴2, 𝐁̂3, 𝐵4, 𝐂̂1, 𝐂̂2, and 𝐂̂3 are all moment
estimates with 𝜷0 and 𝜽0 replaced by their maximum like-
lihood estimates. We reject 𝐻0 if |𝑆2(𝜷, 𝜽)|∕(√𝑛𝜎2)
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1272 WANG et al.

is large enough. Its 𝑝-value is approximately
2 − 2Φ{|𝑆2(𝜷, 𝜽)|∕(√𝑛𝜎2)}. The result in Theorem 2 and
the variance estimator 𝜎22 allow the error 𝜀𝑖 given 𝐷𝑖 = 1

and 𝐗𝑖 = 𝐱 to depend on 𝐱, or to have a heterogeneous
variance. If we assume that 𝐱𝑖 and 𝜀𝑖 are conditionally
independent given 𝐷𝑖 = 1, then 𝐂3 = 𝐁3 × 𝕍ar(𝜀𝑖|𝐷𝑖 = 1)

and 𝐂2 = 𝐂1 × 𝕍ar(𝜀𝑖|𝐷𝑖 = 1) and 𝜎22 reduces to
𝜎22 = 𝐴2 + 𝐵4 − 𝐀⊤

1𝐀
−1𝐀1 − 𝐁⊤

3𝐂
−1
1 𝐁3 × 𝕍ar(𝜀𝑖|𝐷𝑖 = 1).

2.3 Local power

To study the asymptotic power of the proposed score tests,
we consider a series of local alternatives𝐻𝑎 ∶ 𝛾 = 𝑛−1∕2𝛾0,
where 𝛾0 is fixed. This local alternative tends to the null
hypothesis at a root-𝑛 rate as 𝑛 goes to infinity. A test for
𝐻0 is root-𝑛 consistent if it can detect the local alternative
as 𝑛 goes to infinity for any fixed 𝛾0. We expect that both of
the proposed score tests have root-𝑛 consistency, which is
a desirable property of a nice test for MAR.

Theorem 3. Assume Condition (C1) and that the alter-
native 𝐻𝑎 ∶ 𝛾 = 𝑛−1∕2𝛾0 is true. Let 𝜷0, 𝝃0, and 𝜽0 be the
true values of 𝜷, 𝝃 , and 𝜽, respectively. (i) If Conditions
(C2) and (C3) are satisfied, then, as 𝑛 goes to infinity,

𝑛−1∕2𝑆1(𝜷, 𝝃 )
𝑑
⟶  (𝛾0𝜎

2
1, 𝜎

2
1), where 𝜎

2
1 is defined in The-

orem 1. (ii) If Conditions (D1) and (D2) are satisfied, then,

as 𝑛 goes to infinity, 𝑛−1∕2𝑆2(𝜷, 𝜽)
𝑑
⟶  (𝛾0𝛿, 𝜎

2
2), where

𝛿 = 𝐴2 + 𝐵4 − 𝐀⊤
1𝐀

−1𝐀1 − 𝐁⊤
3𝐂

−1
1 𝐂3 and 𝜎22 is defined in

Theorem 2.

Under the propensity model (1), a nonzero 𝛾 character-
izes the departure of the truemissingnessmechanism from
the null hypothesis. Theorem 3 indicates that if for some
fixed 𝛾0 the alternative 𝐻𝑎 is true, then both of the score
test statistics converge in distribution to nondegenerate
distributions with nonzero location parameters. Because
the absolute values of the location parameters are increas-
ing functions of |𝛾0|, the powers of both score tests tend to
1 as 𝛾0 goes to infinity, which means that both of them are
root-𝑛 consistent.

Remark 1. A nice property of the score tests is that their
implementations are free from the identifiability issue that
is inevitable in nonignorable missing data problems, and
therefore instrument variables are not needed. Even so the-
oretically their performances still suffer from the identi-
fiability issue. Molenberghs et al. (2008) pointed out that
every MNAR model, fitted to a set of incomplete data, can
be replaced by an MAR version, which produces exactly
the same fit to the observed data. Under the logistic regres-
sion model for the propensity score, if the model is not

identifiable, then we can find an MAR model with equal
fit, and therefore we cannot distinguish MAR and MNAR
based on the observed data. By Theorem 3, the score tests
have nontrivial powers if 𝜎1 ≠ 0 or 𝛿 ≠ 0, where 𝜎1 is
defined in Theorem 1 and 𝛿 is defined in Theorem 3. We
believe that in certain situations where the identifiability
issue is present under alternatives, we should have 𝜎1 = 0

or 𝛿 = 0. In such cases, the score tests fail to work.

Remark 2. As pointed out by an anonymous referee, when
the score tests reject the null hypothesis, it may well be the
case that the missingness mechanism is MAR while the
assumedmodels are not correctly specified. To circumvent
such a dilemma, desirable tests should be robust to model
misspecification as much as possible. Our score tests are
built on the parametric missingness model (1) and a para-
metric/semiparametric outcomemodel. The correctness of
the missingness model (1) is untestable because we have
no direct data from it. To alleviate the risk of model mis-
specification, we may conduct a goodness-of-fit test for
the reduced logistic missingness model 𝜋(𝐱⊤𝜷) (which is
𝜋(𝐱⊤𝜷 + 𝛾𝑦) under MNAR) when the MAR mechanism is
not rejected. A rejection of the model 𝜋(𝐱⊤𝜷) provides evi-
dence that the assumed model 𝜋(𝐱⊤𝜷 + 𝛾𝑦) may be ques-
tionable and we need to consider an alternative model for
the missingness mechanism. For the conditional distribu-
tion pr(𝑦|𝐱, 𝐷 = 1) or the conditional mean 𝔼(𝑌|𝐱, 𝐷 =

1), we can conduct goodness-of-fit tests for them based
on {(𝐱𝑖, 𝑦𝑖) ∶ 𝑑𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛} before the score tests are
applied to test the missingness mechanism. Goodness-of-
fit tests for general parametric regressionmodels and logis-
tic regression models have been well studied in the litera-
ture; see, for example, Fan and Huang (2001) and Qin and
Zhang (1997).

2.4 Generalization and optimality

As one referee pointed out, a general test statistic lever-
aging the conditional independence of 𝐷 and 𝑌 given 𝐗

under MAR can be constructed as

𝑇𝑔 =

𝑛∑
𝑖=1

[
𝑑𝑖

𝑞(𝐱𝑖)
𝑔(𝐱𝑖, 𝑦𝑖) −

1 − 𝑑𝑖
1 − 𝑞(𝐱𝑖)

𝔼{𝑔(𝐱𝑖, 𝑦𝑖) ∣ 𝐱𝑖}

]
,

where 𝑔 is a user-specific function, and 𝑞(𝐱) and
𝔼{𝑔(𝐗, 𝑌) ∣ 𝐗} are consistent estimates of the nonmiss-
ingness probability pr(𝐷 = 1|𝐗 = 𝐱) and 𝔼{𝑔(𝐗, 𝑌) ∣ 𝐗},
respectively, under MAR. The proposed score test cor-
responds to 𝑇𝑔 with 𝑔(𝐱, 𝑦) = 𝑞(𝐱){1 − 𝑞(𝐱)}𝑦. The test
based on 𝑇𝑔 is usually a valid test for MAR without any
model assumptions. However, its implementation neces-
sitates nonparametric estimates of pr(𝐷 = 1|𝐗 = 𝐱) and
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WANG et al. 1273

𝔼{𝑔(𝐗, 𝑌) ∣ 𝐗}, which often suffer from bandwidth selec-
tion and possible curse of dimensionality. Our score test,
which is built on some parametricmodels, trades offmodel
assumptions and practical performance: It is free of band-
width selection and curse of dimensionality at the expense
of possible model misspecification. An appealing property
of our two tests is that they are the most powerful among
two classes of tests based on 𝑇𝑔 if our model assumptions
are correct.
We first consider the score test 𝑆1(𝜷, 𝝃 ) under the logistic

nonmissingness probability model (1) and the regression
model 𝑓(𝑦|𝐱, 𝜉) for pr(𝑌 = 𝑦|𝐗 = 𝐱). Here 𝜷 and 𝝃 are the
maximum likelihood estimators of 𝜷 and 𝝃 under MAR.
For any function 𝑔, the general test statistic 𝑇𝑔 becomes

𝑇
(1)
𝑔 (𝜷, 𝝃 ) =

𝑛∑
𝑖=1

{
𝑑𝑖

𝜋(𝐱⊤
𝑖
𝜷)
𝑔(𝐱𝑖, 𝑦𝑖)

−
(1 − 𝑑𝑖)

1 − 𝜋(𝐱⊤
𝑖
𝜷) ∫ 𝑔(𝐱𝑖, 𝑦)𝑓(𝑦|𝐱𝑖, 𝝃 )𝑑𝑦

}
.

Condition (C4) The function 𝑔(𝐱, 𝑦) is a completely
deterministic function of (𝐱, 𝑦), and there exist a 𝛿 >

0 and positive function 𝑀5(𝐱) such that 𝔼{𝑀5(𝐗)} < ∞

, and ‖𝐱‖ ∫ |𝑔(𝐱, 𝑡)|{𝑓(𝑡|𝐱, 𝝃 ) + ‖∇𝝃𝑓(𝑡|𝐱, 𝝃 )‖}𝑑𝑡 ≤ 𝑀5(𝐱)

for all 𝝃 satisfying ‖𝝃 − 𝝃0‖ ≤ 𝛿.

Theorem 4. Suppose that Conditions (C1)-(C4) are satis-
fied.
(a) When 𝐻0 ∶ 𝛾 = 0 is true, then as 𝑛 goes to infin-

ity, 𝑛−1∕2𝑇(1)𝑔 (𝜷, 𝝃 )
𝑑
⟶  (0, 𝜎23), where 𝜎23 = 𝐴6 + 𝐵6 −

𝐀⊤
5𝐀

−1𝐀5 − 𝐁⊤
5𝐁

−1𝐁5, and

𝐀5 = 𝔼{𝑔(𝐗, 𝑌)𝐗}, 𝐁5 = 𝔼

{
∫ 𝑔(𝐗, 𝑦)∇𝝃𝑓(𝑦|𝐗, 𝝃0)𝑑𝑦},

𝐴6 = 𝔼

{
𝑔2(𝐗, 𝑌)

𝜋(𝐗⊤𝜷0)

}
, 𝐵6 = 𝔼

[
𝔼2{𝑔(𝐗, 𝑌)|𝐗}
1 − 𝜋(𝐗⊤𝜷0)

]
.

(b)When𝐻𝑎 ∶ 𝛾 = 𝑛−1∕2𝛾0 is true, then as 𝑛 goes to infin-

ity,𝑛−1∕2𝑇(1)𝑔 (𝜷, 𝝃 )
𝑑
⟶  (𝛾0𝛿𝑔, 𝜎

2
3), where𝛿𝑔 = 𝐴7 + 𝐵7 −

𝐀5𝐀
−1𝐀1 − 𝐁5𝐁

−1𝐁1 and

𝐴7 = 𝔼[{1 − 𝜋(𝐗⊤𝜷0)}𝑔(𝐗, 𝑌)𝑌],

𝐵7 = 𝔼

[
𝜋(𝐗⊤𝜷0)𝑌 ∫ 𝑔(𝐗, 𝑦)𝑓(𝑦|𝐗, 𝝃0)𝑑𝑦].

Result (a) of Theorem 4 suggests that a reason-
able test is to reject 𝐻0 if |𝑇(1)𝑔 (𝜷, 𝝃 )|∕(√𝑛𝜎3) is large
enough, where 𝜎3 is a consistent estimator of 𝜎3. The 𝑝-
value of this test (𝑇(1)𝑔 (𝜷, 𝝃 ) for short) is approximately

2 − 2Φ{|𝑇(1)𝑔 (𝜷, 𝝃 )|∕(√𝑛𝜎3)}. Hereafter let 𝐻(𝑡) = Φ(𝑡 −

𝑧1−𝛼

2

) + 1 − Φ(𝑡 + 𝑧1−𝛼

2

). It follows from result (b) of
Theorem 4 that at the significance level 𝛼 ∈ (0, 1) and
under 𝐻𝑎 ∶ 𝛾 = 𝑛−1∕2𝛾0, the local power of 𝑇

(1)
𝑔 (𝜷, 𝝃 ) is

𝐻(𝛾0𝛿𝑔∕𝜎3). By Theorems 1 and 3, at the same 𝛼 signif-
icance level, the local power of our score test 𝑆1(𝜷, 𝝃 ) is
𝐻(𝛾0𝜎1).

Lemma 1. If the 𝜎1 in Theorem 1 and the 𝜎3 in Theorem 4
are well defined, then 𝐻(𝛾0𝛿𝑔∕𝜎3) ≤ 𝐻(𝛾0𝜎1) for any con-
stant 𝛾0 and any 𝑔 satisfying Condition (C4).

Lemma 1 indicates that our score test 𝑆1(𝜷, 𝝃 ) is no
less powerful than 𝑇

(1)
𝑔 (𝜷, 𝝃 ) for any non random func-

tion 𝑔 satisfying Condition (C4). Let 𝑔(𝐱, 𝑦) = 𝜋(𝐱⊤𝜷){1 −

𝜋(𝐱⊤𝜷)}ℎ(𝐱, 𝑦) and 𝑔(𝐱, 𝑦) = 𝜋(𝐱⊤𝜷0){1 − 𝜋(𝐱⊤𝜷0)}ℎ(𝐱, 𝑦).
Under either𝐻0 or𝐻𝑎,

𝑇
(1)
𝑔 (𝜷, 𝝃 ) − 𝑇

(1)
𝑔
(𝜷, 𝝃 )

=

𝑛∑
𝑖=1

{
𝑑𝑖

𝜋(𝐱⊤
𝑖
𝜷)
ℎ(𝐱𝑖, 𝑦𝑖)

−
(1 − 𝑑𝑖)

1 − 𝜋(𝐱⊤
𝑖
𝜷) ∫ ℎ(𝐱𝑖, 𝑦)𝑓(𝑦|𝐱𝑖, 𝝃 )𝑑𝑦

}

× [𝜋(𝑥⊤
𝑖
𝜷){1 − 𝜋(𝐱⊤

𝑖
𝜷)} − 𝜋(𝐱⊤

𝑖
𝜷0){1 − 𝜋(𝐱⊤

𝑖
𝜷0)}]

= 𝑜𝑝(𝑛
1∕2) (2)

for ℎ satisfying Condition (C4), which implies that
𝑛−1∕2𝑇

(1)
𝑔 (𝜷, 𝝃 ) has the same limiting distributions as

𝑛−1∕2𝑇
(1)
𝑔
(𝜷, 𝝃 ) under both𝐻0 and𝐻𝑎. It also indicates that

our score test 𝑆1(𝜷, 𝝃 ) is asymptotically no less powerful
than 𝑇(1)

𝑔
(𝜷, 𝝃 ) for any ℎ satisfying Condition (C4). In sum-

mary, our score test 𝑆1(𝜷, 𝝃 ) is the most powerful among
all the general tests 𝑇(1)𝑔 (𝜷, 𝝃 ) with 𝑔(𝐱, 𝑦) = 𝜋(𝐱⊤

𝑖
𝜷){1 −

𝜋(𝐱⊤
𝑖
𝜷)}ℎ(𝐱, 𝑦) or 𝑔(𝐱, 𝑦) = ℎ(𝐱, 𝑦) for ℎ satisfying Condi-

tion (C4).
Similarly our second score test 𝑆2(𝜷, 𝜽) is the most pow-

erful among all the general tests

𝑇
(2)
ℎ
(𝜷, 𝜽) =

𝑛∑
𝑖=1

{
𝑑𝑖

𝜋(𝐱⊤
𝑖
𝛽)
ℎ(𝐱𝑖)𝑦𝑖

−
(1 − 𝑑𝑖)

1 − 𝜋(𝐱⊤
𝑖
𝜷)
ℎ(𝐱𝑖)𝜇(𝐱𝑖, 𝜽)

}

with ℎ(𝐱) = 𝑟(𝐱) or ℎ(𝐱) = 𝜋(𝐱⊤𝜷){1 − 𝜋(𝐱⊤𝜷)}𝑟(𝐱), where
𝑟(𝐱) is a nonrandom function satisfying mild conditions.
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1274 WANG et al.

To save space, we postpone the details to Section 1.1 of the
supporting information.

3 SIMULATION

We conduct simulations to evaluate the finite-sample per-
formance of the proposed score tests. Specifically, we com-
pare the following three tests: (1) S1, the proposed score
test under a parametric model on pr(𝑦|𝑥); (2) S2, the pro-
posed score test under a semiparametric locationmodel on
pr(𝑦|𝑥); and (3) DUAN, the test proposed by Duan et al.
(2020). We generate data from two examples. In Exam-
ple 1, which comes from Duan et al. (2020), an instrumen-
tal variable is present, whereas there is no instrumental
variable in Example 2. All our simulation results are cal-
culated based on 5000 simulated samples and the signifi-
cance level is set to 5%.

Example 1. Let (𝑌,𝑈, 𝑍) follow a multivariate nor-
mal distribution such that (𝑌|𝑈,𝑍) ∼  (1 + 𝑈 + 𝑏𝑧𝑍, 1),
(𝑈 ∣ 𝑍) ∼  (1 − 𝑍, 1), and 𝑍 ∼  (0, 1). The missingness
indicator 𝐷 of 𝑌 follows a Bernoulli distribution with
success probability pr(𝐷 = 1 ∣ 𝑌,𝑈, 𝑍) = Φ(𝑐0 + 𝑐1𝑤(𝑌) +

𝑐2𝑈), where Φ(⋅) is the standard normal distribution func-
tion. We consider three choices for 𝑤(𝑦), namely, 𝑦, 0.4𝑦2,
and 2.5𝐼(𝑦 > 1), two choices for 𝑏𝑧, namely, 0.5 and 1, four
choices for 𝑐2, namely, 0, 0.25, 0.5, and 0.75, and 11 choices
for 𝑐1, namely, 0.05 × 𝑘, for𝑘 = 0, 1, … , 10. For each (𝑐1, 𝑐2),
we choose an appropriate value of 𝑐0 so that the overall
nonmissingness probability is about 20%. Details of the
parameter settings are given in Table 1.

The DUAN test requires the existence of an instrumen-
tal variable, and is applicable under the settings of Exam-
ple 1 because the variable𝑍 is an instrumental variable. For
data generated from this example, wemodel pr(𝑌 = 𝑦|𝑋 =

𝑥) by 𝑓(𝑦|𝑥, 𝜉) = (2𝜋)−1∕2 exp{−(𝑦 − 𝑥⊤𝜉)2∕2} in the con-
struction of S1, and model 𝔼(𝑌|𝑋 = 𝑥) by 𝜇(𝑥, 𝜃) = 𝑥⊤𝜃 in
the construction of S2. To save space, we report the sim-
ulated rejection rates of S1, S2, and DUAN for 𝑛 = 1000 in
Tables S1 and S2 in the supporting information, and display
the power (vs 𝑐1) lines of S2 and DUAN in Figures 1 and 2,
corresponding to 𝑏𝑧 = 0.5 and 1, respectively. The rejection
rates corresponding to the DUAN test are directly copied
from tables 3 and 4 inDuan et al. (2020), whichwere calcu-
lated based on 1000 simulated samples. Although the true
missingness indicator is generated from a probitmodel, we
model it by the logisticmodel (1) in the constructions of the
proposed two score tests.
The coefficient 𝑐1 quantifies the departure of the true

missingness mechanism from the null hypothesis. When
𝑐1 = 0, the null hypothesis holds and the results reported

are all type I errors. We see that all three tests have desir-
able controls on their type I errors. As 𝑐1 increases, the
true missingness mechanism departs more and more from
the null hypothesis and, as expected, all tests have increas-
ing powers. The proposed two score tests are more pow-
erful than DUAN in most situations. When 𝑏𝑧 = 0.5, their
power gains against DUANcan be greater than 25%; see the
casewith 𝑐1 = 0.4, 𝑐2 = 0.75, and𝑤(𝑦) = 𝑦. As 𝑏𝑧 increases
from 0.5 to 1, the power gain can be as large as 41%; see the
case with 𝑏𝑧 = 1, 𝑐1 = 0.25, 𝑐2 = 0.75, and 𝑤(𝑦) = 0.4𝑦2.
These observations show that the proposed score tests have
obvious advantages over the DUAN test. Meanwhile, the
two score tests S1 and S2 have almost the same powers in all
cases, although S2 requires much weaker model assump-
tions. We also conduct simulations for 𝑛 = 2000, and the
simulation results, provided in the supporting informa-
tion, are similar.
From Figures 1 and 2, we see that the power lines of S1

coincide with those of S2 and hence are omitted. It is clear
that the power lines of S2 always lie above those of the
DUAN test, or S2 is uniformly more powerful, except for
two scenarios where 𝑏𝑧 = 0.5, 𝑐2 = 0, and 𝑤(𝑦) = 0.4𝑦2 or
2.5𝐼(𝑦 > 1). In the two exceptional cases, compared with
DUAN, S2 is more powerful for small 𝑐1 and becomes less
powerful for large 𝑐1. As 𝑐1 quantifies the departure of the
true missingness mechanism from the null hypothesis, a
possible explanation for this phenomenon is that the score
test is usually most powerful for “local” alternatives, but
may be suboptimal when the alternative is not very local.

Example 2. Let 𝑋 ∼  (0, 1), (𝑌|𝑋 = 𝑥) ∼  (𝜉1𝑥 +

𝜉2𝑥
2, 𝑒𝜉3+𝜉4𝑥) with 𝜉 = (𝜉1, … , 𝜉4) = (−1, 1, 0.5, 0) or

(1, 1, 0.5, 1), and pr(𝐷 = 1|𝑥, 𝑦) = 𝜋(𝛽0 + 𝛽1𝑥 + 𝛾𝑦).
We consider eight choices of (𝛽0, 𝛽1), namely, (0.85, 0),
(0.6, 0.25), (0.4, 0.5), (0.1, 1) in the case of 𝜉 = (−1, 1, 0.5, 0)

and (0.85, 0), (0.7, 0.25), (0.5,0.5), (0.2, 1) in the case of
𝜉 = (1, 1, 0.5, 1). These settings are chosen such that the
missingness rates are about 20%-30%. The parameter 𝛾 is
set to 0, 0.05, ..., and 0.25, respectively.

Example 2 is designed to represent the case where no
instrument is present, and therefore the DUAN test is
not applicable. The choices of 𝜉4 = 0 and 1 correspond
to a homogeneous variance and a heterogeneous vari-
ance, respectively. We take 𝑓(𝑦|𝑥, 𝜉) and 𝜇(𝑥, 𝜃) in the
constructions of S1 and S2 to be the density functions
of  (𝜉1𝑥 + 𝜉2𝑥

2, 𝑒𝜉3+𝜉4𝑥) and 𝜃1𝑥 + 𝜃2𝑥
2, respectively,

where 𝜃 = (𝜃1, 𝜃2)
⊤. Table 2 presents the simulated rejec-

tion rates of the S1 and S2 tests when data are generated
from Example 2 and the sample size 𝑛 = 1000. The results
corresponding to 𝛾 = 0 are type I errors, and the type I
errors of both S1 and S2 are under control. As 𝛾 increases
from 0 to 0.25, both tests have desirable and increasing
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WANG et al. 1275

TABLE 1 Details of the parameter settings in Example 1

𝒃𝒛 = 𝟎.𝟓 𝒄𝟏
𝒘(𝒚) 𝒄𝟐 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
𝑦 0 0.84 0.75 0.66 0.57 0.48 0.39 0.32 0.24 0.18 0.12 0.06

0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.13 0.08 0.03 -0.04
0.50 0.55 0.47 0.39 0.31 0.23 0.15 0.07 0.04 0.02 -0.02 -0.06
0.75 0.5 0.42 0.34 0.26 0.2 0.16 0.1 0.04 -0.02 -0.08 -0.14

0.4𝑦2 0 0.84 0.74 0.64 0.54 0.44 0.4 0.34 0.28 0.2 0.15 0.1
0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.19 0.15 0.11 0.07 0.03
0.50 0.55 0.47 0.39 0.31 0.25 0.2 0.14 0.10 0.06 0.02 -0.02
0.75 0.5 0.42 0.34 0.26 0.18 0.1 0.07 0.04 0 -0.04 -0.08

2.5𝐼(𝑦 > 1) 0 0.84 0.75 0.66 0.57 0.48 0.39 0.3 0.21 0.14 0.08 0.02
0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.09 0.01 -0.07 -0.15
0.50 0.55 0.47 0.39 0.31 0.23 0.15 0.07 -0.01 -0.09 -0.17 -0.25
0.75 0.5 0.42 0.34 0.26 0.18 0.1 0.02 -0.06 -0.14 -0.22 -0.3

𝒃𝒛 = 𝟏 𝒄𝟏
𝒘(𝒚) 𝒄𝟐 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
𝑦 0 0.84 0.75 0.66 0.57 0.48 0.39 0.30 0.21 0.12 0.03 -0.06

0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.09 0.01 -0.07 -0.15
0.50 0.55 0.47 0.39 0.31 0.23 0.15 0.07 -0.01 -0.09 -0.17 -0.25
0.75 0.5 0.42 0.34 0.26 0.18 0.1 0.02 -0.06 -0.14 -0.22 -0.3

0.4𝑦2 0 0.84 0.74 0.64 0.54 0.44 0.4 0.34 0.28 0.2 0.15 0.1
0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.12 0.08 0.04 0
0.50 0.55 0.47 0.39 0.31 0.23 0.15 0.07 0.04 0.02 -0.02 -0.06
0.75 0.5 0.42 0.34 0.26 0.18 0.1 0.07 0.04 0 -0.04 -0.08

2.5𝐼(𝑦 > 1) 0 0.84 0.75 0.66 0.57 0.48 0.39 0.3 0.21 0.14 0.08 0.02
0.25 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.09 0.01 -0.07 -0.15
0.50 0.55 0.47 0.39 0.31 0.23 0.15 0.07 -0.01 -0.09 -0.17 -0.25
0.75 0.5 0.42 0.34 0.26 0.18 0.1 0.02 -0.06 -0.14 -0.22 -0.3

powers whether the variance is homogeneous or heteroge-
neous. Again, the results for both tests are all nearly equal
to each other in all cases. As S1 requires stronger model
assumptions, it may be more risky for model misspecifica-
tion than S2. Hence, we would recommend using S2 rather
than S1 for testing whether the missingness mechanism is
ignorable missing or nonignorable missing.
We have also studied how robust the proposed tests are

when the outcome model 𝑓(𝑦|𝑥) or the mean function
𝜇(𝑥) ismisspecified.Our general finding is thatwhen these
models are misspecified, the score tests have controllable
or slightly inflated type I errors and desirable power trend
at the price of certain power loses. See Example A and the
corresponding discussion in the supporting information.

4 APPLICATION TO HIV DATA

For illustration, we analyze HIV data from AIDS Clini-
cal Trials Group Protocol 175 (Hammer et al., 1996; Han

et al., 2019; Liu et al., 2021). These data are available from
the R package speff2trial and consist of various mea-
surements of 𝑛 = 2139HIV-infected patients. The patients
were randomly divided into four arms according to the reg-
imen of treatment they received: (I) zidovudinemonother-
apy, (II) zidovudine + didanosine, (III) zidovudine + zal-
citabine, and (IV) didanosine monotherapy. Important
measurements from the patients include CD4 cell count
at baseline (cd40), CD4 cell count at 20±5 weeks (cd420),
CD4 cell count at 96 ±5 weeks (cd496), CD8 cell count at
20±5 weeks (cd820), and arm number (arms). The effec-
tiveness of an HIV treatment can be assessed by moni-
toring the CD4 cell counts of HIV-positive patients: An
increase in such counts is an indication of improvement
in the patients’ health. The typical problem of interest is to
estimate the mean of the CD4 cell counts in each arm after
the patients were treated for about 96 weeks.
We take cd496 as a response variable 𝑌 and we take

cd40, cd420, and cd820 as covariates 𝑋1, 𝑋2, and 𝑋3,
respectively. Owing to the end of the trial or loss to follow-
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1276 WANG et al.

F IGURE 1 Plots of rejection rates when 𝑏𝑧 = 0.5 for the S2 test (solid lines) and the DUAN test (dotted lines): 𝑤(𝑦) = 𝑦 (circles);
𝑤(𝑦) = 0.5𝑦2 (triangles); 𝑤(𝑦) = 2.5𝐼(𝑦 > 1) (squares)

TABLE 2 Empirical rejection rates (%) of the S1 and S2 tests
based on 5000 simulated samples of size 𝑛 = 1000 from Example 2

𝜸

𝝃 𝜷𝟏 Test 0 0.05 0.1 0.15 0.2 0.25
(−1, 1, 0.5, 0) 0 S1 4.7 17.4 50.9 81.7 95.6 99.2

S2 4.8 17.3 50.8 81.7 95.5 99.2
0.25 S1 4.9 17.4 50.6 81.7 96.4 99.4

S2 4.9 17.2 50.4 81.6 96.4 99.4
0.5 S1 5.4 16.9 47.6 79.3 94.8 99.1

S2 5.4 16.8 47.3 79.0 94.7 99.1
1 S1 4.7 13.0 35.8 66.0 86.3 97.3

S2 5.1 12.8 35.3 65.4 86.1 97.1
(1, 1, 0.5, 1) 0 S1 4.6 14.4 37.4 60.9 77.7 87.4

S2 5.0 13.0 36.3 60.4 77.5 88.4
0.25 S1 5.2 13.6 35.1 57.4 75.9 86.6

S2 5.3 13.4 34.7 57.6 76.5 87.4
0.5 S1 4.7 14.2 33.6 55.3 73.7 86.4

S2 4.7 14.1 34.3 56.2 74.6 87.0
1 S1 4.7 11.0 28.1 47.2 66.0 79.9

S2 4.6 11.1 27.5 46.8 65.2 79.4

TABLE 3 AIC and BIC of the candidate models. The best
candidate model is highlighted

Covariates AIC BIC
𝑋1 2823.678 2835.014
𝑋2 𝟐𝟖𝟏𝟏.𝟐𝟕𝟗 𝟐𝟖𝟐𝟐.𝟔𝟏𝟓

𝑋3 2828.592 2839.928
𝑋1, 𝑋2 2813.229 2830.233
𝑋1, 𝑋3 2825.541 2842.545
𝑋2, 𝑋3 2813.139 2830.143
𝑋1, 𝑋2, 𝑋3 2815.077 2837.749

up, 39.66% of the patients’ responses were missing. These
data have been analyzed under the MAR (Hammer et al.,
1996; Han et al., 2019) and MNAR (Liu et al., 2021; Zhang
et al., 2020) assumptions. We may wonder which missing-
ness mechanism is more credible. Let 𝐗 = (1, 𝑋1, 𝑋2, 𝑋3),
and suppose the missingness indicator 𝐷 given 𝐗 and
𝑌 follows the linear logistic model (1). Table 3 presents
the Akaike information criterion (AIC) and Bayesian
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WANG et al. 1277

F IGURE 2 Plots of rejection rates when 𝑏𝑧 = 1 for the S2 test (solid lines) and the DUAN test (dotted lines): 𝑤(𝑦) = 𝑦 (circles);
𝑤(𝑦) = 0.5𝑦2 (triangles); 𝑤(𝑦) = 2.5𝐼(𝑦 > 1) (squares)

information criterion (BIC) of all logistic candidate
models under 𝛾 = 0. The candidate model with only
covariate 𝑋2 has the smallest AIC and BIC. To some
extent, this indicates that the logistic model with only
covariate 𝑋2 and possibly 𝑦 is the most appropriate for
the nonmissingness probability, as assumed hereafter. In
addition, we choose 𝑓(𝑦|𝐱, 𝜉) to be the normal density
with mean 𝜇(𝐱, 𝜉) = 𝜉1 + 𝜉2𝑥1 + 𝜉3𝑥2 + 𝜉4𝑥3 + 𝜉5𝑥

2
2 and

variance 𝜎(𝐱, 𝜉) = 𝜉6, where 𝜉 = (𝜉1, … , 𝜉6)
⊤. We apply the

proposed two score tests to test whether the missingness
of cd496 depends on itself.
As pointed out in Remark 2, we first conduct a

goodness-of-fit test for the assumed outcome model.
The p-values of the Fan and Huang (2001) test (based
on their 𝑇𝐴𝑁,1) for the assumed normal model are
0.107, 0.999, 0.905, and 0.005, respectively, showing that
the normal model is appropriate under regimens I-
III, but is inappropriate under regimen IV. Under reg-
imens IV, when 𝑓(𝑦|𝐱, 𝜉) is chosen to be the normal
density with mean 𝜇(𝐱, 𝜉) = 𝜉1 + 𝜉2𝑥1 + 𝜉3𝑥2 + 𝜉4𝑥3 +

𝜉5𝑥1𝑥2 + 𝜉6𝑥
2
2 + 𝜉7𝑥1𝑥

2
2 and variance 𝜎(𝐱, 𝜉) = 𝜉8, where

𝜉 = (𝜉1, … , 𝜉8)
⊤, the Fan and Huang (2001) test produces

supportive evidence for this model (p-value = 1).
The𝑝-values of the proposed two score tests are reported

in Table 4. None of the results are significant at the 5%
level.Meanwhile theQin andZhang (1997) test provides no
evidence (the p-values corresponding to the four regimens
are 0.352, 0.935, 0.268, and 0.977, respectively) against the
assumed logistic nonmissingness model. In other words,
they all support theMARmechanism in the four regimens.
At the same time, both the tests have very close 𝑝-values.
Table 4 also presents their𝑝-values ifwe remove the covari-
ate 𝑋2 from the propensity score model. The 𝑝-values
for regimens II and IV are seemingly unchanged and
insignificant. Again theQin and Zhang (1997) test supports
the assumed logistic model (the p-values are 0.356 and
0.296, respectively). However, those for regimens I and III
become much less, and much smaller than the 5% signifi-
cance level. These results indicate that the MNAR mecha-
nism seems more reasonable than MAR if the propensity
score depends potentially on 𝑦. A possible explanation for
the insignificant result in the presence of 𝑋2 is that 𝑋2 and
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1278 WANG et al.

TABLE 4 p-Values of the proposed score tests S1 and S2 under the four regimens of treatment based on the HIV data

Treatment
regimen I II III IV

IV under
newmodel

𝑋2 appears in the logistic model
S1 0.3263 0.3558 0.4490 0.4060 0.3996
S2 0.1291 0.4548 0.3730 0.2265 0.2131
𝑋2 does not appear in the logistic model
S1 0.0065 0.3731 0.0104 0.2081 0.2108
S2 0.0003 0.3389 0.0006 0.1584 0.1615

𝑌 stand for CD4 cell counts at 20 ± 5 weeks and at 96 ± 5

weeks, respectively, and they are highly correlated.

5 DISCUSSION

Valid data analyses of missing data rely on a correctly
specified missingness mechanism. The problem of testing
whether the missingness mechanism is MCAR or MAR
is relatively easy to solve and has been extensively stud-
ied. However, it is much more challenging to test whether
the mechanism is MAR or not, because parameters may
no longer be identifiable under the alternative hypoth-
esis. Numerically we avoid this thorny issue by using a
score test, which is constructed under the null hypothe-
sis, namely, the MAR mechanism. The underlying param-
eters are usually identifiable based on MAR data. This is
one of the nice properties of a score test (Rao, 2005). A
score test is also invariant under transformation of param-
eters. Transformation of parameters may simplify param-
eter estimation without affecting the value of the statis-
tic. We derive two score tests, S1 and S2, when the con-
ditional density of 𝑌 given 𝐗 is modeled by a completely
parametric model and a semiparametric location model,
respectively. Our numerical results indicate that these tests
generally have nearly the same performance (type I error
and power), but S2 is preferable because it requires weaker
model assumptions.
When the score tests reject the null hypothesis, it may

be either that themissingnessmechanism isMNARor that
themissingnessmechanism isMARbut the assumedmod-
els are not correctly specified. As a remedial action to the
proposed score tests, when the null hypothesis is rejected,
we suggest conducting follow-up goodness-of-fit tests for
the logistic missingness model and the observed outcome
model under MAR. If none of these models is rejected,
we shall claim that the missingness mechanism is MNAR.
Otherwise, we need to consider alternative models for the
missingness and the observed regression. Obviously this is
a multiple testing procedure, which may have an out-of-
control type I error. Theoretically we need to study large-

sample properties of the multiple testing procedure and
make its type I error under control. We leave this interest-
ing problem for future research.
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