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Abstract
In capture-recapture experiments, individual covariates may be subject to miss-
ingness, especially when the number of captures is small. When the covariate
information is missing at random, the inverse probability weighting method and
themultiple imputationmethod arewidely used to obtain point estimators of the
abundance. These estimators are then used to construct Wald-type confidence
intervals. However, such intervals may have seriously inaccurate coverage prob-
abilities. In this paper, we propose a maximum empirical likelihood (EL) estima-
tion approach for the abundance in the presence of missing covariates. We show
that the maximum EL estimator is asymptotically normal, and that the EL ratio
statistic for the abundance has a chi-square limiting distribution with one degree
of freedom. Simulations indicate that the proposed estimator has a smaller mean
square error than existing estimators, and the proposedEL ratio confidence inter-
val usually has more accurate coverage probabilities than the existing Wald-type
confidence intervals. We illustrate the proposed method by analyzing data col-
lected in Hong Kong for the yellow-bellied prinia, a bird species.
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1 INTRODUCTION

The estimation of population size or abundance is a fun-
damental problem in many fields, such as conservation
biology, demography, epidemiology, and software reliabil-
ity (Tilling et al., 2001; Borchers et al., 2002; Barnard et al.,
2003; Boden and Ozonoff, 2008). The population in abun-
dance estimation is usually assumed to be either closed
or open. In a closed population, there is no birth, death,
or migration and the abundance remains unchanged
throughout the period of study. A population that is not
closed is said to be open. To estimate the abundance, the
capture-recapture technique has been widely used, since a
general census is usually too expensive or impractical. In a

capture-recapture experiment, individuals or animals from
the population are captured; they aremarked or their exist-
ing marks are noted if they have been previously marked;
and then they are released. Depending on whether the
capture efforts are made on separate occasions or con-
tinuously, capture-recapture experiments can be divided
into two types: discrete time and continuous time. In this
paper, we focus on discrete-time capture-recapture exper-
iments, and we make a closed-population assumption
so that the abundance can be regarded as a parameter to
be inferred.
It is widely accepted that heterogeneity is usually

present in capture-recapture experiments, and ignoring it
may result in seriously biased estimates (Otis et al., 1978;
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Chao, 2001). To account for the heterogeneity, Huggins
(1989) and Alho (1990) modeled the capture probability via
a logistic regressionmodel on covariates such as individual
characteristics and environmental conditions. Since then,
there have been many studies of abundance estimation
from capture-recapture data when the individual covari-
ates are completely observed; see Chao (2001), Huggins
and Hwang (2011), Stoklosa et al. (2011), Liu et al. (2017),
and the references therein.
In practice, covariate information is vulnerable to miss-

ingness. For example, in real-world data from the Mai
Po Sanctuary in Hong Kong (Lin and Yip, 1999; Yip and
Wang, 2002; Wang and Yip, 2003), the determinant covari-
ate “gender” was missing for 74 of 132 captured birds
(Wang, 2005). Another example can be found in Section 4.
In this paper, we assume that the data are missing at ran-
dom (MAR) (Rubin, 1976; Little and Rubin, 2014). In other
words, the missingness does not depend on the missing
data themselves. Under this assumption, Xi et al. (2009)
assumed a parametric distribution on the covariates and
developed an Expectation-Maximization (EM) algorithm
to obtain an estimator of the population size. To weaken
the distribution assumption, Lee et al. (2016) proposed
three kinds of estimators through regression calibration,
inverse probability weighting, and multiple imputation
methods. The latter two are recommended because they
are consistent.
The above estimation methods in the presence of

missing covariates usually have three steps. First, the
underlying parameters in the assumed models are esti-
mated by solving estimating equations. Second, a Horvitz-
Thompson type estimator is constructed for the abun-
dance after the underlying parameters are replaced by the
estimators obtained in the first step. Finally, Wald-type
confidence intervals are constructed for interval estima-
tion based on the asymptotic normality of the Horvitz-
Thompson type estimator. Since the estimating equations
are derived from the conditional likelihood instead of the
full likelihood, these estimationmethods often have poten-
tial efficiency loss. Our simulation results also indicate that
the coverage accuracy of the Wald-type confidence inter-
val is usually unsatisfactory when the sample size is small
or moderate.
For the case where the individual covariates are all

completely observed, Liu et al. (2017) proposed a full
empirical likelihood (EL) estimation method for the
abundance. The resulting maximum EL estimator and the
EL ratio confidence interval were shown to outperform
the traditional Horvitz-Thompson type estimators and
Wald-type confidence intervals. Liu et al. (2018) extended
the method to continuous-time capture-recapture data.
However, if individual covariates are missing, this
approach will produce biased estimators (see our simula-

tion study) if we simply discard the subjects with missing
covariates.
In this paper, we further extend Liu et al. (2017)’s full-

EL abundance estimation method to the case with miss-
ing covariates under the MAR assumption. We show that
the maximum EL estimator is asymptotically normal, and
that the EL ratio statistic for the abundance has a chi-
square limiting distribution with one degree of freedom.
The resulting EL ratio confidence interval is one-step and
free from variance estimation. Our simulations indicate
that the proposed maximum EL estimator has a smaller
mean square error than the existing Horvitz-Thompson-
type estimators.Moreover, the EL ratio confidence interval
usually has more accurate coverage probabilities than the
Wald-type confidence intervals.
The rest of the paper is organized as follows. In Sec-

tion 2, we first introduce the capture probability model of
Huggins (1989) and Alho (1990) as well as the MARmech-
anism. We then present the proposed estimation method
and investigate its large-sample properties. Section 3 com-
pares our method and several existing methods through
simulation studies. Section 4 is devoted to a careful analy-
sis of the yellow-bellied prinia bird data collected in Hong
Kong. Section 5 concludes the paper with a short discus-
sion.

2 FULL LIKELIHOOD ESTIMATION

2.1 Model and data

Let 𝑁 be the abundance of a closed population and 𝐾 the
number of capture occasions in a discrete-time capture-
recapture experiment. For a generic individual in the popu-
lation and 𝑘 = 1,… , 𝐾, let𝐷(𝑘) = 1 if it was captured on the
𝑘th occasion and𝐷(𝑘) = 0 otherwise. Then (𝐷(1), … , 𝐷(𝐾))

⊤

is the so-called capture history. Let 𝐙 be a 𝑝-dimensional
covariate of this generic individualwith its first component
being 1 and cumulative distribution function being 𝐹𝐙(𝐳).
Following Huggins (1989) and Alho (1990), we assume that
the capture probability on each occasion follows the logis-
tic regression or Huggins-Alho model:

pr(𝐷(𝑘) = 1|𝐙 = 𝐳) =
exp(𝜷⊤𝐳)

1 + exp(𝜷⊤𝐳)
=∶ 𝑔(𝐳; 𝜷). (1)

Throughout this paper, pr is used to denote the probabil-
ity of an event or the probability mass/density function of
a discrete/continuous random variable. Denote the num-
ber of times that the generic individual is captured by 𝐷 =∑𝐾

𝑘=1
𝐷(𝑘). Under the Huggins-Alho model, 𝐷 given 𝐙 = 𝐳

follows a binomial distribution with size 𝐾 and success
probability 𝑔(𝐳; 𝜷).
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In practice, individual covariates are vulnerable to miss-
ingness if 𝐷 is small. Let 𝑅 be the missingness indicator:
𝑅 = 1 if the covariate of a generic individual is not missing
and 𝑅 = 0 otherwise. In this paper, we adopt a MAR
assumption, that is, the selection probability of covariate
𝐙 is conditionally independent of 𝐙 itself given 𝐷:

pr(𝑅 = 1|𝐙 = 𝐳,𝐷 = 𝑘) = pr(𝑅 = 1|𝐷 = 𝑘). (2)

Suppose 𝑛 distinct individuals are captured at least once
in the capture-recapture experiment. Let 𝑑𝑖 and 𝐳𝑖 , respec-
tively, be the number of captures and the covariate of the
𝑖th individual captured at least once. Without loss of gen-
erality, we assume that the covariates for the first 𝑚 indi-
viduals are completely observed, and the covariates for
the last (𝑛 − 𝑚) individuals are missing. Denote by 𝑟𝑖 = 1

the corresponding missingness indicator, which is 1 for
𝑖 = 1, … ,𝑚 and 0 for 𝑖 = 𝑚 + 1,… , 𝑛. We wish to perform
inference on the abundance 𝑁.

2.2 Likelihood

Let 𝛼0 = pr(𝐷 = 0) be the probability that a generic indi-
vidual is never captured. Clearly, pr(𝐷 > 0) = 1 − 𝛼0 and
𝑛 follows the binomial distribution Bi(𝑁, 1 − 𝛼0), whose
probability mass function is

pr(𝑛) =
(𝑁
𝑛

)
(1 − 𝛼0)

𝑛𝛼𝑁−𝑛0 . (3)

Suppose that conditioning on 𝑛, the observations
{(𝑟𝑖 = 1, 𝑑𝑖, 𝐳𝑖) ∶ 𝑖 = 1, … ,𝑚} ∪ {(𝑟𝑖 = 0, 𝑑𝑖) ∶ 𝑖 =𝑚 + 1,… , 𝑛}

are independent of each other. Because the 𝑑𝑖s satisfy
𝑑𝑖 > 0, it follows that for 𝑖 = 1, … ,𝑚

pr(𝑅 = 1, 𝐷 = 𝑑𝑖, 𝐙 = 𝐳𝑖|𝐷 > 0)

=
pr(𝑅 = 1|𝐷 = 𝑑𝑖)pr(𝐷 = 𝑑𝑖|𝐙 = 𝐳𝑖)pr(𝐙 = 𝐳𝑖)

pr(𝐷 > 0)
,

where we have used theMAR assumption in (2). Similarly,
for 𝑖 = 𝑚 + 1,… , 𝑛

pr(𝑅 = 0, 𝐷 = 𝑑𝑖|𝐷 > 0) =
pr(𝑅 = 0|𝐷 = 𝑑𝑖)pr(𝐷 = 𝑑𝑖)

pr(𝐷 > 0)
.

With the above preparation, the full likelihood can
be written as 𝐿0 ×𝐿, where 𝐿0 =

∏𝑚

𝑖=1
pr(𝑅 = 1|𝐷=𝑑𝑖) ⋅∏𝑛

𝑖=𝑚+1
pr(𝑅 = 0|𝐷=𝑑𝑖) is the likelihood contribution of

{(𝑟𝑖|𝑑𝑖) ∶ 𝑖 = 1, … , 𝑛}, and 𝐿=pr(𝑛) ×
∏𝑚

𝑖=1
{pr(𝐷 =𝑑𝑖|𝐙=

𝐳𝑖)pr(𝐙= 𝐳𝑖)} ⋅
∏𝑛

𝑖=𝑚+1
pr(𝐷 =𝑑𝑖) × {pr(𝐷 > 0)}−𝑛. Since

𝐿0 does not involve the main parameter of interest, 𝑁, we
abandon it and proceed with the partial likelihood 𝐿.

For 𝑘 = 1,… , 𝐾, let 𝛼𝑘 = pr(𝐷 = 𝑘) be the probability
that a generic individual is caught exactly 𝑘 times. Let𝑚𝑘

denote the number of individuals captured exactly 𝑘 times
whose covariates are missing. Then

𝑛∏
𝑖=𝑚+1

pr(𝐷 = 𝑑𝑖) =

𝐾∏
𝑘=1

𝛼
𝑚𝑘

𝑘
. (4)

It follows from the Huggins-Alho model that

𝑚∏
𝑖=1

pr(𝐷 = 𝑑𝑖|𝐙 = 𝐳𝑖)

=

𝑚∏
𝑖=1

(𝐾
𝑑𝑖

)
{𝑔(𝐳𝑖; 𝜷)}

𝑑𝑖 {1 − 𝑔(𝐳𝑖; 𝜷)}
𝐾−𝑑𝑖 . (5)

Substituting Equations (3) to (5) into 𝐿 gives

𝐿 ∝
(𝑁
𝑛

)
𝛼𝑁−𝑛0 ×

𝑚∏
𝑖=1

{𝑔(𝐳𝑖; 𝜷)}
𝑑𝑖 {1 − 𝑔(𝐳𝑖; 𝜷)}

𝐾−𝑑𝑖

×

𝐾∏
𝑘=1

𝛼
𝑚𝑘

𝑘
×

𝑚∏
𝑖=1

{pr(𝐙 = 𝐳𝑖)d𝐳𝑖}.

Here we have introduced the
∏𝑚

𝑖=1
d𝐳𝑖 term, which is inde-

pendent of any parameter and has no likelihood contribu-
tion, to express the likelihood in terms of 𝐹𝐙.
Note that pr(𝐙 = 𝐳)d𝐳 = d𝐹𝐙(𝐳). We propose to handle

𝐹𝐙 by EL (Owen, 1988, 1990), which in essence models 𝐹𝐙
by a discrete distribution assigning weight 𝑝𝑖 to observed
value 𝐳𝑖 , that is, 𝐹𝐙(𝐳) =

∑𝑚

𝑖=1
𝑝𝑖𝐼(𝐳𝑖 ≤ 𝐳). Since 𝐹𝐙(𝐳) is a

distribution, the 𝑝𝑖s satisfy the constraints

𝑝1 ≥ 0, … , 𝑝𝑚 ≥ 0, and
𝑚∑
𝑖=1

𝑝𝑖 = 1. (6)

Because 𝐹𝐙(𝐳) is the distribution of 𝐙, the 𝑝𝑖s should also
satisfy

𝟎 = ∫ 𝐔(𝐳; 𝜷, 𝜶)d𝐹𝐙(𝐳) =

𝑚∑
𝑖=1

𝐔(𝐳𝑖; 𝜷, 𝜶)𝑝𝑖, (7)

where 𝜶 = (𝛼1, … , 𝛼𝐾)
⊤ and 𝐔(𝐳; 𝜷, 𝜶) =

(𝑈1(𝐳; 𝜷, 𝛼1), … ,𝑈𝐾(𝐳; 𝜷, 𝛼𝐾))
⊤ with 𝑈𝑘(𝐳; 𝜷, 𝛼𝑘) =(𝐾

𝑘

)
{𝑔(𝐳; 𝜷)}𝑘{1 − 𝑔(𝐳; 𝜷)}𝐾−𝑘 − 𝛼𝑘 for 𝑘 = 1,… , 𝐾. Equa-

tion (7) holds because 𝛼𝑘 = pr(𝐷 = 𝑘) = 𝔼{pr(𝐷 = 𝑘|𝐙)}
and pr(𝐷 = 𝑘|𝐙 = 𝐳) =

(𝐾
𝑘

)
{𝑔(𝐳; 𝜷)}𝑘{1 − 𝑔(𝐳; 𝜷)}𝐾−𝑘. It is

worth noting that the equations in (7) are used to constrain
𝐹𝐙 or the 𝑝𝑖s and to reduce their degrees of freedom. They
cannot completely determine the 𝑝𝑖s, even given the data,
𝜶, and 𝜷, when 𝐙 includes continuous measurements
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or when 𝐙 is a discrete variable taking more than 𝐾 + 1

distinct values, because there are 𝑚 − 1 unknown free
parameters but many fewer (𝐾 < 𝑚 − 1) equations.
With 𝑝𝑖 = d𝐹𝐙(𝐳𝑖) in place of pr(𝐙 = 𝐳𝑖)d𝐳𝑖 in the likeli-

hood function 𝐿 and taking logarithms, we have the empir-
ical log-likelihood

log
(𝑁
𝑛

)
+

𝐾∑
𝑘=0

𝑚𝑘 log(𝛼𝑘) +

𝑚∑
𝑖=1

log(𝑝𝑖)

+

𝑚∑
𝑖=1

[𝑑𝑖 log{𝑔(𝐳𝑖; 𝜷)} + (𝐾 − 𝑑𝑖) log{1 − 𝑔(𝐳𝑖; 𝜷)}],

(8)

where𝑚0 = 𝑁 − 𝑛. Keep in mind that the feasible 𝑝𝑖s sat-
isfy constraints (6) and (7). Under EL, it is easier to per-
form inference based on the profile ELs after profiling out
the 𝑝𝑖s rather than directly. The empirical log-likelihood
function of𝑁, 𝜶, and 𝜷 can be obtained by maximizing (8)
with respect to the 𝑝𝑖s under constraints (6) and (7) given
(𝜶, 𝜷). By the method of Lagrangemultipliers, we find that
the maximum of (8) is attained at

𝑝𝑖 =
1

𝑚
⋅

1

1 + 𝝀⊤𝐔(𝐳𝑖; 𝜷, 𝜶)
, 𝑖 = 1, 2, … ,𝑚, (9)

where the Lagrangemultiplier 𝝀 = (𝜆1, … , 𝜆𝐾)
⊤ is the solu-

tion of

𝑚∑
𝑖=1

𝐔(𝐳𝑖; 𝜷, 𝜶)

1 + 𝝀⊤𝐔(𝐳𝑖; 𝜷, 𝜶)
= 𝟎. (10)

We refer to Owen (1990) for a detailed derivation of this
maximizer. Substituting (9) into (8) gives the profile empir-
ical log-likelihood of (𝑁, 𝜷, 𝜶):

𝓁(𝑁, 𝜷, 𝜶) = log
(𝑁
𝑛

)
+ (𝑁 − 𝑛) log(𝛼0) +

𝐾∑
𝑘=1

𝑚𝑘 log(𝛼𝑘)

−

𝑚∑
𝑖=1

log{1 + 𝝀⊤𝐔(𝐳𝑖; 𝜷, 𝜶)} (11)

+

𝑚∑
𝑖=1

[𝑑𝑖 log{𝑔(𝐳𝑖; 𝜷)} + (𝐾 − 𝑑𝑖) log{1 − 𝑔(𝐳𝑖; 𝜷)}],

where 𝝀 = 𝝀(𝜷, 𝜶) solves Equation (10) and 𝛼0 = 1 −∑𝐾

𝑘=1
𝛼𝑘.

Remark 1. Wemay simply discard themissing data, assume
that the capture-recapture data consists of only the𝑚 com-
pletely observed data, and apply Liu et al. (2017)’s approach
to estimate 𝑁. However, because there are actually 𝑛 dis-
tinct individuals captured at least once and 𝑚 is only the

number of individuals with nomissing values (𝑚 < 𝑛), Liu
et al. (2017)’s estimator of 𝑁 must underestimate 𝑁, espe-
cially when there are many missing data.

2.3 Estimation and asymptotics

Given the profile empirical log-likelihood 𝓁(𝑁, 𝜷, 𝜶), we
propose to estimate the parameters by their maximum EL
estimator:

(𝑁̂, 𝜷, 𝜶) = argmax
(𝑁,𝜷,𝜶)

{𝓁(𝑁, 𝜷, 𝜶)}.

Accordingly, we define the EL ratio functions of (𝑁, 𝜷, 𝜶)
and 𝑁 as

𝑅(𝑁, 𝜷, 𝜶) = 2{ max
(𝑁,𝜷,𝜶)

𝓁(𝑁, 𝜷, 𝜶) − 𝓁(𝑁, 𝜷, 𝜶)}

= 2{𝓁(𝑁̂, 𝜷, 𝜶) − 𝓁(𝑁, 𝜷, 𝜶)},

𝑅′(𝑁) = 2{ max
(𝑁,𝜷,𝜶)

𝓁(𝑁, 𝜷, 𝜶) − max
(𝜷,𝜶)

𝓁(𝑁, 𝜷, 𝜶)}

= 2{𝓁(𝑁̂, 𝜷, 𝜶) − 𝓁(𝑁, 𝜷𝑁, 𝜶𝑁)},

where (𝜷𝑁, 𝜶𝑁) = argmax(𝜷,𝜶){𝓁(𝑁, 𝜷, 𝜶)} given 𝑁.
Theorem 1 given below establishes the limiting dis-

tributions of the maximum EL estimator and the two
EL ratio statistics. These results explicitly or implicitly
depend on a matrix 𝐖, which mimics the informa-
tion matrix under a regular parametric likelihood.
To ease the exposition of 𝐖, we define the neces-
sary notation. Let (𝑁0, 𝜷

⊤

0 , 𝜶
⊤

0 ) be the true value of
(𝑁, 𝜷⊤, 𝜶⊤), 𝜶0 = (𝛼10, … , 𝛼𝐾0), and 𝛼00 = 1 −

∑𝐾

𝑘=1
𝛼𝑘0.

Define ℎ𝑘 = pr(𝑅 = 1|𝐷 = 𝑘), 𝜆00 =
∑𝐾

𝑘=1
ℎ𝑘𝛼𝑘0,𝐇1 =

(ℎ1, … , ℎ𝐾)
⊤, 𝐇2 = diag{(1 − ℎ1)∕𝛼10, … , (1 − ℎ𝐾)∕𝛼𝐾0},

and 𝜋(𝐳; 𝜷) =
∑𝐾

𝑘=1

(𝐾
𝑘

)
{𝑔(𝐳; 𝜷)}𝑘{1 − 𝑔(𝐳; 𝜷)}𝐾−𝑘ℎ𝑘. Then

𝜋(𝐳; 𝜷0) is the probability that an individual has been
captured at least once with no missing covariate given
𝐙 = 𝐳. Denote the first and second derivatives of 𝜋(𝐳; 𝜷)
with respect to 𝜷 by 𝜋̇(𝐳; 𝜷) and 𝜋̈(𝐳; 𝜷), respectively. Let
𝔼 be the expectation operator with respect to 𝐹𝐙, and
𝐀⊗2 = 𝐀𝐀⊤ for a vector or matrix 𝐀. In addition, we use
𝟎𝐾×1, 𝟏𝐾×1, and 𝐈𝐾×𝐾 to denote a 𝐾 × 1 vector of zeros, a
𝐾 × 1 vector of ones, and the 𝐾 × 𝐾 identity matrix. We
define

𝐖 =

⎛⎜⎜⎜⎝
−V11 𝟎1×𝑝 −𝐕13

𝟎𝑝×1 −𝐕22 + 𝐕24𝐕
−1
44 𝐕42 −𝐕23 + 𝐕24𝐕

−1
44 𝐕43

−𝐕31 −𝐕32 + 𝐕34𝐕
−1
44 𝐕42 −𝐕33 + 𝐕34𝐕

−1
44 𝐕43

⎞⎟⎟⎟⎠
,

(12)
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where V11 = 1 − 𝛼−100 , 𝐕31 = 𝐕⊤

13 = −𝛼−100 𝟏𝐾×1, and

𝐕22 = 𝔼

[
{𝜋̇(𝐙; 𝜷0)}

⊗2

𝜋(𝐙; 𝜷0)
− 𝜋̈(𝐙; 𝜷0)

+𝐾𝑔(𝐙; 𝜷0){𝑔(𝐙; 𝜷0) − 1}𝜋(𝐙; 𝜷0)𝐙
⊗2

]
,

𝐕23 = 𝐕⊤

32 = −𝔼

{
𝜋̇(𝐙; 𝜷0)

𝜋(𝐙; 𝜷0)

}
×𝐇⊤

1,

𝐕33 = −𝛼−100 𝟏
⊗2
𝐾×1 − 𝐇2 + 𝔼

{
1

𝜋(𝐙; 𝜷0)

}
×𝐇⊗2

1 ,

𝐕43 = 𝐕⊤

34 = 𝜆00𝐈𝐾×𝐾 − 𝜆00𝔼

{
𝐔(𝐙; 𝜷0, 𝜶0)

𝜋(𝐙; 𝜷0)

}
×𝐇⊤

1,

𝐕24 = 𝐕⊤

42 = 𝜆00𝔼

{
𝜋̇(𝐙; 𝜷0)𝐔

⊤(𝐙; 𝜷0, 𝜶0)

𝜋(𝐙; 𝜷0)

−
𝜕𝐔⊤(𝐙; 𝜷0, 𝜶0)

𝜕𝜷

}
,

𝐕44 = 𝜆200𝔼

{
𝐔(𝐙; 𝜷0, 𝜶0)𝐔

⊤(𝐙; 𝜷0, 𝜶0)

𝜋(𝐙; 𝜷0)

}
.

Thematrix𝐖 is of the same form as𝐖𝑠 in Liu et al. (2017);
the only difference is that the matrices 𝐕𝑖𝑗 are different.

Theorem1. Suppose𝛼𝑘0 ∈ (0, 1), 𝑘 = 1,… , 𝐾,
∑𝐾

𝑘=1
𝛼𝑘0 <

1, and ∫ {𝜋(𝐳; 𝜷)}−1d𝐹𝐙(𝐳) < ∞ for 𝜷 in a neighborhood of
𝜷0. If the matrix 𝐖 defined in Equation (12) is nonsingu-
lar, then as 𝑁0 goes to infinity, (a)

√
𝑁0{log(𝑁̂∕𝑁0), (𝜷 −

𝜷0)
⊤, (𝜶 − 𝜶0)

⊤}⊤
𝑑

⟶ 𝑁(0,𝐖−1), where
𝑑

⟶ indicates con-

vergence in distribution; (b) 𝑅(𝑁0, 𝜷0, 𝜶0)
𝑑

⟶ 𝜒2𝐾+𝑝+1 and

𝑅′(𝑁0)
𝑑

⟶ 𝜒21 .

See Section 1 in the Supporting Information for a proof
of Theorem 1. According to Theorem 1, the proposed EL
ratio confidence interval for 𝑁 is

 = {𝑁 ∶ 𝑅′(𝑁) ≤ 𝜒21(1 − 𝑎)}, (13)

where 𝜒21(1 − 𝑎) is the (1 − 𝑎)-quantile of 𝜒21 . Theorem 1
implies that  has an asymptotically correct coverage prob-
ability when the confidence level is 1 − 𝑎. Compared with
the usual Wald-type confidence interval, the proposed
interval is clearly free from variance estimation. Moreover,
its lower limit is never less than 𝑛, since the domain of the
likelihood ratio function 𝑅′(𝑁) is [𝑛,∞).

Remark 2. In practice, along with the point estimates 𝑁̂, 𝜷,
and 𝜶, reasonable estimates of their asymptotic variances
should be provided to quantify their variabilities based on

the data. According to Theorem 1, this is equivalent to the
estimation of𝐖 or the𝐕𝑖𝑗s, which necessitates reasonable
estimates of 𝜆0, 𝐇1, and 𝐇2. We first estimate the selec-
tion probabilities ℎ𝑘 by the following nonparametric esti-
mates:

ℎ̂𝑘 =

∑𝑛

𝑖=1
𝑟𝑖𝐼(𝑑𝑖 = 𝑘)∑𝑛

𝑖=1
𝐼(𝑑𝑖 = 𝑘)

, 𝑘 = 1,… , 𝐾, (14)

which were used by Lee et al. (2016). Given the ℎ̂𝑘s and the
proposed estimate 𝜶, 𝜆00,𝐇1, and𝐇2 can be naturally esti-
mated by 𝜆0 =

∑𝐾

𝑘=1
ℎ̂𝑘𝛼̂𝑘, 𝐇̂1 = (ℎ̂1, … , ℎ̂𝐾)

⊤, and 𝐇̂2 =

diag{(1 − ℎ̂1)∕𝛼̂1, … , (1 − ℎ̂𝐾)∕𝛼̂𝐾}. Since the 𝐕𝑖𝑗s can be
expressed as 𝔼{𝐉(𝐙; 𝜷0, 𝜶0,𝐇1,𝐇2)} for some function 𝐉,
we estimate them by

∑𝑚

𝑖=1
𝐉(𝐳𝑖; 𝜷, 𝜶, 𝐇̂1, 𝐇̂2)∕{𝑁̂𝜋(𝐳𝑖; 𝜷)}.

Using the relationship between 𝐖 and the 𝐕𝑖𝑗s, we can
obtain reasonable estimates for𝐖 and the asymptotic vari-
ance estimates of 𝑁̂, 𝜷, and 𝜶.

Remark 3. We have assumed that 𝛼𝑘0 ∈ (0, 1) for
𝑘 = 0, 1, … , 𝐾 or min0≤𝑘≤𝐾 𝛼𝑘0 > 0. It then follows that
min0≤𝑘≤𝐾 𝑚𝑘 > 0 holds with probability approaching 1 as
𝑁0 → ∞. This implies that the number of constraints in
Equation (7) is exactly equal to 𝐾 as 𝑁0 becomes large.
However, this is not always the case in practice, especially
when𝐾 and 𝛼00 are large ormoderate. If some𝑚𝑘 are zero,
we suggest to redefine𝐔 by removing the estimating func-
tions𝑈𝑘 whose corresponding𝑚𝑘s equal zero and includ-
ing the estimating function 𝑈0. This does not change the
maximum EL estimate of (𝑁, 𝜷, 𝜶, {𝑝𝑖}) but can alleviate
the computation burden. See Section 4 of the Supporting
Information for more details.

Remark 4. In practice, there may be covariates that are
always observed and have an impact on the selection prob-
ability even conditioning on 𝐷. The binary variable “fat
index” in the prinia analysis in Section 4 is an example.
Let 𝑋 be a completely observed binary covariate and 𝐘

a general vector of covariates. Assuming 𝐘 is MAR, that
is, pr(𝑅 = 1|𝐘 = 𝐲,𝑋 = 𝑥,𝐷 = 𝑘) = pr(𝑅 = 1|𝑋 = 𝑥,𝐷 =

𝑘), we have extended the proposed full likelihood approach
to incorporate such a binary covariate: see Section 2 in the
Supporting Information. The extension to a general vector-
valued categorical covariate is straightforward and there-
fore omitted.

3 SIMULATION

In this section, we investigate the finite-sample perfor-
mance of our estimation methods (abundance estimator
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𝑁̂ and confidence interval  or their extension 𝑁̂𝑒 and𝑒 defined in Section 2 of the Supporting Information)
by comparing them with the methods of Lee et al. (2016)
and Liu et al. (2017). The numerical procedure for imple-
menting our methods is discussed in Section 3 of the Sup-
porting Information. Lee et al. (2016) proposed two esti-
mators for 𝑁: the inverse probability weighting estima-
tor and the multiple imputation estimator, which we now
briefly review.
Let Ψ(𝐷, 𝐙; 𝜷) = {𝐷 − 𝐾𝑔(𝐙; 𝜷)∕𝜓(𝐙; 𝜷)}𝐙 be the

score function with respect to 𝜷 under the conditional
distribution of 𝐷 given (𝐙, 𝐷 > 0), where 𝜓(𝐳; 𝜷) =

1 − {1 − 𝑔(𝐳; 𝜷)}𝐾 denotes the probability of an individual
being captured at least once given covariate 𝐳. Then Lee
et al. (2016)’s inverse probability weighting estimator is
𝑁̃1 =

∑𝑚

𝑖=1
{ℎ̂𝑑𝑖𝜓(𝐳𝑖; 𝜷1)}

−1, where 𝜷1 is the solution to∑𝑚

𝑖=1
Ψ(𝐳𝑖; 𝜷)∕ℎ̂𝑑𝑖 = 𝟎, and ℎ̂𝑑𝑖 is defined in (14). Lee

et al. (2016)’s multiple imputation estimator is 𝑁̃2 =∑𝑚

𝑖=1
{1∕𝜓(𝐳𝑖; 𝜷2)} +

∑𝑛

𝑗=𝑚+1
{𝑀∕

∑𝑀

𝑣=1
𝜓(𝐳𝑣𝑗; 𝜷2)}, where

for each of the missing values 𝐳𝑗 (𝑗 = 𝑚 + 1,… , 𝑛), 𝑀
imputed values {𝐳𝑣𝑗, 𝑣 = 1,… ,𝑀} are generated from
𝐹(𝐳|𝑑𝑗) = ∑𝑚

𝑖=1
𝐼(𝑑𝑖 = 𝑑𝑗, 𝐳𝑖 ≤ 𝐳)∕

∑𝑚

𝑠=1
𝐼(𝑑𝑠 = 𝑑𝑗), and

𝜷2 is the solution to
∑𝑚

𝑖=1
Ψ(𝐳𝑖; 𝜷) +

∑𝑛

𝑗=𝑚+1∑𝑀

𝑣=1
Ψ(𝐳𝑣𝑗; 𝜷)∕𝑀 = 𝟎. Let 1 and 2 denote the cor-

responding Wald-type confidence intervals of 𝑁 based on
these two point estimators, that is,

1 = {𝑁 ∶ (𝑁̃1 − 𝑁)2∕𝜎21 ≤ 𝜒21(1 − 𝑎)} and

2 = {𝑁 ∶ (𝑁̃2 − 𝑁)2∕𝜎2
2
≤ 𝜒2

1
(1 − 𝑎)},

where 𝜎21 and 𝜎
2
2 are the variance estimates of 𝑁̃1 and 𝑁̃2

provided by Lee et al. (2016).
We may alternatively simply abandon the data with

missing values and apply the maximum empirical likeli-
hood estimation method of Liu et al. (2017) on the𝑚 com-
pletely observed data. This corresponds to the complete-
case method in the usual missing data problem. Let 𝑁̃3 be
the maximum EL abundance estimator 𝑁̂𝑠 and 3 the cor-
responding likelihood ratio confidence interval 1𝑠 in Liu
et al. (2017). As we have commented in Remark 1, 𝑁̃3 gen-
erally underestimates 𝑁.
For a generic abundance estimator 𝑁̆, we use its abso-

lute bias, Bias(𝑁̆) = 𝔼𝑁̆ − 𝑁0, and relative mean square
error, RMSE(𝑁̆) = 𝔼(𝑁̆ − 𝑁0)

2∕𝑁0, to evaluate its finite-
sample performance. Corresponding to a generic two-
sided confidence interval [𝑁𝐿,𝑁𝑈] are two one-sided inter-
vals, [𝑁𝐿,∞] (lower limit) and [𝑛,𝑁𝑈] (upper limit). We
compare all the interval estimators by their coverage prob-
abilities.

3.1 Simulation setup

We generate data from the following four scenarios:

A. Set the total number of capture occasions 𝐾 = 2 and
individual covariate 𝐙 = (1, 𝑌)⊤, where 𝑌 follows the
uniform distribution U(0, 3). Given 𝐙 = 𝐳, we gen-
erate 𝐷 from a binomial distribution Bi(𝐾, 𝑔(𝐳; 𝜷0))
with 𝜷0 = (−2, 1)⊤. The selection probability defined in
Equation (2) is set to pr(𝑅 = 1|𝐷 = 𝑘) = {1 + exp(0.5 −

0.7𝑘)}−1. In this setting, both the overall capture prob-
ability and the selection probability are about 60%.

B. The same as Scenario A except 𝐾 = 16 and 𝜷0 =

(−4.5, 1)⊤. The overall capture probability and the
selection probability become about 55% and 66%,
respectively.

C. We consider the individual covariate 𝐙 = (1, 𝑋, 𝑌)⊤

with 𝑋 ∼ Bi(1, 0.3) and 𝑌 ∼ U(0, 3). Given 𝐙 = 𝐳,
we generate 𝐷 from Bi(𝐾, 𝑔(𝐳; 𝜷0)) where 𝐾 = 2

and 𝜷0 = (−2, 1, 1)⊤. Here the 𝑋s are completely
observed and the 𝑌s are subject to missingness with
the selection probability pr(𝑅 = 1|𝑋 = 𝑗,𝐷 = 𝑘) =

{1 + exp(0.5 − 0.7𝑗 − 0.7𝑘)}−1. In this setting, both
the overall capture probability and the selection
probability are about 66%.

D. The same as Scenario C except 𝐾 = 16 and 𝜷0 =

(−5, 1, 1)⊤. The overall capture probability and the
selection probability become around 50% and 71%,
respectively.

Scenarios A and B have only one covariate, and the
covariate is subject to missingness. In contrast, Scenarios
C and D have two covariates: One is subject to missing-
ness, but the other is always observed. The proposed EL
method (𝑁̂, , and 𝑅′(𝑁)) applies to Scenarios A and B,
and its extension (𝑁̂𝑒, 𝑒, and𝑅′𝑒(𝑁)) applies to Scenarios C
and D. Scenarios B and D are designed to have𝐾 = 16 cap-
tures, whichmimics that of the prinia analysis in Section 4.
In each of the four scenarios, we set the population size
to 𝑁0 = 200 and 400. All the results reported are obtained
based on 5000 simulation replications.

3.2 Simulation results

Comparison of point estimation. For the four abun-
dance estimators being considered, Table 1 tabulates the
biases (Bias), relative mean square errors (RMSE), simu-
lated standard deviations (SD), and average standard devi-
ation estimates or standard errors (ASDE) over 5000 simu-
lation replications. We see that our estimator 𝑁̂ or 𝑁̂𝑒 uni-
formly outperforms Lee et al. (2016)’s estimators 𝑁̃1 and
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TABLE 1 Finite-sample performance of the proposed estimator 𝑁̂ (or 𝑁̂𝑒) and three existing estimators 𝑁̃1, 𝑁̃2, and 𝑁̃3. Bias: absolute
bias; RMSE: relative mean square error; SD: standard deviation; ASDE: average of standard deviation estimates

Scenario A Scenario B
𝑵𝟎 𝑵 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵 𝑵𝟏 𝑵𝟐 𝑵𝟑

200 Bias 18.44 27.55 28.15 −86.39 6.70 12.56 11.74 −84.77
RMSE 38.79 48.12 47.45 45.05 9.95 12.52 12.19 38.43
SD 86.13 94.16 93.27 39.32 44.10 48.44 47.96 22.39
ASDE 62.71 69.74 67.03 30.56 41.22 44.12 42.60 21.69

400 Bias 16.28 24.10 24.53 −181.60 5.95 11.19 10.78 −172.41
RMSE 15.83 18.56 19.07 85.95 8.20 9.29 9.23 76.43
SD 77.90 82.73 83.83 37.41 56.97 59.92 59.74 29.10
ASDE 70.63 75.04 72.10 33.69 54.43 56.90 55.33 28.07

Scenario C Scenario D
𝑵𝟎 𝑵𝒆 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝒆 𝑵𝟏 𝑵𝟐 𝑵𝟑

200 Bias 13.23 20.11 20.43 −75.52 9.17 15.71 12.66 −77.85
RMSE 25.51 30.05 29.16 33.32 14.00 17.01 15.24 34.08
SD 70.20 74.87 73.59 30.99 52.11 56.17 53.74 27.48
ASDE 45.24 50.75 48.71 23.30 48.18 51.29 48.93 27.15

400 Bias 10.23 16.12 16.20 −158.08 7.63 13.28 11.22 −160.99
RMSE 8.20 9.52 9.65 64.72 10.36 11.52 11.36 67.74
SD 56.36 59.56 59.99 29.96 63.93 66.57 66.46 34.35
ASDE 51.85 55.56 53.27 26.77 62.51 64.90 63.28 34.06

𝑁̃2 in terms of Bias, RMSE, and SD. The ASDEs are always
smaller than the SDs, but as 𝑁0 increases from 200 to 400
the differences decrease.
When all the missing data are ignored, the complete-

case estimator 𝑁̃3 is severely downward biased, especially
when the true abundance𝑁0 is large. This is different from
the usual missing-data problem, in which the complete-
case estimator is still consistent although itmay not be effi-
cient under the MAR assumption. A possible explanation
for this observation is that the sample without the miss-
ing data is skewed toward individuals with higher num-
bers of captures 𝐷, which are associated with more catch-
able covariates 𝐙. This also explains why the empirical dis-
tribution of 𝐙 is estimated to be “more catchable” than it
should be, and hence why the abundance estimates are
downward biased.
Comparison of interval estimation. Table 2 reports the

two-sided and one-sided coverage probabilities of the pro-
posed interval ( or 𝑒) and the two Wald-type intervals
(1 and2) when the nominal levels are 90%, 95%, and 99%.
Because the corresponding estimator 𝑁̃3 is severely biased,
the complete-case interval estimator 3 is expected to have
poor coverage probabilities and is hence omitted.
Table 2 shows that our confidence interval  or 𝑒

always has the best performance among the three inter-
vals in terms of both one-sided and two-sided coverage
accuracy. For two-sided confidence intervals, although the
two Wald-type confidence intervals 1 and 2 may pro-

duce desirable coverage probabilities at the 90% level, they
usually have undercoverage at the 95% and 99% levels.
For example, the undercoverage is as large as around 3%
for Scenario A and 𝑁0 = 200. For interval estimation, the
lower limits of 1 and 2 often produce undercoverage,
while their upper limits often produce overcoverage.When
the population size increases from 200 to 400, the one-
sided and two-sided coverage probabilities of all three
interval estimators become more accurate. This is proba-
bly because more individuals are observed, and thus the
distributions of the EL ratio statistic and the pivotal statis-
tics are closer to their limiting distributions.
Comparison of QQ plots. Figure 1 shows QQ plots of

the proposed likelihood ratio statistic𝑅′(𝑁0) or𝑅′𝑒(𝑁0) ver-
sus its limiting𝜒21 distribution and the two pivotal statistics
(𝑁̃1 − 𝑁0)∕𝜎1 and (𝑁̃2 − 𝑁0)∕𝜎2 versus their limiting dis-
tribution 𝑁(0, 1) in Scenarios (A) and (B) with 𝑁0 = 200.
The plots for the other two scenarios are similar and are
omitted. The findings of our interval comparison can be
well explained by these QQ plots.
We can clearly see that the finite-sample distributions of

𝑅′(𝑁0) or 𝑅′𝑒(𝑁0) are always much closer to the limiting 𝜒21
distribution than those of (𝑁̃1 − 𝑁0)∕𝜎1 and (𝑁̃2 − 𝑁0)∕𝜎2
are to their limiting distribution𝑁(0, 1). This explains why
the EL ratio confidence interval  or 𝑒 has more accu-
rate coverage probabilities than the two Wald-type con-
fidence intervals 1 and 2. The coverage probabilities
of 1 and 2 are very close to each other in all the sce-
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TABLE 2 Simulated coverage probabilities of the proposed confidence interval ( or 𝑒) and the two Wald-type confidence intervals (1
and 2)

Scenario A Scenario B Scenario C Scenario D
Type Level 𝑵𝟎  𝟏 𝟐  𝟏 𝟐 𝒆 𝟏 𝟐 𝒆 𝟏 𝟐

Two sided 90% 200 90 90 89 90 90 89 90 91 91 90 91 89
400 90 91 91 90 91 90 90 90 91 90 90 89

95% 200 95 93 92 95 93 92 95 94 93 96 94 93
400 95 94 93 94 94 93 95 94 94 95 94 93

99% 200 99 96 96 99 96 96 99 97 96 99 97 96
400 99 97 96 99 97 97 99 98 97 99 97 97

Lower limit 90% 200 90 86 85 89 86 84 89 87 86 89 86 85
400 90 87 86 89 87 86 89 88 86 89 87 86

95% 200 95 90 89 94 90 89 95 91 91 95 91 90
400 95 91 91 94 92 91 95 91 91 94 91 90

99% 200 99 95 94 99 95 95 99 96 95 99 96 95
400 99 96 96 99 96 96 99 97 96 99 97 96

Upper limit 90% 200 91 100 100 92 98 97 91 100 99 91 98 98
400 90 99 98 91 95 94 90 98 96 91 96 96

95% 200 96 100 100 96 100 100 95 100 100 96 100 100
400 95 100 100 95 99 99 95 100 100 96 99 99

99% 200 99 100 100 99 100 100 99 100 100 99 100 100
400 99 100 100 99 100 100 99 100 100 99 100 100

narios because of the near-coincidence of the distribu-
tions of their corresponding pivotal statistics. In addition,
the quantiles of these two pivotal statistics are generally
smaller than the standard normal quantiles. This explains
why the lower limits of the twoWald-type confidence inter-
vals have severe undercoverage while their upper limits
have severe overcoverage.
In summary, if we discard the missing data directly, the

complete-case estimator 𝑁̃3 is unacceptably biased. How-
ever, our method corrects its bias and produces desirable
point and interval estimators for the abundance. Our esti-
mator 𝑁̂ or 𝑁̂𝑒 usually has a lower bias, RMSE, and SD than
Lee et al. (2016)’s estimators 𝑁̃1 and 𝑁̃2. Our interval esti-
mator always has better performance than the Wald-type
interval estimators 1 and 2 in terms of one-sided and
two-sided coverage accuracy.

4 APPLICATION TO PRINIA DATA

In this section, we apply our estimation method to analyze
data collected in Hong Kong for the yellow-bellied prinia,
a bird species. There are 165 distinct birds captured at least
once during the 17 weeks from January to April 1993. We
consider three covariates: fat index 𝑋1, wing length indi-
cator 𝑋2, and tail length 𝑌. In the original dataset, the
fat index ranges from 1 to 4 and two records are missing.
Following Lee et al. (2016), we delete these two records,

and we regard level 1 as not fat (𝑋1 = 0) and the other
levels as fat (𝑋1 = 1). The wing lengths range from 43 to
49 mm. According to Zhao (2001), the wing lengths of
yellow-bellied prinia generally range from 37 to 45.5 mm.
Let 𝑋2 indicate whether a wing length is too long: we set
it to 1 if the wing length is above 45.5 mm, and 0 other-
wise. The variables 𝑋1 and 𝑋2 are completely observed.
The tail length𝑌 has continuous values, and 25% of its val-
ues are missing.
We assume that 𝑌 is MAR, so pr(𝑅 = 1|𝑋1 = 𝑥1, 𝑋2 =

𝑥2, 𝑌 = 𝑦, 𝐷 = 𝑘) = pr(𝑅 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝐷 = 𝑘).
In our EL approach, the specific expression of
pr(𝑅 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝐷 = 𝑘) does not matter,
but the covariates 𝑋1 and 𝑋2 must take discrete values.
This is why we discretize the continuous wing length
to obtain the categorical covariate 𝑋2. Suppose that the
capture probability of a yellow-bellied prinia follows the
Huggins-Alho model in (1). The seven nonempty subsets
of {𝑋1, 𝑋2, 𝑌} correspond to seven choices of 𝐙, and these
lead to seven Huggins-Alho models; see Table 3. When 𝑌
does not appear in 𝐙, there are no missing data and we
apply only the complete-case-based method (CC) of Liu
et al. (2017) to analyze the data. Otherwise, we analyze
the data by the extension of our EL method (EL), the
inverse probability weighting method (IPW), the multiple
imputation method (MI), and the CC method. Table 3
tabulates the point estimates of 𝜷 and 𝑁, their standard
errors (SE), and 95% confidence intervals for 𝑁 based
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F IGURE 1 QQ plots of the proposed likelihood ratio 𝑅′(𝑁0) versus 𝜒2
1 (Row 1) and the Studentized statistics based on Lee et al. (2016)’s

two abundance estimators versus 𝑁(0, 1) (Row 2) in Scenarios A (Column 1) and B (Column 2) with 𝑁0 = 200. Circle: the IPW estimate 𝑁̃1;
Triangle: the MI estimate 𝑁̃2; Dashed line: the identity line. This figure appears in color in the electronic version of this article, and any
mention of color refers to that version

on these methods. Specifically, the point and interval
estimators corresponding to EL, IPW, MI, and CC are
{𝑁̂,}, {𝑁̃1,1}, {𝑁̃2,2}, and {𝑁̃3,3}, respectively.
With different covariates, the estimation results vary

considerably. Under Models 4-7, which include 𝑌 as a
covariate, EL, IPW, andMI produce very similar point esti-
mates for𝑁, which aremuch larger than the CC estimates.
According to our simulations, CC usually gives biased esti-
mates when the missing data are ignored. To compare
thesemodels, we calculate their EL-basedAkaike informa-
tion criterion (AIC) values, and report the differenceΔAIC
between each AIC value and the smallest AIC value in the
final column of Table 3. The smaller the AIC, the better
the model. We see that models with more covariates have
smaller AIC values. In particular, adding𝑌 to each ofMod-
els 1-3 always leads to a decreased AIC, and Model 7, the
largest model, is the best.

Based on Model 7, we test whether each of the coeffi-
cients of𝑋1, 𝑋2, and𝑌 is zero via the proposed EL ratio test
calibrated by the 𝜒21 limiting distribution. The P-values of
these tests are 0.35%, 5.1%, and 3.9%, respectively. Roughly
speaking, in addition to the wing length indicator𝑋2, both
the fat index 𝑋1 and the tail length 𝑌 are important for
explaining the heterogeneity among the capture proba-
bilities, and Model 7 is the most appropriate Huggins-
Alho model. Under this model, we conclude that there are
around 740 (with standard error 217) yellow-bellied prinia
in total, with a 95% confidence interval of [452, 1652].
Previously, Hwang and Huang (2003), Yip et al. (2005),

and Xi et al. (2009) analyzed this dataset under different
model assumptions. They took the exact measurement of
wing length as the only covariate. Their abundance esti-
mates are 529 (107), 578 (153), and 542 (105). To understand
the differences between their estimates and our estimate
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TABLE 3 Results for the prinia data

Model 𝐙⊤ Method 𝑵 SE(𝑵) CI 𝜷 SE(𝜷) 𝚫𝐀𝐈𝐂

1 (1, 𝑋1) CC 520 105 [369, 881] (−4.26, 1.04) (0.33, 0.36) 614.14
2 (1, 𝑋2) CC 502 94 [367, 763] (−4.02, 0.97) (0.26, 0.31) 613.33
3 (1, 𝑋1, 𝑋2) CC 637 178 [420, 1177] (−4.80, 1.09, 1.01) (0.44, 0.38, 0.32) 605.61
4 (1, 𝑌) EL 606 156 [393, 1327] (−10.03, 0.08) (1.98, 0.03) 7.66

IPW 602 233 [145, 1060] (−10.04, 0.08) (3.31, 0.04)
MI 598 231 [145, 1051] (−9.96, 0.08) (3.29, 0.04)
CC 362 75 [244, 729] (−9.62, 0.08) (1.36, 0.02)

5 (1, 𝑋1, 𝑌) EL 751 249 [443, 1890] (−10.41, 1.00, 0.08) (2.03, 0.39, 0.03) 1.80
IPW 770 346 [91, 1449] (−10.58, 1.01, 0.08) (3.05, 0.42, 0.04)
MI 764 337 [103, 1425] (−10.51, 1.01, 0.08) (3.03, 0.41, 0.04)
CC 406 104 [258, 916] (−10.04, 0.71, 0.08) (1.45, 0.39, 0.02)

6 (1, 𝑋2, 𝑌) EL 600 140 [400, 1185] (−8.64, 0.62, 0.06) (2.09, 0.36, 0.03) 6.51
IPW 607 203 [208, 1006] (−8.74, 0.63, 0.06) (3.18, 0.34, 0.04)
MI 604 202 [208, 1001] (−8.67, 0.63, 0.06) (3.16, 0.32, 0.04)
CC 372 79 [252, 690] (−8.10, 0.72, 0.06) (1.55, 0.42, 0.02)

7 (1, 𝑋1, 𝑋2, 𝑌) EL 740 217 [452, 1652] (−8.83, 1.03, 0.68, 0.05) (2.10, 0.38, 0.36, 0.03) 0
IPW 760 286 [199, 1321] (−9.08, 1.04, 0.68, 0.06) (2.95, 0.41, 0.33, 0.04)
MI 757 278 [213, 1302] (−9.01, 1.04, 0.68, 0.06) (2.92, 0.39, 0.31, 0.04)
CC 416 112 [269, 841] (−8.32, 0.78, 0.79, 0.05) (1.65, 0.41, 0.44, 0.02)

502 (94) under Model 2, we further analyze this dataset by
using the exact measurement of wing length as the only
covariate. The CCmethod of Liu et al. (2017) gives the esti-
mate 510 (108), which is quite close to our estimate under
Model 2. This may suggest that the difference between our
estimate and the estimates of Hwang and Huang (2003),
Yip et al. (2005), and Xi et al. (2009) are mainly because
they consider the measurement error in wing length in
their data analyses, but our method did not consider that.
AsXi et al. (2009) indicated, if somemajor covariates affect-
ing the capture probability are not included in the model,
the final results might not be reliable. Our evidence sug-
gests that 𝑋1 and 𝑌 are such covariates, and therefore the
abundance estimate of 740 under Model 7 is more reliable.

5 DISCUSSION

This paper is a further development of the full-likelihood
approach to abundance estimation, which was proposed
by Liu et al. (2017) for discrete-time capture-recapture data
in the case of fully observed covariates and then extended
by Liu et al. (2018) to continuous-time capture-recapture
data. However, their methods are not directly applicable to
data with missing covariates. This paper extends the full-
likelihood approach to discrete-time capture-recapture
data with missing covariates.

Our EL method can be extended, with care, to ana-
lyze continuous-time capture-recapture data with miss-
ing covariates. In discrete-time capture-recapture data, the
largest possible number of captures of an individual is the
number of capture occasions, which is finite. Therefore,
a finite-dimensional estimating equation 𝐔 can be con-
structed in the development of our ELmethod. In contrast,
in continuous-time capture-recapture data, the largest pos-
sible number of captures is infinite, and our EL method
fails. To overcome this difficulty, one could truncate the
number of captures and proceed as before. We leave this
to future research.
Recently, Stoklosa et al. (2019) have proposed

estimating-equation-based inference procedures that
can incorporate both measurement errors and missing
data. These methods work because the bias of the esti-
mating equations can be removed by proper weighting.
However, it is difficult to directly incorporate measure-
ment errors in our EL method. One potential way to
overcome this difficulty is to postulate a parametric model
on the covariate distribution (Xi et al., 2009).
Both the current paper and Liu et al. (2017) focus on

𝑀ℎ models, where the capture probability is affected only
by heterogeneity between individuals (ℎ). Another possi-
ble extension is to𝑀𝑡ℎ,𝑀𝑏ℎ, and𝑀𝑡𝑏ℎ models (Otis et al.,
1978), where the capture probabilitymay also be influenced
by either capture time (𝑡) or behavioral response (𝑏).
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