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Abstract
Testing the existence of a quantitative trait locus (QTL)
effect is an important task in QTL mapping studies.
Most studies concentrate on the case where the pheno-
type distributions of different QTL groups follow nor-
mal distributions with the same unknown variance. In
this paper we make a more general assumption that
the phenotype distributions come from a location-scale
distribution family. We derive the limiting distribution
of the likelihood ratio test (LRT) for the existence of
the QTL effect in both location and scale in genetic
backcross studies. We further identify an explicit rep-
resentation for this limiting distribution. As a comple-
ment, we study the limiting distribution of the LRT and
its explicit representation for the existence of the QTL
effect in the location only. The asymptotic properties of
the LRTs under a local alternative are also investigated.
Simulation studies are used to evaluate the asymp-
totic results, and a real-data example is included for
illustration.
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1 INTRODUCTION

Quantitative trait locus (QTL) mapping is an important tool for analyzing the genetic factors con-
tributing to the variations of quantitative traits in humans, plants, and animals. A starting point
of QTL mapping studies is to test the existence of a QTL effect. If the QTL effect exists, we proceed
to identify the locations and estimate the genetic effect of the QTLs.

A popular method for testing the existence of a QTL effect is the interval mapping method
developed by Lander and Botstein (1989). Consider a putative QTL, say Q, located between two
flanking markers in a backcross design, with M and N being the left and right flanking mark-
ers, respectively. For individuals in the backcross population, the possible genotypes are MM and
Mm at M, NN and Nn at N, and QQ and Qq at Q. Hence, the individuals in the backcross popula-
tion have four marker genotypes: MM∕NN, MM∕Nn, Mm∕NN, or Mm∕Nn. For each individual,
we can observe the genotypes of the two flanking markers and the phenotype, but we cannot
observe the QTL genotype, which must be inferred from the marker information. The pheno-
type data can be divided into four groups according to their marker genotypes. A testing method
based on these data for detecting a QTL in the interval M–N is referred to as an interval mapping
method.

In this paper, we consider the backcross study described above and assume that no interfer-
ence or double recombination occurs between two marker-QTL intervals. Let f1 and f2 be the
phenotype probability density functions corresponding to the two genotypes QQ and Qq, respec-
tively. We use y11,… , y1n1 , y21,… , y2n2 , y31,… , y3n3 , and y41,… , y4n4 to denote the phenotype data
corresponding to the marker genotypes MM∕NN, MM∕Nn, Mm∕NN, and Mm∕Nn, respectively.
Denote by r and r1 the recombination frequencies between M and N, and between M and Q,
respectively. According to Doerge, Zeng, and Weir (1997) and Wu, Ma, and Casella (2007),

y1j
iid∼ f1(y), j = 1,… ,n1,

y2j
iid∼ 𝜃f1(y) + (1 − 𝜃)f2(y), j = 1,… ,n2,

y3j
iid∼ (1 − 𝜃)f1(y) + 𝜃f2(y), j = 1,… ,n3,

y4j
iid∼ f2(y), j = 1,… ,n4, (1)

where 𝜃 = r1∕r. Since the two flanking markers are prespecified, the recombination frequency r is
generally known. However, the location of Q is unknown, so neither the recombination frequency
r1 nor the parameter 𝜃 is known. The problem of testing the existence of a QTL effect is equivalent
to testing H0: f1 = f2 versus H1: f1 ≠ f2.

The likelihood ratio test (LRT) has been commonly applied to test the existence of a QTL
effect when f1 and f2 in Equation (1) are from the same parametric distribution family (Chen &
Chen, 2005; Wu et al., 2007). Due to the mixture model structure in Equation (1) and the fact
that 𝜃 appears under only the alternative model, determining the critical values of the LRT has
been a long-standing problem in its application. Under the assumption that f1 and f2 are nor-
mal distributions with the same unknown variance, Feingold, Brown, and Siegmund (1993) and
Rebai, Goffinet, and Mangin (1994) proposed approximation methods, which do not have rigor-
ous theoretical support, to determine the critical values of the LRT. Under the same setup, Chen
and Chen (2005) rigorously showed that the LRT statistic converges in distribution to the supre-
mum of a chi-square process under the null hypothesis. They further suggested using numerical
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approximation to determine the critical values of the LRT from its limiting distribution. Sim-
ulation shows that their method provides more accurate critical values than those of Feingold
et al. (1993) and Rebai et al. (1994). Similar limiting distributions for the LRT were obtained
by Wu, Chen, and Liu (2008) and Kim, Cui, and Zhao (2013) for the case where f1 and f2 are
from a one-parameter (mean parameter) exponential family. Under the same assumption on f1
and f2 as in Chen and Chen (2005), Chang, Wu, Wu, and Casella (2009) developed a score test
and showed that the maximum of the squared score statistic is asymptotically equivalent to the
LRT statistic.

In summary, the aforementioned works concentrate on the QTL effect in the mean parameter
only. As Weller and Wyler (1992) and Korol, Ronin, Tadmor, Bar-Zur, and Kirzhner (1996) have
pointed out, a QTL effect may be economically more critical in the variance than in the mean
(e.g., for earliness, flowering time, ripening time under machine harvesting, time for chickens
to hatch, and seed dormancy). To the best of our knowledge, Korol et al. (1996) were the first
to take the variance effect into account in interval mapping studies: they investigated the power
of the LRT through simulations. Their study was based on the known-QTL-location and nor-
mality assumptions; no theoretical results were provided on how to determine critical values of
the LRT.

In this paper, we fill the gap in genetic backcross studies by studying the LRT procedure for
the existence of a QTL effect in both location and scale with an unknown QTL location. The nor-
mality assumption on f1 and f2 is quite natural, but it can be restrictive. We instead assume that f1
and f2 come from a general location-scale distribution family, and they may have different loca-
tions and/or scales. Testing H0 ∶ f1 = f2 under the above setup in Equation (1) is essentially testing
homogeneity in four samples. There has been much research into the asymptotic properties of
the LRT for homogeneity in the mixture model in the one-sample case; see Dacunha-Castelle
and Gassiat (1999), Liu and Shao (2003), Garel (2005), Gu, Koenker, and Volgushev (2018), and
the references therein. However, the mixture model with component densities from a general
location-scale distribution family has some undesirable properties. The likelihood function of the
unknown parameters is unbounded (Hathaway, 1985), and the Fisher information on the mixing
proportion can be infinity (Chen & Li, 2009). Because of these two nonregularities, the existing
elegant asymptotic results of the LRT for homogeneity in the one-sample mixture model are not
directly applicable to the mixture model with component densities from a general location-scale
distribution family. Taking advantage of the specific four-sample structure in Equation (1), we
successfully derive the asymptotic properties of the maximum likelihood estimators (MLEs) of
the unknown parameters and the LRT statistic under the null hypothesis that no QTL exists. To
the best of our knowledge, we are the first to consider the asymptotic results of the LRT for homo-
geneity in the mixture model with component densities from a general location-scale distribution
family.

We focus on the data structure in Equation (1) with f1 and f2 from a general location-scale
distribution family. Our contributions can be summarized as follows. First, we establish the con-
vergence rates of the MLEs of the location and scale parameters in f1 and f2, and we show that the
LRT statistic converges in distribution to the supremum of a 𝜒2

2 process, under the null hypothe-
sis that no QTL exists. We further identify an explicit representation of the limiting distribution,
which can be used to rapidly calculate the critical values of the LRT. Second, as a complement,
we study the limiting distribution of the LRT and its explicit representation for the existence of
a QTL effect in the location only (i.e., f1 and f2 have the same unknown scale parameter). Third,
we derive the local powers of the above two LRTs under a series of local alternatives. The local
power results indicate that the two LRTs are consistent under the given local alternatives. We
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emphasize that the existing asymptotic results under the normality assumption with a common
unknown variance rely on the assumption that the mean parameter space is bounded (Chang
et al., 2009; Chen & Chen, 2005). Our asymptotic results do not depend on this assumption
whether or not a QTL effect in the scale exists. Fourth, based on the limiting distributions of two
LRTs, the approximation of Davies (1987) can be applied to approximate the critical values of
the LRTs. We conduct simulations to show that the empirical type I errors of two LRTs based on
the explicit representations are quite close to the nominal levels, and they are closer than those
based on Davies's method. Further, the LRT in both the location and scale is uniformly more
powerful than existing nonparametric tests such as the multiple-sample Kolmogorov–Smirnov
test (Kiefer, 1959) and the multiple-sample Anderson–Darling test (Scholz &
Stephens, 1987).

The paper is organized as follows. Section 2 presents the large-sample properties of the MLEs
of the unknown parameters and the LRTs where (1) f1 and f2 may have different locations and/or
scales and (2) f1 and f2 have the same unknown scale. We give explicit representations of the
limiting distributions of the LRTs in these two cases, and we study their local powers under a
series of local alternatives. Section 3 investigates the finite-sample performance of the LRTs via
simulation studies, and Section 4 analyzes a real-data set. Section 5 concludes with a discussion.
For clarity, the proofs are postponed to the Appendix A or the Appendix S1.

2 MAIN RESULTS

Suppose we have the observations {yij, i = 1,… , 4, j = 1,… ,ni} from (1) with f1(y) and f2(y) from
the same location-scale distribution family. That is, f1(y) = f(y;𝜇1, 𝜎1) and f2(y) = f(y;𝜇2, 𝜎2) with
f (y;𝜇, 𝜎) = 𝜎−1f ((y − 𝜇)∕𝜎; 0, 1), where f(⋅; 0, 1) is a known probability density function, and 𝜇
and 𝜎 are the location and scale parameters, respectively. Under this setup, testing the existence
of the QTL effect in both location and scale is equivalent to testing

H0 ∶ (𝜇1, 𝜎1) = (𝜇2, 𝜎2). (2)

2.1 Asymptotic properties under the null

The LRT is one of the most important tools in statistical inference, especially for parametric mod-
els (Chernoff, 1954; Self & Liang, 1987; Wilks, 1938). In this subsection, we establish the LRT
statistics for testing (2). Based on the observed data in Equation (1), the log-likelihood function
of (𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) is

ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) =
n1∑

j=1
log f1(y1j) +

n2∑
j=1

log{𝜃f1(y2j) + (1 − 𝜃)f2(y2j)}

+
n3∑

j=1
log{(1 − 𝜃)f1(y3j) + 𝜃f2(y3j)} +

n4∑
j=1

log f2(y4j).

The MLEs of the unknown parameters under the null and full models are respectively

(𝜇̂0, 𝜎̂0) = argmax
𝜇,𝜎

ln(0.5, 𝜇, 𝜇, 𝜎, 𝜎), (3)
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and

(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) = arg max
𝜃,𝜇1,𝜇2,𝜎1,𝜎2

ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2).

Then the LRT statistic for testing (2) is defined to be

Rn = 2{ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 𝜇̂0, 𝜇̂0, 𝜎̂0, 𝜎̂0)}.

We reject H0 when Rn exceeds some critical value to be determined by its limiting distribution. In
the definition of the MLEs in Equation (3) under the null model, we arbitrarily set the parameter
𝜃 to 0.5; other choices of 𝜃 do not change the resulting likelihood or LRT, since 𝜃 does not appear
in the null model.

We define some notation to ease the presentation of the asymptotic properties of (𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2)
and Rn. Let the total sample size be n =

∑4
i=1 ni. We assume that the ni's go to ∞ at the same

rate. That is, ni∕n goes to a constant pi with pi > 0, i = 1,… , 4. In the genetic backcross studies
described in Section 1, the pi's are related to r, the recombination frequency between two markers
M and N, in the following way (see Wu et al., 2007):

(p1, p2, p3, p4) =
(1 − r

2
,

r
2
,

r
2
,

1 − r
2

)
.

Let zhk (h, k = 1, 2) be independent and identically distributed standard normal random variables,
and define for h = 1, 2,

Zh(𝜃) =
√

1 − r√
1 + 4r𝜃(𝜃 − 1)

zh1 +
√

r(2𝜃 − 1)√
1 + 4r𝜃(𝜃 − 1)

zh2, (4)

where 0 ≤ 𝜃 ≤ 1. It is clear that the {Zh(𝜃) ∶ 𝜃 ∈ [0, 1]} (h = 1, 2) are independent and both are
Gaussian processes with zero mean, unit variance, and covariance function

Cov (Zh(𝜃1),Zh(𝜃2)) =
1 + r{4𝜃1𝜃2 − 2(𝜃1 + 𝜃2)}√

{4r𝜃1(𝜃1 − 1) + 1}{4r𝜃2(𝜃2 − 1) + 1}
.

Let 𝛾 = arccos
√

1 − r. Define three sets of angles,

A1 = [−𝛾, 𝛾] ∪ [𝜋 − 𝛾, 𝜋] ∪ [−𝜋,−𝜋 + 𝛾],

A2 = [𝛾, 𝜋∕2] ∪ [−𝜋 + 𝛾,−𝜋∕2],

A3 = [𝜋∕2, 𝜋 − 𝛾] ∪ [−𝜋∕2,−𝛾], (5)

which form a partition of [−𝜋, 𝜋] and are depicted in Figure 1.
In Theorem 1 we establish the root-n consistency of the MLE of (𝜇1, 𝜇2, 𝜎1, 𝜎2) and the limiting

distribution of Rn. For presentational continuity, we have put the long proof in the Appendices A
and S1.

Theorem 1. Suppose that f(y;𝜇, 𝜎) satisfies Conditions A1–A7 in the Appendix A and that ni∕n
goes to pi ∈ (0, 1) as n → ∞, i = 1,… , 4. Under the null distribution f(y;𝜇0, 𝜎0), we have that
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F I G U R E 1 Graphical
presentation of the sets A1, A2, and
A3 defined in Equation (5).

γ

-γ
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A1

A1

A1

A2A3

A3A2

(i) 𝜇̂h = 𝜇0 + Op(n−1∕2) and 𝜎̂h = 𝜎0 + Op(n−1∕2), h = 1, 2;

(ii) as n → ∞, the LRT statistic Rn →d R = sup0≤𝜃≤1{Z2
1(𝜃) + Z2

2(𝜃)}, where
d
→ stands for conver-

gence in distribution and Z1(𝜃) and Z2(𝜃) are defined in Equation (4).

Further, let 𝜌2
h with 𝜌h > 0 and h = 1, 2 be independent random variables from 𝜒2

2 . Define
𝜂 = (U1 + U2)∕2 − (𝜋∕4), where U1 and U2, independent of 𝜌2

1 and 𝜌2
2, are independent random

variables from the uniform distribution on [−3𝜋∕4, 5𝜋∕4]. Then,

R
d
=
𝜌2

1 + 𝜌
2
2

2
+ 𝜌1𝜌2{IA1(𝜂) + IA2(𝜂) cos(2𝜂 − 2𝛾) + IA3(𝜂) cos(2𝜂 + 2𝛾)}, (6)

where X
d
=Y indicates that the two random variables X and Y have the same distribution.

Developing the asymptotic results of Rn is technically challenging for two reasons. First, 𝜃
is a nuisance parameter that appears only in the alternative model and hence is not identifi-
able under the null model. This invalidates many elegant asymptotic results for the classical LRT
method (Chernoff, 1954; Self & Liang, 1987; Wilks, 1938). Second, the presence of scale param-
eters in the model also complicates the derivation; see the comments in Chen and Chen (2003)
and Chen and Li (2009). The log-likelihood functions for the second and third groups of obser-
vations are unbounded. Using the first and fourth groups of observations, we are able to show
in Lemma 1 in the Appendix A(see the Appendix S1 for a detailed proof) that any estimator of
(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) with a large likelihood value is consistent for 𝜇h and 𝜎h, h = 1, 2. This implies
the consistency of 𝜇̂h and 𝜎̂h without the condition that the parameter space for 𝜇h and/or 𝜎h is
bounded.

The limiting distribution of Rn involves the supremum of the 𝜒2
2 process. It may be difficult

to calculate the critical values in general (Adler, 1990). The explicit representation of the limiting
distribution in Equation (6) considerably eases this burden. For a large number N, we can generate
N groups of (𝜌2

1, 𝜌
2
2,U1,U2), from which we obtain N realizations of R: R(1),… ,R(N). The quantiles

of R can be well approximated by those of R(1),… ,R(N). This method provides a fast way to obtain
the critical values of R: it takes less than 1 min when N = 100, 000. The approximation method of
Davies (1987) can be used to find the approximate quantiles of the supremum of the 𝜒2

2 process.
The simulation studies in Section 3.2 show that our explicit representation results in an LRT with
a more accurate type I error rate than that from Davies's method.
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It is worth pointing out that the regularity conditions on f(y;𝜇, 𝜎) are not restric-
tive. The location-scale distributions generated by the commonly used normal, logistic,
extreme-value, and t distributions all satisfy Conditions A1–A7; see Appendix S1. Hence, the
results in Theorem 1 are applicable to situations where f(y;𝜇, 𝜎) comes from any of these
distributions.

As a comparison, we further consider the asymptotic properties of the LRT test under the
assumption that 𝜎1 = 𝜎2. The LRT test statistic in this case is defined as

R∗
n = 2{ln(𝜃̂∗, 𝜇̂∗

1 , 𝜇̂
∗
2 , 𝜎̂

∗, 𝜎̂∗) − ln(0.5, 𝜇̂0, 𝜇̂0, 𝜎̂0, 𝜎̂0)},

where

(𝜃̂∗, 𝜇̂∗
1 , 𝜇̂

∗
2 , 𝜎̂

∗) = arg max
𝜃,𝜇1,𝜇2,𝜎

ln(𝜃, 𝜇1, 𝜇2, 𝜎, 𝜎).

We present the asymptotic properties of (𝜃̂∗, 𝜇̂∗
1 , 𝜇̂

∗
2 , 𝜎̂

∗) and R∗
n in Theorem 2. Its proof is similar

to that of Theorem 1 and is omitted to save space.

Theorem 2. Assume the conditions of Theorem 1. Under the null distribution f(y;𝜇0, 𝜎0), we have

(i) 𝜇̂∗
h = 𝜇0 + Op(n−1∕2) (h = 1, 2) and 𝜎̂∗ = 𝜎0 + Op(n−1∕2);

(ii) as n → ∞, the LRT statistic R∗
n →d R∗ = sup0≤𝜃≤1{Z2

1(𝜃)}, where Z1(𝜃) is defined in
Equation (4).

Further, suppose 𝜌2 and 𝜂∗ are two independent random variables that follow𝜒2
2 and the uniform

distribution on [−𝜋, 𝜋], respectively. Then

R∗ d
= 𝜌2{IA1(𝜂

∗) + IA2(𝜂
∗)cos2(𝜂∗ − 𝛾) + IA3(𝜂

∗)cos2(𝜂∗ + 𝛾)}, (7)

where the Ai's are defined in Equation (5).
Compared with the results in Chen and Chen (2005), Theorem 2 makes two additional con-

tributions. First, the results are applicable to the more general location-scale distribution family,
whereas the results of Chen and Chen (2005) are restricted to the normal family. Second, from
Lemma 1 in the Appendix A, (𝜇̂∗

1 , 𝜇̂
∗
2 , 𝜎̂

∗) is consistent without the assumption that the param-
eter space for (𝜇1, 𝜇2) is bounded. Hence, the asymptotic result for R∗

n does not depend on this
restrictive assumption. The explicit representation in Equation (7) can be used as in Equation (6)
to calculate the critical values of R∗. Zhang, Chen, and Li (2008) also identified a representation
for the 𝜒2

1 process in Part (ii) of Theorem 2. Our representation in Equation (7), obtained by polar
transformations, is a refined version of theirs.

2.2 Local power analysis

Our previous analysis guarantees that in theory the LRT with the proposed critical value deter-
mining strategy can control its type I error asymptotically when the null hypothesis is true.
We may wonder how it performs when the null hypothesis is violated. Asymptotic local power
analysis has become an important and increasingly used tool for this purpose.
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To investigate the asymptotic local power of Rn and R∗
n, we consider the following local

alternative

Hn
A ∶ 𝜃 = 𝜃0,

(
𝜇1
𝜇2

)
=
(
𝜇0 − n−1∕2𝛿𝜇
𝜇0 + n−1∕2𝛿𝜇

)
,

(
𝜎1
𝜎2

)
=
(
𝜎0 − n−1∕2𝛿𝜎
𝜎0 + n−1∕2𝛿𝜎

)
, (8)

where 𝛿𝜇 and 𝛿𝜎 are both positive constants. Define 𝜏(𝜃) = 1 + 4r𝜃(𝜃 − 1),

T =
𝜕f (y11; 0, 1)∕𝜕𝜇

f (y11, 0, 1)
, and U =

𝜕f (y11; 0, 1)∕𝜕𝜎
f (y11; 0, 1)

.

Let 𝜎2
T = E(T2) and let A be the covariance matrix of (T,U), where the expectation and covariance

are taken with respect to f(y; 0, 1). Further, let𝜒2
m(c) denote the non-central chi-square distribution

with noncentrality parameter c and m degrees of freedom.

Theorem 3. Assume the conditions of Theorem 1. Under the local alternative Hn
A in Equation (8),

we have

(i) Rn
d
→ sup𝜃∈[0,1]{𝜒2

2

(
𝝆𝜏
𝜃0
(𝜃)𝝆𝜃0

(𝜃)
)
}, where

𝝆𝜃0
(𝜃) = −{1 + 2r(2𝜃0𝜃 − 𝜃0 − 𝜃)}{𝜏(𝜃)}−

1
2 𝜎−1

0 A
1
2

(
𝛿𝜇
𝛿𝜎

)
;

(ii) R∗
n

d
→ sup𝜃∈[0,1]{𝜒2

1

(
𝜌∗2
𝜃0
(𝜃)

)
}, where

𝜌∗
𝜃0
(𝜃) = −{1 + 2r(2𝜃0𝜃 − 𝜃0 − 𝜃)}{𝜏(𝜃)}−

1
2 𝜎−1

0 𝜎T𝛿𝜇.

For convenience of presentation, the proof of Theorem 3 is deferred to the Appendix A.
Theorem 3 indicates that the two LRTs Rn and R∗

n are both consistent under the local alternative
Hn

A. Note that 𝛿𝜎 appears in the limiting distribution of Rn but not in that of R∗
n. Hence, we expect

that Rn is more powerful than R∗
n when 𝜎1 and 𝜎2 are significantly different, i.e., 𝛿𝜎 is significantly

different from 0. This is confirmed in the simulation study.

3 SIMULATION STUDY

3.1 Setup

In this section, we conduct Monte Carlo simulations to provide insight into the following
questions:

(a) Do the limiting distributions of Rn and R∗
n provide accurate approximations to their

finite-sample distributions?
(b) How do Rn and R∗

n perform in terms of statistical power for detecting the existence of QTL
effects?
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In our simulation studies, we concentrate on the normal and logistic kernels. We consider
four total sample sizes, n = 50, 100, 200, and 300, and three values 5, 10, and 20 for d, the inter-
marker distance of the single interval. We use the Haldane map function r = 0.5(1 − e−2d/100) to
determine the recombination frequency r. The sample-size vector (n1,n2,n3,n4) is generated from
a multinomial distribution Multinom(n; (1 − r)∕2, r∕2, r∕2, (1 − r)∕2). In the simulations, we set
the significance level to 𝛼 = 5% and 1%. To save space, the simulation results for d = 10 are omit-
ted. Since detecting the existence of the QTL effects is essentially testing the homogeneity of the
distributions in four samples, multiple-sample nonparametric tests can be applied. We choose
the multiple-sample analog of the Kolmogorov–Smirnov test (Kiefer, 1959; denoted KS) and the
multiple-sample Anderson–Darling test (Scholz & Stephens, 1987; denoted AD) as competitors.
We study the finite-sample performance of the two LRTs, Rn and R∗

n, by comparing them with the
two nonparametric tests.

3.2 Comparison of type I errors

We first check the performance of the limiting distributions. There are two methods to obtain the
quantiles of Rn and R∗

n from their limiting distributions: the first (denoted “Ours") is based on the
explicit representations in Equations (6) and (7) and the second (denoted “Davies") is the approx-
imation method of Davies (1987) for the supremum of the 𝜒2 process. When we apply the first
method, we generate N = 100, 000 realizations from the explicit representations in Equations (6)
and (7), respectively, to determine the critical values of Rn and R∗

n. We summarize the empirical
type I errors of Rn and R∗

n from the above two methods and those of KS and AD calibrated by their
limiting distributions.

For the simulation results, the data are generated from N(0, 1) and Logistic(0, 1), that is,
f1 = f2 = N(0, 1) and f1 = f2 = Logistic(0, 1), respectively. Here N(𝜇, 𝜎2) denotes normal distribu-
tion with mean 𝜇 and variance 𝜎2 and Logistic(𝜇, 𝜎) denotes logistic distribution with location
and scale parameters being 𝜇 and 𝜎, respectively. All the empirical type I errors in Table 1 are cal-
culated based on 10,000 repetitions. We can see that the empirical type I errors of the two LRTs
based on the explicit representations in Equations (6) and (7) are quite close to the nominal lev-
els, and they are closer than those based on Davies's method. The empirical type I errors of Rn
and R∗

n based on the explicit representations indicate that the limiting distributions of Rn and R∗
n

provide accurate approximations to their finite-sample distributions. The simulated type I errors
of AD are also quite close to the nominal level, while KS seems to be quite conservative. As the
sample size increases, all the empirical type I errors become closer to the nominal levels.

3.3 Comparison of powers

In this subsection, we compare the powers of our LRT methods with those of KS and AD. We
consider two values for 𝜃, 0.5 and 0.7, and six combinations of f1 and f2:

Case I: f1 = N(0, 1) and f2 = N(0.5, 1);
Case II: f1 = N(0, 1) and f2 = N(0.5, 1.252);

Case III: f1 = N(0.5, 0.75) and f2 = N(0.5, 1.25);
Case IV: f1 = Logistic(0, 1) and f2 = Logistic(1, 1);
Case V: f1 = Logistic(0, 1) and f2 = Logistic(0.8, 1.35);

Case VI: f1 = Logistic(0.5, 1) and f2 = Logistic(0.5, 1.5).
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T A B L E 1 Empirical type I errors (%) of Rn, R∗
n, Kolmogorov–Smirnov test (KS), and Anderson–Darling test

(AD). Here “Ours" means our method based on the explicit representations and “Davies" means Davies's
approximation method. The random samples are generated from model (1) with f1 = f2 = N(0, 1) and
f1 = f2 = Logistic(0, 1), respectively.

f1 = f2 = N(0, 1)

𝜶 = 5% d = 5 d = 20

n Rn R∗
n Rn R∗

n

Ours Davies Ours Davies KS AD Ours Davies Ours Davies KS AD
50 5.77 6.42 5.18 5.71 3.12 5.31 5.77 6.74 5.88 6.84 4.30 5.10

100 5.52 6.04 5.32 5.87 3.48 5.17 5.70 6.68 5.46 6.46 5.19 5.41

200 5.08 5.68 5.19 5.59 3.89 4.81 5.36 6.15 4.93 5.80 4.64 4.59

300 4.62 5.13 4.95 5.48 4.18 4.83 4.51 5.26 4.92 5.78 4.93 5.00

𝜶 = 1% d = 5 d = 20

n Rn R∗
n Rn R∗

n

Ours Davies Ours Davies KS AD Ours Davies Ours Davies KS AD

50 1.30 1.50 1.30 1.50 0.47 0.77 1.20 1.40 1.20 1.38 0.57 0.91

100 1.05 1.17 1.13 1.30 0.40 0.90 1.34 1.54 1.33 1.59 0.94 1.22

200 0.92 1.05 1.13 1.34 0.56 0.87 1.10 1.21 0.99 1.24 0.92 0.98

300 0.91 0.97 0.90 1.04 0.69 0.84 1.00 1.14 0.99 1.16 0.93 1.05

f1 = f2 = Logistic(0, 1)

𝜶 = 5% d = 5 d = 20

n Rn R∗
n Rn R∗

n

Ours Davies Ours Davies KS AD Ours Davies Ours Davies KS AD

50 5.80 6.22 5.25 5.72 3.09 5.34 5.89 6.86 5.67 6.77 3.96 4.76

100 5.09 5.63 5.10 5.68 3.59 5.22 5.04 5.95 4.91 5.81 4.90 5.21

200 4.99 5.49 4.92 5.58 4.06 5.11 5.11 6.04 5.19 6.14 5.11 5.09

300 5.06 5.53 4.97 5.43 4.59 4.97 4.99 5.87 4.95 6.03 5.07 5.23

𝜶 = 1% d = 5 d = 20

n Rn R∗
n Rn R∗

n

Ours Davies Ours Davies KS AD Ours Davies Ours Davies KS AD

50 1.33 1.52 1.12 1.29 0.37 0.61 1.13 1.37 1.16 1.48 0.51 0.69

100 1.00 1.19 0.97 1.14 0.52 0.90 0.98 1.15 0.91 1.06 0.76 0.96

200 1.21 1.28 0.95 1.07 0.66 0.97 1.24 1.43 1.04 1.17 0.78 0.92

300 1.08 1.25 0.94 1.08 0.75 0.91 1.12 1.20 1.06 1.21 0.96 0.94
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T A B L E 2 Power (%) comparison of the two likelihood ratio tests, Rn and R∗
n, Kolmogorov–Smirnov

test (KS), and Anderson–Darling test (AD). The random samples are generated from model (1), in which
f1 = N(0, 1) and f2 = N(0.5, 1) in Case I; f1 = N(0, 1) and f2 = N(0.5, 1.252) in Case II; and f1 = N(0.5, 0.75)
and f2 = N(0.5, 1.25) in Case III. The significance level is 𝛼 = 5%

Case I 𝜽 = 0.5 n = 100 n = 200 100KL
d Rn R∗

n KS AD Rn R∗
n KS AD

5 53.9 66.9 50.4 42.4 85.8 90.7 79.6 80.0 2.89

20 45.1 56.8 39.4 37.4 80.1 88.1 73.5 71.6 2.53

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 58.7 69.6 48.9 47.2 87.2 92.4 79.3 81.3 2.91

20 46.2 58.1 40.1 42.2 81.6 89.0 74.2 74.4 2.61

Case II 𝜽 = 0.5 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 62.0 55.7 43.9 38.5 92.4 85.0 74.5 73.2 3.45

20 54.1 47.6 35.1 33.3 87.3 79.3 64.3 67.1 3.05

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 61.6 54.0 44.5 40.1 92.7 85.2 73.7 73.8 3.48

20 55.2 50.4 34.8 36.8 89.2 80.4 65.7 69.8 3.13

Case III 𝜽 = 0.5 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 30.3 4.40 5.70 8.00 59.9 4.20 9.90 11.4 1.54

20 23.2 4.60 6.00 6.90 51.8 5.40 7.10 9.00 1.36

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 29.4 5.70 7.00 8.10 59.2 4.20 8.60 12.1 1.55

20 26.1 4.10 6.10 5.50 49.5 4.60 9.30 9.90 1.40

The QTL affects only the location in Cases I and IV; both the location and scale in Cases
II and V; and only the scale in Cases III and VI. We consider the same four sample sizes
n and three values for d as before. To save space, we present the results only for n = 100
and 200; the trends are similar for the other sample sizes. The simulated powers of Rn, R∗

n,
KS, and AD for Cases I–III are shown in Table 2, and those for Cases IV–VI are shown
in Table 3. For a fair comparison, the critical values of Rn, R∗

n, KS, and AD are obtained
by 10,000 repetitions under the null model. All the power calculations are based on 1,000
repetitions.

Under the normal kernel, the performance trends of the simulation results displayed in
Table 2 are as follows. When f1 and f2 have different means but the same variance, R∗

n is the
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T A B L E 3 Power (%) comparison of the two likelihood ratio tests, Rn and R∗
n, Kolmogorov–Smirnov test

(KS), and Anderson–Darling test (AD). The random samples are generated from model (1), in which
f1 = Logistic(0, 1) and f2 = Logistic(1, 1) in Case IV; f1 = Logistic(0, 1) and f2 = Logistic(0.8, 1.35) in Case V;
and f1 = Logistic(0.5, 1) and f2 = Logistic(0.5, 1.5) in Case VI. The significance level is 𝛼 = 5%

Case IV 𝜽 = 0.5 n = 100 n = 200 100KL
d Rn R∗

n KS AD Rn R∗
n KS AD

5 69.4 78.2 67.1 60.9 95.8 97.2 92.5 91.8 3.83

20 61.0 69.5 55.9 53.9 88.4 94.6 84.8 86.7 3.36

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 68.9 77.5 64.0 60.5 95.1 98.0 93.9 91.9 3.86

20 59.0 68.9 58.2 53.7 89.3 93.8 88.5 87.8 3.46

Case V 𝜽 = 0.5 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 62.1 47.6 36.7 36.8 91.1 77.8 69.1 70.3 3.33

20 55.4 42.2 29.8 35.5 85.5 66.8 56.5 64.9 2.94

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 62.5 45.6 39.4 37.0 93.3 77.4 69.5 72.3 3.36

20 54.1 37.8 33.2 30.2 86.5 66.7 60.7 64.2 3.02

Case VI 𝜽 = 0.5 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 52.9 5.20 8.10 10.3 85.6 5.00 16.6 23.6 2.78

20 48.2 6.10 8.50 11.3 77.8 4.90 11.2 19.9 2.45

𝜃 = 0.7 n = 100 n = 200 100KL

d Rn R∗
n KS AD Rn R∗

n KS AD

5 52.0 5.50 9.50 10.9 84.1 7.20 16.6 24.1 2.80

20 44.1 4.70 7.70 11.4 79.4 5.70 10.5 22.3 2.52

most powerful of the four tests, and Rn is always more powerful than KS and AD. In con-
trast, when both the mean and variance of f1 and f2 are different, Rn is more powerful than
the other three methods, and R∗

n is better than KS and AD. That is, if the QTL affects the
mean but not the variance, R∗

n is more powerful at detecting it than the other three meth-
ods, while if the QTL affects both the mean and variance, Rn is more powerful. All the powers
increase as the sample size increases. When f1 and f2 differ only in the variance, the pow-
ers of Rn are far greater than those of the other three methods, whereas R∗

n has almost no
power. The power of Rn increases as the sample size increases, while that of R∗

n remains
almost unchanged and is close to the nominal type I error. This implies that if the QTL
affects the variance but not the mean, Rn is more powerful at detecting it and R∗

n seemingly
fails.
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Under the logistic kernel, the power performance trend is similar to that of the normal kernel.
Hence, we omit the analysis.

Comparing the powers of Rn in Tables 2 and 3, we notice that the power of Rn under the
logistic kernel is larger than that under the normal kernel in most cases when other settings such
as d and 𝜃 are the same. To explain this phenomenon, we provide the Kullback–Leibler (KL)
information with respect to the null model for all alternative models in the last column of Tables 2
and 3. It is seen that the KL information under Cases IV is larger than that under Case I. This
explains why the power of Rn under Case IV is larger. The same interpretation is applicable to
the comparison between Case VI and Case III. We also note that the KL information under Cases
V is close to that under Case II, which explains why the powers of Rn under these two cases are
comparable.

4 REAL APPLICATION

In this section, we illustrate our test by analyzing the data on the double haploid (DH) popula-
tion of rice in example 11.3 of Wu et al. (2007). The dataset is available at http://www.buffalo.
edu/~cxma/book/. We first give a brief background. Two inbred lines, semi-dwarf IR64 and tall
Azucena, were crossed to generate an heterozygous F1 progeny population. Doubling the hap-
loid chromosomes for the gametes of the F1 population led to 123 DH plants (Huang et al.,
1997). Such a DH population is equivalent to a backcross population because its marker segre-
gation follows 1:1 (Huang et al., 1997). These 123 DH plants were then genotyped for 135 RFLP
and 40 isozyme and RAPD markers, which represent a good coverage of 12 rice chromosomes
(Huang et al., 1997).

We use chromosome 1 for illustration. The cumulative and pairwise map distances in centi-
Morgans for 18 markers on chromosome 1 are given in table 11.4 of Wu et al. (2007); this results
in 17 intervals. Table 11.4 of Wu et al. (2007) also gives the sample size, sample mean, and sam-
ple variance for the observations in each interval. In the analysis of Wu et al. (2007), f1 and f2 are
assumed to be normal distributions. To check the reasonability of this assumption, we apply the
Kolmogorov–Smirnov test for the normality of the first sample and the fourth sample for each of
the 17 intervals. The results are summarized in Table 4. As we can see, all the p-values are greater

T A B L E 4 Kolmogorov–Smirnov test for the normality of the first sample and the fourth sample for each of
the 17 intervals

Interval RG472–RG246 RG246–K5 K5–U10 U10–RG532 RG532–W1 W1–RG173
First sample 0.6909 0.7656 0.5038 0.4486 0.9314 0.8568

Fourth sample 0.7311 0.7079 0.7211 0.612 0.3305 0.4123

Interval RG173–RZ276 RZ276–Amy1B Amy1B–RG146 RG146–RG345 RG345–RG381 RG381–RZ19

First sample 0.7896 0.9132 0.9118 0.9483 0.9598 0.8445

Fourth sample 0.3951 0.5781 0.5247 0.8668 0.9705 0.9821

Interval RZ19–RG690 RG690–RZ730 RZ730–RZ801 RZ801–RG810 RG810–RG331

First sample 0.774 0.6008 0.996 0.9736 0.9632

Fourth sample 0.9328 0.6159 0.9753 0.6082 0.3977

http://www.buffalo.edu/~cxma/book/
http://www.buffalo.edu/~cxma/book/
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T A B L E 5 P-values of Rn, R∗
n, Kolmogorov–Smirnov test (KS), and Anderson–Darling test (AD) in the 17

intervals. Here “Rn–Normal" and “R∗
n–Normal" are the two likelihood ratio tests (LRTs) under the normal

kernel, and “Rn–Logistic" and “R∗
n–Logistic" are the two LRTs under the logistic kernel

Interval RG472–RG246 RG246–K5 K5–U10 U10–RG532 RG532–W1 W1–RG173
Rn–Normal 0.683 0.265 0.283 0.209 0.292 0.232

R∗
n–Normal 0.995 0.943 0.641 0.830 0.906 0.757

Rn–Logistic 0.612 0.324 0.311 0.292 0.364 0.370

R∗
n–Logistic 0.965 0.945 0.472 0.703 0.785 0.722

KS 0.285 0.567 0.290 0.141 0.538 0.520

AD 0.369 0.475 0.358 0.083 0.457 0.289

Interval RG173–RZ276 RZ276–Amy1B Amy1B–RG146 RG146–RG345 RG345–RG381 RG381–RZ19

Rn–Normal 0.088 0.835 0.711 0.820 0.573 0.161

R∗
n–Normal 0.684 0.876 0.716 0.697 0.304 0.056

Rn–Logistic 0.196 0.823 0.760 0.871 0.650 0.095

R∗
n–Logistic 0.786 0.599 0.651 0.747 0.354 0.032

KS 0.485 0.678 0.521 0.800 0.740 0.089

AD 0.116 0.686 0.524 0.631 0.755 0.117

Interval RZ19–RG690 RG690–RZ730 RZ730–RZ801 RZ801–RG810 RG810–RG331

Rn–Normal 0 0 0 0 0

R∗
n–Normal 0 0 0 0 0

Rn–Logistic 0 0 0 0 0

R∗
n–Logistic 0 0 0 0 0

KS 0.001 0 0 0 0

AD 0 0 0 0 0

than .3 in all 17 intervals. This confirms that it is reasonable to assume that both f1 and f2 are
normal distributions.

We next calculate Rn and R∗
n for each interval under the normality assumption on f1 and

f2. From Equation (6)/(7), we generate N = 100, 000 realizations and use them to calculate the
p-values of Rn and R∗

n. Table 5 shows their p-values for the 17 intervals. For comparison purposes,
we also include the results from KS, AD, Rn, and R∗

n under the logistic kernel for f1 and f2 for each
interval.

We can see that both Rn and R∗
n under the normal kernel suggest overwhelming evidence for

the existence of a QTL in the last five intervals. We also observe that the results Rn and R∗
n under

the normal kernel are consistent with those from KS and AD, and also those from Rn and R∗
n

under the logistic kernel. These findings may be confirmed by further experiments. It is worth
mentioning that in the interval RG173–RZ276, the p-value (0.088) of Rn is much smaller than that
(0.684) of R∗

n. At the 10% significance level, Rn declares the existence of a QTL in this interval,
while R∗

n fails. Since R∗
n is designed to detect a QTL effect in only the mean, while Rn is able to

detect a QTL effect in either the mean, the variance or both, we believe that there exists a QTL
effect in only the variance in this interval.
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5 DISCUSSION

In practice, a QTL effect in the variance may be more crucial than a QTL effect in the mean
(Korol et al., 1996). In this paper, under the location-scale distribution family, we studied the
asymptotic properties of the MLEs of the unknown parameters and the LRT for the existence
of a QTL effect under two general setups: (a) f1 and f2 may have different locations and/or
scales and (b) f1 and f2 have the same unknown scale. Our theoretical results do not rely on
the assumption that the parameter space for the locations is bounded. Explicit representations
for the limiting distributions are presented, which facilitates the determination of the critical
values. These results enrich the literature and strengthen existing results on QTL mapping in
genetic backcross studies. Our simulation studies show that the explicit representations of the
limiting distributions result in LRTs with more accurate type I error rates than those based on the
approximation method of Davies (1987). Further, the LRT in both location and scale is uniformly
more powerful than the nonparametric tests for the homogeneity of distributions in multiple
samples.

The results in this paper are obtained under the assumption that there is no double recom-
bination. When double recombination does occur, the data in each of the four groups are from
a mixture distribution in both location and scale. In this situation, the log-likelihood function is
unbounded, and hence the MLEs of the unknown parameters are not well defined. We suggest
adding a penalty on the scales, leading to a bounded penalized likelihood (Chen, Tan, & Zhang,
2008). The LRT based on the penalized likelihood can be constructed accordingly. We expect
that this new LRT will have similar properties to those in Theorem 1; we leave this for future
research.
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APPENDIX

Regularity conditions

The asymptotic properties of the LRTs rely on regularity conditions on f(y;𝜇, 𝜎). We impose the
following regularity conditions on f(y;𝜇, 𝜎) in which the expectations are taken under the null
distribution f(y;𝜇0, 𝜎0).

A1. (Integrability) ∫
R
| log f (y; 0, 1)|f (y; 0, 1)dy < ∞.

A2. (Smoothness) The support of f(y; 0, 1) is (−∞,∞), and f(y; 0, 1) is three times
continuously differentiable with respect to y.

A3. (Identifiability) For any two mixing distribution functions 𝜓1 and 𝜓2 with two
supporting points such that

∫ f (y;𝜇, 𝜎) d𝜓1(𝜇, 𝜎) = ∫ f (y;𝜇, 𝜎) d𝜓2(𝜇, 𝜎),

for all y, we must have 𝜓1 = 𝜓2.
A4. (Uniform boundedness) There exists a function g such that|||||𝜕

(h+l)f (y; 0, 1)∕𝜕𝜇h𝜕𝜎l

f (y; 0, 1)

|||||
3

≤ g(y), for h + l ≤ 2,

for all y,where h and l are two nonnegative integers, and

∫
R

g(y)f (y; 0, 1)dy <∞.

Moreover, there exists a positive 𝜖 such that

sup
𝜇2+|𝜎−1|2≤𝜖

|||||𝜕
(h+l)f (y;𝜇, 𝜎)∕𝜕𝜇h𝜕𝜎l

f (y; 0, 1)

|||||
3

≤ g(y), for h + l = 3.

A5. (Positive definiteness) The covariance matrix of (T,U) is positive definite, where

T =
𝜕f (y11; 0, 1)∕𝜕𝜇

f (y11, 0, 1)
and U =

𝜕f (y11; 0, 1)∕𝜕𝜎
f (y11; 0, 1)

.

That is, T and U are linearly uncorrelated.
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A6. (Tail condition) There exist positive constants v0, v1, and 𝛽 with 𝛽 > 1 such that
f (y; 0, 1) ≤ min{v0, v1|y|−𝛽}.

A7. (Upper bound function) There exist a nonnegative function s(y;𝜇, 𝜎) and three positive
numbers (a0, b0, 𝜖

∗) with 𝜖∗ < 1, such that (1) 1∕𝛽 < a0 < 1 with
𝛽 in Condition A6, (2) s(y; 0, 1) is continuous in y and satisfies
∫
R
| log s(y; 0, 1)|s(y; 0, 1)dy <∞ and limy→∞s(y; 0, 1) = 0, and

(3) for 𝜎 ∈ (0, 𝜖∗𝜎0), the function of y s(y; 0, 𝜎) is uniformly
bounded, ∫ s(y; 0, 𝜎)dy < 1, and

f (y; 0, 𝜎) ≤
{
𝜎−1s(y; 0, 𝜎), if |y| ≤ 𝜎1−a0

𝜎b0 s(y; 0, 𝜎), if |y| > 𝜎1−a0
.

Two technical lemmas
Lemma 1 establishes the consistency of the MLEs under the null model; this is the first step in the
proof of Theorems 1 and 2. The lemma claims that any estimator of (𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) with a large
likelihood value is consistent for 𝜇h and 𝜎h, h = 1, 2, under the null model. Since both Rn and R∗

n
are invariant to location and scale transformations, we assume that (𝜇0, 𝜎0) = (0, 1).

Lemma 1. Assume the conditions of Theorem 1. Let (𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) be any estimator of
(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) such that

ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln(0.5, 0, 0, 1, 1) ≥ c > −∞, (A1)

for some constant c for all n. Then under the null model f(y; 0, 1), 𝜇1 = op(1), 𝜇2 = op(1), 𝜎1 − 1 =
op(1), and 𝜎2 − 1 = op(1).

The proof of Lemma 1 is quite long and technically involved. For convenience of presentation,
we leave it to the supplementary material.

Remark 1. By the definition of MLE,

ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) ≥ ln(0.5, 0, 0, 1, 1).

Hence the MLE (𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) of (𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) automatically satisfies Condition (A1) with
c = 0. Therefore the estimators in Theorems 1 to 3 all satisfy this condition automatically.

In the next lemma, we strengthen the conclusion of Lemma 1 by providing an order assess-
ment. For convenience of presentation, we define some notation. Let

Tij =
𝜕f (yij; 0, 1)∕𝜕𝜇

f (yij; 0, 1)
, Uij =

𝜕f (yij; 0, 1)∕𝜕𝜎
f (yij; 0, 1)

, i = 1,… , 4, j = 1,… ,ni.

Further, let

aij =
(

Tij
Uij

)
, ai =

ni∑
j=1

aij, a =
4∑

i=1
ai, and A =

(
𝜎2

T 𝜎TU
𝜎TU 𝜎2

U

)
,

where 𝜎2
T = Var(Ti1), 𝜎2

U = Var(Ui1), and 𝜎TU = Cov(Ti1,Ui1). We define

m1(𝜃) = 𝜃𝜇1 + (1 − 𝜃)𝜇2, m2(𝜃) = 𝜃(𝜎1 − 1) + (1 − 𝜃)(𝜎2 − 1), (A2)

and m(𝜃) =
(

m1(𝜃),m2(𝜃)
)𝜏
.
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Lemma 2. Assume the conditions of Lemma 1. Then under the null model f(y; 0, 1), 𝜇1 = Op(n−1∕2),
𝜇2 = Op(n−1∕2), 𝜎1 − 1 = Op(n−1∕2), and 𝜎2 − 1 = Op(n−1∕2).

Proof. Let

ln1(𝜇1, 𝜎1) =
n1∑

j=1
log f1(y1j), ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) =

n2∑
j=1

log{𝜃f1(y2j) + (1 − 𝜃)f2(y2j)},

ln3(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) =
n3∑

j=1
log{(1 − 𝜃)f1(y3j) + 𝜃f2(y3j)}, ln4(𝜇2, 𝜎2) =

n4∑
j=1

log f2(y4j).

Then

ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) = ln1(𝜇1, 𝜎1) + ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) + ln3(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) + ln4(𝜇2, 𝜎2).

Next we derive an upper bound for ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln(0.5, 0, 0, 1, 1). Together with the lower
bound c, we get the order assessment of 𝜇h and 𝜎h, h = 1, 2.

From Lemma 1, we have the consistency 𝜇h = op(1) and 𝜎h − 1 = op(1), h = 1, 2. Applying a
second-order Taylor expansion to ln1(𝜇1, 𝜎1) − ln1(0, 1) around (0, 1) and using the law of large
numbers, we get

ln1(𝜇1, 𝜎1) − ln1(0, 1) =
{

m(1)
}𝜏a1 −

n1

2
{

m(1)
}𝜏A

{
m(1)

}
{1 + op(1)}. (A3)

Similarly,

ln4(𝜇2, 𝜎2) − ln4(0, 1) =
{

m(0)
}𝜏a4 −

n4

2
{

m(0)
}𝜏A

{
m(0)

}
{1 + op(1)}. (A4)

We now find an upper bound for ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln2(0.5, 0, 0, 1, 1). Write

ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln2(0.5, 0, 0, 1, 1) =
n2∑

j=1
log(1 + 𝛿j)

with

𝛿j =
𝜃
{

f (y2j;𝜇1, 𝜎1) − f (y2j; 0, 1)
}
+ (1 − 𝜃)

{
f (y2j;𝜇2, 𝜎2) − f (y2j; 0, 1)

}
f (y2j; 0, 1)

.

By the inequality log(1 + x) ≤ x − x2∕2 + x3∕3, we have

ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln2(0.5, 0, 0, 1, 1) ≤
n2∑

j=1
𝛿j −

n2∑
j=1
𝛿2

j ∕2 +
n2∑

j=1
𝛿3

j ∕3. (A5)

Applying a first-order Taylor expansion to f (y2j;𝜇h, 𝜎h), h = 1, 2, we find that

𝛿j =
{

m(𝜃)
}𝜏

a2j + 𝜀nj
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and the remainder term 𝜀n =
∑n2

j=1 𝜀nj satisfies

𝜀n = Op(n1∕2
2 )

2∑
h=1

{
𝜇2

h + (𝜎h − 1)2} = op(n)
{||m(0)||2 + ||m(1)||2} . (A6)

Here ||m(0)|| and ||m(1)|| denote the L2 norms of m(0) and m(1), respectively. Therefore, for
the linear term in Equation (A5), we have

n2∑
j=1
𝛿j =

{
m(𝜃)

}𝜏

a2 + 𝜀n, (A7)

where the order of 𝜀n is assessed in Equation (A6). After some straightforward algebra, we find
that the quadratic and cubic terms in Equation (A5) satisfy

n2∑
j=1
𝛿2

j =
n2∑

j=1

[{
m(𝜃)

}𝜏

a2j

]2
+ Op(𝜀n),

n2∑
j=1
𝛿3

j =
n2∑

j=1

[{
m(𝜃)

}𝜏

a2j

]3
+ Op(𝜀n).

By the strong law of large numbers, the fact that ||m(𝜃)||2 ≤ ||m(0)||2 + ||m(1)||2, and the
order assessment of 𝜀n in Equation (A6), we have

n2∑
j=1
𝛿2

j = n2

{
m(𝜃)

}𝜏

A
{

m(𝜃)
}
+ op(n)

{||m(0)||2 + ||m(1)||2} , (A8)

n2∑
j=1
𝛿3

j = op(n)
{||m(0)||2 + ||m(1)||2} . (A9)

Combining Equations (A5)–(A9), we get the refined upper bound for ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) −
ln2(0.5, 0, 0, 1, 1) as follows:

ln2(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln2(0.5, 0, 0, 1, 1)

≤ {
m(𝜃)

}𝜏

a2 −
n2

2

{
m(𝜃)

}𝜏

A
{

m(𝜃)
}
+ op(n)

{||m(0)||2 + ||m(1)||2} . (A10)

Similarly,

ln3(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln3(0.5, 0, 0, 1, 1) ≤
{

m(1 − 𝜃)
}𝜏

a3 −
n3

2

{
m(1 − 𝜃)

}𝜏

A
{

m(1 − 𝜃)
}

+ op(n)
{||m(0)||2 + ||m(1)||2} . (A11)
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Combining Equations (A3), (A4), (A10), and (A11), we have

c ≤ ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln(0.5, 0, 0, 1, 1)

≤ {
m(1)

}𝜏a1 −
n1

2
{

m(1)
}𝜏A

{
m(1)

}
{1 + op(1)}

+
{

m(𝜃)
}𝜏

a2 −
n2

2

{
m(𝜃)

}𝜏

A
{

m(𝜃)
}

+
{

m(1 − 𝜃)
}𝜏

a3 −
n3

2

{
m(1 − 𝜃)

}𝜏

A
{

m(1 − 𝜃)
}

+
{

m(0)
}𝜏a4 −

n4

2
{

m(0)
}𝜏A

{
m(0)

}
{1 + op(1)} (A12)

≤ {
m(1)

}𝜏a1 −
n1

2
{

m(1)
}𝜏A

{
m(1)

}
{1 + op(1)}

+
{

m(0)
}𝜏a4 −

n4

2
{

m(0)
}𝜏A

{
m(0)

}
{1 + op(1)} + Op(1). (A13)

By Condition (A5), A is positive definite. Then the upper bound of ln(𝜃, 𝜇1, 𝜇2, 𝜎1, 𝜎2) −
ln(0.5, 0, 0, 1, 1) in (A13) has order Op(1). Together with the lower bound c, this implies that

𝜇1 = Op(n−1∕2), 𝜎1 − 1 = Op(n−1∕2), 𝜇2 = Op(n−1∕2), 𝜎2 − 1 = Op(n−1∕2).

Any values of (𝜇1, 𝜎1 − 1, 𝜇2, 𝜎2 − 1) outside this range will violate the inequality. This completes
the proof. ▪

Proof of Theorem 1
Proof of Part (i).

By the definition of the MLE, we have ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 0, 0, 1, 1) ≥ 0. Hence, Con-
dition (A1) is satisfied. Then applying the results in Lemma 2, we obtain the results in
Part (i).
Proof of Part (ii).

Note that

Rn = 2
{

ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 𝜇̂0, 𝜇̂0, 𝜎̂0, 𝜎̂0)
}
= R1n − R2n, (A14)

where

R1n = 2
{

ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 0, 0, 1, 1)
}
,

and

R2n = 2 {ln(0.5, 𝜇̂0, 𝜇̂0, 𝜎̂0, 𝜎̂0) − ln(0.5, 0, 0, 1, 1)} .

Applying some of the classical results for regular models (Serfling, 1980), we have

R2n = a𝜏(nA)−1a + op(1). (A15)

Next we use a sandwich method to find the approximation of R1n. We proceed in two steps.
In Step 1, we derive an upper bound for R1n and in Step 2, we argue that the upper bound is
achievable.
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By Part (i), the results in Equation (A12) are applicable to R1n. Hence,

R1n = 2
{

ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 0, 0, 1, 1)
}

≤ 2{m̂(1)}𝜏a1 − n1{m̂(1)}𝜏A {m̂(1)} {1 + op(1)}

+ 2
{

m̂(𝜃̂)
}𝜏a2 − n2

{
m̂(𝜃̂)

}𝜏A
{

m̂(𝜃̂)
}

+ 2
{

m̂(1 − 𝜃̂)
}𝜏a3 − n3

{
m̂(1 − 𝜃̂)

}𝜏A
{

m̂(1 − 𝜃̂)
}

+ 2{m̂(0)}𝜏a4 − n4{m̂(0)}𝜏A {m̂(0)} {1 + op(1)}. (A16)

Here m̂(𝜃) is defined similarly to Equation (A2) with (𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) in place of (𝜇1, 𝜇2, 𝜎1, 𝜎2).
To simplify the upper bound in Equation (A16), let

𝜷̂1 = m̂(1) + m̂(0)
2

=

(
𝜇̂1+𝜇̂2

2
𝜎̂1+𝜎̂2−2

2

)
and 𝜷̂2 = m̂(1) − m̂(0)

2
=

(
𝜇̂1−𝜇̂2

2
𝜎̂1−𝜎̂2

2

)
.

Then

m̂(𝜃) = 𝜷̂1 + 2(𝜃 − 0.5)𝜷̂2. (A17)

Substituting Equation (A17) into Equation (A16) and using Part (i) and the condition that
ni∕n → pi, i = 1, 2, 3, 4 with

(p1, p2, p3, p4) =
(1 − r

2
,

r
2
,

r
2
,

1 − r
2

)
,

we have

R1n = 2
{

ln(𝜃̂, 𝜇̂1, 𝜇̂2, 𝜎̂1, 𝜎̂2) − ln(0.5, 0, 0, 1, 1)
}

≤ 2𝜷̂𝜏1a − n𝜷̂𝜏1A𝜷̂1{1 + op(1)} + 2𝜷̂𝜏2b(𝜃̂) − n𝜏(𝜃̂)𝜷̂𝜏2A𝜷̂2

≤ a𝜏(nA)−1a +
{

b(𝜃̂)
}𝜏{n𝜏(𝜃̂)A

}−1 {b(𝜃̂)
}
+ op(1)

≤ a𝜏(nA)−1a + sup
𝜃∈[0,1]

[
{b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)}

]
+ op(1), (A18)

where

b(𝜃) = a1 − a4 + (2𝜃 − 1)(a2 − a3) and 𝜏(𝜃) = 1 + 4r𝜃(𝜃 − 1).

Next, we show that the upper bound in Equation (A18) for R1n is achievable. Let

𝜃 = arg max
𝜃∈[0,1]

[
{b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)}

]
,

and (𝜇̃1, 𝜇̃2, 𝜎̃1, 𝜎̃2) be determined by(
𝜇̃1+𝜇̃2

2
𝜎̃1+𝜎̃2−2

2

)
= (nA)−1a and

(
𝜇̃1−𝜇̃2

2
𝜎̃1−𝜎̃2

2

)
=
{

n𝜏(𝜃)A
}−1 {b(𝜃)

}
.
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Note that it is easy to verify that (𝜇̃1, 𝜇̃2, 𝜎̃1, 𝜎̃2) exists and

𝜇̃h = Op(n−1∕2), 𝜎̃h − 1 = Op(n−1∕2), h = 1, 2.

With this order assessment and applying a second-order Taylor expansion, we have

R1n ≥ 2
{

ln(𝜃, 𝜇̃1, 𝜇̃2, 𝜎̃1, 𝜎̃2) − ln(0.5, 0, 0, 1, 1)
}

= a𝜏(nA)−1a + sup
𝜃∈[0,1]

[
{b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)}

]
+ op(1). (A19)

Combining Equations (A18) and (A19) leads to

R1n = a𝜏(nA)−1a + sup
𝜃∈[0,1]

[
{b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)}

]
+ op(1).

With Equations (A14) and (A15), we further have that

Rn = sup
𝜃∈[0,1]

[
{b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)}

]
+ op(1). (A20)

It can be verified that the process {b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)} converges weakly to the process
Z2

1(𝜃) + Z2
2(𝜃), where Z1(𝜃) and Z2(𝜃) are defined in Equation (4) (see Kim et al., 2013). Hence,

Rn → R = sup
0≤𝜃≤1

{Z2
1(𝜃) + Z2

2(𝜃)},

in distribution, as n → ∞. This completes the proof of Part (ii).
Proof of Equation (6)

Let c1(𝜃) =
√

1 − r
√

1 + 4r𝜃(𝜃 − 1) and c2(𝜃) =
√

r(2𝜃 − 1)
√

1 + 4r𝜃(𝜃 − 1). Recall the
forms of Z1(𝜃) and Z2(𝜃) defined in Equation (4). Then R can be written as

R = Z2
1(𝜃) + Z2

2(𝜃) = {c1(𝜃)z11 + c2(𝜃)z12}2 + {c1(𝜃)z21 + c2(𝜃)z22}2

=
(

c1(𝜃), c2(𝜃)
)( z2

11 + z2
21 z11z12 + z21z22

z11z12 + z21z22 z2
12 + z2

22

)(
c1(𝜃)
c2(𝜃)

)
, (A21)

where z11, z12, z21, and z22 are four independent standard normal variables.
Similarly to Lemma 3 of Zhang et al. (2008), we have

{(c1(𝜃), c2(𝜃)) ∶ 0 ≤ 𝜃 ≤ 1} = {(x1, x2) ∶ x2
1 + x2

2 = 1, x1 ≥ √
1 − r}.

Let

W =
(

z2
11 + z2

21 z11z12 + z21z22
z11z12 + z21z22 z2

12 + z2
22

)
, ℬ = {(x1, x2) ∶ x2

1 + x2
2 = 1, x1 ≥ √

1 − r}.

Then, from Equation (A21) we have

R = sup
(x1,x2)∈ℬ

(x1, x2)W(x1, x2)𝜏 . (A22)
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To help us find the maximum of (x1, x2)W(x1, x2)𝜏 , we make the following polar transforma-
tions. Let {

(z11 − z22)∕
√

2 = 𝜌1 sin U1

(z12 + z21)∕
√

2 = 𝜌1 cos U1
and

{
(z11 + z22)∕

√
2 = 𝜌2 cos U2

(z21 − z12)∕
√

2 = 𝜌2 sin U2
,

where 𝜌2
1 with 𝜌1 > 0, 𝜌2

2 with 𝜌2 > 0, U1, and U2 are four independent random variables with 𝜌2
1

and 𝜌2
2 from a 𝜒2

2 distribution, and U1 and U2 from a uniform distribution on [−3𝜋∕4, 5𝜋∕4].
It can be verified that the two eigenvalues of W are 𝜆1 = (1∕2)(𝜌1 + 𝜌2)2 and 𝜆2 = (1∕2)

(𝜌1 − 𝜌2)2, respectively. Further, W can be decomposed as

W = P𝜏

(
𝜆1 0
0 𝜆2

)
P, (A23)

where

P =
(

cos{(U1 + U2)∕2 − 𝜋∕4} − sin{(U1 + U2)∕2 − 𝜋∕4}
sin{(U1 + U2)∕2 − 𝜋∕4} cos{(U1 + U2)∕2 − 𝜋∕4}

)
.

Since P is an orthogonal transformation and x2
1 + x2

2 = 1, it follows that (x1, x2)P𝜏P(x1, x2)𝜏 =
x2

1 + x2
2 = 1. Therefore, we can write (x1, x2)P𝜏 = (cos 𝛼, sin 𝛼) with 𝛼 ∈ [−𝜋, 𝜋]. From

Equations (A22) and (A23), we have

R = sup
𝛼∈ℱ

(𝜆1cos2𝛼 + 𝜆2sin2𝛼) = sup
𝛼∈ℱ

{(𝜆1 − 𝜆2)cos2𝛼 + 𝜆2},

where

ℱ = {𝛼 ∶ cos{(U1 + U2)∕2 − 𝜋∕4} cos 𝛼 + sin{(U1 + U2)∕2 − 𝜋∕4} sin 𝛼 ≥ √
1 − r}.

Recall that 𝜂 = (U1 + U2)∕2 − 𝜋∕4, which satisfies 𝜂 ∈ [−𝜋, 𝜋]. Hence,

ℱ = {𝛼 ∶ cos(𝛼 − 𝜂) ≥ √
1 − r}.

Therefore, after some simple analysis, Equation (6) follows. This completes the proof of
Theorem 1.

Proof of Theorem 3
Proof of Part (i).

Assume (𝜇0, 𝜎0) = (0, 1), then the local alternative (8) is equivalent to

Hn
A ∶ 𝜃 = 𝜃0,

(
𝜇1
𝜇2

)
=
(
−n−1∕2𝛿𝜇∕𝜎0

n−1∕2𝛿𝜇∕𝜎0

)
,

(
𝜎1
𝜎2

)
=
(

1 − n−1∕2𝛿𝜎∕𝜎0

1 + n−1∕2𝛿𝜎∕𝜎0

)
.

By Equation (A20), Rn = sup𝜃∈[0,1]{Rn(𝜃)} + op(1) under the null model, where

Rn(𝜃) = {b(𝜃)}𝜏{n𝜏(𝜃)A}−1 {b(𝜃)} .
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Next we derive the limiting distribution of Rn under Hn
A.

Let Λn = Λn1 + Λn2 + Λn3 + Λn4, where

Λn1 = ln1(𝜇1, 𝜎1) − ln1(0, 1),Λn2 = ln2(𝜃0, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln3(0.5, 0, 0, 1, 1),

Λn3 = ln3(𝜃0, 𝜇1, 𝜇2, 𝜎1, 𝜎2) − ln3(0.5, 0, 0, 1, 1), and Λn4 = ln4(𝜇1, 𝜎1) − ln4(0, 1).

Using the second Taylor expansion, under the null, we have

Λn1 = −n−1∕2
n1∑

j=1
(Δ𝜇T1j + Δ𝜎U1j) − 0.5p1(Δ𝜇,Δ𝜎)A

(
Δ𝜇

Δ𝜎

)
+ op(1),

Λn4 = n−1∕2
n4∑

j=1
(Δ𝜇T4j + Δ𝜎U4j) − 0.5p4(Δ𝜇,Δ𝜎)A

(
Δ𝜇

Δ𝜎

)
+ op(1),

where Δ𝜇 = 𝛿𝜇∕𝜎0 and Δ𝜎 = 𝛿𝜎∕𝜎0. Similarly,

Λn2 = n−1∕2
n2∑

j=1
{m1(𝜃0)T2j + m2(𝜃0)U2j}

− 0.5p2 (m1(𝜃0),m2(𝜃0))A
(

m1(𝜃0)
m2(𝜃0)

)
+ op(1),

and

Λn3 = n−1∕2
n3∑

j=1
{m1(1 − 𝜃0)T3j + m2(1 − 𝜃0)U3j}

− 0.5p3 (m1(1 − 𝜃0),m2(1 − 𝜃0))A
(

m1(1 − 𝜃0)
m2(1 − 𝜃0)

)
+ op(1),

where m1(𝜃) = (1 − 2𝜃)Δ𝜇, and m2(𝜃) = (1 − 2𝜃)Δ𝜎 .

By the central limit theorem, we get Λn
d
→N(−0.5c0, c0) under the null, where

c0 =2p1
(
Δ𝜇,Δ𝜎

)
A
(
Δ𝜇

Δ𝜎

)
+ 2p2 (m1(𝜃0),m2(𝜃0))A

(
m1(𝜃0)
m2(𝜃0)

)
.

Therefore, the local alternative Hn
A is contiguous to the null distribution (Le Cam & Yang, 1990

and example 6.5 of van der Vaart, 2000). By Le Cam's contiguity theory, the limiting distribution
of Rn(𝜃) under Hn

A is determined by the joint limiting distribution of {n𝜏(𝜃)A}−1/2b(𝜃) and Λn
under the null model.

By the central limit theorem and Slutsky's theorem, the joint limiting distribution of
{n𝜏(𝜃)A}−1/2b(𝜃) and Λn under the null model is multivariate normal

3

((
0

−0.5c0

)
,

(
I2 𝝆𝜃0

(𝜃)
𝝆𝜏
𝜃0
(𝜃) c0

))
with 𝝆𝜃0

(𝜃) = 𝚫𝜃0(𝜃)
(
Δ𝜇

Δ𝜎

)
,
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where 𝚫𝜃0(𝜃) = −{1 + 2r(2𝜃0𝜃 − 𝜃0 − 𝜃)}{𝜏(𝜃)}−
1
2 A

1
2 . By Le Cam's third lemma (van der Vaart,

2000), we have under Hn
A,

{n𝜏(𝜃)A}−1∕2b(𝜃) →d 2
(
𝝆𝜃0

(𝜃), I2
)
.

Further, we have Rn(𝜃)
d
→𝜒2

2

(
𝝆𝜏
𝜃0
(𝜃)𝝆𝜃0

(𝜃)
)

under Hn
A. Because Rn = sup𝜃∈[0,1]{Rn(𝜃)} + op(1)

under the null model, by Le Cam's first lemma (van der Vaart, 2000), Rn = sup𝜃∈[0,1]{Rn(𝜃)} +
op(1) still holds under the local alternative Hn

A. Therefore, the limiting distribution of Rn under
Hn

A is sup𝜃∈[0,1]
{
𝜒2

2

(
𝝆𝜏
𝜃0
(𝜃)𝝆𝜃0

(𝜃)
)}

.
Proof of Part (ii).

The proof of this part is similar to that of Part (i) and hence is omitted.


